1
|
Kinman LF, Carreira MV, Powell BM, Davis JH. Automated model-free analysis of cryo-EM volume ensembles with SIREn. Structure 2025; 33:974-987.e4. [PMID: 40068687 PMCID: PMC12055258 DOI: 10.1016/j.str.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/16/2024] [Accepted: 02/12/2025] [Indexed: 03/19/2025]
Abstract
Cryogenic electron microscopy (cryo-EM) has the potential to capture snapshots of proteins in motion and generate hypotheses linking conformational states to biological function. This potential has been increasingly realized by the advent of machine learning models that allow 100s-1,000s of 3D density maps to be generated from a single dataset. How to identify distinct structural states within these volume ensembles and quantify their relative occupancies remain open questions. Here, we present an approach to inferring variable regions directly from a volume ensemble based on the statistical co-occupancy of voxels, as well as a 3D convolutional neural network that predicts binarization thresholds for volumes in an unbiased and automated manner. We show that these tools recapitulate known heterogeneity in a variety of simulated and real cryo-EM datasets and highlight how integrating these tools with existing data processing pipelines enables improved particle curation.
Collapse
Affiliation(s)
- Laurel F Kinman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Maria V Carreira
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Barrett M Powell
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joseph H Davis
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Computational and Systems Biology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
2
|
Xu X, Qin W, Fu H, Li R, Chen C, Sun B, Pang D, Shao X, Li G. High-Coverage Stereoproteome Mapping Uncovers Pervasive Protein Stereoisomerization Associated with Neurodegeneration. Anal Chem 2025; 97:7814-7824. [PMID: 40079537 DOI: 10.1021/acs.analchem.4c06292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Protein asymmetry, while crucial for life, can arise from subtle stereoisomerization. However, a comprehensive understanding of the breadth and specificity of the whole stereoproteome (STEP) has been hindered by insufficient stereoisomeric resolution. Here, we introduce an untargeted, de novo STEP discovery protocol for comprehensive STEP profiling and relative quantification. This method employs multidimensional isomeric separation, advanced algorithms, and stereoisomer-specific retention time shifts. STEP mapping identifies 182 neurodegenerative disease-linked, putative stereoisomeric proteins with stereoisomeric ratios of up to 70% in a cell model. A machine learning-derived scoring model achieves high confidence in endogenous stereoisomeric data assessment, achieving an average score of over 0.97 and a modeling accuracy exceeding 98%, with a false discovery rate of less than 5%. Validation experiments using synthetic STEP peptide standards and additional enzymatic localization of D-sites with aminopeptidase M confirm the putative STEP list and their relative abundances. This work advances protein stereoisomer analysis to a proteome scale, connecting protein molecular asymmetry with potential cellular functions and disease mechanisms.
Collapse
Affiliation(s)
- Xia Xu
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Science, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Weida Qin
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Science, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Haohao Fu
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Science, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ruomeng Li
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Science, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chunxiao Chen
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Baofa Sun
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Daiwen Pang
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Science, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xueguang Shao
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Science, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gongyu Li
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Science, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
3
|
Xu D, Thomas WC, Burnim AA, Ando N. Conformational landscapes of a class I ribonucleotide reductase complex during turnover reveal intrinsic dynamics and asymmetry. Nat Commun 2025; 16:2458. [PMID: 40075098 PMCID: PMC11903788 DOI: 10.1038/s41467-025-57735-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Understanding the structural dynamics associated with enzymatic catalysis has been a long-standing goal of biochemistry. With the advent of modern cryo-electron microscopy (cryo-EM), it has become conceivable to redefine a protein's structure as the continuum of all conformations and their distributions. However, capturing and interpreting this information remains challenging. Here, we use classification and deep-learning-based analyses to characterize the conformational heterogeneity of a class I ribonucleotide reductase (RNR) during turnover. By converting the resulting information into physically interpretable 2D conformational landscapes, we demonstrate that RNR continuously samples a wide range of motions while maintaining surprising asymmetry to regulate the two halves of its turnover cycle. Remarkably, we directly observe the appearance of highly transient conformations needed for catalysis, as well as the interaction of RNR with its endogenous reductant thioredoxin also contributing to the asymmetry and dynamics of the enzyme complex. Overall, this work highlights the role of conformational dynamics in regulating key steps in enzyme mechanisms.
Collapse
Affiliation(s)
- Da Xu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - William C Thomas
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Audrey A Burnim
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Nozomi Ando
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA.
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
4
|
Yang J, Balutowski A, Trivedi M, Wencewicz TA. Chemical Logic of Peptide Branching by Iterative Nonlinear Nonribosomal Peptide Synthetases. Biochemistry 2025; 64:719-734. [PMID: 39847710 DOI: 10.1021/acs.biochem.4c00749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Branch-point syntheses in nonribosomal peptide assembly are rare but useful strategies to generate tripodal peptides with advantageous hexadentate iron-chelating capabilities, as seen in siderophores. However, the chemical logic underlying the peptide branching by nonribosomal peptide synthetase (NRPS) often remains complex and elusive. Here, we review the common strategies for the biosynthesis of branched nonribosomal peptides (NRPs) and present our biochemical investigation on the NRPS-catalyzed assembly of fimsbactin A, a branched mixed-ligand siderophore produced by the human pathogenic strain Acinetobacter baumannii. We untangled the unusual branching mechanism of fimsbactin A biosynthesis through a combination of bioinformatics, site-directed mutagenesis, in vitro reconstitution, molecular modeling, and molecular dynamics simulation. Our findings clarify the roles of the fimsbactin NRPS enzymes, uncovering catalytically redundant domains and identifying the multifunctional nature of the FbsF cyclization (Cy) domain. We demonstrate the dynamic interplay between l-serine and 2,3-dihydroxybenzoic acid derived dipeptides, partitioning between amide and ester forms via a 1,2-N-to-O-acyl shift orchestrated by the noncanonical, multichannel FbsF Cy domain. The branching event occurs in a secondary condensation event facilitated by this Cy domain with two dipeptidyl intermediates, which generates a branched tetrapeptide thioester. Finally, the terminal condensation domain of FbsG recruits a soluble nucleophile to release the final product. This study advances our understanding of the intricate biosynthetic pathways and chemical logic employed by NRPSs, shedding light on the mechanisms underlying the synthesis of complex branched peptides.
Collapse
Affiliation(s)
- Jinping Yang
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Adam Balutowski
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Megan Trivedi
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Timothy A Wencewicz
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| |
Collapse
|
5
|
Pistofidis A, Ma P, Li Z, Munro K, Houk KN, Schmeing TM. Structures and mechanism of condensation in non-ribosomal peptide synthesis. Nature 2025; 638:270-278. [PMID: 39662504 DOI: 10.1038/s41586-024-08417-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/15/2024] [Indexed: 12/13/2024]
Abstract
Non-ribosomal peptide synthetases (NRPSs) are megaenzymes responsible for the biosynthesis of many clinically important natural products, from early modern medicines (penicillin, bacitracin) to current blockbuster drugs (cubicin, vancomycin) and newly approved therapeutics (rezafungin)1,2. The key chemical step in these biosyntheses is amide bond formation between aminoacyl building blocks, catalysed by the condensation (C) domain3. There has been much debate over the mechanism of this reaction3-12. NRPS condensation has been difficult to fully characterize because it is one of many successive reactions in the NRPS synthetic cycle and because the canonical substrates are each attached transiently as thioesters to mobile carrier domains, which are often both contained in the same very flexible protein as the C domain. Here we have produced a dimodular NRPS protein in two parts, modified each with appropriate non-hydrolysable substrate analogues13,14, assembled the two parts with protein ligation15, and solved the structures of the substrate- and product-bound states. The structures show the precise orientation of the megaenzyme preparing the nucleophilic attack of its key chemical step, and enable biochemical assays and quantum mechanical simulations to precisely interrogate the reaction. These data suggest that NRPS C domains use a concerted reaction mechanism, whereby the active-site histidine likely functions not as a general base, but as a crucial stabilizing hydrogen bond acceptor for the developing ammonium.
Collapse
Affiliation(s)
- Angelos Pistofidis
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montréal, Quebec, Canada
| | - Pengchen Ma
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| | - Zihao Li
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Kim Munro
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montréal, Quebec, Canada
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - T Martin Schmeing
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montréal, Quebec, Canada.
| |
Collapse
|
6
|
Heberlig GW, La Clair JJ, Burkart MD. Crosslinking intermodular condensation in non-ribosomal peptide biosynthesis. Nature 2025; 638:261-269. [PMID: 39663458 DOI: 10.1038/s41586-024-08306-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/30/2024] [Indexed: 12/13/2024]
Abstract
Non-ribosomal peptide synthetases are assembly line biosynthetic pathways that are used to produce critical therapeutic drugs and are typically arranged as large multi-domain proteins called megasynthetases1. They synthesize polypeptides using peptidyl carrier proteins that shuttle each amino acid through modular loading, modification and elongation2 steps, and remain challenging to structurally characterize, owing in part to the inherent dynamics of their multi-domain and multi-modular architectures3. Here we have developed site-selective crosslinking probes to conformationally constrain and resolve the interactions between carrier proteins and their partner enzymatic domains4,5. We apply tetrazine click chemistry to trap the condensation of two carrier protein substrates within the active site of the condensation domain that unites the first two modules of tyrocidine biosynthesis and report the high-resolution cryo-EM structure of this complex. Together with the X-ray crystal structure of the first carrier protein crosslinked to its epimerization domain, these structures highlight captured intermodular recognition events and define the processive movement of a carrier protein from one catalytic step to the next. Characterization of these structural relationships remains central to understanding the molecular details of these unique synthetases and critically informs future synthetic biology design of these pathways.
Collapse
Affiliation(s)
- Graham W Heberlig
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - James J La Clair
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
7
|
Hashimoto T, Suenaga H, Shin-Ya K. Application of Cas9-Based Gene Editing to Engineering of Nonribosomal Peptide Synthetases. Chembiochem 2025; 26:e202400765. [PMID: 39741118 DOI: 10.1002/cbic.202400765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/02/2025]
Abstract
Engineering of nonribosomal peptide synthetases (NRPSs) could transform the production of bioactive natural product derivatives. A number of recent reports have described the engineering of NRPSs without marked reductions in yield. Comparative analysis of evolutionarily related NRPSs can provide insights regarding permissive fusion sites for engineering where recombination may occur during evolutionary processes. Studies involving engineering of NRPSs using these recombination sites showed that they have great potential. Moreover, we highlight recent advances in engineering of NRPSs using CRISPR-associated protein 9 (Cas9)-based gene editing technology. The use of Cas9 facilitates the editing of even larger biosynthetic gene clusters (BGCs) close to or over 100 kb in size by precisely targeting and digesting DNA sequences at specific sites. This technology combined with growing understanding of potential fusion sites from large-scale informatics analyses will accelerate the scalable exploration of engineered NRPS assembly lines to obtain bioactive natural product derivatives in high yields.
Collapse
Affiliation(s)
- Takuya Hashimoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Hikaru Suenaga
- Department Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Kazuo Shin-Ya
- Department Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| |
Collapse
|
8
|
Kinman LF, Carreira MV, Powell BM, Davis JH. Automated model-free analysis of cryo-EM volume ensembles with SIREn. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617123. [PMID: 39415986 PMCID: PMC11482773 DOI: 10.1101/2024.10.08.617123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Cryogenic electron microscopy (cryo-EM) has the potential to capture snapshots of proteins in motion and generate hypotheses linking conformational states to biological function. This potential has been increasingly realized by the advent of machine learning models that allow 100s-1,000s of 3D density maps to be generated from a single dataset. How to identify distinct structural states within these volume ensembles and quantify their relative occupancies remain open questions. Here, we present an approach to inferring variable regions directly from a volume ensemble based on the statistical co-occupancy of voxels, as well as a 3D-convolutional neural network that predicts binarization thresholds for volumes in an unbiased and automated manner. We show that these tools recapitulate known heterogeneity in a variety of simulated and real cryo-EM datasets, and highlight how integrating these tools with existing data processing pipelines enables improved particle curation and the construction of quantitative conformational landscapes.
Collapse
Affiliation(s)
- Laurel F. Kinman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - Maria V. Carreira
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - Barrett M. Powell
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - Joseph H. Davis
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
- Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|
9
|
Heard SC, Winter JM. Structural, biochemical and bioinformatic analyses of nonribosomal peptide synthetase adenylation domains. Nat Prod Rep 2024; 41:1180-1205. [PMID: 38488017 PMCID: PMC11253843 DOI: 10.1039/d3np00064h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Indexed: 07/18/2024]
Abstract
Covering: 1997 to July 2023The adenylation reaction has been a subject of scientific intrigue since it was first recognized as essential to many biological processes, including the homeostasis and pathogenicity of some bacteria and the activation of amino acids for protein synthesis in mammals. Several foundational studies on adenylation (A) domains have facilitated an improved understanding of their molecular structures and biochemical properties, in particular work on nonribosomal peptide synthetases (NRPSs). In NRPS pathways, A domains activate their respective acyl substrates for incorporation into a growing peptidyl chain, and many nonribosomal peptides are bioactive. From a natural product drug discovery perspective, improving existing bioinformatics platforms to predict unique NRPS products more accurately from genomic data is desirable. Here, we summarize characterization efforts of A domains primarily from NRPS pathways from July 1997 up to July 2023, covering protein structure elucidation, in vitro assay development, and in silico tools for improved predictions.
Collapse
Affiliation(s)
- Stephanie C Heard
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA.
| | - Jaclyn M Winter
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
10
|
Karanth MN, Kirkpatrick JP, Krausze J, Schmelz S, Scrima A, Carlomagno T. The specificity of intermodular recognition in a prototypical nonribosomal peptide synthetase depends on an adaptor domain. SCIENCE ADVANCES 2024; 10:eadm9404. [PMID: 38896613 PMCID: PMC11186497 DOI: 10.1126/sciadv.adm9404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
In the quest for new bioactive substances, nonribosomal peptide synthetases (NRPS) provide biodiversity by synthesizing nonproteinaceous peptides with high cellular activity. NRPS machinery consists of multiple modules, each catalyzing a unique series of chemical reactions. Incomplete understanding of the biophysical principles orchestrating these reaction arrays limits the exploitation of NRPSs in synthetic biology. Here, we use nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry to solve the conundrum of how intermodular recognition is coupled with loaded carrier protein specificity in the tomaymycin NRPS. We discover an adaptor domain that directly recruits the loaded carrier protein from the initiation module to the elongation module and reveal its mechanism of action. The adaptor domain of the type found here has specificity rules that could potentially be exploited in the design of engineered NRPS machinery.
Collapse
Affiliation(s)
- Megha N. Karanth
- Laboratory of Integrative Structural Biology, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Institute of Organic Chemistry and Center of Biomolecular Drug Research, Leibniz University Hannover, Hannover D-30167, Germany
| | - John P. Kirkpatrick
- Institute of Organic Chemistry and Center of Biomolecular Drug Research, Leibniz University Hannover, Hannover D-30167, Germany
- Laboratory of Integrative Structural Biology, School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Department of Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig D-38124, Germany
| | - Joern Krausze
- Institute of Organic Chemistry and Center of Biomolecular Drug Research, Leibniz University Hannover, Hannover D-30167, Germany
| | - Stefan Schmelz
- Department of Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig D-38124, Germany
| | - Andrea Scrima
- Department of Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig D-38124, Germany
| | - Teresa Carlomagno
- Laboratory of Integrative Structural Biology, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Institute of Organic Chemistry and Center of Biomolecular Drug Research, Leibniz University Hannover, Hannover D-30167, Germany
- Laboratory of Integrative Structural Biology, School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Department of Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig D-38124, Germany
| |
Collapse
|
11
|
Sun X, Alfermann J, Li H, Watkins MB, Chen YT, Morrell TE, Mayerthaler F, Wang CY, Komatsuzaki T, Chu JW, Ando N, Mootz HD, Yang H. Subdomain dynamics enable chemical chain reactions in non-ribosomal peptide synthetases. Nat Chem 2024; 16:259-268. [PMID: 38049653 PMCID: PMC11227371 DOI: 10.1038/s41557-023-01361-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/03/2023] [Indexed: 12/06/2023]
Abstract
Many peptide-derived natural products are produced by non-ribosomal peptide synthetases (NRPSs) in an assembly-line fashion. Each amino acid is coupled to a designated peptidyl carrier protein (PCP) through two distinct reactions catalysed sequentially by the single active site of the adenylation domain (A-domain). Accumulating evidence suggests that large-amplitude structural changes occur in different NRPS states; yet how these molecular machines orchestrate such biochemical sequences has remained elusive. Here, using single-molecule Förster resonance energy transfer, we show that the A-domain of gramicidin S synthetase I adopts structurally extended and functionally obligatory conformations for alternating between adenylation and thioester-formation structures during enzymatic cycles. Complementary biochemical, computational and small-angle X-ray scattering studies reveal interconversion among these three conformations as intrinsic and hierarchical where intra-A-domain organizations propagate to remodel inter-A-PCP didomain configurations during catalysis. The tight kinetic coupling between structural transitions and enzymatic transformations is quantified, and how the gramicidin S synthetase I A-domain utilizes its inherent conformational dynamics to drive directional biosynthesis with a flexibly linked PCP domain is revealed.
Collapse
Affiliation(s)
- Xun Sun
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Jonas Alfermann
- Institute of Biochemistry, University of Münster, Münster, Germany
| | - Hao Li
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Maxwell B Watkins
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Yi-Tsao Chen
- Institute of Bioinformatics and Systems Biology; Institute of Molecular Medicine and Bioengineering; Department of Biological Science and Technology; Centre for Intelligent Drug Systems and Smart Bio-devices (IDS²B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Thomas E Morrell
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | | | - Chia-Ying Wang
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Tamiki Komatsuzaki
- Research Centre of Mathematics for Social Creativity, Research Institute for Electronic Science; The Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Japan
| | - Jhih-Wei Chu
- Institute of Bioinformatics and Systems Biology; Institute of Molecular Medicine and Bioengineering; Department of Biological Science and Technology; Centre for Intelligent Drug Systems and Smart Bio-devices (IDS²B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Nozomi Ando
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Henning D Mootz
- Institute of Biochemistry, University of Münster, Münster, Germany.
| | - Haw Yang
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
12
|
Nakamichi Y, Saika A, Watanabe M, Fujii T, Morita T. Structural identification of catalytic His158 of PtMAC2p from Pseudozyma tsukubaensis, an acyltransferase involved in mannosylerythritol lipids formation. Front Bioeng Biotechnol 2023; 11:1243595. [PMID: 37920243 PMCID: PMC10619693 DOI: 10.3389/fbioe.2023.1243595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023] Open
Abstract
Mannosylerythritol lipids (MELs) are extracellular glycolipids produced by the basidiomycetous yeast strains. MELs consist of the disaccharide mannosylerythritol, which is acylated with fatty acids and acetylated at the mannose moiety. In the MEL biosynthesis pathway, an acyltransferase from Pseudozyma tsukubaensis, PtMAC2p, a known excellent MEL producer, has been identified to catalyze the acyl-transfer of fatty acid to the C3'-hydroxyl group of mono-acylated MEL; however, its structure remains unclear. Here, we performed X-ray crystallography of recombinant PtMAC2p produced in Escherichia coli and homogeneously purified it with catalytic activity in vitro. The crystal structure of PtMAC2p was determined by single-wavelength anomalous dispersion using iodide ions. The crystal structure shows that PtMAC2p possesses a large putative catalytic tunnel at the center of the molecule. The structural comparison demonstrated that PtMAC2p is homologous to BAHD acyltransferases, although its amino acid-sequence identity was low (<15%). Interestingly, the HXXXD motif, which is a conserved catalytic motif in the BAHD acyltransferase superfamily, is partially conserved as His158-Thr159-Leu160-Asn161-Gly162 in PtMAC2p, i.e., D in the HXXXD motif is replaced by G in PtMAC2p. Site-directed mutagenesis of His158 to Ala resulted in more than 1,000-fold decrease in the catalytic activity of PtMAC2p. These findings suggested that His158 in PtMAC2p is the catalytic residue. Moreover, in the putative catalytic tunnel, hydrophobic amino acid residues are concentrated near His158, suggesting that this region is a binding site for the fatty acid side chain of MEL (acyl acceptor) and/or acyl-coenzyme A (acyl donor). To our knowledge, this is the first study to provide structural insight into the catalytic activity of an enzyme involved in MEL biosynthesis.
Collapse
Affiliation(s)
- Yusuke Nakamichi
- Bioconversion Group, Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Higashi-Hiroshima, Japan
| | - Azusa Saika
- Biochemical Group, Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Masahiro Watanabe
- Bioconversion Group, Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Higashi-Hiroshima, Japan
| | - Tatsuya Fujii
- Bioconversion Group, Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Higashi-Hiroshima, Japan
| | - Tomotake Morita
- Bioconversion Group, Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Higashi-Hiroshima, Japan
| |
Collapse
|
13
|
Patel KD, MacDonald MR, Ahmed SF, Singh J, Gulick AM. Structural advances toward understanding the catalytic activity and conformational dynamics of modular nonribosomal peptide synthetases. Nat Prod Rep 2023; 40:1550-1582. [PMID: 37114973 PMCID: PMC10510592 DOI: 10.1039/d3np00003f] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Indexed: 04/29/2023]
Abstract
Covering: up to fall 2022.Nonribosomal peptide synthetases (NRPSs) are a family of modular, multidomain enzymes that catalyze the biosynthesis of important peptide natural products, including antibiotics, siderophores, and molecules with other biological activity. The NRPS architecture involves an assembly line strategy that tethers amino acid building blocks and the growing peptides to integrated carrier protein domains that migrate between different catalytic domains for peptide bond formation and other chemical modifications. Examination of the structures of individual domains and larger multidomain proteins has identified conserved conformational states within a single module that are adopted by NRPS modules to carry out a coordinated biosynthetic strategy that is shared by diverse systems. In contrast, interactions between modules are much more dynamic and do not yet suggest conserved conformational states between modules. Here we describe the structures of NRPS protein domains and modules and discuss the implications for future natural product discovery.
Collapse
Affiliation(s)
- Ketan D Patel
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| | - Monica R MacDonald
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| | - Syed Fardin Ahmed
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| | - Jitendra Singh
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| | - Andrew M Gulick
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| |
Collapse
|
14
|
Shikai Y, Kawai S, Katsuyama Y, Ohnishi Y. In vitro characterization of nonribosomal peptide synthetase-dependent O-(2-hydrazineylideneacetyl)serine synthesis indicates a stepwise oxidation strategy to generate the α-diazo ester moiety of azaserine. Chem Sci 2023; 14:8766-8776. [PMID: 37621439 PMCID: PMC10445470 DOI: 10.1039/d3sc01906c] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/02/2023] [Indexed: 08/26/2023] Open
Abstract
Azaserine, a natural product containing a diazo group, exhibits anticancer activity. In this study, we investigated the biosynthetic pathway to azaserine. The putative azaserine biosynthetic gene (azs) cluster, which contains 21 genes, including those responsible for hydrazinoacetic acid (HAA) synthesis, was discovered using bioinformatics analysis of the Streptomyces fragilis genome. Azaserine was produced by the heterologous expression of the azs cluster in Streptomyces albus. In vitro enzyme assays using recombinant Azs proteins revealed the azaserine biosynthetic pathway as follows. AzsSPTF and carrier protein (CP) AzsQ are used to synthesize the 2-hydrazineylideneacetyl (HDA) moiety attached to AzsQ from HAA. AzsD transfers the HDA moiety to the C-terminal CP domain of AzsN. The heterocyclization (Cy) domain of the nonribosomal peptide synthetase AzsO synthesizes O-(2-hydrazineylideneacetyl)serine (HDA-Ser) attached to its CP domain from l-serine and HDA moiety-attached AzsN. The thioesterase AzsB hydrolyzes it to yield HDA-Ser, which appears to be converted to azaserine by oxidation. Bioinformatics analysis of the Cy domain of AzsO showed that it has a conserved DxxxxD motif; however, two conserved amino acid residues (Thr and Asp) important for heterocyclization are substituted for Asn. Site-directed mutagenesis of two Asp residues in the DxxxxD motif (D193 and D198) and two substituted Asn residues (N414 and N447) indicated that these four residues are important for ester bond synthesis. These results showed that the diazo ester of azasrine is synthesized by the stepwise oxidation of the HAA moiety and provided another strategy to biosynthesize the diazo group.
Collapse
Affiliation(s)
- Yusuke Shikai
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Seiji Kawai
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Yohei Katsuyama
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo Bunkyo-ku Tokyo 113-8657 Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo Bunkyo-ku Tokyo 113-8657 Japan
| |
Collapse
|
15
|
Bonhomme S, Contreras-Martel C, Dessen A, Macheboeuf P. Architecture of a PKS-NRPS hybrid megaenzyme involved in the biosynthesis of the genotoxin colibactin. Structure 2023:S0969-2126(23)00095-3. [PMID: 37059096 DOI: 10.1016/j.str.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/21/2022] [Accepted: 03/20/2023] [Indexed: 04/16/2023]
Abstract
The genotoxin colibactin produced by Escherichia coli is involved in the development of colorectal cancers. This secondary metabolite is synthesized by a multi-protein machinery, mainly composed of non-ribosomal peptide synthetase (NRPS)/polyketide synthase (PKS) enzymes. In order to decipher the function of a PKS-NRPS hybrid enzyme implicated in a key step of colibactin biosynthesis, we conducted an extensive structural characterization of the ClbK megaenzyme. Here we present the crystal structure of the complete trans-AT PKS module of ClbK showing structural specificities of hybrid enzymes. In addition, we report the SAXS solution structure of the full-length ClbK hybrid that reveals a dimeric organization as well as several catalytic chambers. These results provide a structural framework for the transfer of a colibactin precursor through a PKS-NRPS hybrid enzyme and can pave the way for re-engineering PKS-NRPS hybrid megaenzymes to generate diverse metabolites with many applications.
Collapse
Affiliation(s)
- Sarah Bonhomme
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Bacterial Pathogenesis Group, 38000 Grenoble, France
| | - Carlos Contreras-Martel
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Bacterial Pathogenesis Group, 38000 Grenoble, France
| | - Andréa Dessen
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Bacterial Pathogenesis Group, 38000 Grenoble, France
| | - Pauline Macheboeuf
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Bacterial Pathogenesis Group, 38000 Grenoble, France.
| |
Collapse
|
16
|
Keatinge-Clay AT, Miyazawa T, Zhang J, Ray KA, Lutgens JD, Bista R, Lin SN. Crystal structures reveal the framework of cis -acyltransferase modular polyketide synthases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.11.528132. [PMID: 36798387 PMCID: PMC9934609 DOI: 10.1101/2023.02.11.528132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Although the domains of cis -acyltransferase ( cis -AT) modular polyketide synthases (PKS's) have been understood at atomic resolution for over a decade, the domain-domain interactions responsible for the architectures and activities of these giant molecular assembly lines remain largely uncharacterized. The multimeric structure of the α 6 β 6 fungal fatty acid synthase (FAS) provides 6 equivalent reaction chambers for its acyl carrier protein (ACP) domains to shuttle carbon building blocks and the growing acyl chain between surrounding, oriented enzymatic domains. The presumed homodimeric oligomerization of cis -AT assembly lines is insufficient to provide similar reaction chambers; however, the crystal structure of a ketosynthase (KS)+AT didomain presented here and three already reported show an interaction between the AT domains appropriate for lateral multimerization. This interaction was used to construct a framework for the pikromycin PKS from its KS, AT, and docking domains that contains highly-ordered reaction chambers. Its AT domains also mediate vertical interactions, both with upstream KS domains and downstream docking domains.
Collapse
|
17
|
Dynamics and mechanistic interpretations of nonribosomal peptide synthetase cyclization domains. Curr Opin Chem Biol 2023; 72:102228. [PMID: 36402006 DOI: 10.1016/j.cbpa.2022.102228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022]
Abstract
Ox-/thiazoline groups in nonribosomal peptides are formed by a variant of peptide-forming condensation domains called heterocyclization (Cy) domains and appear in a range of pharmaceutically important natural products and virulence factors. Recent cryo-EM, crystallographic, and NMR studies of Cy domains make it opportune to revisit outstanding questions regarding their molecular mechanisms. This review covers structural and dynamical findings about Cy domains that will inform future bioengineering efforts and our understanding of natural product synthesis.
Collapse
|
18
|
Patel KD, Ahmed SF, MacDonald MR, Gulick AM. Structural Studies of Modular Nonribosomal Peptide Synthetases. Methods Mol Biol 2023; 2670:17-46. [PMID: 37184698 DOI: 10.1007/978-1-0716-3214-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The non-ribosomal peptide synthetases (NRPSs) are a family of modular enzymes involved in the production of peptide natural products. Not restricted by the constraints of ribosomal peptide and protein production, the NRPSs are able to incorporate unusual amino acids and other suitable building blocks into the final product. The NRPSs operate with an assembly line strategy in which peptide intermediates are covalently tethered to a peptidyl carrier protein and transported to different catalytic domains for the multiple steps in the biosynthesis. Often the carrier and catalytic domains are joined into a single large multidomain protein. This chapter serves to introduce the NRPS enzymes, using the nocardicin NRPS system as an example that highlights many common features to NRPS biochemistry. We then describe recent advances in the structural biology of NRPSs focusing on large multidomain structures that have been determined.
Collapse
Affiliation(s)
- Ketan D Patel
- Department of Structural Biology, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Syed Fardin Ahmed
- Department of Structural Biology, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Monica R MacDonald
- Department of Structural Biology, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Andrew M Gulick
- Department of Structural Biology, University at Buffalo, SUNY, Buffalo, NY, USA.
- Department of Structural Biology, Jacobs School of Medicine & Biomedical Sciences, Buffalo, NY, USA.
| |
Collapse
|
19
|
DiIorio MC, Kulczyk AW. Exploring the Structural Variability of Dynamic Biological Complexes by Single-Particle Cryo-Electron Microscopy. MICROMACHINES 2022; 14:118. [PMID: 36677177 PMCID: PMC9866264 DOI: 10.3390/mi14010118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 05/15/2023]
Abstract
Biological macromolecules and assemblies precisely rearrange their atomic 3D structures to execute cellular functions. Understanding the mechanisms by which these molecular machines operate requires insight into the ensemble of structural states they occupy during the functional cycle. Single-particle cryo-electron microscopy (cryo-EM) has become the preferred method to provide near-atomic resolution, structural information about dynamic biological macromolecules elusive to other structure determination methods. Recent advances in cryo-EM methodology have allowed structural biologists not only to probe the structural intermediates of biochemical reactions, but also to resolve different compositional and conformational states present within the same dataset. This article reviews newly developed sample preparation and single-particle analysis (SPA) techniques for high-resolution structure determination of intrinsically dynamic and heterogeneous samples, shedding light upon the intricate mechanisms employed by molecular machines and helping to guide drug discovery efforts.
Collapse
Affiliation(s)
- Megan C. DiIorio
- Institute for Quantitative Biomedicine, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Arkadiusz W. Kulczyk
- Institute for Quantitative Biomedicine, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
- Department of Biochemistry and Microbiology, Rutgers University, 75 Lipman Drive, New Brunswick, NJ 08901, USA
| |
Collapse
|
20
|
Miyanaga A, Kudo F, Eguchi T. Recent advances in the structural analysis of adenylation domains in natural product biosynthesis. Curr Opin Chem Biol 2022; 71:102212. [PMID: 36116190 DOI: 10.1016/j.cbpa.2022.102212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 01/27/2023]
Abstract
Adenylation (A) domains catalyze the biosynthetic incorporation of acyl building blocks into nonribosomal peptides and related natural products by selectively transferring acyl substrates onto cognate carrier proteins (CP). The use of noncanonical acyl units, such as nonproteinogenic amino acids and keto acids, by A domains expands the structural diversity of natural products. Furthermore, interrupted A domains, which have embedded auxiliary domains, are able to modify the incorporated acyl units. Structural information on A domains is important for rational protein engineering to generate unnatural compounds. In this review, we summarize recent advances in the structural analysis of A domains. First, we discuss the mechanisms by which A domains recognize noncanonical acyl units. We then focus on the interactions of A domains with CP domains and embedded auxiliary domains.
Collapse
Affiliation(s)
- Akimasa Miyanaga
- Department of Chemistry, Tokyo Institute of Technology, Tokyo, 152-8551, Japan.
| | - Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
| | - Tadashi Eguchi
- Department of Chemistry, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
| |
Collapse
|
21
|
Recent advances in the structural biology of modular polyketide synthases and nonribosomal peptide synthetases. Curr Opin Chem Biol 2022; 71:102223. [PMID: 36265331 DOI: 10.1016/j.cbpa.2022.102223] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 01/27/2023]
Abstract
Polyketides and nonribosomal peptides are an important class of natural products with useful bioactivities. These compounds are similarly biosynthesized using enzymes with modular structures despite having different physicochemical properties. These enzymes are attractive targets for bioengineering to produce "unnatural" natural products owing to their modular structures. Therefore, their structures have been studied for a long time; however, the main focus was on truncated-single domains. Surprisingly, there is an increasing number of the structures of whole modules reported, most of which have been enabled through the recent advances in cryogenic electron microscopy technology. In this review, we have summarized the recent advances in the structural elucidation of whole modules.
Collapse
|
22
|
Gnann AD, Xia Y, Soule J, Barthélemy C, Mawani JS, Musoke SN, Castellano BM, Brignole EJ, Frueh DP, Dowling DP. High-resolution structures of a siderophore-producing cyclization domain from Yersinia pestis offer a refined proposal of substrate binding. J Biol Chem 2022; 298:102454. [PMID: 36063993 PMCID: PMC9547227 DOI: 10.1016/j.jbc.2022.102454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 01/01/2023] Open
Abstract
Nonribosomal peptide synthetase heterocyclization (Cy) domains generate biologically important oxazoline/thiazoline groups found in natural products, including pharmaceuticals and virulence factors such as some siderophores. Cy domains catalyze consecutive condensation and cyclodehydration reactions, although the mechanism is unknown. To better understand Cy domain catalysis, here we report the crystal structure of the second Cy domain (Cy2) of yersiniabactin synthetase from the causative agent of the plague, Yersinia pestis. Our high-resolution structure of Cy2 adopts a conformation that enables exploration of interactions with the extended thiazoline-containing cyclodehydration intermediate and the acceptor carrier protein (CP) to which it is tethered. We also report complementary electrostatic interfaces between Cy2 and its donor CP that mediate donor binding. Finally, we explored domain flexibility through normal mode analysis and identified small-molecule fragment-binding sites that may inform future antibiotic design targeting Cy function. Our results suggest how CP binding may influence global Cy conformations, with consequences for active-site remodeling to facilitate the separate condensation and cyclodehydration steps as well as potential inhibitor development.
Collapse
Affiliation(s)
- Andrew D. Gnann
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Yuan Xia
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Jess Soule
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Clara Barthélemy
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Jayata S. Mawani
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Sarah Nzikoba Musoke
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Brian M. Castellano
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Edward J. Brignole
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Dominique P. Frueh
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel P. Dowling
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts, USA,For correspondence: Daniel P. Dowling
| |
Collapse
|