1
|
Son SH, Kang J, Shin Y, Lee C, Sung BH, Lee JY, Lee W. Sustainable production of natural products using synthetic biology: Ginsenosides. J Ginseng Res 2024; 48:140-148. [PMID: 38465212 PMCID: PMC10920010 DOI: 10.1016/j.jgr.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/23/2023] [Accepted: 12/30/2023] [Indexed: 03/12/2024] Open
Abstract
Synthetic biology approaches offer potential for large-scale and sustainable production of natural products with bioactive potency, including ginsenosides, providing a means to produce novel compounds with enhanced therapeutic properties. Ginseng, known for its non-toxic and potent qualities in traditional medicine, has been used for various medical needs. Ginseng has shown promise for its antioxidant and neuroprotective properties, and it has been used as a potential agent to boost immunity against various infections when used together with other drugs and vaccines. Given the increasing demand for ginsenosides and the challenges associated with traditional extraction methods, synthetic biology holds promise in the development of therapeutics. In this review, we discuss recent developments in microorganism producer engineering and ginsenoside production in microorganisms using synthetic biology approaches.
Collapse
Affiliation(s)
- So-Hee Son
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea
| | - Jin Kang
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Biosystems and Bioengineering Program, Korea National University of Science and Technology (UST), Daejeon, Republic of Korea
| | - YuJin Shin
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - ChaeYoung Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Bong Hyun Sung
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Biosystems and Bioengineering Program, Korea National University of Science and Technology (UST), Daejeon, Republic of Korea
- Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Ju Young Lee
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea
| | - Wonsik Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
2
|
Stephenson A, Lastra L, Nguyen B, Chen YJ, Nivala J, Ceze L, Strauss K. Physical Laboratory Automation in Synthetic Biology. ACS Synth Biol 2023; 12:3156-3169. [PMID: 37935025 DOI: 10.1021/acssynbio.3c00345] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Synthetic Biology has overcome many of the early challenges facing the field and is entering a systems era characterized by adoption of Design-Build-Test-Learn (DBTL) approaches. The need for automation and standardization to enable reproducible, scalable, and translatable research has become increasingly accepted in recent years, and many of the hardware and software tools needed to address these challenges are now in place or under development. However, the lack of connectivity between DBTL modules and barriers to access and adoption remain significant challenges to realizing the full potential of lab automation. In this review, we characterize and classify the state of automation in synthetic biology with a focus on the physical automation of experimental workflows. Though fully autonomous scientific discovery is likely a long way off, impressive progress has been made toward automating critical elements of experimentation by combining intelligent hardware and software tools. It is worth questioning whether total automation that removes humans entirely from the loop should be the ultimate goal, and considerations for appropriate automation versus total automation are discussed in this light while emphasizing areas where further development is needed in both contexts.
Collapse
Affiliation(s)
- Ashley Stephenson
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, United States
- Microsoft Research, Redmond, Washington 98052, United States
| | - Lauren Lastra
- Microsoft Research, Redmond, Washington 98052, United States
| | - Bichlien Nguyen
- Microsoft Research, Redmond, Washington 98052, United States
| | - Yuan-Jyue Chen
- Microsoft Research, Redmond, Washington 98052, United States
| | - Jeff Nivala
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Luis Ceze
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Karin Strauss
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, United States
- Microsoft Research, Redmond, Washington 98052, United States
| |
Collapse
|
3
|
Holub M, Agena E. Biofoundries and citizen science can accelerate disease surveillance and environmental monitoring. Front Bioeng Biotechnol 2023; 10:1110376. [PMID: 36714630 PMCID: PMC9877229 DOI: 10.3389/fbioe.2022.1110376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
A biofoundry is a highly automated facility for processing of biological samples. In that capacity it has a major role in accelerating innovation and product development in engineering biology by implementing design, build, test and learn (DBTL) cycles. Biofoundries bring public and private stakeholders together to share resources, develop standards and forge collaborations on national and international levels. In this paper we argue for expanding the scope of applications for biofoundries towards roles in biosurveillance and biosecurity. Reviewing literature on these topics, we conclude that this could be achieved in multiple ways including developing measurement standards and protocols, engaging citizens in data collection, closer collaborations with biorefineries, and processing of samples. Here we provide an overview of these roles that despite their potential utility have not yet been commonly considered by policymakers and funding agencies and identify roadblocks to their realization. This document should prove useful to policymakers and other stakeholders who wish to strengthen biosecurity programs in ways that synergize with bioeconomy.
Collapse
Affiliation(s)
- Martin Holub
- Department of Bionanoscience, Delft University of Technology, Delft, Netherlands,*Correspondence: Martin Holub,
| | - Ethan Agena
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Donati S, Barbier I, García-Soriano DA, Grasso S, Handal-Marquez P, Malcı K, Marlow L, Westmann C, Amara A. Synthetic biology in Europe: current community landscape and future perspectives. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2022; 3:54-61. [PMID: 39416454 PMCID: PMC11446344 DOI: 10.1016/j.biotno.2022.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/14/2022] [Accepted: 07/26/2022] [Indexed: 10/19/2024]
Abstract
Synthetic biology has captivated scientists' imagination. It promises answers to some of the grand challenges society is facing: worsening climate crisis, insufficient food supplies for ever growing populations, and many persisting infectious and genetic diseases. While many challenges remain unaddressed, after almost two decades since its inception a number of products created by engineered biology are starting to reach the public. European scientists and entrepreneurs have been participating in delivering on the promises of synthetic biology. Associations like the European Synthetic Biology Society (EUSynBioS) play a key role in disseminating advances in the field, connecting like-minded people and promoting scientific development. In this perspective article, we review the current landscape of the synthetic biology community in Europe, discussing the state of related academic research and industry. We also discuss how EUSynBioS has helped to build bridges between professionals across the continent.
Collapse
Affiliation(s)
- Stefano Donati
- The European Synthetic Biology Society, Paris, France
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Içvara Barbier
- The European Synthetic Biology Society, Paris, France
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Daniela A. García-Soriano
- The European Synthetic Biology Society, Paris, France
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Stefano Grasso
- The European Synthetic Biology Society, Paris, France
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Paola Handal-Marquez
- The European Synthetic Biology Society, Paris, France
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Koray Malcı
- The European Synthetic Biology Society, Paris, France
- Institute for Bioengineering and SynthSys, University of Edinburgh, Edinburgh, UK
| | - Louis Marlow
- The European Synthetic Biology Society, Paris, France
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh, UK
| | - Cauã Westmann
- The European Synthetic Biology Society, Paris, France
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Adam Amara
- The European Synthetic Biology Society, Paris, France
| |
Collapse
|
5
|
A global forum on synthetic biology: the need for international engagement. Nat Commun 2022; 13:3516. [PMID: 35717402 PMCID: PMC9206396 DOI: 10.1038/s41467-022-31265-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/13/2022] [Indexed: 12/03/2022] Open
|
6
|
Nielsen J, Tillegreen CB, Petranovic D. Innovation trends in industrial biotechnology. Trends Biotechnol 2022; 40:1160-1172. [PMID: 35459568 DOI: 10.1016/j.tibtech.2022.03.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 11/27/2022]
Abstract
Microbial fermentations are used for the sustainable production of a range of products. Due to increasing trends in the food sector toward plant-based foods and meat and dairy product substitutes, microbial fermentation will have an increasing role in this sector, as it will enable a sustainable and scalable production of valuable foods and food ingredients. Microbial fermentation will also be used to advance and expand the production of sustainable chemicals and natural products. Much of this market expansion will come from new start-ups that translate academic research into novel processes and products using state-of-the art technologies. Here, we discuss the trends in innovation and technology and provide recommendations for how to successfully start and grow companies in industrial biotechnology.
Collapse
Affiliation(s)
- Jens Nielsen
- BioInnovation Institute, Ole Maaløes Vej 3, DK2200 Copenhagen N, Denmark; Department of Biology and Biological Engineering, Chalmers University of Technology, SE41296 Gothenburg, Sweden.
| | | | - Dina Petranovic
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE41296 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2800 Kgs. Lyngby, Denmark
| |
Collapse
|