1
|
Dong Y, Chen Z. Systems metabolic engineering of Corynebacterium glutamicum for efficient l-tryptophan production. Synth Syst Biotechnol 2025; 10:511-522. [PMID: 40034180 PMCID: PMC11872490 DOI: 10.1016/j.synbio.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/23/2025] [Accepted: 02/05/2025] [Indexed: 03/05/2025] Open
Abstract
Corynebacterium glutamicum is a versatile industrial microorganism for producing various amino acids. However, there have been no reports of well-defined C. glutamicum strains capable of hyperproducing l-tryptophan. This study presents a comprehensive metabolic engineering approach to establish robust C. glutamicum strains for l-tryptophan biosynthesis, including: (1) identification of potential targets by enzyme-constrained genome-scale modeling; (2) enhancement of the l-tryptophan biosynthetic pathway; (3) reconfiguration of central metabolic pathways; (4) identification of metabolic bottlenecks through comparative metabolome analysis; (5) engineering of the transport system, shikimate pathway, and precursor supply; and (6) repression of competing pathways and iterative optimization of key targets. The resulting C. glutamicum strain achieved a remarkable l-tryptophan titer of 50.5 g/L in 48h with a yield of 0.17 g/g glucose in fed-batch fermentation. This study highlights the efficacy of integrating computational modeling with systems metabolic engineering for significantly enhancing the production capabilities of industrial microorganisms.
Collapse
Affiliation(s)
- Yufei Dong
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhen Chen
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
Lv H, Li X, Peng Q, Niu X, Meng C, Niu L, Zhang S, Li P, Jiao H, Wang Z, Zhou Z. SodC is responsible for oxidative stress resistance and pathogenicity of Corynebacterium pseudotuberculosis, and the sodC-deleted C. pseudotuberculosis vaccine provides immunity in mice. Vet Microbiol 2025; 304:110484. [PMID: 40120522 DOI: 10.1016/j.vetmic.2025.110484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 03/13/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
Corynebacterium pseudotuberculosis causes chronic inflammatory infectious diseases in animals and humans. Resistance to adverse environments, including oxidative stress, is required for the survival and pathogenicity of C. pseudotuberculosis. Superoxide dismutase (SOD) is a key enzyme to resist oxidative stress. However, the role of SODs in C. pseudotuberculosis has not been reported. In this study, we addressed this question using C. pseudotuberculosis XH02, sodA deleted (XH02ΔsodA), and sodC deleted (XH02ΔsodC) strains. We found that sodA or sodC deletion reduced the pathogenicity of C. pseudotuberculosis in mice, decreased bacterial loads and histopathological lesions in the infected organs. In addition, the deletion of sodC in C. pseudotuberculosis significantly decreased IL-1β secretion, lactate dehydrogenase (LDH) release, and propidium iodide (PI) uptake of the infected J774A.1 macrophages. Furthermore, sodC deletion weakened the biofilm formation ability of C. pseudotuberculosis, reduced the survival of C. pseudotuberculosis within macrophages, and decreased the ability of C. pseudotuberculosis to resist oxidative stress. We observed that mutations at H94E, H96E, H111A, and H166E reduced the enzyme activity of SodC and reduced the resistance to oxidative stress. Finally, XH02ΔsodC immunization in mice increased specific IgG level and CD4+/CD8+ T cells ratio, and protected mice against C. pseudotuberculosis challenge. Thus, this study confirmed that SodC is an important virulence-related factor of C. pseudotuberculosis, and plays crucial roles in oxidative stress resistance. XH02ΔsodC can be used as a potential candidate attenuated vaccine to prevent and control C. pseudotuberculosis infection.
Collapse
Affiliation(s)
- Hong Lv
- College of Veterinary Medicine, Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing 402460, China.
| | - Xincan Li
- College of Veterinary Medicine, Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing 402460, China.
| | - Qiuyue Peng
- College of Veterinary Medicine, Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing 402460, China.
| | - Xiaoxin Niu
- College of Veterinary Medicine, Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing 402460, China.
| | - Chi Meng
- College of Veterinary Medicine, Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing 402460, China.
| | - Luting Niu
- College of Veterinary Medicine, Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing 402460, China.
| | - Sixin Zhang
- College of Veterinary Medicine, Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing 402460, China; Immunology Research Center, Medical Research Institute, Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing 402460, China.
| | - Pei Li
- College of Veterinary Medicine, Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing 402460, China; Immunology Research Center, Medical Research Institute, Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing 402460, China.
| | - Hanwei Jiao
- College of Veterinary Medicine, Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing 402460, China; Immunology Research Center, Medical Research Institute, Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing 402460, China.
| | - Zhiying Wang
- College of Veterinary Medicine, Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing 402460, China; Immunology Research Center, Medical Research Institute, Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing 402460, China.
| | - Zuoyong Zhou
- College of Veterinary Medicine, Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing 402460, China; Immunology Research Center, Medical Research Institute, Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing 402460, China.
| |
Collapse
|
3
|
Sinha Roy P, Nasiri N, Patti AF, Allais F, Saito K, Garnier G. Reversible Photo-Responsive Hydrophobic Coating Synthesized from Lignin-Derivable Molecules on Nanocellulose Films for Packaging Applications. CHEMSUSCHEM 2025; 18:e202402113. [PMID: 39513403 DOI: 10.1002/cssc.202402113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/15/2024]
Abstract
Paper-based packaging can offer a sustainable replacement for plastics. However, paper provides a poor barrier to water, oxygen and moisture. This study presents a novel renewable lignocellulosic composite made from a hydrophobic photo-reversible coating deposited onto a cellulose nanofiber film that has improved barrier properties and can be reprocessed. Diglycerol and lignin-derivable aldehyde were reacted to form a tetra-functional monomer with photo-responsive unsaturated double bonds that can be converted to covalent cyclobutane rings to create reversibly crosslinkable network upon UV-irradiation. The photo-responsive compound was applied as a thin coating of thickness 2.7±0.4 μm over cellulose nanofiber (CNF) films of thickness 80±19 μm. The surface of the coated films became hydrophobic with a contact angle (CA) of 93.1±1.7° and displayed a low water vapour transmission rate (WVTR) of 16±2 g/m2/day vs. 30.7±1.5° CA and 81±11 g/m2/day WVTR for uncoated CNF films. The coated film is also oleophobic, an attractive feature for food packaging applications. The reversible photo-reaction enables the crosslinked covalent network to be broken down to unsaturated double bonds once exposed to a higher-energy UV irradiation, allowing reprocessing and recycling. The novel coating was developed using a sustainable green synthesis method (process simple E factor 0.9).
Collapse
Affiliation(s)
- Pallabi Sinha Roy
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
| | - Naghmeh Nasiri
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Antonio F Patti
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
| | - Florent Allais
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
- URD Agro-Biotechnologies Industrielles (ABI), CEBB AgroParisTech, 51100, Pomacle, France
| | - Kei Saito
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
- Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Higashi-Ichijo-Kan, Yoshida-nakaadachicho 1, Sakyo-ku, Kyoto, 606-8306, Japan
| | - Gil Garnier
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
- URD Agro-Biotechnologies Industrielles (ABI), CEBB AgroParisTech, 51100, Pomacle, France
| |
Collapse
|
4
|
Li X, Liu X, Yang M, Wang B, Tan Y, Liao XP, Shi B. Enhanced undecylprodigiosin production using collagen hydrolysate: a cost-effective and high-efficiency synthesis strategy. J Mater Chem B 2025; 13:1653-1665. [PMID: 39749654 DOI: 10.1039/d4tb02171a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Undecylprodigiosin (UDP), a desirable pyrrole-based biomaterial, holds significant promise in pharmaceutical and medical applications due to its diverse biological activities. However, its application is usually hampered by low synthesis efficiency and high production costs. Here, we developed a high-efficiency and cost-effective strategy for UDP synthesis using collagen hydrolysate (COH) as a readily available and abundant precursor source in conjunction with Streptomyces sp. SLL-523. COH obviously accelerated the proliferation of Streptomyces sp. SLL-523. Replacing muscle hydrolysate with COH resulted in a 7-fold increase in UDP yield and a 10-fold reduction in fermentation time, indicating that COH significantly enhanced the synthesis efficiency of UDP. Besides, COH remarkably increased the intracellular levels of UDP precursor amino acids (AAs). Whole-genome analysis of Streptomyces sp. SLL-523 revealed the gene clusters responsible for UDP synthesis and COH utilization. COH markedly stimulated the expression of genes involved in the metabolism pathways of energy, transporters, peptides, and AAs, ultimately promoting the UDP synthesis. Significantly, COH efficiently triggered and boosted the expression of key genes in the UDP biosynthesis pathway, including redQ, redM, redN, and redL, leading to highly efficient UDP synthesis. Thus, this innovative approach provides a novel framework for the high-efficiency synthesis of natural pyrrole biomedical materials based on renewable nitrogen-contained biomass.
Collapse
Affiliation(s)
- Xia Li
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, China.
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Xian Liu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Ming Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Bo Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Yin Tan
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Xue-Pin Liao
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, China.
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Bi Shi
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, China.
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| |
Collapse
|
5
|
Pu W, Feng J, Chen J, Liu J, Guo X, Wang L, Zhao X, Cai N, Zhou W, Wang Y, Zheng P, Sun J. Engineering of L-threonine and L-proline biosensors by directed evolution of transcriptional regulator SerR and application for high-throughput screening. BIORESOUR BIOPROCESS 2025; 12:4. [PMID: 39827424 PMCID: PMC11743413 DOI: 10.1186/s40643-024-00837-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/27/2024] [Indexed: 01/22/2025] Open
Abstract
Amino acids are important bio-based products with a multi-billion-dollar market. The development of efficient high-throughput screening technologies utilizing biosensors is essential for the rapid identification of high-performance amino acid producers. However, there remains a pressing need for biosensors that specifically target certain critical amino acids, such as L-threonine and L-proline. In this study, a novel transcriptional regulator-based biosensor for L-threonine and L-proline was successfully developed, inspired by our new finding that SerE can export L-proline in addition to the previously known L-threonine and L-serine. Through directed evolution of SerR (the corresponding transcriptional regulator of SerE), the mutant SerRF104I which can recognize both L-threonine and L-proline as effectors and effectively distinguish strains with varying production levels was identified. Subsequently, the SerRF104I-based biosensor was employed for high-throughput screening of the superior enzyme mutants of L-homoserine dehydrogenase and γ-glutamyl kinase, which are critical enzymes in the biosynthesis of L-threonine and L-proline, respectively. A total of 25 and 13 novel mutants that increased the titers of L-threonine and L-proline by over 10% were successfully identified. Notably, six of the newly identified mutants exhibited similarities to the most effective mutants reported to date, indicating the promising application potential of the SerRF104I-based biosensor. This study illustrates an effective strategy for the development of transcriptional regulator-based biosensors for amino acids and other chemical compounds.
Collapse
Affiliation(s)
- Wei Pu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Regional Characteristic Agricultural Resources, College of Life Sciences, Neijiang Normal University, Neijiang, 641100, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Jinhui Feng
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Jiuzhou Chen
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Jiao Liu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Xuan Guo
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Lixian Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Xiaojia Zhao
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ningyun Cai
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Wenjuan Zhou
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Yu Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- Haihe Laboratory of Synthetic Biology, Tianjin, 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Ping Zheng
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jibin Sun
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Hu G, Gao C, Li X, song W, Wu J. Microbial engineering for monocyclic aromatic compounds production. FEMS Microbiol Rev 2025; 49:fuaf003. [PMID: 39900471 PMCID: PMC11837758 DOI: 10.1093/femsre/fuaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 01/13/2025] [Accepted: 02/02/2025] [Indexed: 02/05/2025] Open
Abstract
Aromatic compounds serve pivotal roles in plant physiology and exhibit antioxidative and antimicrobial properties, leading to their widespread application, such as in food preservation and pharmaceuticals. However, direct plant extraction and petrochemical synthesis often struggle to meet current needs due to low yield or facing economic and environmental hurdles. In the past decades, systems metabolic engineering enabled eco-friendly production of various aromatic compounds, with some reaching industrial levels. In this review, we highlight monocyclic aromatic chemicals, which have relatively simple structures and are currently the primary focus of microbial synthesis research. We then discuss systems metabolic engineering at the enzyme, pathway, cellular, and bioprocess levels to improve the production of these chemicals. Finally, we overview the current limitations and potential resolution strategies, aiming to provide reference for future studies on the biosynthesis of aromatic products.
Collapse
Affiliation(s)
- Guipeng Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Cong Gao
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaomin Li
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wei song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
7
|
Xu X, Lv X, Liu Y, Li J, Du G, Chen J, Ledesma-Amaro R, Liu L. CRISPR/Cas13X-assisted programmable and multiplexed translation regulation for controlled biosynthesis. Nucleic Acids Res 2025; 53:gkae1293. [PMID: 39777467 PMCID: PMC11705078 DOI: 10.1093/nar/gkae1293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/13/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Developing efficient gene regulation tools is essential for optimizing microbial cell factories, but most existing tools only modulate gene expression at the transcriptional level. Regulation at the translational level provides a faster dynamic response, whereas developing a programmable, efficient and multiplexed translational regulation tool remains a challenge. Here, we have developed CRISPRi and CRISPRa systems based on hfCas13X that can regulate gene translation in Bacillus subtilis. First, we constructed a CRISPRi system to regulate gene translation based on catalytically deactivated hfCas13X (dhfCas13X). Second, we designed unique mRNA-crRNA pairs to construct DiCRISPRa (degradation-inhibited CRISPRa) and TsCRISPRa (translation-started CRISPRa) systems, which can activate downstream gene translation by enhancing mRNA stability or initiating mRNA translation. In addition, we found that fusing dhfCas13X with the RNA-binding chaperone BHfq significantly improved the activation efficiency of the DiCRISPRa and TsCRISPRa systems (43.2-fold). Finally, we demonstrated that the constructed CRISPR systems could be used to optimize the metabolic networks of two biotechnologically relevant compounds, riboflavin and 2'-fucosyllactose, increasing their titers by 3- and 1.2-fold, respectively. The CRISPRa and CRISPRi systems developed here provide new tools for the regulation of gene expression at the translation level and offer new ideas for the construction of CRISPRa systems.
Collapse
Affiliation(s)
- Xianhao Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi 214122, China
| | - Jian Chen
- Science Center for Future Foods, Ministry of Education, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi 214122, China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi 214122, China
| |
Collapse
|
8
|
Liu J, Zhao X, Cheng H, Guo Y, Ni X, Wang L, Sun G, Wen X, Chen J, Wang J, An J, Guo X, Shi Z, Li H, Wang R, Zhao M, Liao X, Wang Y, Zheng P, Wang M, Sun J. Comprehensive screening of industrially relevant components at genome scale using a high-quality gene overexpression collection of Corynebacterium glutamicum. Trends Biotechnol 2025; 43:220-247. [PMID: 39455323 DOI: 10.1016/j.tibtech.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/22/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024]
Abstract
Development of efficient microbial strains for biomanufacturing requires deep understanding of the biology and functional components responsible for the synthesis, transport, and tolerance of the target compounds. A high-quality controllable gene overexpression strain collection was constructed for the industrial workhorse Corynebacterium glutamicum covering 99.7% of its genes. The collection was then used for comprehensive screening of components relevant to biomanufacturing features. In total, 15 components endowing cells with improved hyperosmotic tolerance and l-lysine productivity were identified, including novel transcriptional factors and DNA repair proteins. Systematic interrogation of a subset of the collection revealed efficient and specific exporters functioning in both C. glutamicum and Escherichia coli. Application of the new exporters was showcased to construct a strain with the highest l-threonine production level reported for C. glutamicum (75.1 g/l and 1.5 g/l·h) thus far. The genome-scale gene overexpression collection will serve as a valuable resource for fundamental biological studies and for developing industrial microorganisms for producing amino acids and other biochemicals.
Collapse
Affiliation(s)
- Jiao Liu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Xiaojia Zhao
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haijiao Cheng
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Yanmei Guo
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Xiaomeng Ni
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Lixian Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Guannan Sun
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Wen
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Jiuzhou Chen
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Jin Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Jingjing An
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Xuan Guo
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Zhenkun Shi
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Haoran Li
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Ruoyu Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Muqiang Zhao
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Xiaoping Liao
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Yu Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ping Zheng
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Meng Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jibin Sun
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Zhao Z, You J, Shi X, Cai M, Zhu R, Yang F, Xu M, Shao M, Zhang R, Zhao Y, Rao Z. Multi-module engineering to guide the development of an efficient L-threonine-producing cell factory. BIORESOURCE TECHNOLOGY 2025; 416:131802. [PMID: 39536887 DOI: 10.1016/j.biortech.2024.131802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/08/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
The rapid development of high-productivity strains is fundamental for bio-manufacture in industry. Here, Multi-module metabolic engineering was implemented to reprogram Escherichia coli, enabling it to rapidly transitioning from zero-producer to hyperproducer of L-threonine. Firstly, the synthesis pathway of L-threonine was rationally divided into five modules, and the rapid production of L-threonine was achieved by optimizing the expression of genes in each module. Subsequently, the capture and fixation of CO2 was enhanced to improve L-threonine yield. Dynamically balancing cell growth and yield by quorum-sensing system resulted in the accumulation of L-threonine up to 34.24 g/L. Ultimately, the THR36-L19 strain accumulated 120.1 g/L L-threonine with 0.425 g/g glucose in a 5 L bioreactor. This is the highest yield for de novo producing L-threonine reported to date and without the use of exogenous inducers and antibiotics in the fermentation process. It also provided an effective technological guidence for the zero-to-overproduction of other chemicals.
Collapse
Affiliation(s)
- Zhenqiang Zhao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Jiajia You
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Xuanping Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Mengmeng Cai
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Rongshuai Zhu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Fengyu Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Meijuan Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Minglong Shao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Rongzhen Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Youxi Zhao
- Biochemical Engineering College, Beijing Union University, Beijing 100023, China.
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China.
| |
Collapse
|
10
|
Zhao J, Wang J, Wang J, Nie M, Mao Y, Chen Z, Ma Z, Zhang K. Evolving Nonphosphorylative Metabolism for Improving Production of 2-Oxoglutarate Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27326-27333. [PMID: 39601787 DOI: 10.1021/acs.jafc.4c08879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The bioconversion of lignocellulosic biomass into value-added products provides an alternative solution to environmental and economic challenges. Nonphosphorylative metabolism can convert pentoses and d-galacturonate into 2-oxoglutarate (2-KG) in a few steps, facilitating the production of 2-KG derivatives. However, the efficiency of the Weimberg pathway from Caulobacter crescentus, a type of nonphosphorylative metabolism, is constrained by the low activity of CcXylX, 2-keto-3-deoxy-d-xylonate dehydratase. To overcome this limitation, we engineered CcXylX through directed evolution. A resulting CcXylX mutant exhibited a 3-fold higher kcat value and notably enhanced the production of 2-KG derivatives from d-xylose, a major component of lignocellulosic hydrolysates, including a 32% increase in l-glutamate titer (8.3 g/L) and a 79% increase in l-proline titer (4.3 g/L) compared with the wild-type CcXylX. This research holds promise for advancing lignocellulosic biotechnology and provides insights into economically viable production of other 2-KG derivatives besides l-glutamate and l-proline.
Collapse
Affiliation(s)
- Jing Zhao
- School of Engineering, Westlake University, Hangzhou 310030, P. R. China
| | - Jilong Wang
- Beijing Lifewe Biotechnology Institute Co., Ltd., Beijing 102200, P. R. China
| | - Jingyu Wang
- School of Engineering, Westlake University, Hangzhou 310030, P. R. China
| | - Mengzhen Nie
- School of Engineering, Westlake University, Hangzhou 310030, P. R. China
| | - Yaping Mao
- School of Engineering, Westlake University, Hangzhou 310030, P. R. China
| | - Zeyao Chen
- School of Engineering, Westlake University, Hangzhou 310030, P. R. China
| | - Zhiping Ma
- School of Engineering, Westlake University, Hangzhou 310030, P. R. China
| | - Kechun Zhang
- School of Engineering, Westlake University, Hangzhou 310030, P. R. China
| |
Collapse
|
11
|
Dong Z, Li L, Du G, Zhang Y, Wang X, Li S, Xiang W. A previously unidentified sugar transporter for engineering of high-yield Streptomyces. Appl Microbiol Biotechnol 2024; 108:72. [PMID: 38194147 DOI: 10.1007/s00253-023-12964-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 01/10/2024]
Abstract
Sugar transporters have significant contributions to regulate metabolic flux towards products and they are general potential targets for engineering of high-yield microbial cell factories. Streptomyces, well-known producers of natural product pharmaceuticals, contain an abundance of sugar transporters, while few of them are well characterized and applied. Here, we report a previously unidentified ATP-binding cassette (ABC) sugar transporter TP6568 found within a Streptomyces avermitilis transposon library, along with its key regulator GM006564. Subsequent in silico molecular docking and genetic experiments demonstrated that TP6568 possessed a broad substrate specificity. It could not only promote uptake of diverse monosaccharides and disaccharides, but also enhance the utilization of industrial carbon sources such as starch, sucrose, and dextrin. Constitutive overexpression of TP6568 resulted in decrease of residual total sugar by 36.16%, 39.04%, 38.40%, and 30.21% in engineered S. avermitilis S0, Streptomyces caniferus NEAU6, Streptomyces bingchenggensis BC-101-4, and Streptomyces roseosporus NRRL 11379 than their individual parent strain, respectively. Production of avermectin B1a, guvermectin, and milbemycin A3/A4 increased by 75.61%, 56.89%, and 41.13%, respectively. We then overexpressed TP6568 in combination with the regulator GM006564 in a high-yield strain S. avermitilis S45, and further fine-tuning of their overexpression levels boosted production of avermectin B1a by 50.97% to 7.02 g/L in the engineering strain. Our work demonstrates that TP6568 as a promising sugar transporter may have broad applications in construction of high-yield Streptomyces microbial cell factories for desirable natural product pharmaceuticals. KEY POINTS: • TP6568 from Streptomyces avermitilis was identified as a sugar transporter • TP6568 enhanced utilization of diverse industrially used sugars in Streptomyces • TP6568 is a useful transporter to construct high-yield Streptomyces cell factories.
Collapse
Affiliation(s)
- Zhuoxu Dong
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lei Li
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Guozhong Du
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yanyan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiangjing Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, China
| | - Shanshan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Wensheng Xiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, China.
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
12
|
Wen X, Lin J, Yang C, Li Y, Cheng H, Liu Y, Zhang Y, Ma H, Mao Y, Liao X, Wang M. Automated characterization and analysis of expression compatibility between regulatory sequences and metabolic genes in Escherichia coli. Synth Syst Biotechnol 2024; 9:647-657. [PMID: 38817827 PMCID: PMC11137365 DOI: 10.1016/j.synbio.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024] Open
Abstract
Utilizing standardized artificial regulatory sequences to fine-tuning the expression of multiple metabolic pathways/genes is a key strategy in the creation of efficient microbial cell factories. However, when regulatory sequence expression strengths are characterized using only a few reporter genes, they may not be applicable across diverse genes. This introduces great uncertainty into the precise regulation of multiple genes at multiple expression levels. To address this, our study adopted a fluorescent protein fusion strategy for a more accurate assessment of target protein expression levels. We combined 41 commonly-used metabolic genes with 15 regulatory sequences, yielding an expression dataset encompassing 520 unique combinations. This dataset highlighted substantial variation in protein expression level under identical regulatory sequences, with relative expression levels ranging from 2.8 to 176-fold. It also demonstrated that improving the strength of regulatory sequences does not necessarily lead to significant improvements in the expression levels of target proteins. Utilizing this dataset, we have developed various machine learning models and discovered that the integration of promoter regions, ribosome binding sites, and coding sequences significantly improves the accuracy of predicting protein expression levels, with a Spearman correlation coefficient of 0.72, where the promoter sequence exerts a predominant influence. Our study aims not only to provide a detailed guide for fine-tuning gene expression in the metabolic engineering of Escherichia coli but also to deepen our understanding of the compatibility issues between regulatory sequences and target genes.
Collapse
Affiliation(s)
- Xiao Wen
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, 300308, China
| | - Jiawei Lin
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- School of Biological Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Chunhe Yang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- School of Biological Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Ying Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- School of Biological Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Haijiao Cheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, 300308, China
| | - Ye Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, 300308, China
| | - Yue Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, 300308, China
| | - Hongwu Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, 300308, China
| | - Yufeng Mao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, 300308, China
| | - Xiaoping Liao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, 300308, China
| | - Meng Wang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, 300308, China
| |
Collapse
|
13
|
Rong Y, Frey A, Özdemir E, Sainz de la Maza Larrea A, Li S, Nielsen AT, Jensen SI. CRISPRi-mediated metabolic switch enables concurrent aerobic and synthetic anaerobic fermentations in engineered consortium. Nat Commun 2024; 15:8985. [PMID: 39420027 PMCID: PMC11486981 DOI: 10.1038/s41467-024-53381-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/10/2024] [Indexed: 10/19/2024] Open
Abstract
Replacing petrochemicals with compounds from bio-based manufacturing processes remains an important part of the global effort to move towards a sustainable future. However, achieving economic viability requires both optimized cell factories and innovative processes. Here, we address this challenge by developing a fermentation platform, which enables two concurrent fermentations in one bioreactor. We first construct a xylitol producing Escherichia coli strain in which CRISPRi-mediated gene silencing is used to switch the metabolism from aerobic to anaerobic, even when the bacteria are under oxic conditions. The switch also decouples growth from production, which further increases the yield. The strain produces acetate as a byproduct, which is subsequently metabolized under oxic conditions by a secondary E. coli strain. Through constraint-based metabolic modelling this strain is designed to co-valorize glucose and the excreted acetate to a secondary product. This unique syntrophic consortium concept facilitates the implementation of "two fermentations in one go", where the concurrent fermentation displays similar titers and productivities as compared to two separate single strain fermentations.
Collapse
Affiliation(s)
- Yixin Rong
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Adrian Frey
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Emre Özdemir
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | | | - Songyuan Li
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Alex Toftgaard Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Sheila Ingemann Jensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
14
|
Vercauteren S, Fiesack S, Maroc L, Verstraeten N, Dewachter L, Michiels J, Vonesch SC. The rise and future of CRISPR-based approaches for high-throughput genomics. FEMS Microbiol Rev 2024; 48:fuae020. [PMID: 39085047 PMCID: PMC11409895 DOI: 10.1093/femsre/fuae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/02/2024] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) has revolutionized the field of genome editing. To circumvent the permanent modifications made by traditional CRISPR techniques and facilitate the study of both essential and nonessential genes, CRISPR interference (CRISPRi) was developed. This gene-silencing technique employs a deactivated Cas effector protein and a guide RNA to block transcription initiation or elongation. Continuous improvements and a better understanding of the mechanism of CRISPRi have expanded its scope, facilitating genome-wide high-throughput screens to investigate the genetic basis of phenotypes. Additionally, emerging CRISPR-based alternatives have further expanded the possibilities for genetic screening. This review delves into the mechanism of CRISPRi, compares it with other high-throughput gene-perturbation techniques, and highlights its superior capacities for studying complex microbial traits. We also explore the evolution of CRISPRi, emphasizing enhancements that have increased its capabilities, including multiplexing, inducibility, titratability, predictable knockdown efficacy, and adaptability to nonmodel microorganisms. Beyond CRISPRi, we discuss CRISPR activation, RNA-targeting CRISPR systems, and single-nucleotide resolution perturbation techniques for their potential in genome-wide high-throughput screens in microorganisms. Collectively, this review gives a comprehensive overview of the general workflow of a genome-wide CRISPRi screen, with an extensive discussion of strengths and weaknesses, future directions, and potential alternatives.
Collapse
Affiliation(s)
- Silke Vercauteren
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| | - Simon Fiesack
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| | - Laetitia Maroc
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| | - Natalie Verstraeten
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| | - Liselot Dewachter
- de Duve Institute, Université catholique de Louvain, Hippokrateslaan 75, 1200 Brussels, Belgium
| | - Jan Michiels
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| | - Sibylle C Vonesch
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| |
Collapse
|
15
|
Robertson NR, Trivedi V, Lupish B, Ramesh A, Aguilar Y, Carrera S, Lee S, Arteaga A, Nguyen A, Lenert-Mondou C, Harland-Dunaway M, Jinkerson R, Wheeldon I. Optimized genome-wide CRISPR screening enables rapid engineering of growth-based phenotypes in Yarrowia lipolytica. Metab Eng 2024:S1096-7176(24)00122-8. [PMID: 39278589 DOI: 10.1016/j.ymben.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/28/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
CRISPR-Cas9 functional genomic screens uncover gene targets linked to various phenotypes for metabolic engineering with remarkable efficiency. However, these genome-wide screens face a number of design challenges, including variable guide RNA activity, ensuring sufficient genome coverage, and maintaining high transformation efficiencies to ensure full library representation. These challenges are prevalent in non-conventional yeast, many of which exhibit traits that are well suited to metabolic engineering and bioprocessing. To address these hurdles in the oleaginous yeast Yarrowia lipolytica, we designed a compact, high-activity genome-wide sgRNA library. The library was designed using DeepGuide, an sgRNA activity prediction algorithm and a large dataset of ∼50,000 sgRNAs with known activity. Three guides per gene enables redundant targeting of 98.8% of genes in the genome in a library of 23,900 sgRNAs. We deployed the optimized library to uncover genes essential to the tolerance of acetate, a promising alternative carbon source, and various hydrocarbons present in many waste streams. Our screens yielded several gene knockouts that improve acetate tolerance on their own and as double knockouts in media containing acetate as the sole carbon source. Analysis of the hydrocarbon screens revealed genes related to fatty acid and alkane metabolism in Y. lipolytica. The optimized CRISPR gRNA library and its successful use in Y. lipolytica led to the discovery of alternative carbon source-related genes and provides a workflow for creating high-activity, compact genome-wide libraries for strain engineering.
Collapse
Affiliation(s)
| | - Varun Trivedi
- Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, USA
| | - Brian Lupish
- Bioengineering, University of California, Riverside, Riverside, CA, USA
| | - Adithya Ramesh
- Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, USA
| | - Yuna Aguilar
- Bioengineering, University of California, Riverside, Riverside, CA, USA
| | - Stephanie Carrera
- Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, USA
| | - Sangcheon Lee
- Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, USA
| | - Anthony Arteaga
- Center for Industrial Biotechnology, University of California, Riverside, Riverside, CA, USA
| | - Alexander Nguyen
- Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, USA
| | | | | | - Robert Jinkerson
- Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, USA
| | - Ian Wheeldon
- Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, USA; Center for Industrial Biotechnology, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
16
|
Kang Z, Hou S, Gao K, Liu Y, Zhang N, Fang Z, Zhang W, Xu X, Xu R, Lü C, Ma C, Xu P, Gao C. An Ultrasensitive Biosensor for Probing Subcellular Distribution and Mitochondrial Transport of l-2-Hydroxyglutarate. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404119. [PMID: 39005231 PMCID: PMC11425224 DOI: 10.1002/advs.202404119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/02/2024] [Indexed: 07/16/2024]
Abstract
l-2-Hydroxyglutarate (l-2-HG) is a functionally compartmentalized metabolite involved in various physiological processes. However, its subcellular distribution and mitochondrial transport remain unclear owing to technical limitations. In the present study, an ultrasensitive l-2-HG biosensor, sfLHGFRH, composed of circularly permuted yellow fluorescent protein and l-2-HG-specific transcriptional regulator, is developed. The ability of sfLHGFRH to be used for analyzing l-2-HG metabolism is first determined in human embryonic kidney cells (HEK293FT) and macrophages. Then, the subcellular distribution of l-2-HG in HEK293FT cells and the lower abundance of mitochondrial l-2-HG are identified by the sfLHGFRH-supported spatiotemporal l-2-HG monitoring. Finally, the role of the l-glutamate transporter SLC1A1 in mitochondrial l-2-HG uptake is elucidated using sfLHGFRH. Based on the design of sfLHGFRH, another highly sensitive biosensor with a low limit of detection, sfLHGFRL, is developed for the point-of-care diagnosis of l-2-HG-related diseases. The accumulation of l-2-HG in the urine of patients with kidney cancer is determined using the sfLHGFRL biosensor.
Collapse
Affiliation(s)
- Zhaoqi Kang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Shuang Hou
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Kaiyu Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Yidong Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Ning Zhang
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250100, P. R. China
| | - Zhiqing Fang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250100, P. R. China
| | - Wen Zhang
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250100, P. R. China
| | - Xianzhi Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Rong Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Chuanjuan Lü
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| |
Collapse
|
17
|
Burbano DA, Kiattisewee C, Karanjia AV, Cardiff RAL, Faulkner ID, Sugianto W, Carothers JM. CRISPR Tools for Engineering Prokaryotic Systems: Recent Advances and New Applications. Annu Rev Chem Biomol Eng 2024; 15:389-430. [PMID: 38598861 DOI: 10.1146/annurev-chembioeng-100522-114706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
In the past decades, the broad selection of CRISPR-Cas systems has revolutionized biotechnology by enabling multimodal genetic manipulation in diverse organisms. Rooted in a molecular engineering perspective, we recapitulate the different CRISPR components and how they can be designed for specific genetic engineering applications. We first introduce the repertoire of Cas proteins and tethered effectors used to program new biological functions through gene editing and gene regulation. We review current guide RNA (gRNA) design strategies and computational tools and how CRISPR-based genetic circuits can be constructed through regulated gRNA expression. Then, we present recent advances in CRISPR-based biosensing, bioproduction, and biotherapeutics across in vitro and in vivo prokaryotic systems. Finally, we discuss forthcoming applications in prokaryotic CRISPR technology that will transform synthetic biology principles in the near future.
Collapse
Affiliation(s)
- Diego Alba Burbano
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Cholpisit Kiattisewee
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Ava V Karanjia
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Ryan A L Cardiff
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Ian D Faulkner
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Widianti Sugianto
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - James M Carothers
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| |
Collapse
|
18
|
Enright AL, Heelan WJ, Ward RD, Peters JM. CRISPRi functional genomics in bacteria and its application to medical and industrial research. Microbiol Mol Biol Rev 2024; 88:e0017022. [PMID: 38809084 PMCID: PMC11332340 DOI: 10.1128/mmbr.00170-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024] Open
Abstract
SUMMARYFunctional genomics is the use of systematic gene perturbation approaches to determine the contributions of genes under conditions of interest. Although functional genomic strategies have been used in bacteria for decades, recent studies have taken advantage of CRISPR (clustered regularly interspaced short palindromic repeats) technologies, such as CRISPRi (CRISPR interference), that are capable of precisely modulating expression of all genes in the genome. Here, we discuss and review the use of CRISPRi and related technologies for bacterial functional genomics. We discuss the strengths and weaknesses of CRISPRi as well as design considerations for CRISPRi genetic screens. We also review examples of how CRISPRi screens have defined relevant genetic targets for medical and industrial applications. Finally, we outline a few of the many possible directions that could be pursued using CRISPR-based functional genomics in bacteria. Our view is that the most exciting screens and discoveries are yet to come.
Collapse
Affiliation(s)
- Amy L. Enright
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- DOE Great Lakes Bioenergy Research Center University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - William J. Heelan
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ryan D. Ward
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- DOE Great Lakes Bioenergy Research Center University of Wisconsin-Madison, Madison, Wisconsin, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jason M. Peters
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- DOE Great Lakes Bioenergy Research Center University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
19
|
Zhang H, Feng H, Xing XH, Jiang W, Zhang C, Gu Y. Pooled CRISPR Interference Screening Identifies Crucial Transcription Factors in Gas-Fermenting Clostridium ljungdahlii. ACS Synth Biol 2024; 13:1893-1905. [PMID: 38825826 DOI: 10.1021/acssynbio.4c00175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Gas-fermenting Clostridium species hold tremendous promise for one-carbon biomanufacturing. To unlock their full potential, it is crucial to unravel and optimize the intricate regulatory networks that govern these organisms; however, this aspect is currently underexplored. In this study, we employed pooled CRISPR interference (CRISPRi) screening to uncover a wide range of functional transcription factors (TFs) in Clostridium ljungdahlii, a representative species of gas-fermenting Clostridium, with a special focus on TFs associated with the utilization of carbon resources. Among the 425 TF candidates, we identified 75 and 68 TF genes affecting the heterotrophic and autotrophic growth of C. ljungdahlii, respectively. We focused our attention on two of the screened TFs, NrdR and DeoR, and revealed their pivotal roles in the regulation of deoxyribonucleoside triphosphates (dNTPs) supply, carbon fixation, and product synthesis in C. ljungdahlii, thereby influencing the strain performance in gas fermentation. Based on this, we proceeded to optimize the expression of deoR in C. ljungdahlii by adjusting its promoter strength, leading to an improved growth rate and ethanol synthesis of C. ljungdahlii when utilizing syngas. This study highlights the effectiveness of pooled CRISPRi screening in gas-fermenting Clostridium species, expanding the horizons for functional genomic research in these industrially important bacteria.
Collapse
Affiliation(s)
- Huan Zhang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huibao Feng
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Xin-Hui Xing
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Weihong Jiang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- Key Laboratory of Plant Carbon Capture, CAS, Shanghai 200032, China
| | - Chong Zhang
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Yang Gu
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- Key Laboratory of Plant Carbon Capture, CAS, Shanghai 200032, China
| |
Collapse
|
20
|
Wang H, Tan HY, Lian J, Zhou K. Nanopore sequencing improves construction of customized CRISPR-based gene activation libraries. Biotechnol Bioeng 2024; 121:1543-1553. [PMID: 38293815 DOI: 10.1002/bit.28664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-based screening has emerged as a powerful tool for identifying new gene targets for desired cellular phenotypes. The construction of guide RNA (gRNA) pools largely determines library quality and is usually performed using Golden Gate assembly or Gibson assembly. To date, library construction methods have not been systematically compared, and the quality check of each batch has been slow. In this study, an in-house nanopore sequencing workflow was established for assessing the current methods of gRNA pool construction. The bias of pool construction was reduced by employing the polymerase-mediated non-amplifying method. Then, a small gRNA pool was utilized to characterize stronger activation domains, specifically MED2 (a subunit of mediator complex) and HAP4 (a heme activator protein), as well as to identify better gRNA choices for dCas12a-based gene activation in Saccharomyces cerevisiae. Furthermore, based on the better CRISPRa tool identified in this study, a custom gRNA pool, which consisted of 99 gRNAs targeting central metabolic pathways, was designed and employed to screen for gene targets that could improve ethanol utilization in S. cerevisiae. The nanopore sequencing-based workflow demonstrated here should provide a cost-effective approach for assessing the quality of customized gRNA library, leading to faster and more efficient genetic and metabolic engineering in S. cerevisiae.
Collapse
Affiliation(s)
- Handing Wang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| | - Heng Yih Tan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Kang Zhou
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
- Cluster of Food, Chemical and Biotechnology, Singapore Institute of Technology, Singapore
| |
Collapse
|
21
|
Liu J, Liu J, Li J, Zhao X, Sun G, Qiao Q, Shi T, Che B, Chen J, Zhuang Q, Wang Y, Sun J, Zhu D, Zheng P. Reconstruction the feedback regulation of amino acid metabolism to develop a non-auxotrophic L-threonine producing Corynebacterium glutamicum. BIORESOUR BIOPROCESS 2024; 11:43. [PMID: 38664309 PMCID: PMC11045695 DOI: 10.1186/s40643-024-00753-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
L-Threonine is an important feed additive with the third largest market size among the amino acids produced by microbial fermentation. The GRAS (generally regarded as safe) industrial workhorse Corynebacterium glutamicum is an attractive chassis for L-threonine production. However, the present L-threonine production in C. glutamicum cannot meet the requirement of industrialization due to the relatively low production level of L-threonine and the accumulation of large amounts of by-products (such as L-lysine, L-isoleucine, and glycine). Herein, to enhance the L-threonine biosynthesis in C. glutamicum, releasing the aspartate kinase (LysC) and homoserine dehydrogenase (Hom) from feedback inhibition by L-lysine and L-threonine, respectively, and overexpressing four flux-control genes were performed. Next, to reduce the formation of by-products L-lysine and L-isoleucine without the cause of an auxotrophic phenotype, the feedback regulation of dihydrodipicolinate synthase (DapA) and threonine dehydratase (IlvA) was strengthened by replacing the native enzymes with heterologous analogues with more sensitive feedback inhibition by L-lysine and L-isoleucine, respectively. The resulting strain maintained the capability of synthesizing enough amounts of L-lysine and L-isoleucine for cell biomass formation but exhibited almost no extracellular accumulation of these two amino acids. To further enhance L-threonine production and reduce the by-product glycine, L-threonine exporter and homoserine kinase were overexpressed. Finally, the rationally engineered non-auxotrophic strain ZcglT9 produced 67.63 g/L (17.2% higher) L-threonine with a productivity of 1.20 g/L/h (108.0% higher) in fed-batch fermentation, along with significantly reduced by-product accumulation, representing the record for L-threonine production in C. glutamicum. In this study, we developed a strategy of reconstructing the feedback regulation of amino acid metabolism and successfully applied this strategy to de novo construct a non-auxotrophic L-threonine producing C. glutamicum. The main end by-products including L-lysine, L-isoleucine, and glycine were almost eliminated in fed-batch fermentation of the engineered C. glutamicum strain. This strategy can also be used for engineering producing strains for other amino acids and derivatives.
Collapse
Affiliation(s)
- Jianhang Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Jiao Liu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Jiajun Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Xiaojia Zhao
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Guannan Sun
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Qianqian Qiao
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Tuo Shi
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Bin Che
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Jiuzhou Chen
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Qianqian Zhuang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yu Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Jibin Sun
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Deqiang Zhu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
| | - Ping Zheng
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China.
| |
Collapse
|
22
|
Zhang F, Wang JY, Li CL, Zhang WG. HyCas9-12aGEP: an efficient genome editing platform for Corynebacterium glutamicum. Front Bioeng Biotechnol 2024; 12:1327172. [PMID: 38532881 PMCID: PMC10963414 DOI: 10.3389/fbioe.2024.1327172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/27/2024] [Indexed: 03/28/2024] Open
Abstract
Corynebacterium glutamicum plays a crucial role as a significant industrial producer of metabolites. Despite the successful development of CRISPR-Cas9 and CRISPR-Cas12a-assisted genome editing technologies in C. glutamicum, their editing resolution and efficiency are hampered by the diverse on-target activities of guide RNAs (gRNAs). To address this problem, a hybrid CRISPR-Cas9-Cas12a genome editing platform (HyCas9-12aGEP) was developed in C. glutamicum in this study to co-express sgRNA (corresponding to SpCas9 guide RNA), crRNA (corresponding to FnCas12a guide RNA), or hfgRNA (formed by the fusion of sgRNA and crRNA). HyCas9-12aGEP improves the efficiency of mapping active gRNAs and outperforms both CRISPR-Cas9 and CRISPR-Cas12a in genome editing resolution and efficiency. In the experiment involving the deletion of the cg0697-0740 gene segment, an unexpected phenotype was observed, and HyCas9-12aGEP efficiently identified the responsible genotype from more than 40 genes. Here, HyCas9-12aGEP greatly improve our capability in terms of genome reprogramming in C. glutamicum.
Collapse
Affiliation(s)
- Feng Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | | | | | - Wei-Guo Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
23
|
Cautereels C, Smets J, Bircham P, De Ruysscher D, Zimmermann A, De Rijk P, Steensels J, Gorkovskiy A, Masschelein J, Verstrepen KJ. Combinatorial optimization of gene expression through recombinase-mediated promoter and terminator shuffling in yeast. Nat Commun 2024; 15:1112. [PMID: 38326309 PMCID: PMC10850122 DOI: 10.1038/s41467-024-44997-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024] Open
Abstract
Microbes are increasingly employed as cell factories to produce biomolecules. This often involves the expression of complex heterologous biosynthesis pathways in host strains. Achieving maximal product yields and avoiding build-up of (toxic) intermediates requires balanced expression of every pathway gene. However, despite progress in metabolic modeling, the optimization of gene expression still heavily relies on trial-and-error. Here, we report an approach for in vivo, multiplexed Gene Expression Modification by LoxPsym-Cre Recombination (GEMbLeR). GEMbLeR exploits orthogonal LoxPsym sites to independently shuffle promoter and terminator modules at distinct genomic loci. This approach facilitates creation of large strain libraries, in which expression of every pathway gene ranges over 120-fold and each strain harbors a unique expression profile. When applied to the biosynthetic pathway of astaxanthin, an industrially relevant antioxidant, a single round of GEMbLeR improved pathway flux and doubled production titers. Together, this shows that GEMbLeR allows rapid and efficient gene expression optimization in heterologous biosynthetic pathways, offering possibilities for enhancing the performance of microbial cell factories.
Collapse
Affiliation(s)
- Charlotte Cautereels
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium
- Laboratory of Genetics and Genomics, Center of Microbial and Plant Genetics, Department M2S, KU Leuven, Gaston Geenslaan 1, Leuven, 3001, Belgium
| | - Jolien Smets
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium
- Laboratory of Genetics and Genomics, Center of Microbial and Plant Genetics, Department M2S, KU Leuven, Gaston Geenslaan 1, Leuven, 3001, Belgium
| | - Peter Bircham
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium
- Laboratory of Genetics and Genomics, Center of Microbial and Plant Genetics, Department M2S, KU Leuven, Gaston Geenslaan 1, Leuven, 3001, Belgium
| | - Dries De Ruysscher
- Molecular Biotechnology of Plants and Micro-organisms, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, box 2438, Leuven, 3001, Belgium
- Laboratory for Biomolecular Discovery & Engineering, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium
| | - Anna Zimmermann
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium
- Laboratory of Genetics and Genomics, Center of Microbial and Plant Genetics, Department M2S, KU Leuven, Gaston Geenslaan 1, Leuven, 3001, Belgium
| | - Peter De Rijk
- Neuromics Support Facility, VIB Center for Molecular Neurology, VIB, Antwerp, 2610, Belgium
- Neuromics Support Facility, Department of Biomedical Sciences, University of Antwerp, Antwerp, 2610, Belgium
| | - Jan Steensels
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium
- Laboratory of Genetics and Genomics, Center of Microbial and Plant Genetics, Department M2S, KU Leuven, Gaston Geenslaan 1, Leuven, 3001, Belgium
| | - Anton Gorkovskiy
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium
- Laboratory of Genetics and Genomics, Center of Microbial and Plant Genetics, Department M2S, KU Leuven, Gaston Geenslaan 1, Leuven, 3001, Belgium
| | - Joleen Masschelein
- Molecular Biotechnology of Plants and Micro-organisms, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, box 2438, Leuven, 3001, Belgium
- Laboratory for Biomolecular Discovery & Engineering, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium
| | - Kevin J Verstrepen
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium.
- Laboratory of Genetics and Genomics, Center of Microbial and Plant Genetics, Department M2S, KU Leuven, Gaston Geenslaan 1, Leuven, 3001, Belgium.
| |
Collapse
|
24
|
Zhang F, Liu ZY, Liu S, Zhang WG, Wang BB, Li CL, Xu JZ. Rapid screening of point mutations by mismatch amplification mutation assay PCR. Appl Microbiol Biotechnol 2024; 108:190. [PMID: 38305911 PMCID: PMC10837254 DOI: 10.1007/s00253-024-13036-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/18/2023] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
Metabolic engineering frequently makes use of point mutation and saturation mutation library creation. At present, sequencing is the only reliable and direct technique to detect point mutation and screen saturation mutation library. In this study, mismatch amplification mutation assay (MAMA) PCR was used to detect point mutation and screen saturation mutation library. In order to fine-tune the expression of odhA encoding 2-oxoglutarate dehydrogenase E1 component, a saturating mutant library of the RBS of odhA was created in Corynebacterium glutamicum P12 based on the CRISPR-Cas2a genome editing system, which increased the L-proline production by 81.3%. MAMA PCR was used to filter out 42% of the non-mutant transformants in the mutant library, which effectively reduced the workload of the subsequent fermentation test and the number of sequenced samples. The rapid and sensitive MAMA-PCR method established in this study provides a general strategy for detecting point mutations and improving the efficiency of mutation library screening. KEY POINTS: • MAMA PCR was optimized and developed to detect point mutation. • MAMA PCR greatly improves the screening efficiency of point mutation. • Attenuation of odhA expression in P12 effectively improves proline production.
Collapse
Affiliation(s)
- Feng Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, People's Republic of China
| | - Zhen Yang Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, People's Republic of China
| | - Shuai Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, People's Republic of China
| | - Wei Guo Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, People's Republic of China.
| | - Bing Bing Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, People's Republic of China
| | - Chang Lon Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, People's Republic of China
| | - Jian Zhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, People's Republic of China
| |
Collapse
|
25
|
Liu X, Liu J, Liu Z, Qiao Q, Ni X, Yang J, Sun G, Li F, Zhou W, Guo X, Chen J, Jia S, Zheng Y, Zheng P, Sun J. Engineering allosteric inhibition of homoserine dehydrogenase by semi-rational saturation mutagenesis screening. Front Bioeng Biotechnol 2024; 11:1336215. [PMID: 38234301 PMCID: PMC10791936 DOI: 10.3389/fbioe.2023.1336215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
Allosteric regulation by pathway products plays a vital role in amino acid metabolism. Homoserine dehydrogenase (HSD), the key enzyme for the biosynthesis of various aspartate family amino acids, is subject to feedback inhibition by l-threonine and l-isoleucine. The desensitized mutants with the potential for amino acid production remain limited. Herein, a semi-rational approach was proposed to relieve the feedback inhibition. HSD from Corynebacterium glutamicum (CgHSD) was first characterized as a homotetramer, and nine conservative sites at the tetramer interface were selected for saturation mutagenesis by structural simulations and sequence analysis. Then, we established a high-throughput screening (HTS) method based on resistance to l-threonine analog and successfully acquired two dominant mutants (I397V and A384D). Compared with the best-ever reported desensitized mutant G378E, both new mutants qualified the engineered strains with higher production of CgHSD-dependent amino acids. The mutant and wild-type enzymes were purified and assessed in the presence or absence of inhibitors. Both purified mutants maintained >90% activity with 10 mM l-threonine or 25 mM l-isoleucine. Moreover, they showed >50% higher specific activities than G378E without inhibitors. This work provides two competitive alternatives for constructing cell factories of CgHSD-related amino acids and derivatives. Moreover, the proposed approach can be applied to engineering other allosteric enzymes in the amino acid synthesis pathway.
Collapse
Affiliation(s)
- Xinyang Liu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, China
| | - Jiao Liu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Zhemin Liu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Qianqian Qiao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, China
| | - Xiaomeng Ni
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Jinxing Yang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Guannan Sun
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Fanghe Li
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Wenjuan Zhou
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Xuan Guo
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Jiuzhou Chen
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Shiru Jia
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, China
| | - Yu Zheng
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, China
| | - Ping Zheng
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Jibin Sun
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| |
Collapse
|
26
|
Teng Y, Jiang T, Yan Y. The expanded CRISPR toolbox for constructing microbial cell factories. Trends Biotechnol 2024; 42:104-118. [PMID: 37500408 PMCID: PMC10808275 DOI: 10.1016/j.tibtech.2023.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023]
Abstract
Microbial cell factories (MCFs) convert low-cost carbon sources into valuable compounds. The CRISPR/Cas9 system has revolutionized MCF construction as a remarkable genome editing tool with unprecedented programmability. Recently, the CRISPR toolbox has been significantly expanded through the exploration of new CRISPR systems, the engineering of Cas effectors, and the incorporation of other effectors, enabling multi-level regulation and gene editing free of double-strand breaks. This expanded CRISPR toolbox powerfully promotes MCF construction by facilitating pathway construction, enzyme engineering, flux redistribution, and metabolic burden control. In this article, we summarize different CRISPR tool designs and their applications in MCF construction for gene editing, transcriptional regulation, and enzyme modulation. Finally, we also discuss future perspectives for the development and application of the CRISPR toolbox.
Collapse
Affiliation(s)
- Yuxi Teng
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Tian Jiang
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Yajun Yan
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
27
|
Gao Y, Zhang X, Xu G, Zhang X, Li H, Shi J, Xu Z. Enhanced L-serine production by Corynebacterium glutamicum based on novel insights into L-serine exporters. Biotechnol J 2024; 19:e2300136. [PMID: 37971189 DOI: 10.1002/biot.202300136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 10/11/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
The L-serine exporters ThrE and SerE play important roles in L-serine production by Corynebacterium glutamicum. Deletion of both thrE and serE decreased L-serine titer by 60%, suggesting the existence of other L-serine exporters. A comparative transcriptomics identified NCgl0254 and NCgl0255 as novel L-serine exporters. Further analysis of the contributions of ThrE, SerE, NCgl0254, and NCgl0255 found that SerE was the major L-serine exporter in C. glutamicum and these four L-serine exporters were responsible for 79.7% of L-serine export. Deletion of one L-serine exporter upregulated the transcription levels of the other three, which might be coursed by increased intracellular concentrations of L-serine. Overexpression of NCgl0254 and NCgl0255 increased L-serine titer by 20.8% in C. glutamicum A36, while overexpression of the four L-serine exporters increased L-serine production by 31.9% (41.1 g·L-1 ) in C. glutamicum A36. The identification of novel L-serine exporters in C. glutamicum will help to improve industrial production of L-serine.
Collapse
Affiliation(s)
- Yujie Gao
- Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| | - Xiaomei Zhang
- Laboratory of Pharmaceutical Engineering, School of Life Science and Health Engineering, Jiangnan University, Wuxi, China
| | - Guoqiang Xu
- Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| | - Xiaojuan Zhang
- Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| | - Hui Li
- Laboratory of Pharmaceutical Engineering, School of Life Science and Health Engineering, Jiangnan University, Wuxi, China
| | - Jinsong Shi
- Laboratory of Pharmaceutical Engineering, School of Life Science and Health Engineering, Jiangnan University, Wuxi, China
| | - Zhenghong Xu
- Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| |
Collapse
|
28
|
Nanatani K, Ishii T, Masuda A, Katsube S, Ando T, Yoneyama H, Abe K. Novel transporter screening technology for chemical production by microbial fermentation. J GEN APPL MICROBIOL 2023; 69:142-149. [PMID: 36567121 DOI: 10.2323/jgam.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In the fermentative production of compounds by using microorganisms, control of the transporter activity responsible for substrate uptake and product efflux, in addition to intracellular metabolic modification, is important from a productivity perspective. However, there has been little progress in analyses of the functions of microbial membrane transporters, and because of the difficulty in finding transporters that transport target compounds, only a few transporters have been put to practical use. Here, we constructed a Corynebacterium glutamicum-derived transporter expression library (CgTP-Express library) with the fusion partner gene mstX and used a peptide-feeding method with the dipeptide L-Ala-L-Ala to search for alanine exporters in the library. Among 39 genes in the library, five candidate alanine exporters (NCgl2533, NCgl2683, NCgl0986, NCgl0453, and NCgl0929) were found; expression of NCgl2533 increased the alanine concentration in cell culture. The CgTP-Express library was thus effective for finding a new transporter candidate.
Collapse
Affiliation(s)
- Kei Nanatani
- Department of Microbial Resources, Graduate School of Agricultural Science, Tohoku University
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University
- The Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University
- Tohoku Medical Megabank Organization, Tohoku University
| | - Tomoko Ishii
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University
| | - Ayumu Masuda
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University
| | - Satoshi Katsube
- Laboratory of Animal Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University
| | - Tasuke Ando
- Laboratory of Animal Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University
| | - Hiroshi Yoneyama
- Laboratory of Animal Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University
| | - Keietsu Abe
- Department of Microbial Resources, Graduate School of Agricultural Science, Tohoku University
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University
- Microbial Genomics Laboratory, New Industry Creation Hatchery Center, Tohoku University
| |
Collapse
|
29
|
Lv X, Li Y, Xiu X, Liao C, Xu Y, Liu Y, Li J, Du G, Liu L. CRISPR genetic toolkits of classical food microorganisms: Current state and future prospects. Biotechnol Adv 2023; 69:108261. [PMID: 37741424 DOI: 10.1016/j.biotechadv.2023.108261] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
Production of food-related products using microorganisms in an environmentally friendly manner is a crucial solution to global food safety and environmental pollution issues. Traditional microbial modification methods rely on artificial selection or natural mutations, which require time for repeated screening and reproduction, leading to unstable results. Therefore, it is imperative to develop rapid, efficient, and precise microbial modification technologies. This review summarizes recent advances in the construction of gene editing and metabolic regulation toolkits based on the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (CRISPR-Cas) systems and their applications in reconstructing food microorganism metabolic networks. The development and application of gene editing toolkits from single-site gene editing to multi-site and genome-scale gene editing was also introduced. Moreover, it presented a detailed introduction to CRISPR interference, CRISPR activation, and logic circuit toolkits for metabolic network regulation. Moreover, the current challenges and future prospects for developing CRISPR genetic toolkits were also discussed.
Collapse
Affiliation(s)
- Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yang Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Xiang Xiu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Chao Liao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yameng Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Food Laboratory of Zhongyuan, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
30
|
Wang J, Xue N, Pan W, Tu R, Li S, Zhang Y, Mao Y, Liu Y, Cheng H, Guo Y, Yuan W, Ni X, Wang M. Repurposing conformational changes in ANL superfamily enzymes to rapidly generate biosensors for organic and amino acids. Nat Commun 2023; 14:6680. [PMID: 37865661 PMCID: PMC10590383 DOI: 10.1038/s41467-023-42431-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/10/2023] [Indexed: 10/23/2023] Open
Abstract
Biosensors are powerful tools for detecting, real-time imaging, and quantifying molecules, but rapidly constructing diverse genetically encoded biosensors remains challenging. Here, we report a method to rapidly convert enzymes into genetically encoded circularly permuted fluorescent protein-based indicators to detect organic acids (GECFINDER). ANL superfamily enzymes undergo hinge-mediated ligand-coupling domain movement during catalysis. We introduce a circularly permuted fluorescent protein into enzymes hinges, converting ligand-induced conformational changes into significant fluorescence signal changes. We obtain 11 GECFINDERs for detecting phenylalanine, glutamic acid and other acids. GECFINDER-Phe3 and GECFINDER-Glu can efficiently and accurately quantify target molecules in biological samples in vitro. This method simplifies amino acid quantification without requiring complex equipment, potentially serving as point-of-care testing tools for clinical applications in low-resource environments. We also develop a GECFINDER-enabled droplet-based microfluidic high-throughput screening method for obtaining high-yield industrial strains. Our method provides a foundation for using enzymes as untapped blueprint resources for biosensor design, creation, and application.
Collapse
Affiliation(s)
- Jin Wang
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, China
- Haihe Laboratory of Synthetic Biology, 300308, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, 300308, Tianjin, China
| | - Ning Xue
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, China
- Haihe Laboratory of Synthetic Biology, 300308, Tianjin, China
- Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Wenjia Pan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, 300308, Tianjin, China
| | - Ran Tu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, China
- College of Environmental and Resources, Chongqing Technology and Business University, 400067, Chongqing, China
| | - Shixin Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, China
- Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Yue Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, 300308, Tianjin, China
| | - Yufeng Mao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, 300308, Tianjin, China
| | - Ye Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, 300308, Tianjin, China
| | - Haijiao Cheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, 300308, Tianjin, China
| | - Yanmei Guo
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, 300308, Tianjin, China
| | - Wei Yuan
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, 300308, Tianjin, China
| | - Xiaomeng Ni
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, China
| | - Meng Wang
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, 300308, Tianjin, China.
| |
Collapse
|
31
|
Jiang S, Wu H, Yao Z, Li R, Ma Q, Xie X. Phenotype-genotype mapping reveals the betaine-triggered L-arginine overproduction mechanism in Escherichia coli. BIORESOURCE TECHNOLOGY 2023; 386:129540. [PMID: 37488018 DOI: 10.1016/j.biortech.2023.129540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Abstract
The production phenotype improvement of industrial microbes is extremely needed and challenging. Environmental factors optimization provides insightful ideas to trigger the superior production phenotype by activating potential genetic determiners. Here, phenotype-genotype mapping was used to dissect the betaine-triggered L-arginine overproduction mechanism and mine beneficial genes for further improving production phenotype. The comparative transcriptomic analysis revealed a novel role for betaine in modulating global gene transcription. Guided by this finding, 4 novel genes (cynX, cynT, pyrB, and rhaB) for L-arginine biosynthesis were identified via reverse engineering. Moreover, the rhaB deletion was demonstrated as a common metabolic engineering strategy to improve ATP pool in E. coli. By combinatorial genes manipulation, the L-arginine titer and yield increased by 17.9% and 28.9% in a 5-L bioreactor without betaine addition. This study revealed the molecular mechanism of gene transcription regulation by betaine and developed a superior L-arginine overproducer that does not require betaine.
Collapse
Affiliation(s)
- Shuai Jiang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, PR China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Heyun Wu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, PR China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Zhuoyue Yao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, PR China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Ran Li
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, PR China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Qian Ma
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, PR China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Xixian Xie
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, PR China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, PR China.
| |
Collapse
|
32
|
Cai N, Chen J, Gao N, Ni X, Lei Y, Pu W, Wang L, Che B, Fan L, Zhou W, Feng J, Wang Y, Zheng P, Sun J. Engineering of the DNA replication and repair machinery to develop binary mutators for rapid genome evolution of Corynebacterium glutamicum. Nucleic Acids Res 2023; 51:8623-8642. [PMID: 37449409 PMCID: PMC10484736 DOI: 10.1093/nar/gkad602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
Corynebacterium glutamicum is an important industrial workhorse for production of amino acids and chemicals. Although recently developed genome editing technologies have advanced the rational genetic engineering of C. glutamicum, continuous genome evolution based on genetic mutators is still unavailable. To address this issue, the DNA replication and repair machinery of C. glutamicum was targeted in this study. DnaQ, the homolog of ϵ subunit of DNA polymerase III responsible for proofreading in Escherichia coli, was proven irrelevant to DNA replication fidelity in C. glutamicum. However, the histidinol phosphatase (PHP) domain of DnaE1, the α subunit of DNA polymerase III, was characterized as the key proofreading element and certain variants with PHP mutations allowed elevated spontaneous mutagenesis. Repression of the NucS-mediated post-replicative mismatch repair pathway or overexpression of newly screened NucS variants also impaired the DNA replication fidelity. Simultaneous interference with the DNA replication and repair machinery generated a binary genetic mutator capable of increasing the mutation rate by up to 2352-fold. The mutators facilitated rapid evolutionary engineering of C. glutamicum to acquire stress tolerance and protein overproduction phenotypes. This study provides efficient tools for evolutionary engineering of C. glutamicum and could inspire the development of mutagenesis strategy for other microbial hosts.
Collapse
Affiliation(s)
- Ningyun Cai
- Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jiuzhou Chen
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Ning Gao
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomeng Ni
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yu Lei
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Wei Pu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Lixian Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Bin Che
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Liwen Fan
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Wenjuan Zhou
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jinhui Feng
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yu Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Haihe Laboratory of Synthetic Biology, Tianjin 300308, China
| | - Ping Zheng
- Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Jibin Sun
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
33
|
Sun L, Zheng P, Sun J, Wendisch VF, Wang Y. Genome-scale CRISPRi screening: A powerful tool in engineering microbiology. ENGINEERING MICROBIOLOGY 2023; 3:100089. [PMID: 39628933 PMCID: PMC11611010 DOI: 10.1016/j.engmic.2023.100089] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/05/2023] [Accepted: 04/09/2023] [Indexed: 12/06/2024]
Abstract
Deciphering gene function is fundamental to engineering of microbiology. The clustered regularly interspaced short palindromic repeats (CRISPR) system has been adapted for gene repression across a range of hosts, creating a versatile tool called CRISPR interference (CRISPRi) that enables genome-scale analysis of gene function. This approach has yielded significant advances in the design of genome-scale CRISPRi libraries, as well as in applications of CRISPRi screening in medical and industrial microbiology. This review provides an overview of the recent progress made in pooled and arrayed CRISPRi screening in microorganisms and highlights representative studies that have employed this method. Additionally, the challenges associated with CRISPRi screening are discussed, and potential solutions for optimizing this strategy are proposed.
Collapse
Affiliation(s)
- Letian Sun
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Zheng
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Jibin Sun
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Volker F. Wendisch
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Yu Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
34
|
Zhou Y, Chen J, Pu W, Cai N, Che B, Yang J, Wang M, Zhong S, Zuo X, Wang D, Wang Y, Zheng P, Sun J. Development of a growth-coupled selection platform for directed evolution of heme biosynthetic enzymes in Corynebacterium glutamicum. Front Bioeng Biotechnol 2023; 11:1236118. [PMID: 37654705 PMCID: PMC10465345 DOI: 10.3389/fbioe.2023.1236118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/04/2023] [Indexed: 09/02/2023] Open
Abstract
Heme is an important tetrapyrrole compound, and has been widely applied in food and medicine industries. Although microbial production of heme has been developed with metabolic engineering strategies during the past 20 years, the production levels are relatively low due to the multistep enzymatic processes and complicated regulatory mechanisms of microbes. Previous studies mainly adopted the strategies of strengthening precursor supply and product transportation to engineer microbes for improving heme biosynthesis. Few studies focused on the engineering and screening of efficient enzymes involved in heme biosynthesis. Herein, a growth-coupled, high-throughput selection platform based on the detoxification of Zinc-protoporphyrin IX (an analogue of heme) was developed and applied to directed evolution of coproporphyrin ferrochelatase, catalyzing the insertion of metal ions into porphyrin ring to generate heme or other tetrapyrrole compounds. A mutant with 3.03-fold increase in k cat/K M was selected. Finally, growth-coupled directed evolution of another three key enzymes involved in heme biosynthesis was tested by using this selection platform. The growth-coupled selection platform developed here can be a simple and effective strategy for directed evolution of the enzymes involved in the biosynthesis of heme or other tetrapyrrole compounds.
Collapse
Affiliation(s)
- Yingyu Zhou
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jiuzhou Chen
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Wei Pu
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Ningyun Cai
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Bin Che
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Jinxing Yang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Mengmeng Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Shasha Zhong
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xingtao Zuo
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Depei Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yu Wang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Ping Zheng
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Jibin Sun
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| |
Collapse
|
35
|
Wang Y, Li S, Xue N, Wang L, Zhang X, Zhao L, Guo Y, Zhang Y, Wang M. Modulating Sensitivity of an Erythromycin Biosensor for Precise High-Throughput Screening of Strains with Different Characteristics. ACS Synth Biol 2023; 12:1761-1771. [PMID: 37198736 DOI: 10.1021/acssynbio.3c00059] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Genetically encoded biosensors are powerful tools for product-driven high-throughput screening in synthetic biology and metabolic engineering. However, most biosensors can only properly function in a limited concentration cutoff, and the incompatible performance characteristics of biosensors will lead to false positives or failure in screening. The transcription factor (TF)-based biosensors are usually organized in modular architecture and function in a regulator-depended manner, whose performance properties can be fine-tuned by modifying the expression level of the TF. In this study, we modulated the performance characteristics, including sensitivity and operating range, of an MphR-based erythromycin biosensor by fine-adjusting regulator expression levels via ribosome-binding site (RBS) engineering and obtained a panel of biosensors with varied sensitivities by iterative fluorescence-assisted cell sorting (FACS) in Escherichia coli to accommodate different screening purposes. To exemplify their application potential, two engineered biosensors with 10-fold different sensitivities were employed in the precise high-throughput screening by microfluidic-based fluorescence-activated droplet sorting (FADS) of Saccharopolyspora erythraea mutant libraries with different starting erythromycin productions, and mutants representing as high as 6.8 folds and over 100% of production improvements were obtained starting from the wild-type strain and the high-producing industrial strain, respectively. This work demonstrated a simple strategy to engineer biosensor performance properties, which was significant to stepwise strain engineering and production improvement.
Collapse
Affiliation(s)
- Yan Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Haihe Laboratory of Synthetic Biology, Tianjin 300308, China
| | - Shixin Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Ning Xue
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Lixian Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xuemei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Longqian Zhao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yanmei Guo
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yue Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Meng Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
36
|
Wang M, Shi Z, Gao N, Zhou Y, Ni X, Chen J, Liu J, Zhou W, Guo X, Xin B, Shen Y, Wang Y, Zheng P, Sun J. Sustainable and high-level microbial production of plant hemoglobin in Corynebacterium glutamicum. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:80. [PMID: 37170167 PMCID: PMC10176901 DOI: 10.1186/s13068-023-02337-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Plant hemoglobin shows great potential as a food additive to circumvent the controversy of using animal materials. Microbial fermentation with engineered microorganisms is considered as a promising strategy for sustainable production of hemoglobin. As an endotoxin-free and GRAS (generally regarded as safe) bacterium, Corynebacterium glutamicum is an attractive host for hemoglobin biosynthesis. RESULTS Herein, C. glutamicum was engineered to efficiently produce plant hemoglobin. Hemoglobin genes from different sources including soybean and maize were selected and subjected to codon optimization. Interestingly, some candidates optimized for the codon usage bias of Escherichia coli outperformed those for C. glutamicum regarding the heterologous expression in C. glutamicum. Then, saturated synonymous mutation of the N-terminal coding sequences of hemoglobin genes and fluorescence-based high-throughput screening produced variants with 1.66- to 3.45-fold increase in hemoglobin expression level. To avoid the use of toxic inducers, such as isopropyl-β-D-thiogalactopyranoside, two native inducible expression systems based on food additives propionate and gluconate were developed. Promoter engineering improved the hemoglobin expression level by 2.2- to 12.2-fold. Combination of these strategies and plasmid copy number modification allowed intracellular production of hemoglobin up to approximately 20% of total protein. Transcriptome and proteome analyses of the hemoglobin-producing strain revealed the cellular response to excess hemoglobin accumulation. Several genes were identified as potential targets for further enhancing hemoglobin production. CONCLUSIONS In this study, production of plant hemoglobin in C. glutamicum was systematically engineered by combining codon optimization, promoter engineering, plasmid copy number modification, and multi-omics-guided novel target discovery. This study offers useful design principles to genetically engineer C. glutamicum for the production of hemoglobin and other recombinant proteins.
Collapse
Affiliation(s)
- Mengmeng Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300222, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Zhong Shi
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Ning Gao
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingyu Zhou
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300222, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Xiaomeng Ni
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jiuzhou Chen
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jiao Liu
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Wenjuan Zhou
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Xuan Guo
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Bo Xin
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300222, China
| | - Yanbing Shen
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300222, China
| | - Yu Wang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ping Zheng
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jibin Sun
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
37
|
Jeong SH, Kim HJ, Lee SJ. New Target Gene Screening Using Shortened and Random sgRNA Libraries in Microbial CRISPR Interference. ACS Synth Biol 2023; 12:800-808. [PMID: 36787424 PMCID: PMC10028695 DOI: 10.1021/acssynbio.2c00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Indexed: 02/16/2023]
Abstract
CRISPR interference (CRISPRi) screening has been used for identification of target genes related to specific phenotypes using single-molecular guide RNA (sgRNA) libraries. In CRISPRi screening, the sizes of random sgRNA libraries contained with the original target recognition sequences are large (∼1012). Here, we demonstrated that the length of the target recognition sequence (TRS) can be shortened in sgRNAs from the original 20 nucleotides (N20) to 9 nucleotides (N9) that is still sufficient for dCas9 to repress target genes in the xylose operon of Escherichia coli, regardless of binding to a promoter or open reading frame region. Based on the results, we constructed random sgRNA plasmid libraries with 5'-shortened TRS lengths, and identified xylose metabolic target genes by Sanger sequencing of sgRNA plasmids purified from Xyl- phenotypic cells. Next, the random sgRNA libraries were harnessed to screen for target genes to enhance violacein pigment production in synthetic E. coli cells. Seventeen target genes were selected by analyzing the redundancy of the TRS in sgRNA plasmids in dark purple colonies. Among them, seven genes (tyrR, pykF, cra, ptsG, pykA, sdaA, and tnaA) have been known to increase the intracellular l-tryptophan pool, the precursor of a violacein. Seventeen cells with a single deletion of each target gene exhibited a significant increase in violacein production. These results indicate that using shortened random TRS libraries for CRISPRi can be simple and cost-effective for phenotype-based target gene screening.
Collapse
Affiliation(s)
- Song Hee Jeong
- Department of Systems Biotechnology,
and Institute of Microbiomics, Chung-Ang
University, Anseong 17546, Republic of Korea
| | - Hyun Ju Kim
- Department of Systems Biotechnology,
and Institute of Microbiomics, Chung-Ang
University, Anseong 17546, Republic of Korea
| | - Sang Jun Lee
- Department of Systems Biotechnology,
and Institute of Microbiomics, Chung-Ang
University, Anseong 17546, Republic of Korea
| |
Collapse
|
38
|
Pu W, Chen J, Liu P, Shen J, Cai N, Liu B, Lei Y, Wang L, Ni X, Zhang J, Liu J, Zhou Y, Zhou W, Ma H, Wang Y, Zheng P, Sun J. Directed evolution of linker helix as an efficient strategy for engineering LysR-type transcriptional regulators as whole-cell biosensors. Biosens Bioelectron 2023; 222:115004. [PMID: 36516630 DOI: 10.1016/j.bios.2022.115004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/17/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022]
Abstract
Whole-cell biosensors based on transcriptional regulators are powerful tools for rapid measurement, high-throughput screening, dynamic metabolic regulation, etc. To optimize the biosensing performance of transcriptional regulator, its effector-binding domain is commonly engineered. However, this strategy is encumbered by the limitation of diversifying such a large domain and the risk of affecting effector specificity. Molecular dynamics simulation of effector binding of LysG (an LysR-type transcriptional regulator, LTTR) suggests the crucial role of the short linker helix (LH) connecting effector- and DNA-binding domains in protein conformational change. Directed evolution of LH efficiently produced LysG variants with extended operational range and unaltered effector specificity. The whole-cell biosensor based on the best LysGE58V variant outperformed the wild-type LysG in enzyme high-throughput screening and dynamic regulation of l-lysine biosynthetic pathway. LH mutations are suggested to affect DNA binding and facilitate transcriptional activation upon effector binding. LH engineering was also successfully applied to optimize another LTTR BenM for biosensing. Since LTTRs represent the largest family of prokaryotic transcriptional regulators with highly conserved structures, LH engineering is an efficient and universal strategy for development and optimization of whole-cell biosensors.
Collapse
Affiliation(s)
- Wei Pu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jiuzhou Chen
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Pi Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; BioDesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jie Shen
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Ningyun Cai
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Baoyan Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; BioDesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Yu Lei
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Lixian Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Xiaomeng Ni
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jie Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jiao Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Yingyu Zhou
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Wenjuan Zhou
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Hongwu Ma
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China; BioDesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Yu Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Haihe Laboratory of Synthetic Biology, Tianjin, 300308, China; National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China.
| | - Ping Zheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China.
| | - Jibin Sun
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| |
Collapse
|
39
|
Liu Y, Liu Y, Zheng P, Wang Y, Wang M. Cytosine Base Editing in Bacteria. Methods Mol Biol 2023; 2606:219-231. [PMID: 36592319 DOI: 10.1007/978-1-0716-2879-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Base editing is a new genome editing technology that enables DNA base mutations without requiring double-stranded DNA backbone cleavage or a donor template. It has been widely used for genome engineering of eukaryotic and prokaryotic microorganisms. In this chapter, we describe a routine protocol for cytosine base editing in two model bacteria Corynebacterium glutamicum and Bacillus subtilis. The protocol can be adapted to base editing in other bacteria with modifications.
Collapse
Affiliation(s)
- Ye Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Yang Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Ping Zheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Yu Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China. .,National Technology Innovation Center of Synthetic Biology, Tianjin, China.
| | - Meng Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China. .,National Technology Innovation Center of Synthetic Biology, Tianjin, China.
| |
Collapse
|
40
|
Jeong SH, Lee HJ, Lee SJ. Recent Advances in CRISPR-Cas Technologies for Synthetic Biology. J Microbiol 2023; 61:13-36. [PMID: 36723794 PMCID: PMC9890466 DOI: 10.1007/s12275-022-00005-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 02/02/2023]
Abstract
With developments in synthetic biology, "engineering biology" has emerged through standardization and platformization based on hierarchical, orthogonal, and modularized biological systems. Genome engineering is necessary to manufacture and design synthetic cells with desired functions by using bioparts obtained from sequence databases. Among various tools, the CRISPR-Cas system is modularly composed of guide RNA and Cas nuclease; therefore, it is convenient for editing the genome freely. Recently, various strategies have been developed to accurately edit the genome at a single nucleotide level. Furthermore, CRISPR-Cas technology has been extended to molecular diagnostics for nucleic acids and detection of pathogens, including disease-causing viruses. Moreover, CRISPR technology, which can precisely control the expression of specific genes in cells, is evolving to find the target of metabolic biotechnology. In this review, we summarize the status of various CRISPR technologies that can be applied to synthetic biology and discuss the development of synthetic biology combined with CRISPR technology in microbiology.
Collapse
Affiliation(s)
- Song Hee Jeong
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Ho Joung Lee
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Sang Jun Lee
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
41
|
Yu X, Li S, Feng H, Liao X, Xing XH, Bai Z, Liu X, Zhang C. CRISPRi-microfluidics screening enables genome-scale target identification for high-titer protein production and secretion. Metab Eng 2023; 75:192-204. [PMID: 36572334 DOI: 10.1016/j.ymben.2022.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/25/2022]
Abstract
Genome-scale target identification promises to guide microbial cell factory engineering for higher-titer production of biomolecules such as recombinant proteins (r-protein), but challenges remain due to the need not only for comprehensive genotypic perturbation but also in conjunction with high-throughput phenotypic screening strategies. Here, we developed a CRISPRi-microfluidics screening platform to systematically identify crucial gene targets that can be engineered to enhance r-protein secretion in Corynebacterium glutamicum. We created a CRISPR interference (CRISPRi) library containing 46,549 single-guide RNAs, where we aimed to unbiasedly target all genes for repression. Meanwhile, we developed a highly efficient droplet-based microfluidics system integrating the FlAsH-tetracysteine assay that enables screening of millions of strains to identify potential knockdowns conducive to nanobody VHH secretion. Among our highest-ranking candidates are a slew of previously unknown targets involved in transmembrane transport, amino-acid metabolism and redox regulation. Guided by these findings, we eventually constructed a hyperproducer for multiple proteins via combinatorial engineering of redox-response transcription factors. As the near-universal applicability of CRISPRi technology and the FlAsH-based screening platform, this procedure might be expanded to include a varied variety of microbial species and recombinant proteins.
Collapse
Affiliation(s)
- Xinyu Yu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, China; MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Shuang Li
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Huibao Feng
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xihao Liao
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xin-Hui Xing
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Zhonghu Bai
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiuxia Liu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| | - Chong Zhang
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
42
|
Zhang Y, An N, Zhao Y, Li X, Shen X, Wang J, Sun X, Yuan Q. Efficient biosynthesis of α-aminoadipic acid via lysine catabolism in Escherichia coli. Biotechnol Bioeng 2023; 120:312-317. [PMID: 36226358 DOI: 10.1002/bit.28256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 09/13/2022] [Accepted: 10/09/2022] [Indexed: 12/14/2022]
Abstract
α-Aminoadipic acid (AAA) is a nonproteinogenic amino acid with potential applications in pharmaceutical, chemical and animal feed industries. Currently, AAA is produced by chemical synthesis, which suffers from high cost and low production efficiency. In this study, we engineered Escherichia coli for high-level AAA production by coupling lysine biosynthesis and degradation pathways. First, the lysine-α-ketoglutarate reductase and saccharopine dehydrogenase from Saccharomyces cerevisiae and α-aminoadipate-δ-semialdehyde dehydrogenase from Rhodococcus erythropolis were selected by in vitro enzyme assays for pathway assembly. Subsequently, lysine supply was enhanced by blocking its degradation pathway, overexpressing key pathway enzymes and improving nicotinamide adenine dineucleotide phosphate (NADPH) regeneration. Finally, a glutamate transporter from Corynebacterium glutamicum was introduced to elevate AAA efflux. The final strain produced 2.94 and 5.64 g/L AAA in shake flasks and bioreactors, respectively. This work provides an efficient and sustainable way for AAA production.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Ning An
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Yan Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Xueqi Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Xiaolin Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Jia Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
43
|
Li Z, Gao C, Ye C, Guo L, Liu J, Chen X, Song W, Wu J, Liu L. Systems engineering of Escherichia coli for high-level shikimate production. Metab Eng 2023; 75:1-11. [PMID: 36328295 DOI: 10.1016/j.ymben.2022.10.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/03/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
To further increase the production efficiency of microbial shikimate, a valuable compound widely used in the pharmaceutical and chemical industries, ten key target genes contributing to shikimate production were identified by exploiting the enzyme constraint model ec_iML1515, and subsequently used for promoting metabolic flux towards shikimate biosynthesis in the tryptophan-overproducing strain Escherichia coli TRP0. The engineered E. coli SA05 produced 78.4 g/L shikimate via fed-batch fermentation. Deletion of quinate dehydrogenase and introduction of the hydroaromatic equilibration-alleviating shikimate dehydrogenase mutant AroET61W/L241I reduced the contents of byproducts quinate (7.5 g/L) and 3-dehydroshikimic acid (21.4 g/L) by 89.1% and 52.1%, respectively. Furthermore, a high concentration shikimate responsive promoter PrpoS was recruited to dynamically regulate the expression of the tolerance target ProV to enhance shikimate productivity by 23.2% (to 2 g/L/h). Finally, the shikimate titer was increased to 126.4 g/L, with a yield of 0.50 g/g glucose and productivity of 2.63 g/L/h, using a 30-L fermenter and the engineered strain E. coli SA09. This is, to the best of our knowledge, the highest reported shikimate titer and productivity in E. coli.
Collapse
Affiliation(s)
- Zhendong Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, China
| | - Liang Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
44
|
Pan X, Tang M, You J, Hao Y, Zhang X, Yang T, Rao Z. A Novel Method to Screen Strong Constitutive Promoters in Escherichia coli and Serratia marcescens for Industrial Applications. BIOLOGY 2022; 12:biology12010071. [PMID: 36671763 PMCID: PMC9855843 DOI: 10.3390/biology12010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/18/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023]
Abstract
Promoters serve as the switch of gene transcription, playing an important role in regulating gene expression and metabolites production. However, the approach to screening strong constitutive promoters in microorganisms is still limited. In this study, a novel method was designed to identify strong constitutive promoters in E. coli and S. marcescens based on random genomic interruption and fluorescence-activated cell sorting (FACS) technology. First, genomes of E. coli, Bacillus subtilis, and Corynebacterium glutamicum were randomly interrupted and inserted into the upstream of reporter gene gfp to construct three promoter libraries, and a potential strong constitutive promoter (PBS) suitable for E. coli was screened via FACS technology. Second, the core promoter sequence (PBS76) of the screened promoter was identified by sequence truncation. Third, a promoter library of PBS76 was constructed by installing degenerate bases via chemical synthesis for further improving its strength, and the intensity of the produced promoter PBS76-100 was 59.56 times higher than that of the promoter PBBa_J23118. Subsequently, promoters PBBa_J23118, PBS76, PBS76-50, PBS76-75, PBS76-85, and PBS76-100 with different strengths were applied to enhance the metabolic flux of L-valine synthesis, and the L-valine yield was significantly improved. Finally, a strong constitutive promoter suitable for S. marcescens was screened by a similar method and applied to enhance prodigiosin production by 34.81%. Taken together, the construction of a promoter library based on random genomic interruption was effective to screen the strong constitutive promoters for fine-tuning gene expression and reprogramming metabolic flux in various microorganisms.
Collapse
Affiliation(s)
- Xuewei Pan
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mi Tang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jiajia You
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yanan Hao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xian Zhang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Taowei Yang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Correspondence: ; Tel.: +86-510-85916881
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
45
|
Li Z, Fang F, Long Y, Zhao Q, Wang X, Ye Z, Meng T, Gu X, Xiang W, Xiong C, Li H. The balance between NANOG and SOX17 mediated by TET proteins regulates specification of human primordial germ cell fate. Cell Biosci 2022; 12:181. [PMID: 36333732 PMCID: PMC9636699 DOI: 10.1186/s13578-022-00917-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Background Human primordial germ cells (hPGCs) initiate from the early post-implantation embryo at week 2–3 and undergo epigenetic reprogramming during development. However, the regulatory mechanism of DNA methylation during hPGC specification is still largely unknown due to the difficulties in analyzing early human embryos. Using an in vitro model of hPGC induction, we found a novel function of TET proteins and NANOG in the hPGC specification which was different from that discovered in mice. Methods Using the CRISPR–Cas9 system, we generated a set of TET1, TET2 and TET3 knockout H1 human embryonic stem cell (hESC) lines bearing a BLIMP1-2A-mKate2 reporter. We determined the global mRNA transcription and DNA methylation profiles of pluripotent cells and induced hPGC-like cells (hPGCLCs) by RNA-seq and whole-genome bisulfite sequencing (WGBS) to reveal the involved signaling pathways after TET proteins knockout. ChIP-qPCR was performed to verify the binding of TET and NANOG proteins in the SOX17 promoter. Real-time quantitative PCR, western blot and immunofluorescence were performed to measure gene expression at mRNA and protein levels. The efficiency of hPGC induction was evaluated by FACS. Results In humans, TET1, TET2 and TET3 triple-knockout (TKO) human embryonic stem cells (hESCs) impaired the NODAL signaling pathway and impeded hPGC specification in vitro, while the hyperactivated NODAL signaling pathway led to gastrulation failure when Tet proteins were inactivated in mouse. Specifically, TET proteins stimulated SOX17 through the NODAL signaling pathway and directly regulates NANOG expression at the onset of hPGCLCs induction. Notably, NANOG could bind to SOX17 promoter to regulate its expression in hPGCLCs specification. Furthermore, in TKO hESCs, DNMT3B-mediated hypermethylation of the NODAL signaling-related genes and NANOG/SOX17 promoters repressed their activation and inhibited hPGCLC induction. Knockout of DNMT3B in TKO hESCs partially restored NODAL signaling and NANOG/SOX17 expression, and rescued hPGCLC induction. Conclusion Our results show that TETs-mediated oxidation of 5-methylcytosine modulates the NODAL signaling pathway and its downstream genes, NANOG and SOX17, by promoting demethylation in opposition to DNMT3B-mediated methylation, suggesting that the epigenetic balance of DNA methylation and demethylation in key genes plays a fundamental role in early hPGC specification. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00917-0.
Collapse
|
46
|
Wang Y, Zhao D, Sun L, Wang J, Fan L, Cheng G, Zhang Z, Ni X, Feng J, Wang M, Zheng P, Bi C, Zhang X, Sun J. Engineering of the Translesion DNA Synthesis Pathway Enables Controllable C-to-G and C-to-A Base Editing in Corynebacterium glutamicum. ACS Synth Biol 2022; 11:3368-3378. [PMID: 36099191 DOI: 10.1021/acssynbio.2c00265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Expanding the base conversion type is expected to largely broaden the application of base editing, whereas it requires decipherment of the machinery controlling the editing outcome. Here, we discovered that the DNA polymerase V-mediated translesion DNA synthesis (TLS) pathway controlled the C-to-A editing by a glycosylase base editor (GBE) in Escherichia coli. However, C-to-G conversion was surprisingly found to be the main product of the GBE in Corynebacterium glutamicum and subsequent gene inactivation identified the decisive TLS enzymes. Introduction of the E. coli TLS pathway into a TLS-deficient C. glutamicum mutant completely changed the GBE outcome from C-to-G to C-to-A. Combining the canonical C-to-T editor, a pioneering C-to-N base editing toolbox was established in C. glutamicum. The expanded base conversion capability produces greater genetic diversity and promotes the application of base editing in gene inactivation and protein evolution. This study demonstrates the possibility of engineering TLS systems to develop advanced genome editing tools.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Dongdong Zhao
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Letian Sun
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Liwen Fan
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Guimin Cheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China.,College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300222, China
| | - Zhihui Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomeng Ni
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Jinhui Feng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Meng Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Ping Zheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Changhao Bi
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Xueli Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Jibin Sun
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
47
|
Pan X, You J, Tang M, Zhang X, Xu M, Yang T, Rao Z. Improving prodigiosin production by transcription factor engineering and promoter engineering in Serratia marcescens. Front Microbiol 2022; 13:977337. [PMID: 35992721 PMCID: PMC9382025 DOI: 10.3389/fmicb.2022.977337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Prodigiosin (PG), a red linear tripyrrole pigment produced by Serratia marcescens, has attracted attention due to its immunosuppressive, antimicrobial, and anticancer properties. Although many studies have been used to dissect the biosynthetic pathways and regulatory network of prodigiosin production in S. marcescens, few studies have been focused on improving prodigiosin production through metabolic engineering in this strain. In this study, transcription factor engineering and promoter engineering was used to promote the production of prodigiosin in S. marcescens JNB5-1. Firstly, through construing of a Tn5G transposon insertion library of strain JNB5-1, it was found that the DNA-binding response regulator BVG89_19895 (OmpR) can promote prodigiosin synthesis in this strain. Then, using RNA-Seq analysis, reporter green fluorescent protein analysis and RT-qPCR analysis, the promoter P17 (PRplJ) was found to be a strong constitutive promoter in strain JNB5-1. Finally, the promoter P17 was used for overexpressing of prodigiosin synthesis activator OmpR and PsrA in strain JNB5-1 and a recombinant strain PG-6 was obtained. Shake flask analysis showed that the prodigiosin titer of this strain was increased to 10.25 g/L, which was 1.62-times that of the original strain JNB5-1 (6.33 g/L). Taken together, this is the first well-characterized constitutive promoter library from S. marcescens, and the transcription factor engineering and promoter engineering can be also useful strategies to improve the production of other high value-added products in S. marcescens.
Collapse
|
48
|
Wei TY, Zheng Y, Wan M, Yang S, Tang J, Wu Y, Li J, Chen SX. Analysis of FR901379 Biosynthetic Genes in Coleophoma empetri by Clustered Regularly Interspaced Short Palindromic Repeats/Cas9-Based Genomic Manipulation. ACS Chem Biol 2022; 17:2130-2141. [PMID: 35822391 DOI: 10.1021/acschembio.2c00250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The compound FR901379, a sulfated echinocandin produced by the filamentous fungus Coleophoma empetri F-11899, is an important intermediate for the synthesis of the antifungal drug micafungin. In this study, we established an efficient clustered regularly interspaced short palindromic repeats/Cas9-based gene editing tool for the industrial production strain C. empetri SIPI1284. With this method, the efficiency of gene mutagenesis in the target locus is up to 84%, which enables the rapid gene disruption for the analysis of FR901379 biosynthetic genes. Next, we verified the putative functional genes of the FR901379 biosynthetic gene cluster via gene disruption and gene complementation in vivo. These core functional genes included the nonribosomal peptide synthetase gene (CEnrps), the fatty-acyl-AMP ligase gene (CEligase) responsible for the formation of the activated form of palmitic acid and its transfer to CEnrps, four nonheme mononuclear iron oxygenase genes (CEoxy1, CEoxy2, CEoxy3, and CEoxy4) responsible for the synthesis of nonproteinogenic amino acids, l-homotyrosine biosynthesis genes (CEhtyA-D), two cytochrome P450 enzyme genes (CEp450-1 and CEp450-2), and a transcription regulator gene (CEhyp). In addition, by screening the whole genome, we identified two unknown genes (CEp450-3 and CEsul) responsible for the sulfonyloxy group of FR901379, which were separated from the core FR901379 biosynthetic cluster. Furthermore, during gene disruptions in the research, we obtained a series of FR901379 analogues and elucidated the relationship between the groups and antifungal activities.
Collapse
Affiliation(s)
- Teng-Yun Wei
- State Key Laboratory of New Drug and Pharmaceutical Process, China State Institute of Pharmaceutical Industry, Shanghai Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Yan Zheng
- State Key Laboratory of New Drug and Pharmaceutical Process, China State Institute of Pharmaceutical Industry, Shanghai Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Miyang Wan
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Songbai Yang
- State Key Laboratory of New Drug and Pharmaceutical Process, China State Institute of Pharmaceutical Industry, Shanghai Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Jiawei Tang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yuanjie Wu
- State Key Laboratory of New Drug and Pharmaceutical Process, China State Institute of Pharmaceutical Industry, Shanghai Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Jiyang Li
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shao-Xin Chen
- State Key Laboratory of New Drug and Pharmaceutical Process, China State Institute of Pharmaceutical Industry, Shanghai Institute of Pharmaceutical Industry, Shanghai 201203, China
| |
Collapse
|
49
|
Wang Y, Zheng P, Xu Z, Kondo A, Wittmann C, Wendisch VF. Editorial: Engineering Corynebacterium glutamicum Chassis for Synthetic Biology, Biomanufacturing, and Bioremediation. Front Bioeng Biotechnol 2022; 10:923145. [PMID: 35757803 PMCID: PMC9214578 DOI: 10.3389/fbioe.2022.923145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yu Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Ping Zheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Zhenghong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Akihiko Kondo
- Department of Chemical and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
50
|
The Escherichia coli Amino Acid Uptake Protein CycA: Regulation of Its Synthesis and Practical Application in l-Isoleucine Production. Microorganisms 2022; 10:microorganisms10030647. [PMID: 35336222 PMCID: PMC8948829 DOI: 10.3390/microorganisms10030647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
Amino acid transport systems perform important physiological functions; their role should certainly be considered in microbial production of amino acids. Typically, in the context of metabolic engineering, efforts are focused on the search for and application of specific amino acid efflux pumps. However, in addition, importers can also be used to improve the industrial process as a whole. In this study, the protein CycA, which is known for uptake of nonpolar amino acids, was characterized from the viewpoint of regulating its expression and range of substrates. We prepared a cycA-overexpressing strain and found that it exhibited high sensitivity to branched-chain amino acids and their structural analogues, with relatively increased consumption of these amino acids, suggesting that they are imported by CycA. The expression of cycA was found to be dependent on the extracellular concentrations of substrate amino acids. The role of some transcription factors in cycA expression, including of Lrp and Crp, was studied using a reporter gene construct. Evidence for the direct binding of Crp to the cycA regulatory region was obtained using a gel-retardation assay. The enhanced import of named amino acids due to cycA overexpression in the l-isoleucine-producing strain resulted in a significant reduction in the generation of undesirable impurities. This work demonstrates the importance of uptake systems with respect to their application in metabolic engineering.
Collapse
|