1
|
Sadu Murari LS, Kunkel S, Shetty A, Bents A, Bhandary A, Rivera-Mulia JC. p63: A Master Regulator at the Crossroads Between Development, Senescence, Aging, and Cancer. Cells 2025; 14:43. [PMID: 39791744 PMCID: PMC11719615 DOI: 10.3390/cells14010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/23/2024] [Accepted: 12/25/2024] [Indexed: 01/12/2025] Open
Abstract
The p63 protein is a master regulatory transcription factor that plays crucial roles in cell differentiation, adult tissue homeostasis, and chromatin remodeling, and its dysregulation is associated with genetic disorders, physiological and premature aging, and cancer. The effects of p63 are carried out by two main isoforms that regulate cell proliferation and senescence. p63 also controls the epigenome by regulating interactions with histone modulators, such as the histone acetyltransferase p300, deacetylase HDAC1/2, and DNA methyltransferases. miRNA-p63 interactions are also critical regulators in the context of cancer metastasis. This review aims to elaborate on the diverse roles of p63, focusing on disease, development, and the mechanisms controlling genome organization and function.
Collapse
Affiliation(s)
- Lakshana Sruthi Sadu Murari
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (L.S.S.M.); (S.K.); (A.B.); (A.B.)
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Sam Kunkel
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (L.S.S.M.); (S.K.); (A.B.); (A.B.)
| | - Anala Shetty
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (L.S.S.M.); (S.K.); (A.B.); (A.B.)
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Addison Bents
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (L.S.S.M.); (S.K.); (A.B.); (A.B.)
| | - Aayush Bhandary
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (L.S.S.M.); (S.K.); (A.B.); (A.B.)
| | - Juan Carlos Rivera-Mulia
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (L.S.S.M.); (S.K.); (A.B.); (A.B.)
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
2
|
Liu Z, Liu C, Fan C, Li R, Zhang S, Liu J, Li B, Zhang S, Guo L, Wang X, Qi Z, Shen Y. E3 ubiquitin ligase DTX2 fosters ferroptosis resistance via suppressing NCOA4-mediated ferritinophagy in non-small cell lung cancer. Drug Resist Updat 2024; 77:101154. [PMID: 39366066 DOI: 10.1016/j.drup.2024.101154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/10/2024] [Accepted: 09/21/2024] [Indexed: 10/06/2024]
Abstract
Non-small cell lung cancer (NSCLC) remains the foremost contributor to cancer-related fatalities globally, with limited effective therapeutic modalities. Recent research has shed light on the role of ferroptosis in various types of cancers, offering a potential avenue for improving cancer therapy. Herein, we identified E3 ubiquitin ligase deltex 2 (DTX2) as a potential therapeutic target candidate implicated in promoting NSCLC cell growth by inhibiting ferroptosis. Our investigation revealed a significant upregulation of DTX2 in NSCLC cells and tissues, which was correlated with poor prognosis. Downregulation of DTX2 suppressed NSCLC cell growth both in vitro and in vivo, while its overexpression accelerated cell proliferation. Moreover, knockdown of DTX2 promoted ferroptosis in NSCLC cells, which was mitigated by DTX2 overexpression. Mechanistically, we uncovered that DTX2 binds to nuclear receptor coactivator 4 (NCOA4), facilitating its ubiquitination and degradation via the K48 chain, which subsequently dampens NCOA4-driven ferritinophagy and ferroptosis in NSCLC cells. Notably, DTX2 knockdown promotes cisplatin-induced ferroptosis and overcomes drug resistance of NSCLC cells. These findings underscore the critical role of DTX2 in regulating ferroptosis and NCOA4-mediated ferritinophagy, suggesting its potential as a novel therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Zhuang Liu
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer; Tianjin's Clinical Research Center for Cancer; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Tianjin Medical University, Tianjin 300203, China
| | - Chang Liu
- School of Medical Technology, Tianjin Medical University, Tianjin 300203, China
| | - Caihong Fan
- School of Medical Technology, Tianjin Medical University, Tianjin 300203, China
| | - Runze Li
- School of Medical Technology, Tianjin Medical University, Tianjin 300203, China
| | - Shiqi Zhang
- School of Medical Technology, Tianjin Medical University, Tianjin 300203, China
| | - Jia Liu
- School of Medical Technology, Tianjin Medical University, Tianjin 300203, China
| | - Bo Li
- School of Medical Technology, Tianjin Medical University, Tianjin 300203, China
| | - Shengzheng Zhang
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Lihong Guo
- Department of Gastroenterology, Shengli Oilfield Central Hospital 257000, China
| | - Xudong Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer; Tianjin's Clinical Research Center for Cancer; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Tianjin Medical University, Tianjin 300203, China.
| | - Zhi Qi
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin 300071, China; Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin 300000, China; Department of Gastroenterology, Shengli Oilfield Central Hospital 257000, China; The First Department of Critical Care Medicine, The First Affiliated Hospital, Shihezi University 832000, China.
| | - Yanna Shen
- School of Medical Technology, Tianjin Medical University, Tianjin 300203, China.
| |
Collapse
|
3
|
Zhang Z, Huang H, Peng L, Zhou B, Yang H, Tang Z, Yan W, Chen W, Liu Z, Zheng D, Shen P, Fang W. SIX4 Activation in Inflammatory Response Drives the Transformation of Colorectal Epithelium into Inflammation and Tumor via Feedback-Enhancing Inflammatory Signaling to Induce Tumor Stemness Signaling. Int J Biol Sci 2024; 20:4618-4634. [PMID: 39309424 PMCID: PMC11414381 DOI: 10.7150/ijbs.93411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/31/2024] [Indexed: 09/25/2024] Open
Abstract
Some colorectal cancer patients have experienced normal epithelial transformation into inflammatory and tumor states, but the molecular basis still needs to be further determined. The expression levels of SIX4 are gradually increased in dextran sodium sulfate (DSS) and azoxymethane (AOM)/DSS-induced colonic epithelial inflammation and tumors, respectively, in mice. Targeting SIX4 alleviates intestinal inflammation occurrence and reduces adenoma formation in mice. Clinical sample assays indicated that SIX4 is upregulated in inflammatory bowel disease (IBD) and colorectal cancer (CRC) tissues compared to normal colorectal tissues. In a subsequent study, we found that SIX4, transcriptionally activated by the proinflammatory IL-6/STAT3 signal, binds to c-Jun to transcribe IL-6, thus forming a positive IL-6/STAT3/SIX4/c-Jun feedback loop, which further induces intestinal inflammation occurrence. In addition, elevated SIX4 also induces the expression of DeltaNp63, rather than wild-type p63, by binding to its promoter and thus facilitates the activation of tumor stemness signals, which ultimately leads to the formation of colorectal cancer. Our study first observes that activated SIX4 in inflammation induction drives the transformation of colorectal epithelium into inflammation and tumor, which demonstrates SIX4 as a significant therapeutic target in IBD and colitis-associated colorectal cancer (CAC) and CRC pathogenesis.
Collapse
Affiliation(s)
- Ziyan Zhang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China
- Department of Radiotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 528406, Guangzhou, China
- Department of gynecology and obstetrics, The Third Affiliated Hospital, Southern Medical University, 510630, Guangzhou, China
| | - Huang Huang
- Nursing Department of Nanfang Hospital, Southern Medical University, 510516, Guangzhou, China
| | - Lanzhu Peng
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China
| | - Beixian Zhou
- The People's Hospital of Gaozhou, Gaozhou, 525200, China
| | - Huiling Yang
- School of Pharmacy, Guangdong Medical University, 523808, Dongguan, China
| | - Zibo Tang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China
- Department of Radiation Oncology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Weiwei Yan
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China
| | - Weifeng Chen
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China
| | - Zhen Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510095, China
| | - Dayong Zheng
- Shunde Hospital of South Medical University, Foshan City, Guangdong, China
- Kashi first people's Hospital, 844099, Kashi, China
| | - Peng Shen
- Department of Oncology, Nanfang Hospital of Southern Medical University, 510515, Guangzhou, China
| | - Weiyi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China
- Department of gynecology and obstetrics, The Third Affiliated Hospital, Southern Medical University, 510630, Guangzhou, China
| |
Collapse
|
4
|
Zdrojewski J, Nowak M, Nijakowski K, Jankowski J, Scribante A, Gallo S, Pascadopoli M, Surdacka A. Potential Immunohistochemical Biomarkers for Grading Oral Dysplasia: A Literature Review. Biomedicines 2024; 12:577. [PMID: 38540190 PMCID: PMC10967812 DOI: 10.3390/biomedicines12030577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 09/18/2024] Open
Abstract
Oral cancer is a prevalent global health issue, with significant morbidity and mortality rates. Despite available preventive measures, it remains one of the most common cancers, emphasising the need for improved diagnostic and prognostic tools. This review focuses on oral potentially malignant disorders (OPMDs), precursors to oral cancer, specifically emphasising oral epithelial dysplasia (OED). The World Health Organisation (WHO) provides a three-tier grading system for OED, and recent updates have expanded the criteria to enhance diagnostic precision. In the prognostic evaluation of OED, histological grading is presently regarded as the gold standard; however, its subjectivity and unreliability in anticipating malignant transformation or recurrence pose notable limitations. The primary objective is to investigate whether specific immunohistochemical biomarkers can enhance OED grading assessment according to the WHO classification. Biomarkers exhibit significant potential for comprehensive cancer risk evaluation, early detection, diagnosis, prognosis, and treatment optimisation. Technological advancements, including sequencing and nanotechnology, have expanded detection capabilities. Some analysed biomarkers are most frequently chosen, such as p53, Ki-67, cadherins/catenins, and other proteins used to differentiate OED grades. However, further research is needed to confirm these findings and discover new potential biomarkers for precise dysplasia grading and minimally invasive assessment of the risk of malignant transformation.
Collapse
Affiliation(s)
- Jakub Zdrojewski
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland; (J.Z.); (M.N.); (A.S.)
| | - Monika Nowak
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland; (J.Z.); (M.N.); (A.S.)
| | - Kacper Nijakowski
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland; (J.Z.); (M.N.); (A.S.)
| | - Jakub Jankowski
- Student’s Scientific Group, Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland;
| | - Andrea Scribante
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (S.G.)
- Unit of Dental Hygiene, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Simone Gallo
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (S.G.)
| | - Maurizio Pascadopoli
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (S.G.)
| | - Anna Surdacka
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland; (J.Z.); (M.N.); (A.S.)
| |
Collapse
|
5
|
Quan MY, Yan X, Miao W, Li X, Li J, Yang L, Yu C, Zhang Y, Yang W, Zou C, Liu B, Jin X, Chen C, Guo Q, Zhang JS. Metformin alleviates benzo[a]pyrene-induced alveolar injury by inhibiting necroptosis and protecting AT2 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116094. [PMID: 38364759 DOI: 10.1016/j.ecoenv.2024.116094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/18/2024]
Abstract
Exposure to benzo[a]pyrene (B[a]P) has been linked to lung injury and carcinogenesis. Airway epithelial cells express the B[a]P receptor AHR, so B[a]P is considered to mainly target airway epithelial cells, whereas its potential impact on alveolar cells remains inadequately explored. Metformin, a first-line drug for diabetes, has been shown to exert anti-inflammatory and tissue repair-promoting effects under various injurious conditions. Here, we explored the effect of chronic B[a]P exposure on alveolar cells and the impact of metformin on B[a]P-induced lung injury by examining the various parameters including lung histopathology, inflammation, fibrosis, and related signal pathway activation. MLKL knockout (Mlkl-/-) and AT2-lineage tracing mice (SftpcCre-ERT2;LSL-tdTomatoflox+/-) were used to delineate the role of necroptosis in B[a]P-induced alveolar epithelial injury and repair. Mice receiving weekly administration of B[a]P for 6 weeks developed a significant alveolar damaging phenotype associated with pulmonary inflammation, fibrosis, and activation of the necroptotic cell death pathway. These effects were significantly relieved in MLKL null mice. Furthermore, metformin treatment, which were found to promote AMPK phosphorylation and inhibit RIPK3, as well as MLKL phosphorylation, also significantly alleviated B[a]P-induced necroptosis and lung injury phenotype. However, the protective efficacy of metformin was rendered much less effective in Mlkl null mice or by blocking the necroptotic pathway with RIPK3 inhibitor. Our findings unravel a potential protective efficacy of metformin in mitigating the detrimental effects of B[a]P exposure on lung health by inhibiting necroptosis and protecting AT2 cells.
Collapse
Affiliation(s)
- Mei-Yu Quan
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xihua Yan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Wanqi Miao
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xue Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jiaqi Li
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Linglong Yang
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Chenhua Yu
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yanxia Zhang
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Weiwei Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Chengyang Zou
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Bin Liu
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xuru Jin
- Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, China
| | - Chengshui Chen
- Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, China.
| | - Qiang Guo
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Jin-San Zhang
- Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, China; Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
6
|
Napoli M, Deshpande AA, Chakravarti D, Rajapakshe K, Gunaratne PH, Coarfa C, Flores ER. Genome-wide p63-Target Gene Analyses Reveal TAp63/NRF2-Dependent Oxidative Stress Responses. CANCER RESEARCH COMMUNICATIONS 2024; 4:264-278. [PMID: 38165157 PMCID: PMC10832605 DOI: 10.1158/2767-9764.crc-23-0358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/14/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
The p53 family member TP63 encodes two sets of N-terminal isoforms, TAp63 and ΔNp63 isoforms. They each regulate diverse biological functions in epidermal morphogenesis and in cancer. In the skin, where their activities have been extensively characterized, TAp63 prevents premature aging by regulating the quiescence and genomic stability of stem cells required for wound healing and hair regeneration, while ΔNp63 controls maintenance and terminal differentiation of epidermal basal cells. This functional diversity is surprising given that these isoforms share a high degree of similarity, including an identical sequence for a DNA-binding domain. To understand the mechanisms of the transcriptional programs regulated by each p63 isoform and leading to diverse biological functions, we performed genome-wide analyses using p63 isoform-specific chromatin immunoprecipitation, RNA sequencing, and metabolomics of TAp63-/- and ΔNp63-/- mouse epidermal cells. Our data indicate that TAp63 and ΔNp63 physically and functionally interact with distinct transcription factors for the downstream regulation of their target genes, thus ultimately leading to the regulation of unique transcriptional programs and biological processes. Our findings unveil novel transcriptomes regulated by the p63 isoforms to control diverse biological functions, including the cooperation between TAp63 and NRF2 in the modulation of metabolic pathways and response to oxidative stress providing a mechanistic explanation for the TAp63 knock out phenotypes. SIGNIFICANCE The p63 isoforms, TAp63 and ΔNp63, control epithelial morphogenesis and tumorigenesis through the interaction with distinct transcription factors and the subsequent regulation of unique transcriptional programs.
Collapse
Affiliation(s)
- Marco Napoli
- Department of Molecular Oncology, Division of Basic Science, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Avani A. Deshpande
- Department of Molecular Oncology, Division of Basic Science, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | | | - Kimal Rajapakshe
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | | | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Elsa R. Flores
- Department of Molecular Oncology, Division of Basic Science, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| |
Collapse
|
7
|
Samanta A, Saha P, Johnson O, Bishayee A, Sinha D. Dysregulation of delta Np63 alpha in squamous cell carcinoma and its therapeutic targeting. Biochim Biophys Acta Rev Cancer 2024; 1879:189034. [PMID: 38040268 DOI: 10.1016/j.bbcan.2023.189034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/05/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
The gene p63 has two isoforms -a full length transactivated isoform (TA) p63 and an amino-terminally truncated isoform, ∆Np63. DeltaNp63 alpha (∆Np63α) is the predominant splice variant of the isoform, ∆Np63 and is expressed in the basal layer of stratified epithelia. ∆Np63α that is normally essential for the epithelial lineage maintenance may be dysregulated in squamous cell carcinomas (SCCs). The pro-tumorigenic or antitumorigenic role of ∆Np63 is a highly contentious arena. ∆Np63α may act as a double-edged sword. It may either promote tumor progression, epithelial-mesenchymal transition, migration, chemoresistance, and immune-inflammatory responses, or inhibit the aforementioned phenomena depending upon cell type and tumor microenvironment. Several signaling pathways, transforming growth factor-β, Wnt and Notch, as well as epigenetic alterations involving microRNAs, and long noncoding RNAs are regulated by ∆Np63α. This review has attempted to provide an in-depth insight into the role of ∆Np63α in the development of SCCs during different stages of tumor formation and how it may be targeted for therapeutic implications.
Collapse
Affiliation(s)
- Anurima Samanta
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata 700 026, West Bengal, India
| | - Priyanka Saha
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata 700 026, West Bengal, India
| | - Olivia Johnson
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| | - Dona Sinha
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata 700 026, West Bengal, India.
| |
Collapse
|
8
|
Eyermann CE, Chen X, Somuncu OS, Li J, Joukov AN, Chen J, Alexandrova EM. ΔNp63 Regulates Homeostasis, Stemness, and Suppression of Inflammation in the Adult Epidermis. J Invest Dermatol 2024; 144:73-83.e10. [PMID: 37543242 DOI: 10.1016/j.jid.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/22/2023] [Accepted: 07/10/2023] [Indexed: 08/07/2023]
Abstract
The p63 transcription factor is critical for epidermis formation in embryonic development, but its role in the adult epidermis is poorly understood. In this study, we show that acute genetic ablation of ΔNp63, the main p63 isoform, in adult epidermis disrupts keratinocyte proliferation and self-maintenance and, unexpectedly, triggers an inflammatory psoriasis-like condition. Mechanistically, single-cell RNA sequencing revealed the downregulation of cell cycle genes, upregulation of differentiation markers, and induction of several proinflammatory pathways in ΔNp63-ablated keratinocytes. Intriguingly, ΔNp63-ablated cells disappear by 3 weeks after ablation, at the expense of the remaining nonablated cells. This is not associated with active cell death and is likely due to reduced self-maintenance and enhanced differentiation. Indeed, in vivo wound healing, a physiological readout of the epidermal stem cell function, is severely impaired upon ΔNp63 ablation. We found that the Wnt signaling pathway (Wnt10A, Fzd6, Fzd10) and the activator protein 1 (JunB, Fos, FosB) factors are the likely ΔNp63 effectors responsible for keratinocyte proliferation/stemness and suppression of differentiation, respectively, whereas IL-1a, IL-18, IL-24, and IL-36γ are the likely negative effectors responsible for suppression of inflammation. These data establish ΔNp63 as a critical node that coordinates epidermal homeostasis, stemness, and suppression of inflammation, upstream of known regulatory pathways.
Collapse
Affiliation(s)
- Christopher E Eyermann
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA; Stony Brook Cancer Center, Stony Brook, New York, USA
| | - Xi Chen
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA; Stony Brook Cancer Center, Stony Brook, New York, USA
| | - Ozge S Somuncu
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA; Stony Brook Cancer Center, Stony Brook, New York, USA
| | - Jinyu Li
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA; Stony Brook Cancer Center, Stony Brook, New York, USA
| | | | - Jiang Chen
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA; Stony Brook Cancer Center, Stony Brook, New York, USA
| | - Evguenia M Alexandrova
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA; Stony Brook Cancer Center, Stony Brook, New York, USA.
| |
Collapse
|
9
|
Ge M, Zhu J, Yi K, Chen Y, Cao W, Wang M, Xie C, Li X, Geng S, Wu J, Zhong C, Cao H, Jiang Z, Han H. Diallyl trisulfide inhibits gastric cancer stem cell properties through ΔNp63/sonic hedgehog pathway. Mol Carcinog 2023; 62:1673-1685. [PMID: 37477518 DOI: 10.1002/mc.23607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/30/2023] [Accepted: 06/27/2023] [Indexed: 07/22/2023]
Abstract
Gastric cancer is one of the deadliest malignant tumors, and half of the patients develop recurrences or metastasis within 5 years after eradication therapy. Cancer stem cells (CSCs) are considered to be important in this progress. The sonic hedgehog (SHH) pathway plays an important role in the maintenance of gastric CSCs characteristics. The p63 proteins are vital transcription factors belonging to the p53 family, while their functions in regulating CSCs remain unclear. The preventive effects of dietary diallyl trisulfide (DATS) against human gastric cancer have been verified. However, whether DATS can target gastric CSCs are poorly understood. Here, we investigated the role of ΔNp63/SHH pathway in gastric CSCs and the inhibitory effect of DATS on gastric CSCs via ΔNp63/SHH pathway. We found that ΔNp63 was upregulated in serum-free medium cultured gastric tumorspheres compared with the parental cells. Overexpression of ΔNp63 elevated the self-renewal capacity and CSC markers' levels in gastric sphere-forming cells. Furthermore, we found that ΔNp63 directly bound to the promoter region of Gli1, the key transcriptional factor of SHH pathway, to enhance its expression and to activate SHH pathway. In addition, it was revealed that DATS effectively inhibited gastric CSC properties both in vitro and in vivo settings. Activation of SHH pathway attenuated the suppressive effects of DATS on the stemness of gastric cancer. Moreover, DATS suppression of gastric CSC properties was also diminished by ΔNp63 upregulation through SHH pathway activation. These findings illustrated the role of ΔNp63/SHH pathway in DATS inhibition of gastric cancer stemness. Taken together, the present study suggested for the first time that DATS inhibited gastric CSCs properties by ΔNp63/SHH pathway.
Collapse
Affiliation(s)
- Miaomiao Ge
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Nutrition, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jianyun Zhu
- Department of Nutrition, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Division of Nutrition, Suzhou Digestive Diseases and Nutrition Research Center, North District of Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Kefan Yi
- Department of Nutrition, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yue Chen
- Department of Nutrition, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wanshuang Cao
- Department of Nutrition, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Menghuan Wang
- Department of Nutrition, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chunfeng Xie
- Department of Nutrition, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoting Li
- Department of Nutrition, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shanshan Geng
- Department of Nutrition, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jieshu Wu
- Department of Nutrition, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Caiyun Zhong
- Department of Nutrition, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Division of Cancer Research, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hui Cao
- Department of Thoracic Surgery, The affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zhiwei Jiang
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongyu Han
- Department of Clinical Nutrition, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
10
|
Li Y, Giovannini S, Wang T, Fang J, Li P, Shao C, Wang Y, Shi Y, Candi E, Melino G, Bernassola F. p63: a crucial player in epithelial stemness regulation. Oncogene 2023; 42:3371-3384. [PMID: 37848625 PMCID: PMC10638092 DOI: 10.1038/s41388-023-02859-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023]
Abstract
Epithelial tissue homeostasis is closely associated with the self-renewal and differentiation behaviors of epithelial stem cells (ESCs). p63, a well-known marker of ESCs, is an indispensable factor for their biological activities during epithelial development. The diversity of p63 isoforms expressed in distinct tissues allows this transcription factor to have a wide array of effects. p63 coordinates the transcription of genes involved in cell survival, stem cell self-renewal, migration, differentiation, and epithelial-to-mesenchymal transition. Through the regulation of these biological processes, p63 contributes to, not only normal epithelial development, but also epithelium-derived cancer pathogenesis. In this review, we provide an overview of the role of p63 in epithelial stemness regulation, including self-renewal, differentiation, proliferation, and senescence. We describe the differential expression of TAp63 and ΔNp63 isoforms and their distinct functional activities in normal epithelial tissues and in epithelium-derived tumors. Furthermore, we summarize the signaling cascades modulating the TAp63 and ΔNp63 isoforms as well as their downstream pathways in stemness regulation.
Collapse
Affiliation(s)
- Yanan Li
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | - Sara Giovannini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Tingting Wang
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | - Jiankai Fang
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | - Peishan Li
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | - Changshun Shao
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | - Ying Wang
- Shanghai Institute of Nutrition and Health, Shanghai, 200031, China
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China.
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS), 00100, Rome, Italy.
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Francesca Bernassola
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| |
Collapse
|
11
|
Oyelakin A, Sosa J, Nayak K, Glathar A, Gluck C, Sethi I, Tsompana M, Nowak N, Buck M, Romano RA, Sinha S. An integrated genomic approach identifies follistatin as a target of the p63-epidermal growth factor receptor oncogenic network in head and neck squamous cell carcinoma. NAR Cancer 2023; 5:zcad038. [PMID: 37492374 PMCID: PMC10365026 DOI: 10.1093/narcan/zcad038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/27/2023] Open
Abstract
Although numerous putative oncogenes have been associated with the etiology of head and neck squamous cell carcinoma (HNSCC), the mechanisms by which these oncogenes and their downstream targets mediate tumor progression have not been fully elucidated. We performed an integrative analysis to identify a crucial set of targets of the oncogenic transcription factor p63 that are common across multiple transcriptomic datasets obtained from HNSCC patients, and representative cell line models. Notably, our analysis revealed FST which encodes follistatin, a secreted glycoprotein that inhibits the transforming growth factor TGFβ/activin signaling pathways, to be a direct transcriptional target of p63. In addition, we found that FST expression is also driven by epidermal growth factor receptor EGFR signaling, thus mediating a functional link between the TGF-β and EGFR pathways. We show through loss- and gain-of-function studies that FST predominantly imparts a tumor-growth and migratory phenotype in HNSCC cells. Furthermore, analysis of single-cell RNA sequencing data from HNSCC patients unveiled cancer cells as the dominant source of FST within the tumor microenvironment and exposed a correlation between the expression of FST and its regulators with immune infiltrates. We propose FST as a prognostic biomarker for patient survival and a compelling candidate mediating the broad effects of p63 on the tumor and its associated microenvironment.
Collapse
Affiliation(s)
- Akinsola Oyelakin
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, USA
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Jennifer Sosa
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Kasturi Bala Nayak
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Alexandra Glathar
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Christian Gluck
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Isha Sethi
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Maria Tsompana
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Norma Nowak
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Michael Buck
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Rose-Anne Romano
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, USA
| | - Satrajit Sinha
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
12
|
Dong M, Tang R, Wang W, Xu J, Liu J, Liang C, Hua J, Meng Q, Yu X, Zhang B, Shi S. Integrated analysis revealed hypoxia signatures and LDHA related to tumor cell dedifferentiation and unfavorable prognosis in pancreatic adenocarcinoma: Hypoxia in PDAC. Transl Oncol 2023; 33:101692. [PMID: 37182509 PMCID: PMC10206494 DOI: 10.1016/j.tranon.2023.101692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/30/2023] [Accepted: 05/07/2023] [Indexed: 05/16/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly heterogeneous cancer with limited understanding of its classification and tumor microenvironment. Here, by analyzing single-nucleus RNA sequencing of 43, 817 tumor cells from 15 PDAC tumors and non-tumor, we find that hypoxia signatures were heterogeneous across samples and were potential regulators for tumor progression and more aggressive phenotype. Hypoxia-high PDAC tends to present a basal/squamous-like phenotype and has significantly increased outgoing signaling, which enhances tumor cell stemness and promotes metastasis, angiogenesis, and fibroblast differentiation in PDAC. Hypoxia is related to an extracellular matrix enriched microenvironment, and increased possibility of TP53 mutation in PDAC. TP63 is a specific marker of squamous-like phenotype, and presents elevated transcriptome levels in most hypoxia PDAC tumors. In summary, our research highlights the potential linkage of hypoxia, tumor progression and genome alteration in PDAC, leading to further understand of the formation of inter-tumoral and intra-tumoral heterogenous in PDAC. Our study extends the understanding of the diversity and transition of tumor cells in PDAC, which provides insight into future PDAC management.
Collapse
Affiliation(s)
- Mingwei Dong
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong'An Road, Shanghai 200032, P R China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P R China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, P R China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P R China
| | - Rong Tang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong'An Road, Shanghai 200032, P R China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P R China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, P R China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P R China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong'An Road, Shanghai 200032, P R China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P R China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, P R China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P R China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong'An Road, Shanghai 200032, P R China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P R China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, P R China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P R China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong'An Road, Shanghai 200032, P R China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P R China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, P R China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P R China
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong'An Road, Shanghai 200032, P R China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P R China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, P R China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P R China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong'An Road, Shanghai 200032, P R China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P R China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, P R China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P R China
| | - Qingcai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong'An Road, Shanghai 200032, P R China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P R China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, P R China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P R China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong'An Road, Shanghai 200032, P R China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P R China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, P R China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P R China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong'An Road, Shanghai 200032, P R China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P R China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, P R China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P R China.
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong'An Road, Shanghai 200032, P R China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P R China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, P R China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, P R China.
| |
Collapse
|
13
|
Luo F, Tshering LF, Tutuska K, Szenk M, Rubel D, Rail JG, Russ S, Liu J, Nemajerova A, Balázsi G, Talos F. A luminal intermediate cell state maintains long-term prostate homeostasis and contributes to tumorigenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.24.529762. [PMID: 36909551 PMCID: PMC10002646 DOI: 10.1101/2023.02.24.529762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Cellular heterogeneity poses tremendous challenges for developing cell-targeted therapies and biomarkers of clinically significant prostate cancer. The origins of this heterogeneity within normal adult and aging tissue remain unknown, leaving cellular states and transcriptional programs that allow expansions of malignant clones unidentified. To define cell states that contribute to early cancer development, we performed clonal analyses and single cell transcriptomics of normal prostate from genetically-engineered mouse models. We uncovered a luminal transcriptional state with a unique "basal-like" Wnt/p63 signaling ( luminal intermediate , LumI) which contributes to the maintenance of long-term prostate homeostasis. Moreover, LumI cells greatly expand during early stages of tumorigenesis in several mouse models of prostate cancer. Genetic ablation of p63 in vivo in luminal cells reduced the formation of aggressive clones in mouse prostate tumor models. Finally, the LumI cells and Wnt signaling appear to significantly increase in human aging prostate and prostate cancer samples, highlighting the importance of this hybrid cell state for human pathologies with potential translational impact.
Collapse
|
14
|
Signaling pathways and targeted therapies in lung squamous cell carcinoma: mechanisms and clinical trials. Signal Transduct Target Ther 2022; 7:353. [PMID: 36198685 PMCID: PMC9535022 DOI: 10.1038/s41392-022-01200-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/03/2022] [Accepted: 09/18/2022] [Indexed: 11/08/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related death across the world. Unlike lung adenocarcinoma, patients with lung squamous cell carcinoma (LSCC) have not benefitted from targeted therapies. Although immunotherapy has significantly improved cancer patients' outcomes, the relatively low response rate and severe adverse events hinder the clinical application of this promising treatment in LSCC. Therefore, it is of vital importance to have a better understanding of the mechanisms underlying the pathogenesis of LSCC as well as the inner connection among different signaling pathways, which will surely provide opportunities for more effective therapeutic interventions for LSCC. In this review, new insights were given about classical signaling pathways which have been proved in other cancer types but not in LSCC, including PI3K signaling pathway, VEGF/VEGFR signaling, and CDK4/6 pathway. Other signaling pathways which may have therapeutic potentials in LSCC were also discussed, including the FGFR1 pathway, EGFR pathway, and KEAP1/NRF2 pathway. Next, chromosome 3q, which harbors two key squamous differentiation markers SOX2 and TP63 is discussed as well as its related potential therapeutic targets. We also provided some progress of LSCC in epigenetic therapies and immune checkpoints blockade (ICB) therapies. Subsequently, we outlined some combination strategies of ICB therapies and other targeted therapies. Finally, prospects and challenges were given related to the exploration and application of novel therapeutic strategies for LSCC.
Collapse
|
15
|
The Therapeutic Potential of the Restoration of the p53 Protein Family Members in the EGFR-Mutated Lung Cancer. Int J Mol Sci 2022; 23:ijms23137213. [PMID: 35806218 PMCID: PMC9267050 DOI: 10.3390/ijms23137213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
Despite the recent development of precision medicine and targeted therapies, lung cancer remains the top cause of cancer-related mortality worldwide. The patients diagnosed with metastatic disease have a five-year survival rate lower than 6%. In metastatic disease, EGFR is the most common driver of mutation, with the most common co-driver hitting TP53. EGFR-positive patients are offered the frontline treatment with tyrosine kinase inhibitors, yet the development of resistance and the lack of alternative therapies make this group of patients only fit for clinical trial participation. Since mutant p53 is the most common co-driver in the metastatic setting, therapies reactivating the p53 pathway might serve as a promising alternative therapeutic approach in patients who have developed a resistance to tyrosine kinase inhibitors. This review focuses on the molecular background of EGFR-mutated lung cancer and discusses novel therapeutic options converging on the reactivation of p53 tumor suppressor pathways.
Collapse
|