1
|
Martínez Villarreal A, Gantchev J, Xie P, Lefrançois P, Ramchatesingh B, Litvinov IV. Memory T-Cell Phenotype in Cutaneous T-Cell Lymphoma Is Modified by Germline Gene Gametocyte Specific Factor 1. Exp Dermatol 2025; 34:e70123. [PMID: 40369846 PMCID: PMC12078864 DOI: 10.1111/exd.70123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 04/10/2025] [Accepted: 05/01/2025] [Indexed: 05/16/2025]
Abstract
Cutaneous T-cell lymphoma (CTCL) is a heterogeneous group of lymphoproliferative disorders characterised by skin infiltration by malignant memory T cells. While most patients will present with an indolent disease, others will follow a highly aggressive clinical course. Currently, defining disease prognosis remains challenging. Ectopic expression of gametocyte-specific factor 1 (GTSF1) has emerged as a potential prognostic biomarker. However, its contribution to CTCL carcinogenesis remains unknown. Here, we report that GTSF1 contributes to carcinogenesis by partially modifying the memory/effector phenotype of the malignant T cells. GTSF1 knockdown in CTCL cells led to T-cell activation and production of IFNγ and TNFα. Advanced stages of the disease are associated with decreased production of these cytokines. Notably, we show that patients classified with high expression of GTSF1 are associated with a worse disease prognosis. Taken together, our findings indicate that GTSF1 expression in CTCL cells allows them to acquire memory T-cell phenotype. Malignant memory T cells have a decreased production of immune-responsive cytokines, leading to a diminished immune response and disease progression. GTSF1 is an important candidate as a prognostic biomarker. Furthermore, understanding the specific function of GTSF1 might help develop novel targeted treatment options for CTCL patients.
Collapse
Affiliation(s)
- Amelia Martínez Villarreal
- Faculty of Medicine and Health Sciences, Research Institute of the McGill University Health CentreMcGill UniversityMontrealQuebecCanada
- Division of Experimental Medicine, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
| | - Jennifer Gantchev
- Department of NeurosurgeryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Pingxing Xie
- Division of Dermatology, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
| | - Philippe Lefrançois
- Division of Experimental Medicine, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
- Division of Dermatology, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
- Lady Davis Institute for Medical ResearchJewish General Hospital, McGill UniversityMontrealQuebecCanada
| | - Brandon Ramchatesingh
- Faculty of Medicine and Health Sciences, Research Institute of the McGill University Health CentreMcGill UniversityMontrealQuebecCanada
- Division of Experimental Medicine, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
| | - Ivan V. Litvinov
- Faculty of Medicine and Health Sciences, Research Institute of the McGill University Health CentreMcGill UniversityMontrealQuebecCanada
- Division of Experimental Medicine, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
- Division of Dermatology, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
2
|
Sun J, Li T, Cui J, Zhang L, Wang G, Ma C, Zhang C, Wang Y. sEV-mediated intercellular transformation from MGAT4A High to MGAT4A Low tumor cells via the HOTAIRM1/miR-196b-5p axis promotes apoptosis resistance in CTCL. Oncogene 2025:10.1038/s41388-025-03356-6. [PMID: 40155530 DOI: 10.1038/s41388-025-03356-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/24/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025]
Abstract
ncRNAs encapsulated in small extracellular vesicles (sEVs) facilitate intercellular communication and are associated with tumor progression. lncRNA-HOTAIRM1 is aberrantly expressed in various cancers. However, HOTAIRM1 expression and its downstream ceRNA network in CTCL remains unclear. In this study, we found that HOTAIRM1 was reduced in CTCL. Elevated HOTAIRM1 inhibited proliferation and induced apoptosis in vitro, resulting in reduced in vivo tumorigenic capacity. Whole-transcriptome sequencing and scRNA-Seq confirmed that differential expression of HOTAIRM1/miR-196b-5p/MGAT4A axis induces apoptosis resistance in CTCL. Mechanistically, reduced MGAT4A expression in CTCL leads to decreased N-glycosylation modification of membrane proteins and reduced Galectin-1 affinity, thereby inducing partial resistance to Galectin-1-induced apoptosis. Meanwhile, benign CD4 + T cells show sensitivity to Galectin-1-induced apoptosis due to their relatively higher MGAT4A expression. Furthermore, MGAT4ALow CTCL tumor cells transformed MGAT4AHigh CD4+ benign cells into MGAT4ALow cells by secreting sEVs containing miR-196b-5p, thereby reducing Galectin-1 binding and inducing apoptosis resistance. Engineered sEVs from HOTAIRM1-overexpressing cells contain elevated HOTAIRM1, which can specifically target malignant T cells, with reduced miR-196b-5p and increased MGAT4A, demonstrating apoptosis-inducing and tumor-suppressive effects in CTCL. This study identified changes in HOTAIRM1/miR-196b-5p/MGAT4A axis and N-glycosylation modifications in CTCL. Engineered HOTAIRM1-loaded sEVs demonstrated promising targeting and therapeutic effects in CTCL.
Collapse
Affiliation(s)
- Jiachen Sun
- Department of Dermatology, Peking University Third Hospital, Beijing, China
| | - Tingting Li
- Department of Dermatology, Peking University Third Hospital, Beijing, China
| | - Jing Cui
- Beijing Anzhen Hospital, Capital Medical University; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing, China
| | - Lihua Zhang
- Department of Pathology, Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Guanyu Wang
- Department of Dermatology, Peking University Third Hospital, Beijing, China
- Tianjin Union Medical Center, Tianjin, China
| | - Chuan Ma
- Department of Dermatology, Peking University Third Hospital, Beijing, China.
| | - Chunlei Zhang
- Department of Dermatology, Peking University Third Hospital, Beijing, China.
| | - Yimeng Wang
- Department of Dermatology, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
3
|
Jung JM, Won CH, Chang SE, Lee MW, Lee WJ. Spatially Resolved Single-Cell Transcriptome Analysis of Mycosis Fungoides Reveals Distinct Biomarkers GNLY and FYB1 Compared With Psoriasis and Chronic Spongiotic Dermatitis. Mod Pathol 2025; 38:100681. [PMID: 39675427 DOI: 10.1016/j.modpat.2024.100681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024]
Abstract
Early mycosis fungoides (MF) and inflammatory dermatoses including psoriasis and chronic spongiotic dermatitis are often difficult to differentiate. We explored diagnostic markers differentiating MF from psoriasis and chronic spongiotic dermatitis via spatially resolved single-cell transcriptome analysis. Single-cell transcriptomics of intraepidermal T cells of MF patches, psoriasis, and chronic spongiotic dermatitis were analyzed using CosMx spatial molecular imager utilizing surface markers, including CD3 and CD4. An immunohistochemical study with potential markers was performed to verify clinical utility. Compared with psoriasis and chronic spongiotic dermatitis, 41 upregulated differentially expressed genes (DEGs) in MF were associated with the T-cell receptor (TCR) signaling pathway and apoptosis regulation. Protein-protein interaction network analysis of these DEGs revealed a main cluster associated with TCR signaling. Pathway enrichment analysis showed that apoptosis, Th17 cell differentiation, and TCR signaling pathways were enriched in MF. GNLY and FYB1, DEGs with the highest fold-change values, were selected as potential diagnostic biomarkers for MF. For immunohistochemistry, biopsy specimens from 150 patients diagnosed with patch MF with CD4+ immunophenotype (n = 56), psoriasis (n = 48), and chronic eczema (n = 46) were included. The sensitivity and specificity of granulysin (GNLY) for distinguishing MF and psoriasis/chronic spongiotic dermatitis were 67.9% and 93.6%, respectively. For FYN-binding protein 1 (FYB1), those values were 73.2% and 69.2%, respectively. The area under the receiver operating characteristic curve values of GNLY and FYB1 were 0.86 and 0.79, respectively. In conclusion, granulysin and FYB1 can be promising diagnostic biomarkers for differentiating early-stage MF from psoriasis and chronic spongiotic dermatitis.
Collapse
Affiliation(s)
- Joon Min Jung
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chong Hyun Won
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sung Eun Chang
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Mi Woo Lee
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Woo Jin Lee
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Gniadecki R, Guenova E, Querfeld C, Nicolay JP, Scarisbrick J, Sokol L. Haematogenous seeding in mycosis fungoides and Sézary syndrome: current evidence and clinical implications. Br J Dermatol 2025; 192:381-389. [PMID: 39545505 DOI: 10.1093/bjd/ljae441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/10/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Cutaneous T-cell lymphomas (CTCLs) are a heterogeneous group of diseases characterized by abnormal neoplastic T-cell growth in the skin. Mycosis fungoides (MF), the most common CTCL, manifests as erythematous skin patches and/or plaques, tumours or erythroderma. The disease may involve blood, lymph nodes and rarely viscera. Sézary syndrome (SS) is a unique leukaemia/lymphoma syndrome related to MF, which presents with blood and skin involvement at diagnosis. The pathogenesis of MF/SS is not fully elucidated. The presence of skin lesions at distant sites underpins a hypothesis that MF/SS lesions may develop through haematogenous seeding. Phenotypic similarities between malignant and normal T cells led to the notion that disease-initiating mutations occur in specific subtypes of mature T cells, which are responsible for most CTCLs. However, this mature T-cell precursor model is not always consistent with clinical observations and research on MF/SS pathogenesis. Here, we review evidence supporting an alternative model of pathogenesis for MF/SS involving haematogenous seeding as a key process responsible for the initiation and progression of the disease. According to this hypothesis, malignant transformation occurs at an early stage of T-cell development (probably in bone marrow or thymus), yielding circulating neoplastic T cells which colonize the skin where the microenvironment is most permissive for proliferation and evolution. These mutated precursor cells seed the skin where they find a suitable niche to develop into clinically perceptible disease. Subsequently, malignant T cells can re-enter the bloodstream, re-seed pre-existing lesions and seed new areas of the skin, causing synchronous and convergent changes in the transcriptomic profile of lesions and tumours, and clinical disease progression - 'consecutive haematogenous seeding' captures this temporal phenomenon. This model radically changes the current understanding of CTCL pathogenesis, transforming it from a primarily cutaneous disease with secondary involvement of blood, to a systemic disease, where the spread of malignant cells through the blood to the skin is not a phenomenon of advanced disease but is an essential component of pathogenesis. This understanding of MF/SS could have several clinical implications, including standardizing our approach to assessing blood tumour burden, potential advances in prognosis and monitoring, and investigating combination treatments to improve patient outcomes.
Collapse
Affiliation(s)
- Robert Gniadecki
- Division of Dermatology, University of Alberta, Edmonton, AB, Canada
| | - Emmanuella Guenova
- Department of Dermatology, Lausanne University Hospital and Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- University Institute and Clinic for Immunodermatology, Medical Faculty, Johannes Kepler University Linz, Linz, Austria
| | - Christiane Querfeld
- Department of Pathology and Division of Dermatology, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Jan P Nicolay
- University Medical Center Mannheim/Ruprecht Karls University of Heidelberg, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center, Heidelberg, Germany
| | | | | |
Collapse
|
5
|
Pan Z, Chen J, Xu T, Cai A, Han B, Li Y, Fang Z, Yu D, Wang S, Zhou J, Gong Y, Che Y, Zou X, Cheng L, Tan Z, Ge M, Huang P. VSIG4 + tumor-associated macrophages mediate neutrophil infiltration and impair antigen-specific immunity in aggressive cancers through epigenetic regulation of SPP1. J Exp Clin Cancer Res 2025; 44:45. [PMID: 39920772 PMCID: PMC11803937 DOI: 10.1186/s13046-025-03303-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/23/2025] [Indexed: 02/09/2025] Open
Abstract
V-set and immunoglobulin domain-containing 4 (VSIG4) positive tumor-associated macrophage (VSIG4+ TAM) is an immunosuppressive subpopulation newly identified in aggressive cancers. However, the mechanism how VSIG4+ TAMs mediate immune evasion in aggressive cancers have not been fully elucidated. In our study, we found targeting VSIG4+ TAMs by VSIG4 deficiency or blockade remarkably limited tumor growth and metastasis, especially those derived from anaplastic thyroid cancer (ATC) and pancreatic cancer, two extremely aggressive types. Moreover, the combination of VSIG4 blockade with a BRAF inhibitor synergistically enhanced anti-tumor activity in ATC-tumor bearing mice. VSIG4 deficiency recovered the antigen presentation (B2m, H2-k1, H2-d1) of TAMs and activated antigen-specific CD8+ T cells by promoting their in vivo proliferation and intratumoral infiltration. Notably, loss of VSIG4 in TAMs significantly reduced the production of lactate and histone H3 lysine 18 lactylation, resulting the decreased transcription of SPP1 mediated by STAT3, which collectively disrupted the cell-cell interactions between TAMs and neutrophils. Further combination of VSIG4 with SPP1 blockade synergistically boosted anti-tumor activity. Overall, our studies demonstrate the epigenetic regulation function of VSIG4 confers on TAMs an alternative pattern, beyond the checkpoint role of VSIG4, to shape the immunosuppressive tumor microenvironment and impair antigen-specific immunity against aggressive cancers.
Collapse
Affiliation(s)
- Zongfu Pan
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
- Zhejiang Provincial Clinical Research Center for Head & Neck Cancer, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
| | - Jinming Chen
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Tong Xu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
- Zhejiang Provincial Clinical Research Center for Head & Neck Cancer, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
| | - Anqi Cai
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Bing Han
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Ying Li
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Ziwen Fang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Dingyi Yu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
- Zhejiang Provincial Clinical Research Center for Head & Neck Cancer, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
| | - Shanshan Wang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Junyu Zhou
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Yingying Gong
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Yulu Che
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Xiaozhou Zou
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
- Zhejiang Provincial Clinical Research Center for Head & Neck Cancer, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
| | - Lei Cheng
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Zhuo Tan
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
- Zhejiang Provincial Clinical Research Center for Head & Neck Cancer, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
| | - Minghua Ge
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China.
- Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China.
- Zhejiang Provincial Clinical Research Center for Head & Neck Cancer, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China.
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China.
- Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China.
- Zhejiang Provincial Clinical Research Center for Head & Neck Cancer, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China.
| |
Collapse
|
6
|
Zhao Y, Li Y, Wang P, Zhu M, Wang J, Xie B, Tang C, Ma Y, Wang S, Jin S, Xu J, Li Z, Zhang X, Li L, Song X, Wang P. The cancer-associated fibroblasts interact with malignant T cells in mycosis fungoides and promote the disease progression. Front Immunol 2025; 15:1474564. [PMID: 39963655 PMCID: PMC11830738 DOI: 10.3389/fimmu.2024.1474564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/31/2024] [Indexed: 02/20/2025] Open
Abstract
Background Cutaneous T-cell lymphoma (CTCL) is a heterogeneous group of T-cell lymphomas characterized with the presence of clonal malignant T cells. Mycosis fungoides (MF) is the most common type of CTCL. However, the pathogenesis of MF and the role of the tumor microenvironment (TME) remain unclear. Methods We performed single-cell RNA sequencing on tumor and adjacent normal tissues and peripheral blood mononuclear cell (PBMC) from patients with advanced MF and healthy control (HC). We compared skin lesions in different stages within the same patient to overcome inter-individual variability. Results The malignant clones displayed dual phenotypes characterized with tissue-resident memory T cells (TRMs) and central memory T cells (TCMs). We supposed that the tumor cells transformed from TRM-dominant phenotype to TCM-dominant phenotype during MF progressed from early-stage to advanced-stage. The cancer-associated fibroblasts (CAFs) showed active role in TME. The occurrence of inflammatory CAFs (iCAFs) may represent the advanced-stage MF. There may be mutual positive feedback of the crosstalk between tumor cells and CAFs during the MF development. Tumor cells promote CAF generation, and the CAFs, in turn, improve the invasiveness and metastasis of the malignant T cells through the IL-6/JAK2/STAT3/SOX4 or IL-6/HIF-1α/SOX4 pathway. SOX4 may be a critical regulatory gene of this positive feedback loop. Target SOX4 may disrupt the interactions between tumor cells and CAFs. Conclusion Our study revealed the origin and evolution trajectory of MF and uncovered the intercellular interactions between malignant T cells and CAFs, providing new insights into the novel treatment targets of MF.
Collapse
Affiliation(s)
- Yige Zhao
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Yong Li
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- Research Center, Shanghai Yeslab Biotechnology, Shanghai, China
| | - Panpan Wang
- Department of Dermatology, Shaoxing People's Hospital, Shaoxing, China
| | - Mengyan Zhu
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiaqi Wang
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Xie
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Chenyu Tang
- Department of Dermatology, Hangzhou Third People's Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yangyang Ma
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Shiwen Wang
- Department of Dermatology, Hangzhou Third People's Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Sha Jin
- Department of Dermatology, Hangzhou Third People's Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinhui Xu
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhao Li
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoyan Zhang
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Liuyu Li
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiuzu Song
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Ping Wang
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
7
|
Willscher E, Schultheiß C, Paschold L, Lea Schümann F, Schmidt-Barbo P, Thiele B, Bauer M, Wickenhauser C, Weber T, Binder M. T-cell receptor architecture and clonal tiding provide insight into the transformation trajectory of peripheral T-cell lymphomas. Haematologica 2025; 110:457-469. [PMID: 39219501 PMCID: PMC11788643 DOI: 10.3324/haematol.2024.285395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
While T-cell lymphomas are classified as mature neoplasms, emerging evidence indicates that malignant transformation may occur at an earlier stage of T-cell maturation. In this study, we determined clonal architecture in a broad range of T-cell lymphomas. Our multidimensional profiling indicates that many of these lymphomas do in fact emerge from an immature lymphoid T-cell precursor at a maturation stage prior to V(D)J rearrangement that undergoes branching evolution. Consequently, at single-cell resolution we observed considerable clonal tiding under selective therapeutic pressure. T-cell receptor next-generation sequencing suggested a highly biased usage of TRBV20-1 gene segments as part of multiple antigen receptor rearrangements per patient. The predominance of TRBV20-1 was found across all major T-cell lymphoma subtypes analyzed. This suggested that this particular V gene - independently of complementarity-determining region 3 configuration - may represent a driver of malignant transformation. Together, our data indicate that T-cell lymphomas are derived from immature lymphoid precursors and display considerable intratumoral heterogeneity that may provide the basis for relapse and resistance in these hard-to-treat cancers.
Collapse
MESH Headings
- Humans
- Lymphoma, T-Cell, Peripheral/genetics
- Lymphoma, T-Cell, Peripheral/pathology
- Lymphoma, T-Cell, Peripheral/metabolism
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Cell Transformation, Neoplastic/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Clonal Evolution
- High-Throughput Nucleotide Sequencing
Collapse
Affiliation(s)
- Edith Willscher
- Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle
| | - Christoph Schultheiß
- Department of Biomedicine, Translational Immuno-Oncology, University of Basel, Basel, Switzerland; Division of Medical Oncology, University Hospital Basel, Basel
| | - Lisa Paschold
- Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle
| | - Franziska Lea Schümann
- Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle
| | - Paul Schmidt-Barbo
- Department of Biomedicine, Translational Immuno-Oncology, University of Basel, Basel
| | - Benjamin Thiele
- Department of Biomedicine, Translational Immuno-Oncology, University of Basel, Basel, Switzerland; Division of Medical Oncology, University Hospital Basel, Basel
| | - Marcus Bauer
- Department of Pathology, Martin-Luther-University Halle-Wittenberg, Halle
| | | | - Thomas Weber
- Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle
| | - Mascha Binder
- Department of Biomedicine, Translational Immuno-Oncology, University of Basel, Basel, Switzerland; Division of Medical Oncology, University Hospital Basel, Basel.
| |
Collapse
|
8
|
Thiele B, Schmidt-Barbo P, Schultheiss C, Willscher E, Weber T, Binder M. Oligoclonality of TRBC1 and TRBC2 in T cell lymphomas as mechanism of primary resistance to TRBC-directed CAR T cell therapies. Nat Commun 2025; 16:1104. [PMID: 39881151 PMCID: PMC11779876 DOI: 10.1038/s41467-025-56395-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 01/15/2025] [Indexed: 01/31/2025] Open
Affiliation(s)
- Benjamin Thiele
- Department of Biomedicine, Translational Immuno-Oncology, University and University Hospital Basel, Basel, Switzerland
- Division of Medical Oncology, University Hospital Basel, Basel, Switzerland
| | - Paul Schmidt-Barbo
- Department of Biomedicine, Translational Immuno-Oncology, University and University Hospital Basel, Basel, Switzerland
- Collaborative Research Institute Intelligent Oncology (CRIION), Freiburg, Germany
| | - Christoph Schultheiss
- Department of Biomedicine, Translational Immuno-Oncology, University and University Hospital Basel, Basel, Switzerland
| | - Edith Willscher
- Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Thomas Weber
- Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Mascha Binder
- Department of Biomedicine, Translational Immuno-Oncology, University and University Hospital Basel, Basel, Switzerland.
- Division of Medical Oncology, University Hospital Basel, Basel, Switzerland.
- Collaborative Research Institute Intelligent Oncology (CRIION), Freiburg, Germany.
| |
Collapse
|
9
|
Ferrari M, Parekh F, Maciocia P, Horna P, Thomas S, Sewell AK, Pule M. Reply to: Oligoclonality of TRBC1 and TRBC2 in T cell lymphomas as mechanism of primary resistance to TRBC-directed CAR T cell therapies. Nat Commun 2025; 16:1103. [PMID: 39880830 PMCID: PMC11779960 DOI: 10.1038/s41467-025-56396-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/15/2025] [Indexed: 01/31/2025] Open
Affiliation(s)
| | | | - Paul Maciocia
- Research Department of Haematology, University College London, London, UK
| | - Pedro Horna
- Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Simon Thomas
- Research Division, Autolus Therapeutics, London, UK
| | - Andrew K Sewell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Martin Pule
- Research Division, Autolus Therapeutics, London, UK.
- Research Department of Haematology, University College London, London, UK.
| |
Collapse
|
10
|
Chennareddy S, Rindler K, Ruggiero JR, Alkon N, Cohenour E, Tran S, Weninger W, Griss J, Jonak C, Brunner PM. Single-cell RNA sequencing comparison of CD4+, CD8+ and T-cell receptor γδ+ cutaneous T-cell lymphomas reveals subset-specific molecular phenotypes. Br J Dermatol 2025; 192:269-282. [PMID: 39133553 PMCID: PMC11758594 DOI: 10.1093/bjd/ljae313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Malignant clones of primary cutaneous T-cell lymphomas (CTCL) can show a CD4+, CD8+ or T-cell receptor (TCR)-γδ+ phenotype, but their individual impact on tumour biology and skin lesion formation remains ill defined. OBJECTIVES To perform a comprehensive molecular characterization of CD4+ vs. CD8+ and TCR-γδ+ CTCL lesions. METHODS We performed single-cell RNA sequencing (scRNAseq) of 18 CTCL skin biopsies to compare classic CD4+ advanced-stage mycosis fungoides (MF) with TCR-γ/δ+ MF and primary cutaneous CD8+ aggressive epidermotropic cytotoxic T-cell lymphoma (Berti lymphoma). RESULTS Malignant clones of TCR-γ/δ+ MF and Bertilymphoma showed similar clustering patterns distinct from CD4+ MF, along with increased expression of cytotoxic markers such as NKG7, CTSW, GZMA and GZMM. Only advanced-stage CD4+ MF clones expressed central memory T-cell markers (SELL, CCR7, LEF1), alongside B1/B2 blood involvement, whereas TCR-γδ+ MF and Berti lymphoma harboured a more tissue-resident phenotype (CD69, CXCR4, NR4A1) without detectable cells in the blood. CD4+ MF and TCR-γδ+ MF skin lesions harboured strong type 2 immune activation across myeloid cells, while Berti lymphoma was more skewed toward type 1 immune responses. Both CD4+ MF and TCR-γδ+ MF lesions showed upregulation of keratinocyte hyperactivation markers such as S100A genes and KRT16. This increase was entirely absent in Berti lymphoma, possibly reflecting an aberrant keratinocyte response to invading tumour cells, which could contribute to the formation of the typical ulceronecrotic lesions within this entity. CONCLUSIONS Our scRNAseq profiling study reveals specific molecular patterns associated with distinct CTCL subtypes.
Collapse
MESH Headings
- Humans
- Skin Neoplasms/genetics
- Skin Neoplasms/pathology
- Skin Neoplasms/immunology
- Lymphoma, T-Cell, Cutaneous/genetics
- Lymphoma, T-Cell, Cutaneous/pathology
- Lymphoma, T-Cell, Cutaneous/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Male
- Single-Cell Analysis
- Female
- CD4-Positive T-Lymphocytes/immunology
- Middle Aged
- Phenotype
- CD8-Positive T-Lymphocytes/immunology
- Aged
- Skin/pathology
- Skin/immunology
- Adult
- Sequence Analysis, RNA
- Mycosis Fungoides/genetics
- Mycosis Fungoides/pathology
- Mycosis Fungoides/immunology
Collapse
Affiliation(s)
- Sumanth Chennareddy
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Katharina Rindler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - John R Ruggiero
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Natalia Alkon
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Emry R Cohenour
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sophia Tran
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wolfgang Weninger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Johannes Griss
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Constanze Jonak
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Patrick M Brunner
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
11
|
Kwang AC, Duran GE, Fernandez-Pol S, Najidh S, Li S, Bastidas Torres AN, Wang EB, Herrera M, Bandali TI, Kurtz DM, Kim YH, Khodadoust MS. Genetic alteration of class I HLA in cutaneous T-cell lymphoma. Blood 2025; 145:311-324. [PMID: 39388712 PMCID: PMC11775508 DOI: 10.1182/blood.2024024817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
ABSTRACT Abnormalities involving class I HLA are frequent in many lymphoma subtypes but have not yet been extensively studied in cutaneous T-cell lymphomas (CTCLs). We characterized the occurrence of class I HLA abnormalities in 65 patients with advanced mycosis fungoides or Sézary syndrome. Targeted DNA sequencing, including coverage of HLA loci, revealed at least 1 HLA abnormality in 26 of 65 patients (40%). Twelve unique somatic HLA mutations were identified across 9 patients, and loss of heterozygosity or biallelic loss of HLA was found to affect 24 patients. Although specific HLA alleles were commonly disrupted, these events did not associate with a decrease in the total class I HLA expression. Genetic events preferentially disrupted HLA alleles capable of presenting greater numbers of putative neoantigens. HLA abnormalities co-occurred with other genetic immune evasion events and were associated with worse progression-free survival. Single-cell analyses demonstrated that HLA abnormalities were frequently subclonal. Through analysis of serial samples, we observed that disrupting class I HLA events change dynamically over the disease course. The dynamics of HLA disruption are highlighted in a patient who received pembrolizumab and in whom resistance to pembrolizumab was associated with the elimination of an HLA mutation. Overall, our findings show that genomic class I HLA abnormalities are common in advanced CTCL and may be an important consideration in understanding the effects of immunotherapy in CTCL.
Collapse
Affiliation(s)
- Alexa C. Kwang
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - George E. Duran
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA
| | | | - Safa Najidh
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Shufeng Li
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA
| | | | - Erica B. Wang
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA
| | - Melba Herrera
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA
| | - Tarek I. Bandali
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA
| | - David M. Kurtz
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Youn H. Kim
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA
| | - Michael S. Khodadoust
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
12
|
Johansson A, Kalliara E, Belfrage E, Alling T, Pyl PT, Gerdtsson AS, Gullberg U, Porwit A, Drott K, Ek S. The Progression of Mycosis Fungoides During Treatment with Mogamulizumab: A BIO-MUSE Case Study of the Tumor and Immune Response in Peripheral Blood and Tissue. Biomedicines 2025; 13:186. [PMID: 39857770 PMCID: PMC11761615 DOI: 10.3390/biomedicines13010186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/18/2024] [Accepted: 12/21/2024] [Indexed: 01/27/2025] Open
Abstract
Background/objectives: Mycosis fungoides (MF) is a rare malignancy, with an indolent course in the early stages of the disease. However, due to major molecular and clinical heterogeneity, patients at an advanced stage of the disease have variable responses to treatment and considerably reduced life expectancy. Today, there is a lack of specific markers for the progression from early to advanced stages of the disease. To address these challenges, the non-interventional BIO-MUSE trial was initiated. Here, we report on a case study involving one patient, where combined omics analysis of tissue and blood was used to reveal the unique molecular features associated with the progression of the disease. Methods: We applied 10× genomics-based single-cell RNA sequencing to CD3+ peripheral T-cells, combined with T-cell receptor sequencing, to samples collected at multiple timepoints during the progression of the disease. In addition, GeoMx-based digital spatial profiling of T-helper (CD3+/CD8-), T-cytotoxic (CD3+/CD8+), and CD163+ cells was performed on skin biopsies. Results. The results pinpoint targets, such as transforming growth factor β1, as some of the mechanisms underlying disease progression, which may have the potential to improve patient prognostication and the development of precision medicine efforts. Conclusions: We propose that in patients with MF, the evolution of the malignant clone and the associated immune response need to be studied jointly to define relevant strategies for intervention.
Collapse
Affiliation(s)
- Angelica Johansson
- Department of Immunotechnology, Faculty of Engineering (LTH), Lund University, 223 63 Lund, Sweden
| | - Eirini Kalliara
- Department of Immunotechnology, Faculty of Engineering (LTH), Lund University, 223 63 Lund, Sweden
| | - Emma Belfrage
- Department of Dermatology and Venereology, Skane University Hospital (SUS), 205 02 Lund, Sweden
| | - Teodor Alling
- Department of Immunotechnology, Faculty of Engineering (LTH), Lund University, 223 63 Lund, Sweden
| | - Paul Theodor Pyl
- Department of Laboratory Medicine, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Lund University, 221 00 Lund, Sweden
| | - Anna Sandström Gerdtsson
- Department of Immunotechnology, Faculty of Engineering (LTH), Lund University, 223 63 Lund, Sweden
| | - Urban Gullberg
- Department of Laboratory Medicine, Lund University, 221 00 Lund, Sweden
| | - Anna Porwit
- Division of Pathology, Department of Clinical Sciences, 221 00 Lund, Sweden
| | - Kristina Drott
- Division of Medical Oncology, Department of Clinical Sciences, 221 00 Lund, Sweden
| | - Sara Ek
- Department of Immunotechnology, Faculty of Engineering (LTH), Lund University, 223 63 Lund, Sweden
| |
Collapse
|
13
|
St. Thomas N, Christopher BN, Reyes L, Robinson RM, Golick L, Zhu X, Chapman E, Dolloff NG. Pharmacological Modulation of the Unfolded Protein Response as a Therapeutic Approach in Cutaneous T-Cell Lymphoma. Biomolecules 2025; 15:76. [PMID: 39858470 PMCID: PMC11763779 DOI: 10.3390/biom15010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) is a rare T-cell malignancy characterized by inflamed and painful rash-like skin lesions that may affect large portions of the body's surface. Patients experience recurrent infections due to a compromised skin barrier and generalized immunodeficiency resulting from a dominant Th2 immune phenotype of CTCL cells. Given the role of the unfolded protein response (UPR) in normal and malignant T-cell development, we investigated the impact of UPR-inducing drugs on the viability, transcriptional networks, and Th2 phenotype of CTCL. We found that CTCL cells were >5-fold more sensitive to the proteasome inhibitor bortezomib (Btz) and exhibited a distinct signaling and transcriptional response compared to normal CD4+ cells. The CTCL response was dominated by the induction of the HSP70 family member HSPA6 (HSP70B') and, to a lesser extent, HSPA5 (BiP/GRP78). To understand the significance of these two factors, we used a novel isoform selective small-molecule inhibitor of HSPA5/6 (JG-023). JG-023 induced pro-apoptotic UPR signaling and enhanced the cytotoxic effects of proteasome inhibitors and other UPR-inducing drugs in CTCL but not normal T cells. Interestingly, JG-023 also selectively suppressed the production of Th2 cytokines in CTCL and normal CD4+ T cells. Conditioned media (CM) from CTCL were immunosuppressive to normal T cells through an IL-10-dependent mechanism. This immunosuppression could be reversed by JG-023, other HSP70 inhibitors, Btz, and combinations of these UPR-targeted drugs. Our study points to the importance of the UPR in the pathology of CTCL and demonstrates the potential of proteasome and targeted HSPA5/6 inhibitors for therapy.
Collapse
Affiliation(s)
- Nadia St. Thomas
- Department of Pharmacology and Immunology, Medical University of South Carolina, 173 Ashley Ave., MSC509, Charleston, SC 29425, USA; (N.S.T.); (B.N.C.); (L.R.); (R.M.R.); (L.G.)
| | - Benjamin N. Christopher
- Department of Pharmacology and Immunology, Medical University of South Carolina, 173 Ashley Ave., MSC509, Charleston, SC 29425, USA; (N.S.T.); (B.N.C.); (L.R.); (R.M.R.); (L.G.)
| | - Leticia Reyes
- Department of Pharmacology and Immunology, Medical University of South Carolina, 173 Ashley Ave., MSC509, Charleston, SC 29425, USA; (N.S.T.); (B.N.C.); (L.R.); (R.M.R.); (L.G.)
| | - Reeder M. Robinson
- Department of Pharmacology and Immunology, Medical University of South Carolina, 173 Ashley Ave., MSC509, Charleston, SC 29425, USA; (N.S.T.); (B.N.C.); (L.R.); (R.M.R.); (L.G.)
| | - Lena Golick
- Department of Pharmacology and Immunology, Medical University of South Carolina, 173 Ashley Ave., MSC509, Charleston, SC 29425, USA; (N.S.T.); (B.N.C.); (L.R.); (R.M.R.); (L.G.)
| | - Xiaoyi Zhu
- Department of Pharmacology and Therapeutics, Center for Inflammation Science and Systems Medicine, University of Florida Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL 33458, USA; (X.Z.); (E.C.)
| | - Eli Chapman
- Department of Pharmacology and Therapeutics, Center for Inflammation Science and Systems Medicine, University of Florida Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL 33458, USA; (X.Z.); (E.C.)
| | - Nathan G. Dolloff
- Department of Pharmacology and Immunology, Medical University of South Carolina, 173 Ashley Ave., MSC509, Charleston, SC 29425, USA; (N.S.T.); (B.N.C.); (L.R.); (R.M.R.); (L.G.)
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
- Zucker Institute for Innovation Commercialization, Charleston, SC 29425, USA
| |
Collapse
|
14
|
Li X, Li N, Liu Y, An L. Unraveling the complexity of follicular lymphoma: insights and innovations. Am J Cancer Res 2024; 14:5573-5597. [PMID: 39803651 PMCID: PMC11711519 DOI: 10.62347/mfug2190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/28/2024] [Indexed: 01/16/2025] Open
Abstract
This review discusses multiple aspects of follicular lymphoma (FL), including etiology, treatment challenges, and future perspectives. First, we delve into the etiology of FL, which involves a variety of pathogenic mechanisms such as gene mutations, chromosomal abnormalities, immune escape, immune system dysregulation, familial inheritance, and environmental factors. These mechanisms provide the context for understanding the diversity and complexity of FL. Second, we discuss the challenges faced when treating FL, particularly treatment resistance. Therapeutic resistance is a common problem in treatment, but by delving into the mechanisms of resistance, scientists have looked for strategies to combat it, including developing new drugs, improving treatments, and exploring combination therapy strategies. We also emphasize the breakthroughs in molecular biology, especially the study of targeting the BCL2 gene, which provides a new direction for targeted therapy in FL. Immunotherapy, small molecule targeted drugs, and individualized treatment strategies are also promising for the future treatment of FL. Finally, we look to the future, including research on therapeutic resistance, in-depth studies of genetics and gene expression, applications of gene editing and precision medicine, and clinical trials of new treatments. These lines of research offer additional opportunities for treating FL, and despite the challenges, the future is promising. This literature review provides comprehensive and integrated information for the in-depth understanding of FL and relevant treatment approaches.
Collapse
Affiliation(s)
- Xijing Li
- Department of Pathology, Yantaishan HospitalYantai 264003, Shandong, China
| | - Nannan Li
- Department of Hematology, Yantai Yuhuangding HospitalYantai 264001, Shandong, China
| | - Yinghui Liu
- Department of Hematology, Yantai Yuhuangding HospitalYantai 264001, Shandong, China
| | - Licai An
- Department of Hematology, Yantai Yuhuangding HospitalYantai 264001, Shandong, China
| |
Collapse
|
15
|
Liu SH, Zhang J, Zuo YG. Macrophages in inflammatory skin diseases and skin tumors. Front Immunol 2024; 15:1430825. [PMID: 39703508 PMCID: PMC11656021 DOI: 10.3389/fimmu.2024.1430825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 11/18/2024] [Indexed: 12/21/2024] Open
Abstract
Macrophages, as specialized, long-lasting phagocytic cells of the innate immune system, have garnered increasing attention due to their wide distribution and various functions. The skin, being the largest immune organ in the human body, presents an intriguing landscape for macrophage research, particularly regarding their roles in inflammatory skin diseases and skin tumors. In this review, we compile the latest research on macrophages in conditions such as atopic dermatitis, psoriasis, systemic sclerosis, systemic lupus erythematosus, rosacea, bullous pemphigoid, melanoma and cutaneous T-cell lymphoma. We aim to contribute to illustrating the pathogenesis and potential new therapies for inflammatory skin diseases and skin tumors from the perspective of macrophages.
Collapse
Affiliation(s)
| | | | - Ya-Gang Zuo
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, National Clinical Research Center for Dermatologic and Immunologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
16
|
Luo CH, Hu LH, Liu JY, Xia L, Zhou L, Sun RH, Lin CC, Qiu X, Jiang B, Yang MY, Zhang XH, Yang XB, Chen GQ, Lu Y. CDK9 recruits HUWE1 to degrade RARα and offers therapeutic opportunities for cutaneous T-cell lymphoma. Nat Commun 2024; 15:10594. [PMID: 39632829 PMCID: PMC11618697 DOI: 10.1038/s41467-024-54354-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) is a heterogeneous non-Hodgkin lymphoma originating in the skin and invading the systemic hematopoietic system. Current treatments, including chemotherapy and monoclonal antibodies yielded limited responses with high incidence of side effects, highlighting the need for targeted therapy. Screening with small inhibitors library, herein we identify cyclin dependent kinase 9 (CDK9) as a driver of CTCL growth. Single-cell RNA-seq analysis reveals a CDK9high malignant T cell cluster with a unique actively proliferating feature. Inhibition, depletion or proteolysis targeting chimera (PROTAC)-mediated degradation of CDK9 significantly reduces CTCL cell growth in vitro and in murine models. CDK9 also promotes degradation of retinoic acid receptor α (RARα) via recruiting the E3 ligase HUWE1. Co-administration of CDK9-PROTAC (GT-02897) with all-trans retinoic acid (ATRA) leads to synergistic attenuation of tumor growth in vitro and in xenograft models, providing a potential translational treatment for complete eradication of CTCL.
Collapse
MESH Headings
- Humans
- Animals
- Cyclin-Dependent Kinase 9/metabolism
- Cyclin-Dependent Kinase 9/antagonists & inhibitors
- Lymphoma, T-Cell, Cutaneous/metabolism
- Lymphoma, T-Cell, Cutaneous/drug therapy
- Lymphoma, T-Cell, Cutaneous/pathology
- Lymphoma, T-Cell, Cutaneous/genetics
- Mice
- Ubiquitin-Protein Ligases/metabolism
- Ubiquitin-Protein Ligases/genetics
- Cell Line, Tumor
- Tumor Suppressor Proteins/metabolism
- Tumor Suppressor Proteins/genetics
- Retinoic Acid Receptor alpha/metabolism
- Retinoic Acid Receptor alpha/genetics
- Tretinoin/metabolism
- Tretinoin/pharmacology
- Xenograft Model Antitumor Assays
- Cell Proliferation/drug effects
- Skin Neoplasms/drug therapy
- Skin Neoplasms/metabolism
- Skin Neoplasms/pathology
- Skin Neoplasms/genetics
- Proteolysis/drug effects
- Female
- Mice, Inbred NOD
Collapse
Affiliation(s)
- Chen-Hui Luo
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Hong Hu
- Institute of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie-Yang Liu
- Institute of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Xia
- Department of Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Zhou
- Department of Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ren-Hong Sun
- Gluetacs Therapeutics (Shanghai) Co., Ltd., Shanghai, China
| | - Chen-Cen Lin
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Xing Qiu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Meng-Ying Yang
- Institute of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Xue-Hong Zhang
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.
| | - Xiao-Bao Yang
- Gluetacs Therapeutics (Shanghai) Co., Ltd., Shanghai, China.
| | - Guo-Qiang Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Systems Medicine for Cancer, Research Units of Stress and Tumor (2019RU043), Chinese Academy of Medical Sciences, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- School of Basic Medicine and Life Science, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, China.
| | - Ying Lu
- Institute of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
17
|
B cells infiltrate cutaneous T cell lymphomas. Nat Immunol 2024; 25:2180-2181. [PMID: 39562743 DOI: 10.1038/s41590-024-02022-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
|
18
|
Li R, Strobl J, Poyner EFM, Balbaa A, Torabi F, Mazin PV, Chipampe NJ, Stephenson E, Ramírez-Suástegi C, Shanmugiah VBM, Gardner L, Olabi B, Coulthard R, Botting RA, Zila N, Prigmore E, Gopee NH, Chroscik MA, Kritikaki E, Engelbert J, Goh I, Chan HM, Johnson HF, Ellis J, Rowe V, Tun W, Reynolds G, Yang D, Foster AR, Gambardella L, Winheim E, Admane C, Rumney B, Steele L, Jardine L, Nenonen J, Pickard K, Lumley J, Hampton P, Hu S, Liu F, Liu X, Horsfall D, Basurto-Lozada D, Grimble L, Bacon CM, Weatherhead SC, Brauner H, Wang Y, Bai F, Reynolds NJ, Allen JE, Jonak C, Brunner PM, Teichmann SA, Haniffa M. Cutaneous T cell lymphoma atlas reveals malignant T H2 cells supported by a B cell-rich tumor microenvironment. Nat Immunol 2024; 25:2320-2330. [PMID: 39558094 PMCID: PMC11588665 DOI: 10.1038/s41590-024-02018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 10/11/2024] [Indexed: 11/20/2024]
Abstract
Cutaneous T cell lymphoma (CTCL) is a potentially fatal clonal malignancy of T cells primarily affecting the skin. The most common form of CTCL, mycosis fungoides, can be difficult to diagnose, resulting in treatment delay. We performed single-cell and spatial transcriptomics analysis of skin from patients with mycosis fungoides-type CTCL and an integrated comparative analysis with human skin cell atlas datasets from healthy and inflamed skin. We revealed the co-optation of T helper 2 (TH2) cell-immune gene programs by malignant CTCL cells and modeling of the tumor microenvironment to support their survival. We identified MHC-II+ fibroblasts and dendritic cells that can maintain TH2 cell-like tumor cells. CTCL tumor cells are spatially associated with B cells, forming tertiary lymphoid structure-like aggregates. Finally, we validated the enrichment of B cells in CTCL and its association with disease progression across three independent patient cohorts. Our findings provide diagnostic aids, potential biomarkers for disease staging and therapeutic strategies for CTCL.
Collapse
Affiliation(s)
- Ruoyan Li
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| | - Johanna Strobl
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Elizabeth F M Poyner
- Biosciences Institute, Newcastle University, Newcastle, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle, Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Aya Balbaa
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Pavel V Mazin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Emily Stephenson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Biosciences Institute, Newcastle University, Newcastle, UK
| | | | | | - Louis Gardner
- Biosciences Institute, Newcastle University, Newcastle, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle, Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Bayanne Olabi
- Biosciences Institute, Newcastle University, Newcastle, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle, Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Rowen Coulthard
- NovoPath, Department of Cellular Pathology, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Rachel A Botting
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Nina Zila
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- Section Biomedical Science, University of Applied Sciences FH Campus Wien, Vienna, Austria
| | - Elena Prigmore
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Nusayhah H Gopee
- Biosciences Institute, Newcastle University, Newcastle, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle, Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Marta A Chroscik
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Efpraxia Kritikaki
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Justin Engelbert
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Issac Goh
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Hon Man Chan
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Jasmine Ellis
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Victoria Rowe
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Win Tun
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Gary Reynolds
- Biosciences Institute, Newcastle University, Newcastle, UK
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Dexin Yang
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | | | | | - Elena Winheim
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Chloe Admane
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Benjamin Rumney
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Lloyd Steele
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Laura Jardine
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Julia Nenonen
- Division of Dermatology, Department of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Keir Pickard
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Jennifer Lumley
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Philip Hampton
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle, Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Simeng Hu
- Biomedical Pioneering Innovation Center and School of Life Sciences, Peking University, Beijing, China
| | - Fengjie Liu
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
| | - Xiangjun Liu
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
| | - David Horsfall
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Daniela Basurto-Lozada
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Louise Grimble
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Chris M Bacon
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Cellular Pathology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Sophie C Weatherhead
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle, Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Hanna Brauner
- Division of Dermatology, Department of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Dermatology, Karolinska University Hospital, Stockholm, Sweden
| | - Yang Wang
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
| | - Fan Bai
- Biomedical Pioneering Innovation Center and School of Life Sciences, Peking University, Beijing, China
| | - Nick J Reynolds
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle, Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Judith E Allen
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Constanze Jonak
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Patrick M Brunner
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK.
- Department of Medicine, University of Cambridge, Cambridge, UK.
| | - Muzlifah Haniffa
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
- Biosciences Institute, Newcastle University, Newcastle, UK.
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle, Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
19
|
Danielsen M, Emmanuel T, Nielsen MM, Lindahl LM, Gluud M, Ødum N, Raaby L, Steiniche T, Iversen L, Bech R, Buus TB, Johansen C. RUNX2 as a novel biomarker for early identification of patients progressing to advanced-stage mycosis fungoides. Front Oncol 2024; 14:1421443. [PMID: 39435287 PMCID: PMC11491341 DOI: 10.3389/fonc.2024.1421443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/04/2024] [Indexed: 10/23/2024] Open
Abstract
Introduction The majority of patients with mycosis fungoides (MF) have an indolent disease course, but a substantial fraction (20-30%) of patients progress to advanced stages - usually with a grave prognosis. Early differentiation between indolent and aggressive types of MF is important for the choice of treatment regimen and monitoring of the individual patient. Good biomarkers are therefore desired. Methods Here, we used spatial transcriptomics on skin samples at time-of-diagnosis to enable prediction of patients who later progressed to advanced stages of MF. Formalin-fixed, paraffin-embedded skin biopsies at time of diagnosis from six patients with MF who progressed to advanced stages of disease within 4 months to 12 years after diagnosis, and nine patients who remained in early-stage disease over 9 to 27 years were analyzed using the GeoMx Digital Spatial Profiler to capture spatially resolved high-plex RNA gene expression data. Five different regions of interest (the epidermis, the basal layer of epidermis, CD4+ T-cells and neighboring cells, and Pautrier's microabscesses) were profiled for further assessment. Results and discussion Interestingly, RUNX2, SHMT2, and MCM7 were upregulated in the enriched population of malignant T-cells in Pautrier's microabscesses in patients who later developed advanced stages of disease. Expression of RUNX2, SHMT2 and MCM7 in malignant T-cells was confirmed in a subset of patients in MF skin using scRNA-seq datasets across multiple studies and correlating with stage of disease. Taken together, we provide first evidence that RUNX2 has potential as a biomarker to identify MF patients progressing to advanced stage disease. As RUNX2 has not previously been linked to MF, our data also shows the analytical strength of combining spatial transcriptomics with scRNA-seq analysis.
Collapse
Affiliation(s)
- Maria Danielsen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas Emmanuel
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Morten Muhlig Nielsen
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Aarhus, Denmark
| | | | - Maria Gluud
- Skin Immunology Research Center, Department of Immunology & Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Niels Ødum
- Skin Immunology Research Center, Department of Immunology & Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Line Raaby
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Aarhus, Denmark
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Torben Steiniche
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Rikke Bech
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Terkild Brink Buus
- Skin Immunology Research Center, Department of Immunology & Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Claus Johansen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
20
|
Wang Y, Lu H, Cheng L, Guo W, Hu Y, Du X, Liu X, Xu M, Liu Y, Zhang Y, Xi R, Wang P, Liu X, Duan Y, Zhu J, Li F. Targeting mitochondrial dysfunction in atopic dermatitis with trilinolein: A triacylglycerol from the medicinal plant Cannabis fructus. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155856. [PMID: 39024674 DOI: 10.1016/j.phymed.2024.155856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/22/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Atopic dermatitis (AD) is a common skin condition that causes chronic and recurring eczema lesions. Prior research has indicated that Cannabis fructus, the mature fruit of Cannabis sativa, has an antioxidant effect. Historically, Cannabis fructus has been used in cosmetics and medicine. However, there is limited knowledge regarding its biological components and the mechanisms by which it prevents and treats AD. OBJECTIVES HPLC-ESI-MS/MS analysis was utilized to identify the main compounds of Cannabis fructus, and trilinolein was extracted using chromatographic techniques. The potential of trilinolein in the prevention of AD was assessed, and its underlying mechanisms of action were elucidated. METHODS The distribution of distinct cellular subpopulations and the principal biological processes implicated in the pathogenesis of AD were assessed through a comparative study involving chronic AD patients and healthy controls (HCs). Differential gene expression was validated in clinical samples from the lesions of AD patients and the healthy skin of controls. The pharmacodynamic activity of trilinolein was validated in dinitrochlorobenzene (DNCB)-induced BALB/c mice and in IL-4- and TNF-α-induced HaCaT cells. Proteomics analyse was employed to investigate its mechanisms. RESULTS Single-cell transcriptome analysis revealed that chronic AD is characterized by abnormal keratinocyte differentiation and oxidative stress damage. When topically applied, trilinolein can effectively improve AD-like skin lesions induced by DNCB. It increases the expression of terminal differentiation proteins and decreases the expression of NADPH oxidase 2 (NOX2), with a therapeutic effect comparable to that of the positive control drug crisaborole. Additionally, trilinolein reduced ROS fluorescence intensity, restored mitochondrial morphology and membrane potential, and decreased mitochondrial DNA (mtDNA) release in keratinocytes stimulated with IL-4 and TNF-α. Moreover, trilinolein increased the protein expression of AhR, CYP1A1, and Nrf2 in a dose-dependent manner. The effect of trilinolein on keratinocyte terminal differentiation proteins and ROS levels was blocked by the addition of an AhR inhibitor. CONCLUSION The study suggests that trilinolein from Cannabis fructus alleviates NOX2-dependent mitochondrial dysfunction and repair the skin barrier via AhR-Nrf2 pathway, making it a promising agent for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Yi Wang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Hanzhi Lu
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Linyan Cheng
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Wanjun Guo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yue Hu
- Department of Pharmacy Research, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xinran Du
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xin Liu
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Mingyuan Xu
- Department of Dermatopathology, Shanghai Skin Disease Hospital Affiliated to Tongji University, Shanghai 200443, China
| | - Yeqiang Liu
- Department of Dermatopathology, Shanghai Skin Disease Hospital Affiliated to Tongji University, Shanghai 200443, China
| | - Yanbin Zhang
- Department of TCM, Kong Jiang Hospital of Yangpu District, Shanghai, 200093, China
| | - Ruofan Xi
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Peiyao Wang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xin Liu
- Beijing Transcend Vivoscope Bio-Technology Co., Ltd, Beijing 100085, China
| | - Yanjuan Duan
- Department of Dermatology, Seventh People's Hospital of Shanghai University of TCM, Shanghai 200437, China
| | - Jianyong Zhu
- Department of Pharmacy Research, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| | - Fulun Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| |
Collapse
|
21
|
Srinivas N, Peiffer L, Horny K, Lei KC, Buus TB, Kubat L, Luo M, Yin M, Spassova I, Sucker A, Farahpour F, Kehrmann J, Ugurel S, Livingstone E, Gambichler T, Ødum N, Becker JC. Single-cell RNA and T-cell receptor sequencing unveil mycosis fungoides heterogeneity and a possible gene signature. Front Oncol 2024; 14:1408614. [PMID: 39169943 PMCID: PMC11337020 DOI: 10.3389/fonc.2024.1408614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/19/2024] [Indexed: 08/23/2024] Open
Abstract
Background Mycosis fungoides (MF) is the most common subtype of cutaneous T-cell lymphoma (CTCL). Comprehensive analysis of MF cells in situ and ex vivo is complicated by the fact that is challenging to distinguish malignant from reactive T cells with certainty. Methods To overcome this limitation, we performed combined single-cell RNA (scRNAseq) and T-cell receptor TCR sequencing (scTCRseq) of skin lesions of cutaneous MF lesions from 12 patients. A sufficient quantity of living T cells was obtained from 9 patients, but 2 had to be excluded due to unclear diagnoses (coexisting CLL or revision to a fixed toxic drug eruption). Results From the remaining patients we established single-cell mRNA expression profiles and the corresponding TCR repertoire of 18,630 T cells. TCR clonality unequivocally identified 13,592 malignant T cells. Reactive T cells of all patients clustered together, while malignant cells of each patient formed a unique cluster expressing genes typical of naive/memory, such as CD27, CCR7 and IL7R, or cytotoxic T cells, e.g., GZMA, NKG7 and GNLY. Genes encoding classic CTCL markers were not detected in all clusters, consistent with the fact that mRNA expression does not correlate linearly with protein expression. Nevertheless, we successfully pinpointed distinctive gene signatures differentiating reactive malignant from malignant T cells: keratins (KRT81, KRT86), galectins (LGALS1, LGALS3) and S100 genes (S100A4, S100A6) being overexpressed in malignant cells. Conclusions Combined scRNAseq and scTCRseq not only allows unambiguous identification of MF cells, but also revealed marked heterogeneity between and within patients with unexpected functional phenotypes. While the correlation between mRNA and protein abundance was limited with respect to established MF markers, we were able to identify a single-cell gene expression signature that distinguishes malignant from reactive T cells.
Collapse
Affiliation(s)
- Nalini Srinivas
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), University Medicine Essen, Essen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, University Hospital Essen, and German Cancer Consortium (DKTK) partner site Essen/Düsseldorf, Essen, Germany
| | - Lukas Peiffer
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), University Medicine Essen, Essen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Kai Horny
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), University Medicine Essen, Essen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kuan Cheok Lei
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), University Medicine Essen, Essen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Terkild B. Buus
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Linda Kubat
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), University Medicine Essen, Essen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, University Hospital Essen, and German Cancer Consortium (DKTK) partner site Essen/Düsseldorf, Essen, Germany
| | - Meng Luo
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), University Medicine Essen, Essen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Menghong Yin
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), University Medicine Essen, Essen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ivelina Spassova
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), University Medicine Essen, Essen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, University Hospital Essen, and German Cancer Consortium (DKTK) partner site Essen/Düsseldorf, Essen, Germany
| | - Antje Sucker
- Department of Dermatology, University Hospital Essen, and German Cancer Consortium (DKTK) partner site Essen/Düsseldorf, Essen, Germany
| | - Farnoush Farahpour
- Bioinformatics and Computational Biophysics, University Duisburg-Essen, and Group of Molecular Cell Biology, Institute for Cell Biology (Cancer Research), University Hospital Essen, Essen, Germany
| | - Jan Kehrmann
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Selma Ugurel
- Department of Dermatology, University Hospital Essen, and German Cancer Consortium (DKTK) partner site Essen/Düsseldorf, Essen, Germany
| | - Elisabeth Livingstone
- Department of Dermatology, University Hospital Essen, and German Cancer Consortium (DKTK) partner site Essen/Düsseldorf, Essen, Germany
| | - Thilo Gambichler
- Department of Dermatology, Ruhr-University Bochum, Bochum, Germany
- Department of Dermatology, Dortmund Hospital, University Witten/Herdecke, Dortmund, Germany
| | - Niels Ødum
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jürgen C. Becker
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), University Medicine Essen, Essen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, University Hospital Essen, and German Cancer Consortium (DKTK) partner site Essen/Düsseldorf, Essen, Germany
| |
Collapse
|
22
|
Yang J, Yang J, Luo Y, Ran D, Xia R, Zheng Q, Yao P, Wang H. Nrf1 Reduces COX-2 Expression and Maintains Cellular Homeostasis After Cerebral Ischemia/Reperfusion By Targeting IL-6/TNF-α Protein Production. J Neuroimmune Pharmacol 2024; 19:41. [PMID: 39103507 DOI: 10.1007/s11481-024-10136-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/08/2024] [Indexed: 08/07/2024]
Abstract
Neuroinflammation has been considered involved in the process of cerebral ischemia-reperfusion injury (CIRI). Transcription factors play a crucial role in regulating gene transcription and the expressions of specific proteins during the progression of various neurological diseases. Evidence showed that transcription factor nuclear factor erythroid 2-related factor 1 (NFE2L1, also known as Nrf1) possessed strong biological activities including antioxidant, anti-inflammatory and neuroprotective properties. However, its role and potential molecular mechanisms in CIRI remain unclear. In our study, we observed a significant elevation of Nrf1 in the cerebral cortex following cerebral ischemia-reperfusion in rats. The Nrf1 downregulation markedly raised COX-2, TNF-α, IL-1β, and IL-6 protein levels during middle cerebral artery occlusion/reperfusion in rats, which led to worsened neurological deficits, higher cerebral infarct volume, and intensified cortical histopathological damage. In subsequent in vitro studies, the expression of Nrf1 protein increased following oxygen-glucose deprivation/reperfusion treatment on neurons. Subsequently, Nrf1 knockdown resulted in a significant upregulation of inflammatory factors, leading to a substantial increase in the cell death rate. Through analyzing the alterations in the expression of inflammatory factors under diverse interventions, it is indicated that Nrf1 possesses the capacity to discern variations in inflammatory factors via specific structural domains. Our findings demonstrate the translocation of the Nrf1 protein from the cytoplasm to the nucleus, thereby modulating the protein expression of IL-6/TNF-α and subsequently reducing the expression of multiple inflammatory factors. This study signifies, for the first time, that during cerebral ischemia-reperfusion, Nrf1 translocases to the nucleus to regulate the protein expression of IL-6/TNF-α, consequently suppressing COX-2 expression and governing cellular inflammation, ultimately upholding cellular homeostasis.
Collapse
Affiliation(s)
- Jing Yang
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing, 400016, China
- Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Junqing Yang
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing, 400016, China
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Luo
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Dongzhi Ran
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Rongsong Xia
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing, 400016, China
- Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Qixue Zheng
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Peishuang Yao
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Hong Wang
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
23
|
Goel RR, Rook AH. Immunobiology and treatment of cutaneous T-cell lymphoma. Expert Rev Clin Immunol 2024; 20:985-996. [PMID: 38450476 DOI: 10.1080/1744666x.2024.2326035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
INTRODUCTION Primary cutaneous T cell lymphomas (CTCL) are a heterogenous group of non-Hodgkin lymphomas derived from skin-homing T cells. These include mycosis fungoides and its leukemic variant Sezary syndrome, as well as the CD30+ lymphoproliferative disorders. AREAS COVERED In this review, we provide a summary of the current literature on CTCL, with a focus on the immunopathogenesis and treatment of mycosis fungoides and Sezary syndrome. EXPERT OPINION Recent advances in immunology have provided new insights into the biology of malignant T cells. This in turn has led to the development of new therapies that modulate the immune system to facilitate tumor clearance or target specific aspects of tumor biology.
Collapse
Affiliation(s)
- Rishi R Goel
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health (I3H), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alain H Rook
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
24
|
Chen M, Liu H, Hong B, Xiao Y, Qian Y. MIF as a potential diagnostic and prognostic biomarker for triple-negative breast cancer that correlates with the polarization of M2 macrophages. FASEB J 2024; 38:e23696. [PMID: 38787620 DOI: 10.1096/fj.202400578r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/24/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine that plays a crucial role in antitumor immunity. However, the role of MIF in influencing the tumor microenvironment (TME) and prognosis of triple-negative breast cancer (TNBC) remains to be elucidated. Using R, we analyzed single-cell RNA sequencing (scRNA-seq) data of 41 567 cells from 10 TNBC tumor samples and spatial transcriptomic data from two patients. Relationships between MIF expression and immune cell infiltration, clinicopathological stage, and survival prognosis were determined using samples from The Cancer Genome Atlas (TCGA) and validated in a clinical cohort using immunohistochemistry. Analysis of scRNA-seq data revealed that MIF secreted by epithelial cells in TNBC patients could regulate the polarization of macrophages into the M2 phenotype, which plays a key role in modulating the TME. Spatial transcriptomic data also showed that epithelial cells (tumor cells) and MIF were proximally located. Analysis of TCGA samples confirmed that tumor tissues of patients with high MIF expression were enriched with M2 macrophages and showed a higher T stage. High MIF expression was significantly associated with poor patient prognosis. Immunohistochemical staining showed high MIF expression was associated with younger patients and worse clinicopathological staging. MIF secreted by epithelial cells may represent a potential biomarker for the diagnosis and prognosis of TNBC and may promote TNBC invasion by remodeling the tumor immune microenvironment.
Collapse
Affiliation(s)
- Mengting Chen
- Department of Clinical Laboratory, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Hongsen Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Bo Hong
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yufei Xiao
- Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yun Qian
- Department of Clinical Laboratory, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| |
Collapse
|
25
|
Xiong S, Liu F, Sun J, Gao S, Wong CCL, Tu P, Wang Y. Abrogation of USP9X Is a Potential Strategy to Decrease PEG10 Levels and Impede Tumor Progression in Cutaneous T-Cell Lymphoma. J Invest Dermatol 2024:S0022-202X(24)00307-5. [PMID: 38677662 DOI: 10.1016/j.jid.2024.02.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/30/2024] [Accepted: 02/26/2024] [Indexed: 04/29/2024]
Abstract
Advanced-stage cutaneous T-cell lymphomas (CTCLs) are notorious for their highly aggressive behavior, resistance to conventional treatments, and poor prognosis, particularly when large-cell transformation occurs. PEG10 has been recently proposed as a potent driver for large-cell transformation in CTCL. However, the targeting of PEG10 continues to present a formidable clinical challenge that has yet to be addressed. In this study, we report an important post-translational regulatory mechanism of PEG10 in CTCL. USP9X, a deubiquitinase, interacted with and deubiquitinated PEG10, thereby stabilizing PEG10. Knockdown of USP9X or pharmacological targeting of USP9X resulted in a prominent downregulation of PEG10 and its downstream pathway in CTCL. Moreover, USP9X inhibition conferred tumor cell growth disadvantage and enhanced apoptosis in vitro, an effect that occurred in part through its regulation on PEG10. Furthermore, we demonstrated that inhibition of USP9X obviously restrained CTCL tumor growth in vivo and that high expression of USP9X is associated with poor survival in patients with CTCL. Collectively, our findings uncover USP9X as a key post-translational regulator in the stabilization of PEG10 and suggest that targeting PEG10 stabilization through USP9X inhibition may represent a promising therapeutic strategy for advanced-stage CTCL.
Collapse
Affiliation(s)
- Shan Xiong
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Fengjie Liu
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Jingru Sun
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Shuaixin Gao
- Department of Human Sciences & James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA; James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Catherine C L Wong
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Ping Tu
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Yang Wang
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China.
| |
Collapse
|
26
|
Zhang Y, Zuo C, Li Y, Liu L, Yang B, Xia J, Cui J, Xu K, Wu X, Gong W, Liu Y. Single-cell characterization of infiltrating T cells identifies novel targets for gallbladder cancer immunotherapy. Cancer Lett 2024; 586:216675. [PMID: 38280478 DOI: 10.1016/j.canlet.2024.216675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
Gallbladder cancer (GBC) is among the most common malignancies of biliary tract system due to its limited treatments. The immunotherapeutic targets for T cells are appealing, however, heterogeneity of T cells hinds its further development. We systematically construct T cell atlas by single-cell RNA sequencing; and utilized the identified gene signatures of high_CNV_T cells to predict molecular subtyping towards personalized therapeutic treatments for GBC. We identified 12 T cell subtypes, where exhausted CD8+ T cells, activated/exhausted CD8+ T cells, and regulatory T cells were predominant in tumors. There appeared to be an inverse relationship between Th17 and Treg populations with Th17 levels significantly reduced, whereas Tregs were concomitantly increased. Furthermore, we first established subtyping criterion to identify three subtypes of GBC based on their pro-tumorigenic microenvironments, e.g., the type 1 group shows more M2 macrophages infiltration, while the type 2 group is infiltrated by highly exhausted CD8+ T cells, B cells and Tregs with suppressive activities. Our study provides valuable insights into T cell heterogeneity and suggests that molecular subtyping based on T cells might provide a potential immunotherapeutic strategy to improve GBC treatment.
Collapse
Affiliation(s)
- Yijian Zhang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China; Shanghai Research Center of Biliary Tract Disease, Shanghai, 200092, China
| | - Chunman Zuo
- Institute of Artificial Intelligence, Donghua University, Shanghai, 201620, China; Key Laboratory of Symbolic Computation and knowledge Engineering of Ministry of Education, Jilin University, Changchun, 130022, China.
| | - Yang Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai, 200127, China; Shanghai Research Center of Biliary Tract Disease, Shanghai, 200092, China
| | - Liguo Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai, 200127, China; Shanghai Research Center of Biliary Tract Disease, Shanghai, 200092, China
| | - Bo Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai, 200127, China; Shanghai Research Center of Biliary Tract Disease, Shanghai, 200092, China
| | - Junjie Xia
- Institute of Artificial Intelligence, Donghua University, Shanghai, 201620, China
| | - Jiangnan Cui
- Institute of Artificial Intelligence, Donghua University, Shanghai, 201620, China
| | - Keren Xu
- CAS Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiangsong Wu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China; Shanghai Research Center of Biliary Tract Disease, Shanghai, 200092, China.
| | - Wei Gong
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China; Shanghai Research Center of Biliary Tract Disease, Shanghai, 200092, China.
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai, 200127, China; Shanghai Research Center of Biliary Tract Disease, Shanghai, 200092, China.
| |
Collapse
|
27
|
Chang YT, Prompsy P, Kimeswenger S, Tsai YC, Ignatova D, Pavlova O, Iselin C, French LE, Levesque MP, Kuonen F, Bobrowicz M, Brunner PM, Pascolo S, Hoetzenecker W, Guenova E. MHC-I upregulation safeguards neoplastic T cells in the skin against NK cell-mediated eradication in mycosis fungoides. Nat Commun 2024; 15:752. [PMID: 38272918 PMCID: PMC10810852 DOI: 10.1038/s41467-024-45083-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Cancer-associated immune dysfunction is a major challenge for effective therapies. The emergence of antibodies targeting tumor cell-surface antigens led to advancements in the treatment of hematopoietic malignancies, particularly blood cancers. Yet their impact is constrained against tumors of hematopoietic origin manifesting in the skin. In this study, we employ a clonality-supervised deep learning methodology to dissect key pathological features implicated in mycosis fungoides, the most common cutaneous T-cell lymphoma. Our investigations unveil the prominence of the IL-32β-major histocompatibility complex (MHC)-I axis as a critical determinant in tumor T-cell immune evasion within the skin microenvironment. In patients' skin, we find MHC-I to detrimentally impact the functionality of natural killer (NK) cells, diminishing antibody-dependent cellular cytotoxicity and promoting resistance of tumor skin T-cells to cell-surface targeting therapies. Through murine experiments in female mice, we demonstrate that disruption of the MHC-I interaction with NK cell inhibitory Ly49 receptors restores NK cell anti-tumor activity and targeted T-cell lymphoma elimination in vivo. These findings underscore the significance of attenuating the MHC-I-dependent immunosuppressive networks within skin tumors. Overall, our study introduces a strategy to reinvigorate NK cell-mediated anti-tumor responses to overcome treatment resistance to existing cell-surface targeted therapies for skin lymphoma.
Collapse
Affiliation(s)
- Yun-Tsan Chang
- Department of Dermatology, Lausanne University Hospital (CHUV) and Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Pacôme Prompsy
- Department of Dermatology, Lausanne University Hospital (CHUV) and Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Susanne Kimeswenger
- Department of Dermatology and Venerology, Medical Faculty, Johannes Kepler University, Linz, Austria
| | - Yi-Chien Tsai
- Department of Dermatology, Lausanne University Hospital (CHUV) and Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Desislava Ignatova
- Department of Dermatology, University Hospital of Zurich and Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Olesya Pavlova
- Department of Dermatology, Lausanne University Hospital (CHUV) and Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Christoph Iselin
- Department of Dermatology, Lausanne University Hospital (CHUV) and Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Lars E French
- Department of Dermatology and Allergology, Ludwig-Maximilians-University of Munich, Munich, Germany
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital of Zurich and Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - François Kuonen
- Department of Dermatology, Lausanne University Hospital (CHUV) and Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | | | - Patrick M Brunner
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Steve Pascolo
- Department of Dermatology, University Hospital of Zurich and Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Wolfram Hoetzenecker
- Department of Dermatology and Venerology, Medical Faculty, Johannes Kepler University, Linz, Austria.
| | - Emmanuella Guenova
- Department of Dermatology, Lausanne University Hospital (CHUV) and Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
- Department of Dermatology, University Hospital of Zurich and Faculty of Medicine, University of Zurich, Zurich, Switzerland.
- Department of Dermatology, Hospital 12 de Octubre, Medical School, University Complutense, Madrid, Spain.
| |
Collapse
|
28
|
Shi M, Huang K, Wei J, Wang S, Yang W, Wang H, Li Y. Identification and Validation of a Prognostic Signature Derived from the Cancer Stem Cells for Oral Squamous Cell Carcinoma. Int J Mol Sci 2024; 25:1031. [PMID: 38256104 PMCID: PMC10816075 DOI: 10.3390/ijms25021031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
The progression and metastasis of oral squamous cell carcinoma (OSCC) are highly influenced by cancer stem cells (CSCs) due to their unique self-renewal and plasticity. In this study, data were obtained from a single-cell RNA-sequencing dataset (GSE172577) in the GEO database, and LASSO-Cox regression analysis was performed on 1344 CSCs-related genes to establish a six-gene prognostic signature (6-GPS) consisting of ADM, POLR1D, PTGR1, RPL35A, PGK1, and P4HA1. High-risk scores were significantly associated with unfavorable survival outcomes, and these features were thoroughly validated in the ICGC. The results of nomograms, calibration plots, and ROC curves confirmed the good prognostic accuracy of 6-GPS for OSCC. Additionally, the knockdown of ADM or POLR1D genes may significantly inhibit the proliferation, migration, and invasion of OSCC cells through the JAK/HIF-1 pathway. Furthermore, cell-cycle arrest occurred in the G1 phase by suppressing Cyclin D1. In summary, 6-GPS may play a crucial role in the occurrence and development of OSCC and has the potential to be developed further as a diagnostic, therapeutic, and prognostic tool for OSCC.
Collapse
Affiliation(s)
- Mingxuan Shi
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (M.S.); (K.H.); (J.W.); (S.W.); (W.Y.)
| | - Ke Huang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (M.S.); (K.H.); (J.W.); (S.W.); (W.Y.)
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730030, China
| | - Jiaqi Wei
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (M.S.); (K.H.); (J.W.); (S.W.); (W.Y.)
| | - Shiqi Wang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (M.S.); (K.H.); (J.W.); (S.W.); (W.Y.)
| | - Weijia Yang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (M.S.); (K.H.); (J.W.); (S.W.); (W.Y.)
| | - Huihui Wang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (M.S.); (K.H.); (J.W.); (S.W.); (W.Y.)
| | - Yi Li
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (M.S.); (K.H.); (J.W.); (S.W.); (W.Y.)
| |
Collapse
|
29
|
Cao M, Lai P, Liu X, Liu F, Qin Y, Tu P, Wang Y. ATF5 promotes malignant T cell survival through the PI3K/AKT/mTOR pathway in cutaneous T cell lymphoma. Front Immunol 2023; 14:1282996. [PMID: 38223508 PMCID: PMC10786347 DOI: 10.3389/fimmu.2023.1282996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/08/2023] [Indexed: 01/16/2024] Open
Abstract
Backgrounds Cutaneous T cell lymphoma (CTCL) is a non-Hodgkin lymphoma characterized by skin infiltration of malignant T cells. The biological overlap between malignant T cells and their normal counterparts has brought obstacles in identifying tumor-specific features and mechanisms, limiting current knowledge of CTCL pathogenesis. Transcriptional dysregulation leading to abnormal gene expression profiles contributes to the initiation, progression and drug resistance of cancer. Therefore, we aimed to identify tumor-specific transcription factor underlying CTCL pathology. Methods We analyzed and validated the differentially expressed genes (DEGs) in malignant T cells based on single-cell sequencing data. Clinical relevance was evaluated based on progression-free survival and time to next treatment. To determine the functional importance, lentivirus-mediated gene knockdown was conducted in two CTCL cell lines Myla and H9. Cell survival was assessed by examining cell viability, colony-forming ability, in-vivo tumor growth in xenograft models, apoptosis rate and cell-cycle distribution. RNA sequencing was employed to investigate the underlying mechanisms. Results Activating transcription factor 5 (ATF5) was overexpressed in malignant T cells and positively correlated with poor treatment responses in CTCL patients. Mechanistically, ATF5 promoted the survival of malignant T cells partially through the PI3K/AKT/mTOR pathway, and imparted resistance to endoplasmic reticulum (ER) stress-induced apoptosis. Conclusions These findings revealed the tumor-specific overexpression of the transcription factor ATF5 with its underlying mechanisms in promoting tumor survival in CTCL, providing new insight into the understanding of CTCL's pathology.
Collapse
Affiliation(s)
- Mengzhou Cao
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Pan Lai
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Xiangjun Liu
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Fengjie Liu
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Yao Qin
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Ping Tu
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Yang Wang
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| |
Collapse
|
30
|
Su Z, Luo M, Chen ZL, Lan H. Comparison of the Ways in Which Nitidine Chloride and Bufalin Induce Programmed Cell Death in Hematological Tumor Cells. Appl Biochem Biotechnol 2023; 195:7755-7765. [PMID: 37086379 PMCID: PMC10754759 DOI: 10.1007/s12010-023-04468-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2023] [Indexed: 04/23/2023]
Abstract
The objective of this work to study the programmed cell death (PCD) in hematological tumor cells induced by nitidine chloride (NC) and bufalin (BF). Hematological tumor cells were exposed to various doses of NC and BF to measure the level of growth inhibition. While inverted microscope is used to observe cell morphology, western blot technique is used to detect apoptosis-related protein expression levels. The effects of NC and BF on hematological tumor cells were different. Although abnormal cell morphology could be seen under the inverted microscope, the western blot results showed that the two medicines induced PCD through different pathways. Drug resistance varied in intensity across distinct cells. THP-1, Jurkat, and RPMI-8226 each had half maximum inhibitory concentrations (IC50) of 36.23 nM, 26.71 nM, and 40.46 nM in BF, and 9.24 µM, 4.33 µM, and 28.18 µM in NC, respectively. Different hematopoietic malignancy cells exhibit varying degrees of drug resistance, and the mechanisms by which apoptosis of hematologic tumor cells is triggered by NC and BF are also distinct.
Collapse
Affiliation(s)
- Zejie Su
- Department of Pharmacy, Shunde Hospital of Guangzhou University of Chinese traditional Medicine, Shunde, People's Republic of China
| | - Man Luo
- Department of Hemalology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Zhi Lian Chen
- Department of Hemalology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Hai Lan
- Department of Pharmacy, Shunde Hospital of Guangzhou University of Chinese traditional Medicine, Shunde, People's Republic of China.
| |
Collapse
|
31
|
Gaydosik AM, Stonesifer CJ, Tabib T, Lafyatis R, Geskin LJ, Fuschiotti P. The mycosis fungoides cutaneous microenvironment shapes dysfunctional cell trafficking, antitumor immunity, matrix interactions, and angiogenesis. JCI Insight 2023; 8:e170015. [PMID: 37669110 PMCID: PMC10619438 DOI: 10.1172/jci.insight.170015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/31/2023] [Indexed: 09/07/2023] Open
Abstract
Malignant T lymphocyte proliferation in mycosis fungoides (MF) is largely restricted to the skin, implying that malignant cells are dependent on their specific cutaneous tumor microenvironment (TME), including interactions with non-malignant immune and stromal cells, cytokines, and other immunomodulatory factors. To explore these interactions, we performed a comprehensive transcriptome analysis of the TME in advanced-stage MF skin tumors by single-cell RNA sequencing. Our analysis identified cell-type compositions, cellular functions, and cell-to-cell interactions in the MF TME that were distinct from those from healthy skin and benign dermatoses. While patterns of gene expression were common among patient samples, high transcriptional diversity was also observed in immune and stromal cells, with dynamic interactions and crosstalk between these cells and malignant T lymphocytes. This heterogeneity mapped to processes such as cell trafficking, matrix interactions, angiogenesis, immune functions, and metabolism that affect cancer cell growth, migration, and invasion, as well as antitumor immunity. By comprehensively characterizing the transcriptomes of immune and stromal cells within the cutaneous microenvironment of individual MF tumors, we have identified patterns of dysfunction common to all tumors that represent a resource for identifying candidates with therapeutic potential as well as patient-specific heterogeneity that has important implications for personalized disease management.
Collapse
Affiliation(s)
- Alyxzandria M. Gaydosik
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | - Tracy Tabib
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Robert Lafyatis
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | - Patrizia Fuschiotti
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
32
|
Lai P, Liu F, Liu X, Sun J, Wang Y. Differential molecular programs of cutaneous anaplastic large cell lymphoma and CD30-positive transformed mycosis fungoides. Front Immunol 2023; 14:1270365. [PMID: 37790936 PMCID: PMC10544577 DOI: 10.3389/fimmu.2023.1270365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023] Open
Abstract
Background Discriminating between cutaneous anaplastic large cell lymphoma (cALCL) and CD30-positive transformed mycosis fungoides (CD30+ TMF) is challenging, particularly when they arise in the context of pre-existing mycosis fungoides. The development of molecular diagnostic tools was hampered by the rarity of both diseases and the limited understanding of their pathogenesis. Methods In this study, we established a cohort comprising 25 cALCL cases and 25 CD30+ TMF cases, with transcriptomic data obtained from 31 samples. We compared the clinicopathological information and investigated the gene expression profiling between these two entities. Furthermore, we developed an immunohistochemistry (IHC) algorithm to differentiate these two entities clinically. Results Our investigation revealed distinct clinicopathological features and unique gene expression programs associated with cALCL and CD30+ TMF. cALCL and CD30+ TMF displayed marked differences in gene expression patterns. Notably, CD30+ TMF demonstrated enrichment of T cell receptor signaling pathways and an exhausted T cell phenotype, accompanied by infiltration of B cells, dendritic cells, and neurons. In contrast, cALCL cells expressed high levels of HLA class II genes, polarized towards a Th17 phenotype, and exhibited neutrophil infiltration. An IHC algorithm with BATF3 and TCF7 staining emerged as potential diagnostic markers for identifying these two entities. Conclusions Our findings provide valuable insights into the differential molecular signatures associated with cALCL and CD30+ TMF, which contribute to their distinct clinicopathological behaviors. An appropriate IHC algorithm could be used as a potential diagnostic tool.
Collapse
Affiliation(s)
- Pan Lai
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Fengjie Liu
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiangjun Liu
- Department of Dermatology, Shandong University Qilu Hospital, Jinan, China
| | - Jingru Sun
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Yang Wang
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| |
Collapse
|
33
|
Yadav M, Uikey BN, Rathore SS, Gupta P, Kashyap D, Kumar C, Shukla D, Vijayamahantesh, Chandel AS, Ahirwar B, Singh AK, Suman SS, Priyadarshi A, Amit A. Role of cytokine in malignant T-cell metabolism and subsequent alternation in T-cell tumor microenvironment. Front Oncol 2023; 13:1235711. [PMID: 37746258 PMCID: PMC10513393 DOI: 10.3389/fonc.2023.1235711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
T cells are an important component of adaptive immunity and T-cell-derived lymphomas are very complex due to many functional sub-types and functional elasticity of T-cells. As with other tumors, tissues specific factors are crucial in the development of T-cell lymphomas. In addition to neoplastic cells, T- cell lymphomas consist of a tumor micro-environment composed of normal cells and stroma. Numerous studies established the qualitative and quantitative differences between the tumor microenvironment and normal cell surroundings. Interaction between the various component of the tumor microenvironment is crucial since tumor cells can change the microenvironment and vice versa. In normal T-cell development, T-cells must respond to various stimulants deferentially and during these courses of adaptation. T-cells undergo various metabolic alterations. From the stage of quiescence to attention of fully active form T-cells undergoes various stage in terms of metabolic activity. Predominantly quiescent T-cells have ATP-generating metabolism while during the proliferative stage, their metabolism tilted towards the growth-promoting pathways. In addition to this, a functionally different subset of T-cells requires to activate the different metabolic pathways, and consequently, this regulation of the metabolic pathway control activation and function of T-cells. So, it is obvious that dynamic, and well-regulated metabolic pathways are important for the normal functioning of T-cells and their interaction with the microenvironment. There are various cell signaling mechanisms of metabolism are involved in this regulation and more and more studies have suggested the involvement of additional signaling in the development of the overall metabolic phenotype of T cells. These important signaling mediators include cytokines and hormones. The impact and role of these mediators especially the cytokines on the interplay between T-cell metabolism and the interaction of T-cells with their micro-environments in the context of T-cells lymphomas are discussed in this review article.
Collapse
Affiliation(s)
- Megha Yadav
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Blessi N. Uikey
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | | | - Priyanka Gupta
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Diksha Kashyap
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Chanchal Kumar
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Dhananjay Shukla
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Vijayamahantesh
- Department of Immunology and Microbiology, University of Missouri, Columbia, SC, United States
| | - Arvind Singh Chandel
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo, Japan
| | - Bharti Ahirwar
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | | | - Shashi Shekhar Suman
- Department of Zoology, Udayana Charya (UR) College, Lalit Narayan Mithila University, Darbhanga, India
| | - Amit Priyadarshi
- Department of Zoology, Veer Kunwar Singh University, Arrah, India
| | - Ajay Amit
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| |
Collapse
|
34
|
Feng Y, Wang S, Xie J, Ding B, Wang M, Zhang P, Mi P, Wang C, Liu R, Zhang T, Yu X, Yuan D, Zhang C. Spatial transcriptomics reveals heterogeneity of macrophages in the tumor microenvironment of granulomatous slack skin. J Pathol 2023; 261:105-119. [PMID: 37550813 DOI: 10.1002/path.6151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/30/2023] [Accepted: 06/01/2023] [Indexed: 08/09/2023]
Abstract
Granulomatous slack skin (GSS) is an extremely rare subtype of cutaneous T-cell lymphoma accompanied by an abundant number of macrophages and is clinically characterized by the development of pendulous skin folds. However, the characteristics of these macrophages in GSS remain unclear. Here, we conducted a spatial transcriptomic study on one frozen GSS sample and drew transcriptomic maps of GSS for the first time. Gene expression analysis revealed the enrichment of three clusters with macrophage transcripts, each exhibiting distinct characteristics suggesting that their primary composition consists of different subpopulations of macrophages. The CD163+ /CD206+ cluster showed a tumor-associated macrophage (TAM) M2-like phenotype and highly expressed ZFP36, CCL2, TNFAIP6, and KLF2, which are known to be involved in T-cell interaction and tumor progression. The APOC1+ /APOE+ cluster presented a non-M1 or -M2 phenotype and may be related to lipid metabolism. The CD11c+ /LYZ+ cluster exhibited an M1-like phenotype. Notably, these cells strongly expressed MMP9, MMP12, CHI3L1, CHIT1, COL1A1, TIMP1, and SPP1, which are responsible for extracellular matrix (ECM) degradation and tissue remodeling. This may partially explain the symptoms of cutaneous relaxation in GSS. Further immunohistochemistry on four GSS cases demonstrated that CD11c predominantly marked granulomas and multinucleated giant cells, whereas CD163 was mainly expressed on scattered macrophages, appearing as a mutually exclusive pattern. The expression pattern of MMP9 overlapped with that of CD11c, implying that CD11c+ macrophages may be a source of MMP9. Our data shed light on the characteristics of macrophages in the GSS microenvironment and provide a theoretical basis for the application of MMP9 inhibitors to prevent cutaneous relaxation of GSS. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Yawei Feng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Shiguan Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Jianjun Xie
- Department of Pathology, Qingdao Chengyang People's Hospital, Qingdao, PR China
| | - Bin Ding
- Department of Pathology, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, PR China
| | - Min Wang
- Department of Pathology, The Second People's Hospital of Liaocheng, Linqing, PR China
| | - Peng Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Ping Mi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Chunxue Wang
- Institute of Pathology and Pathophysiology, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Ruirui Liu
- Institute of Pathology and Pathophysiology, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Tingguo Zhang
- Institute of Pathology and Pathophysiology, Cheeloo College of Medicine, Shandong University, Jinan, PR China
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, PR China
| | - Xiaojing Yu
- Department of Dermatology, Qilu Hospital of Shandong University, Jinan, PR China
| | - Detian Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Cuijuan Zhang
- Institute of Pathology and Pathophysiology, Cheeloo College of Medicine, Shandong University, Jinan, PR China
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, PR China
| |
Collapse
|
35
|
Huang D, Ma N, Li X, Gou Y, Duan Y, Liu B, Xia J, Zhao X, Wang X, Li Q, Rao J, Zhang X. Advances in single-cell RNA sequencing and its applications in cancer research. J Hematol Oncol 2023; 16:98. [PMID: 37612741 PMCID: PMC10463514 DOI: 10.1186/s13045-023-01494-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023] Open
Abstract
Cancers are a group of heterogeneous diseases characterized by the acquisition of functional capabilities during the transition from a normal to a neoplastic state. Powerful experimental and computational tools can be applied to elucidate the mechanisms of occurrence, progression, metastasis, and drug resistance; however, challenges remain. Bulk RNA sequencing techniques only reflect the average gene expression in a sample, making it difficult to understand tumor heterogeneity and the tumor microenvironment. The emergence and development of single-cell RNA sequencing (scRNA-seq) technologies have provided opportunities to understand subtle changes in tumor biology by identifying distinct cell subpopulations, dissecting the tumor microenvironment, and characterizing cellular genomic mutations. Recently, scRNA-seq technology has been increasingly used in cancer studies to explore tumor heterogeneity and the tumor microenvironment, which has increased the understanding of tumorigenesis and evolution. This review summarizes the basic processes and development of scRNA-seq technologies and their increasing applications in cancer research and clinical practice.
Collapse
Affiliation(s)
- Dezhi Huang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Naya Ma
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Xinlei Li
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Yang Gou
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Yishuo Duan
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Bangdong Liu
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Jing Xia
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Xianlan Zhao
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Xiaoqi Wang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Qiong Li
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
| | - Jun Rao
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
36
|
Lefebvre MN, Borcherding N, Reis RJ, Mou E, Liu V, Jabbari A. Molecular techniques drive cutting edge advancements in management of cutaneous T cell lymphoma. Front Immunol 2023; 14:1228563. [PMID: 37654486 PMCID: PMC10465366 DOI: 10.3389/fimmu.2023.1228563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/27/2023] [Indexed: 09/02/2023] Open
Abstract
Cutaneous 5T cell lymphoma (CTCL), characterized by malignant T cells infiltrating the skin with potential for dissemination, remains a challenging disease to diagnose and treat due to disease heterogeneity, treatment resistance, and lack of effective and standardized diagnostic and prognostic clinical tools. Currently, diagnosis of CTCL practically relies on clinical presentation, histopathology, and immunohistochemistry. These methods are collectively fraught with limitations in sensitivity and specificity. Fortunately, recent advances in flow cytometry, polymerase chain reaction, high throughput sequencing, and other molecular techniques have shown promise in improving diagnosis and treatment of CTCL. Examples of these advances include T cell receptor clonotyping via sequencing to detect CTCL earlier in the disease course and single-cell RNA sequencing to identify gene expression patterns that commonly drive CTCL pathogenesis. Experience with these techniques has afforded novel insights which may translate into enhanced diagnostic and therapeutic approaches for CTCL.
Collapse
Affiliation(s)
- Mitchell N. Lefebvre
- University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Department of Dermatology, University of Iowa, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Nicholas Borcherding
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Ryan J. Reis
- University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Cancer Biology Graduate Program, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Eric Mou
- Department of Hematology and Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Vincent Liu
- University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Department of Pathology, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Ali Jabbari
- University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Iowa City Veterans Affairs Medical Center, Iowa City, IA, United States
| |
Collapse
|
37
|
Rao Z, Lu C, Fan H, Du F, Zhu Y, Xia Y, Wang Z, Ning P. Engineered Macrophages-Based uPA-Scavenger Load Gemcitabine to Prompt Robust Treating Cancer Metastasis. Adv Healthc Mater 2023; 12:e2203356. [PMID: 36929306 DOI: 10.1002/adhm.202203356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/21/2023] [Indexed: 03/18/2023]
Abstract
The majority of cancer patients die of metastasis rather than primary tumors, and most patients may have already completed the cryptic metastatic process at the time of diagnosis, making them intractable for therapeutic intervention. The urokinase-type plasminogen activator (uPA) system is proved to drive cancer metastasis. However, current blocking agents such as uPA inhibitors or antibodies are far from satisfactory due to poor pharmacokinetics and especially have to face multiplex mechanisms of metastasis. Herein, an effective strategy is proposed to develop a uPA-scavenger macrophage (uPAR-MΦ), followed by loading chemotherapeutics with nanoparticles (GEM@PLGA) to confront cancer metastasis. Interestingly, significant elimination of uPA by uPAR-MΦ is demonstrated by transwell analysis on tumor cells in vitro and enzyme-linked immunosorbent assay detection in peripheral blood of mice with metastatic tumors, contributing to significant inhibition of migration of tumor cells and occurrence of metastatic tumor lesions in mice. Moreover, uPAR-MΦ loaded with GEM@PLGA shows a robust antimetastasis effect and significantly prolonged survival in 4T1-tumor-bearing mice models. This work provides a novel living drug platform for realizing a potent treatment strategy to patients suffering from cancer metastasis, which can be further expanded to handle other tumor metastasis markers mediating cancer metastasis.
Collapse
Affiliation(s)
- Zhiping Rao
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, P. R. China
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi, 710071, P. R. China
| | - Chuanchuan Lu
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, P. R. China
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi, 710071, P. R. China
| | - Hongyu Fan
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, P. R. China
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi, 710071, P. R. China
| | - Fuyu Du
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, P. R. China
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi, 710071, P. R. China
| | - Yutong Zhu
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, P. R. China
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi, 710071, P. R. China
| | - Yuqiong Xia
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, P. R. China
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi, 710071, P. R. China
| | - Zhiming Wang
- Department of Medical Oncology, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, 361015, P. R. China
| | - Pengbo Ning
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, P. R. China
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi, 710071, P. R. China
| |
Collapse
|
38
|
Chen JS, Murphy MJ, Singh K, Wang A, Chow RD, Kim SR, Cohen JM, Ko CJ, Damsky W. IL17A mRNA Staining Distinguishes Palmoplantar Psoriasis from Hyperkeratotic Palmoplantar Eczema in Diagnostic Skin Biopsies. JID INNOVATIONS 2023; 3:100189. [PMID: 37205304 PMCID: PMC10186614 DOI: 10.1016/j.xjidi.2023.100189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/04/2023] [Accepted: 01/22/2023] [Indexed: 02/11/2023] Open
Abstract
Acral dermatoses, including hyperkeratotic palmoplantar eczema (HPE), palmoplantar psoriasis (PP), and mycosis fungoides palmaris et plantaris (MFPP), can be challenging to diagnose clinically and histopathologically. In this setting, cytokine biomarkers may be able to help provide diagnostic clarity. Therefore, we evaluated IL-17A, IFN-γ, and IL-13 expression in PP, HPE, and MFPP and compared their expression profiles with nonacral sites. We used biopsy specimens from the Yale Dermatopathology database, selecting cases of HPE (n = 12), PP (n = 8), MFPP (n = 8), normal acral skin (n = 9), nonacral eczema (n = 10), and nonacral psoriasis (n = 10) with classic clinical and histopathologic features. IL17A mRNA expression by RNA in situ hybridization differentiated PP (median score 63.1 [interquartile range 9.4-104.1]) from HPE (0.8 [0-6.0]; P = 0.003), MFPP (0.6 [0-2.6]; P = 0.003), and normal acral skin (0 [0-0]; P < 0.001). Unexpectedly, both PP and HPE showed co-expression of IFNG and IL13 mRNA. In contrast, nonacral psoriasis and eczema showed divergent patterns of IFNG and IL13 mRNA expression. Taken together, we show that IL17A mRNA expression may be a useful biomarker of PP, and we further show that acral dermatoses exhibit distinct immunology compared to nonacral sites, with implications for clinical management.
Collapse
Affiliation(s)
- Jennifer S. Chen
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Michael J. Murphy
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Katelyn Singh
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Alice Wang
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
- Medical Scientist Training Program, Stony Brook University School of Medicine, Stony Brook, New York, USA
| | - Ryan D. Chow
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Sa Rang Kim
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jeffrey M. Cohen
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Christine J. Ko
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - William Damsky
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
39
|
Strobl J, Haniffa M. Functional heterogeneity of human skin-resident memory T cells in health and disease. Immunol Rev 2023; 316:104-119. [PMID: 37144705 PMCID: PMC10952320 DOI: 10.1111/imr.13213] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 05/06/2023]
Abstract
The human skin is populated by a diverse pool of memory T cells, which can act rapidly in response to pathogens and cancer antigens. Tissue-resident memory T cells (TRM ) have been implicated in range of allergic, autoimmune and inflammatory skin diseases. Clonal expansion of cells with TRM properties is also known to contribute to cutaneous T-cell lymphoma. Here, we review the heterogeneous phenotypes, transcriptional programs, and effector functions of skin TRM . We summarize recent studies on TRM formation, longevity, plasticity, and retrograde migration and contextualize the findings to skin TRM and their role in maintaining skin homeostasis and altered functions in skin disease.
Collapse
Affiliation(s)
- Johanna Strobl
- Department of DermatologyMedical University of ViennaViennaAustria
- CeMM Research Center for Molecular MedicineViennaAustria
| | - Muzlifah Haniffa
- Wellcome Sanger InstituteCambridgeUK
- Department of Dermatology and NIHR Newcastle Biomedical Research CentreNewcastle Hospitals NHS Foundation TrustNewcastle upon TyneUK
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
40
|
Ma W, Oliveira-Nunes MC, Xu K, Kossenkov A, Reiner BC, Crist RC, Hayden J, Chen Q. Type I interferon response in astrocytes promotes brain metastasis by enhancing monocytic myeloid cell recruitment. Nat Commun 2023; 14:2632. [PMID: 37149684 PMCID: PMC10163863 DOI: 10.1038/s41467-023-38252-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 04/20/2023] [Indexed: 05/08/2023] Open
Abstract
Cancer metastasis to the brain is a significant clinical problem. Metastasis is the consequence of favorable interactions between invaded cancer cells and the microenvironment. Here, we demonstrate that cancer-activated astrocytes create a sustained low-level activated type I interferon (IFN) microenvironment in brain metastatic lesions. We further confirm that the IFN response in astrocytes facilitates brain metastasis. Mechanistically, IFN signaling in astrocytes activates C-C Motif Chemokine Ligand 2 (CCL2) production, which further increases the recruitment of monocytic myeloid cells. The correlation between CCL2 and monocytic myeloid cells is confirmed in clinical brain metastasis samples. Lastly, genetically or pharmacologically inhibiting C-C Motif Chemokine Receptor 2 (CCR2) reduces brain metastases. Our study clarifies a pro-metastatic effect of type I IFN in the brain even though IFN response has been considered to have anti-tumor effects. Moreover, this work expands our understandings on the interactions between cancer-activated astrocytes and immune cells in brain metastasis.
Collapse
Affiliation(s)
- Weili Ma
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Maria Cecília Oliveira-Nunes
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, 19104, USA
- Carisma Therapeutics, Philadelphia, PA, 19104, USA
| | - Ke Xu
- MD/PhD Program, Boston University School of Medicine, Boston, MA, 02215, USA
| | - Andrew Kossenkov
- Gene Expression & Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Benjamin C Reiner
- Department of Psychiatry, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Richard C Crist
- Department of Psychiatry, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - James Hayden
- Imaging Shared Resource, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Qing Chen
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, 19104, USA.
| |
Collapse
|
41
|
Kalliara E, Belfrage E, Gullberg U, Drott K, Ek S. Spatially Guided and Single Cell Tools to Map the Microenvironment in Cutaneous T-Cell Lymphoma. Cancers (Basel) 2023; 15:cancers15082362. [PMID: 37190290 DOI: 10.3390/cancers15082362] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 05/17/2023] Open
Abstract
Mycosis fungoides (MF) and Sézary syndrome (SS) are two closely related clinical variants of cutaneous T-cell lymphomas (CTCL). Previously demonstrated large patient-to-patient and intra-patient disease heterogeneity underpins the importance of personalized medicine in CTCL. Advanced stages of CTCL are characterized by dismal prognosis, and the early identification of patients who will progress remains a clinical unmet need. While the exact molecular events underlying disease progression are poorly resolved, the tumor microenvironment (TME) has emerged as an important driver. In particular, the Th1-to-Th2 shift in the immune response is now commonly identified across advanced-stage CTCL patients. Herein, we summarize the role of the TME in CTCL evolution and the latest studies in deciphering inter- and intra-patient heterogeneity. We introduce spatially resolved omics as a promising technology to advance immune-oncology efforts in CTCL. We propose the combined implementation of spatially guided and single-cell omics technologies in paired skin and blood samples. Such an approach will mediate in-depth profiling of phenotypic and molecular changes in reactive immune subpopulations and malignant T cells preceding the Th1-to-Th2 shift and reveal mechanisms underlying disease progression from skin-limited to systemic disease that collectively will lead to the discovery of novel biomarkers to improve patient prognostication and the design of personalized treatment strategies.
Collapse
Affiliation(s)
- Eirini Kalliara
- Department of Immunotechnology, Faculty of Engineering (LTH), University of Lund, 223 63 Lund, Sweden
| | - Emma Belfrage
- Department of Dermatology and Venereology, Skane University Hospital (SUS), 205 02 Lund, Sweden
| | - Urban Gullberg
- Department of Hematology and Transfusion Medicine, Skane University Hospital (SUS), 205 02 Lund, Sweden
| | - Kristina Drott
- Department of Hematology and Transfusion Medicine, Skane University Hospital (SUS), 205 02 Lund, Sweden
| | - Sara Ek
- Department of Immunotechnology, Faculty of Engineering (LTH), University of Lund, 223 63 Lund, Sweden
| |
Collapse
|
42
|
Atilla PA, Atilla E. Are we there yet? cellular therapies for cutaneous T cell lymphoma. Curr Res Transl Med 2023; 71:103390. [PMID: 37062252 DOI: 10.1016/j.retram.2023.103390] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/08/2023] [Accepted: 04/04/2023] [Indexed: 04/18/2023]
Abstract
Cutaneous T cell lymphomas (CTCLs) are a heterogenous group of skin-involved T-cell non-Hodgkin lymphoma which Mycosis Fungoides and Sezary Syndrome are the most common variants. Despite considerable progress in distinguishing the pathophysiology, the treatment options are still limited for advanced-stage disease. Recent approval of novel agents such as vorinostat, brentuximab vedotin and mogamulizumab paved a way. Allogeneic hematopoietic stem cell transplantation has been shown to be a feasible option in selected advanced-stage CTCL patients. Chimeric antigen receptor (CAR) T cells have been promising for the treatment of B-cell tumors and have been approved for second-line treatment in non-Hodgkin's lymphoma. Although several obstacles still need to be addressed, CAR T cell treatment for CTCLs seems not far off. This review discusses new discoveries in pathophysiology, the state of cellular therapies in current practice, challenges for cellular treatment in advanced CTCL, and how to overcome these challenges.
Collapse
Affiliation(s)
- Pinar Ataca Atilla
- Ankara University Stem Cell Institute, Ankara, Turkey; Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA, USA
| | - Erden Atilla
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA, USA; Genyo Centre for Genomics and Oncological Research, Genomic Medicine Department, Pfizer/University of Gradana/Andalusian Regional Government, Health Sciences Technnology Park, Granada, Spain.
| |
Collapse
|
43
|
Gao Y, Hu S, Li R, Jin S, Liu F, Liu X, Li Y, Yan Y, Liu W, Gong J, Yang S, Tu P, Shen L, Bai F, Wang Y. Hyperprogression of cutaneous T cell lymphoma after anti-PD-1 treatment. JCI Insight 2023; 8:164793. [PMID: 36649072 PMCID: PMC9977500 DOI: 10.1172/jci.insight.164793] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUNDImmune checkpoint blockade is an emerging treatment for T cell non-Hodgkin's lymphoma (T-NHL), but some patients with T-NHL have experienced hyperprogression with undetermined mechanisms upon anti-PD-1 therapy.METHODSSingle-cell RNA-Seq, whole-genome sequencing, whole-exome sequencing, and functional assays were performed on primary malignant T cells from a patient with advanced cutaneous T cell lymphoma who experienced hyperprogression upon anti-PD-1 treatment.RESULTSThe patient was enrolled in a clinical trial of anti-PD-1 therapy and experienced disease hyperprogression. Single-cell RNA-Seq revealed that PD-1 blockade elicited a remarkable activation and proliferation of the CD4+ malignant T cells, which showed functional PD-1 expression and an exhausted status. Further analyses identified somatic amplification of PRKCQ in the malignant T cells. PRKCQ encodes PKCθ; PKCθ is a key player in the T cell activation/NF-κB pathway. PRKCQ amplification led to high expressions of PKCθ and p-PKCθ (T538) on the malignant T cells, resulting in an oncogenic activation of the T cell receptor (TCR) signaling pathway. PD-1 blockade in this patient released this signaling, derepressed the proliferation of malignant T cells, and resulted in disease hyperprogression.CONCLUSIONOur study provides real-world clinical evidence that PD-1 acts as a tumor suppressor for malignant T cells with oncogenic TCR activation.TRIAL REGISTRATIONClinicalTrials.gov (NCT03809767).FUNDINGThe National Natural Science Foundation of China (81922058), the National Science Fund for Distinguished Young Scholars (T2125002), the National Science and Technology Major Project (2019YFC1315702), the National Youth Top-Notch Talent Support Program (283812), and the Peking University Clinical Medicine plus X Youth Project (PKU2019LCXQ012) supported this work.
Collapse
Affiliation(s)
- Yumei Gao
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Simeng Hu
- Biomedical Pioneering Innovation Center (BIOPIC), and School of Life Sciences, Peking University, Beijing, China.,Academy for Advanced Interdisciplinary Studies (AAIS), and Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program (PTN), Peking University, Beijing, China
| | - Ruoyan Li
- Biomedical Pioneering Innovation Center (BIOPIC), and School of Life Sciences, Peking University, Beijing, China.,Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Shanzhao Jin
- Biomedical Pioneering Innovation Center (BIOPIC), and School of Life Sciences, Peking University, Beijing, China.,BioMap Beijing Intelligence Technology Limited, Block C Information Center Haidian District, Beijing, China
| | - Fengjie Liu
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Xiangjun Liu
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Yingyi Li
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Yicen Yan
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Weiping Liu
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research Ministry of Education, and
| | - Jifang Gong
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Shuxia Yang
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Ping Tu
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Fan Bai
- Biomedical Pioneering Innovation Center (BIOPIC), and School of Life Sciences, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China.,Center for Translational Cancer Research, Peking University First Hospital, Beijing, China
| | - Yang Wang
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| |
Collapse
|
44
|
Lin J, Cai Y, Wang Z, Ma Y, Pan J, Liu Y, Zhao Z. Novel biomarkers predict prognosis and drug-induced neuroendocrine differentiation in patients with prostate cancer. Front Endocrinol (Lausanne) 2023; 13:1005916. [PMID: 36686485 PMCID: PMC9849576 DOI: 10.3389/fendo.2022.1005916] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
Abstract
Background A huge focus is being placed on the development of novel signatures in the form of new combinatorial regimens to distinguish the neuroendocrine (NE) characteristics from castration resistant prostate cancer (CRPC) timely and accurately, as well as predict the disease-free survival (DFS) and progression-free survival (PFS) of prostate cancer (PCa) patients. Methods Single cell data of 4 normal samples, 3 CRPC samples and 3 CRPC-NE samples were obtained from GEO database, and CellChatDB was used for potential intercellular communication, Secondly, using the "limma" package (v3.52.0), we obtained the differential expressed genes between CRPC and CRPC-NE both in single-cell RNA seq and bulk RNA seq samples, and discovered 12 differential genes characterized by CRPC-NE. Then, on the one hand, the diagnosis model of CRPC-NE is developed by random forest algorithm and artificial neural network (ANN) through Cbioportal database; On the other hand, using the data in Cbioportal and GEO database, the DFS and PFS prognostic model of PCa was established and verified through univariate Cox analysis, least absolute shrinkage and selection operator (Lasso) regression and multivariate Cox regression in R software. Finally, somatic mutation and immune infiltration were also discussed. Results Our research shows that there exists specific intercellular communication in classified clusters. Secondly, a CRPC-NE diagnostic model of six genes (HMGN2, MLLT11, SOX4, PCSK1N, RGS16 and PTMA) has been established and verified, the area under the ROC curve (AUC) is as high as 0.952 (95% CI: 0.882-0.994). The mutation landscape shows that these six genes are rarely mutated in the CRPC and NEPC samples. In addition, NE-DFS signature (STMN1 and PCSK1N) and NE-PFS signature (STMN1, UBE2S and HMGN2) are good predictors of DFS and PFS in PCa patients and better than other clinical features. Lastly, the infiltration levels of plasma cells, T cells CD4 naive, Eosinophils and Monocytes were significantly different between the CRPC and NEPC groups. Conclusions This study revealed the heterogeneity between CRPC and CRPC-NE from different perspectives, and developed a reliable diagnostic model of CRPC-NE and robust prognostic models for PCa.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhigang Zhao
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
45
|
Kong S, Li R, Tian Y, Zhang Y, Lu Y, Ou Q, Gao P, Li K, Zhang Y. Single-cell omics: A new direction for functional genetic research in human diseases and animal models. Front Genet 2023; 13:1100016. [PMID: 36685871 PMCID: PMC9846559 DOI: 10.3389/fgene.2022.1100016] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023] Open
Abstract
Over the past decade, with the development of high-throughput single-cell sequencing technology, single-cell omics has been emerged as a powerful tool to understand the molecular basis of cellular mechanisms and refine our knowledge of diverse cell states. They can reveal the heterogeneity at different genetic layers and elucidate their associations by multiple omics analysis, providing a more comprehensive genetic map of biological regulatory networks. In the post-GWAS era, the molecular biological mechanisms influencing human diseases will be further elucidated by single-cell omics. This review mainly summarizes the development and trend of single-cell omics. This involves single-cell omics technologies, single-cell multi-omics technologies, multiple omics data integration methods, applications in various human organs and diseases, classic laboratory cell lines, and animal disease models. The review will reveal some perspectives for elucidating human diseases and constructing animal models.
Collapse
Affiliation(s)
- Siyuan Kong
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Animal Functional Genomics Group, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China; College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Animal Functional Genomics Group, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Rongrong Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Animal Functional Genomics Group, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yunhan Tian
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Animal Functional Genomics Group, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China; College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Yaqiu Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Animal Functional Genomics Group, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yuhui Lu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Animal Functional Genomics Group, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Qiaoer Ou
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Animal Functional Genomics Group, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Peiwen Gao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Animal Functional Genomics Group, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Kui Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Animal Functional Genomics Group, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China; College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Animal Functional Genomics Group, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yubo Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Animal Functional Genomics Group, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China; College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Animal Functional Genomics Group, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- College of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
46
|
Cao M, Deng Y, Deng Y, Wu J, Yang C, Wang Z, Hou Q, Fu H, Ren Z, Xia X, Li Y, Wang W, Xu H, Liao X, Shu Y. Characterization of immature ovarian teratomas through single-cell transcriptome. Front Immunol 2023; 14:1131814. [PMID: 36936909 PMCID: PMC10020330 DOI: 10.3389/fimmu.2023.1131814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction Immature ovarian teratomas are a type of malignant germ cell tumor composed of complicated cell types and are characterized by pathological features of immature neuroectodermal tubules/rosettes. However, there is a lack of understanding of patient-derived immature ovarian teratomas (PDT) at the single cell level. Moreover, whether stem cell lines derived from immature teratomas (CDT) can be used as models for research on PDT remains to be elucidated. Methods Single-cell RNA sequencing (scRNA-seq) and subsequent bioinformatic analysis was performed on three patient-derived immature ovarian teratomas (PDT) samples to reveal the heterogeneity, evolution trajectory, and cell communication within the tumor microenvironment of PDT. Validations were conducted in additional seven samples through multiplex immunofluorescence. Result A total of qualified 22,153 cells were obtained and divided into 28 clusters, which can match to the scRNA-seq annotation of CDT as well as human fetal Cell Atlas, but with higher heterogeneity and more prolific cell-cell crosstalk. Radial glia cells (tagged by SOX2) and immature neuron (tagged by DCX) exhibited mutually exclusive expression and differentiated along distinct evolutionary trajectory from cycling neural progenitors. Proportions of these neuroectodermal cell subtypes may play important roles in PDT through contributing to the internal heterogeneity of PDTs. Moreover, the immune cells in PDTs were infiltrated rather than teratoma-derived, with more abundant macrophage in immature neuron than those in radial glia cells, and the infiltrated macrophage subtypes (i.e., M1 and M2) were significantly correlated to clinical grade. Overall, suppressed evolution process and transcriptome regulation in neuroectodermal cells, reduced cell-cell crosstalk, higher M1/M2 proportion ratio, and enhanced T cell effects in tumor microenvironment are enriched in patients with favorable prognosis. Discussion This study provides a comprehensive profile of PDT at the single cell level, shedding light on the heterogeneity and evolution of neuroectodermal cells within PDTs and the role of immune cells within the tumor microenvironment. Also, our findings highlight the potential usage of CDTs as a model for research on PDT.
Collapse
Affiliation(s)
- Minyuan Cao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yun Deng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yiqi Deng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chongyi Yang
- College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Zijun Wang
- College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Qianqian Hou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huancheng Fu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhixiang Ren
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xuyang Xia
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yue Li
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei Wang
- Department of Pathology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Heng Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Yang Shu, ; Xin Liao, ; Heng Xu,
| | - Xin Liao
- Department of Pathology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Yang Shu, ; Xin Liao, ; Heng Xu,
| | - Yang Shu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Yang Shu, ; Xin Liao, ; Heng Xu,
| |
Collapse
|
47
|
Du Y, Cai Y, Lv Y, Zhang L, Yang H, Liu Q, Hong M, Teng Y, Tang W, Ma R, Wu J, Wu J, Wang Q, Chen H, Li K, Feng J. Single-cell RNA sequencing unveils the communications between malignant T and myeloid cells contributing to tumor growth and immunosuppression in cutaneous T-cell lymphoma. Cancer Lett 2022; 551:215972. [PMID: 36265653 DOI: 10.1016/j.canlet.2022.215972] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/23/2022] [Accepted: 10/13/2022] [Indexed: 11/30/2022]
Abstract
Cutaneous T cell lymphoma (CTCL) is characterized by the accumulation of malignant T cells in the skin. However, advanced CTCL pathophysiology remains elusive and therapeutic options are limited due to the high intratumoral heterogeneity and complicated tumor microenvironment (TME). By comparing the single-cell RNA-seq (scRNA-seq) data from advanced CTCL patients and healthy controls (HCs), we showed that CTCL had a higher enrichment of T/NK and myeloid cells. Subpopulations of T cells (CXCR3+, GNLY+, CREM+, and MKI67+ T cells), with high proliferation, stemness, and copy number variation (CNV) levels, contribute to the malignancy of CTCL. Besides, CCL13+ monocytes/macrophages and LAMP3+ cDC cells were enriched and mediated the immunosuppression via inhibitory interactions with malignant T cells, such as CD47-SIRPA, MIF-CD74, and CCR1-CCL18. Notably, elevated expressions of S100A9 and its receptor TLR4, as well as the activation of downstream toll-like receptor and NF-κB pathway were observed in both malignant cells and myeloid cells in CTCL. Cell co-culture experiments further confirmed that the interaction between malignant CTCL cells and macrophages contributed to tumor growth via S100A9 upregulation and NF-kb activation. Our results showed that blocking the S100A9-TLR4 interaction using tasquinimod could inactivate the NF-κB pathway and inhibit the growth of CTCL tumor cells, and trigger cell apoptosis. Collectively, our study revealed a landscape of immunosuppressive TME mediated by interactions between malignant T cells and myeloid cells, and provided novel targets and potential treatment strategies for advanced CTCL patients.
Collapse
Affiliation(s)
- Yuxin Du
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 42 Baiziting, Nanjing, 210009, China
| | - Yun Cai
- Center for Global Health, School of Public Health, Nanjing Medical University, 211166, Nanjing, Jiangsu, China; Department of Bioinformatics, Nanjing Medical University, 211166, Nanjing, China
| | - Yan Lv
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 42 Baiziting, Nanjing, 210009, China
| | - Lishen Zhang
- Department of Bioinformatics, Nanjing Medical University, 211166, Nanjing, China; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Hao Yang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Road, Shanghai, 200433, China
| | - Quanzhong Liu
- Center for Global Health, School of Public Health, Nanjing Medical University, 211166, Nanjing, Jiangsu, China; Department of Bioinformatics, Nanjing Medical University, 211166, Nanjing, China
| | - Ming Hong
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
| | - Yue Teng
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 42 Baiziting, Nanjing, 210009, China
| | - Weiyan Tang
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 42 Baiziting, Nanjing, 210009, China
| | - Rong Ma
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 42 Baiziting, Nanjing, 210009, China
| | - Jianqiu Wu
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 42 Baiziting, Nanjing, 210009, China
| | - Jianzhong Wu
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 42 Baiziting, Nanjing, 210009, China
| | - Qianghu Wang
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 42 Baiziting, Nanjing, 210009, China; Center for Global Health, School of Public Health, Nanjing Medical University, 211166, Nanjing, Jiangsu, China; Department of Bioinformatics, Nanjing Medical University, 211166, Nanjing, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, 210029, China; Biomedical Big Data Center, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Hongshan Chen
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China; Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China.
| | - Kening Li
- Center for Global Health, School of Public Health, Nanjing Medical University, 211166, Nanjing, Jiangsu, China; Department of Bioinformatics, Nanjing Medical University, 211166, Nanjing, China.
| | - Jifeng Feng
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 42 Baiziting, Nanjing, 210009, China.
| |
Collapse
|
48
|
Ramchatesingh B, Martínez Villarreal A, Arcuri D, Lagacé F, Setah SA, Touma F, Al-Badarin F, Litvinov IV. The Use of Retinoids for the Prevention and Treatment of Skin Cancers: An Updated Review. Int J Mol Sci 2022; 23:ijms232012622. [PMID: 36293471 PMCID: PMC9603842 DOI: 10.3390/ijms232012622] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/21/2022] Open
Abstract
Retinoids are natural and synthetic vitamin A derivatives that are effective for the prevention and the treatment of non-melanoma skin cancers (NMSC). NMSCs constitute a heterogenous group of non-melanocyte-derived skin cancers that impose substantial burdens on patients and healthcare systems. They include entities such as basal cell carcinoma and cutaneous squamous cell carcinoma (collectively called keratinocyte carcinomas), cutaneous lymphomas and Kaposi’s sarcoma among others. The retinoid signaling pathway plays influential roles in skin physiology and pathology. These compounds regulate diverse biological processes within the skin, including proliferation, differentiation, angiogenesis and immune regulation. Collectively, retinoids can suppress skin carcinogenesis. Both topical and systemic retinoids have been investigated in clinical trials as NMSC prophylactics and treatments. Desirable efficacy and tolerability in clinical trials have prompted health regulatory bodies to approve the use of retinoids for NMSC management. Acceptable off-label uses of these compounds as drugs for skin cancers are also described. This review is a comprehensive outline on the biochemistry of retinoids, their activities in the skin, their effects on cancer cells and their adoption in clinical practice.
Collapse
Affiliation(s)
| | | | - Domenico Arcuri
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
| | - François Lagacé
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
- Division of Dermatology, McGill University Health Center, Montreal, QC H4A 3J1, Canada
| | - Samy Abu Setah
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
| | - Fadi Touma
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
| | - Faris Al-Badarin
- Faculté de Médicine, Université Laval, Québec, QC G1V 0V6, Canada
| | - Ivan V. Litvinov
- Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
- Division of Dermatology, McGill University Health Center, Montreal, QC H4A 3J1, Canada
- Correspondence:
| |
Collapse
|
49
|
Abt ER, Rashid K, Le TM, Li S, Lee HR, Lok V, Li L, Creech AL, Labora AN, Mandl HK, Lam AK, Cho A, Rezek V, Wu N, Abril-Rodriguez G, Rosser EW, Mittelman SD, Hugo W, Mehrling T, Bantia S, Ribas A, Donahue TR, Crooks GM, Wu TT, Radu CG. Purine nucleoside phosphorylase enables dual metabolic checkpoints that prevent T cell immunodeficiency and TLR7-associated autoimmunity. J Clin Invest 2022; 132:e160852. [PMID: 35653193 PMCID: PMC9374381 DOI: 10.1172/jci160852] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/31/2022] [Indexed: 01/27/2023] Open
Abstract
Purine nucleoside phosphorylase (PNP) enables the breakdown and recycling of guanine nucleosides. PNP insufficiency in humans is paradoxically associated with both immunodeficiency and autoimmunity, but the mechanistic basis for these outcomes is incompletely understood. Here, we identify two immune lineage-dependent consequences of PNP inactivation dictated by distinct gene interactions. During T cell development, PNP inactivation is synthetically lethal with downregulation of the dNTP triphosphohydrolase SAMHD1. This interaction requires deoxycytidine kinase activity and is antagonized by microenvironmental deoxycytidine. In B lymphocytes and macrophages, PNP regulates Toll-like receptor 7 signaling by controlling the levels of its (deoxy)guanosine nucleoside ligands. Overriding this regulatory mechanism promotes germinal center formation in the absence of exogenous antigen and accelerates disease in a mouse model of autoimmunity. This work reveals that one purine metabolism gene protects against immunodeficiency and autoimmunity via independent mechanisms operating in distinct immune lineages and identifies PNP as a potentially novel metabolic immune checkpoint.
Collapse
Affiliation(s)
- Evan R. Abt
- Department of Molecular and Medical Pharmacology and
| | - Khalid Rashid
- Department of Molecular and Medical Pharmacology and
| | - Thuc M. Le
- Department of Molecular and Medical Pharmacology and
| | - Suwen Li
- Department of Molecular and Medical Pharmacology and
| | - Hailey R. Lee
- Department of Molecular and Medical Pharmacology and
| | - Vincent Lok
- Department of Molecular and Medical Pharmacology and
| | - Luyi Li
- Department of Surgery, UCLA, Los Angeles, California, USA
| | | | | | - Hanna K. Mandl
- Department of Surgery, UCLA, Los Angeles, California, USA
| | - Alex K. Lam
- Department of Molecular and Medical Pharmacology and
| | - Arthur Cho
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | | | - Nanping Wu
- Department of Surgery, UCLA, Los Angeles, California, USA
| | | | | | - Steven D. Mittelman
- Division of Pediatric Endocrinology, UCLA Children’s Discovery and Innovation Institute, and
| | - Willy Hugo
- Division of Dermatology, Department of Medicine, UCLA, Los Angeles, California, USA
| | | | | | - Antoni Ribas
- Department of Molecular and Medical Pharmacology and
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
- Division of Hematology/Oncology, Department of Medicine
- Division of Surgical Oncology, Department of Surgery
- Jonsson Comprehensive Cancer Center
| | - Timothy R. Donahue
- Department of Molecular and Medical Pharmacology and
- Department of Surgery, UCLA, Los Angeles, California, USA
- Jonsson Comprehensive Cancer Center
| | - Gay M. Crooks
- Division of Pediatric Hematology-Oncology, Department of Pediatrics
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, and
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, California, USA
| | - Ting-Ting Wu
- Department of Molecular and Medical Pharmacology and
| | - Caius G. Radu
- Department of Molecular and Medical Pharmacology and
- Jonsson Comprehensive Cancer Center
| |
Collapse
|
50
|
Hoeks C, Duran G, Hellings N, Broux B. When Helpers Go Above and Beyond: Development and Characterization of Cytotoxic CD4+ T Cells. Front Immunol 2022; 13:951900. [PMID: 35903098 PMCID: PMC9320319 DOI: 10.3389/fimmu.2022.951900] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/21/2022] [Indexed: 11/26/2022] Open
Abstract
Once regarded as an experimental artefact, cytotoxic CD4+ T cells (CD4 CTL) are presently recognized as a biologically relevant T cell subset with important functions in anti-viral, anti-tumor, and autoimmune responses. Despite the potentially large impact on their micro-environment, the absolute cell counts of CD4 CTL within the peripheral circulation are relatively low. With the rise of single cell analysis techniques, detection of these cells is greatly facilitated. This led to a renewed appraisal of CD4 CTL and an increased insight into their heterogeneous nature and ontogeny. In this review, we summarize the developmental path from naïve CD4+ T cells to terminally differentiated CD4 CTL, and present markers that can be used to detect or isolate CD4 CTL and their precursors. Subsets of CD4 CTL and their divergent functionalities are discussed. Finally, the importance of local cues as triggers for CD4 CTL differentiation is debated, posing the question whether CD4 CTL develop in the periphery and migrate to site of inflammation when called for, or that circulating CD4 CTL reflect cells that returned to the circulation following differentiation at the local inflammatory site they previously migrated to. Even though much remains to be learned about this intriguing T cell subset, it is clear that CD4 CTL represent interesting therapeutic targets for several pathologies.
Collapse
Affiliation(s)
- Cindy Hoeks
- Neuro Immune Connections & Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- University MS Center (UMSC), Hasselt, Belgium
| | - Gayel Duran
- Neuro Immune Connections & Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- University MS Center (UMSC), Hasselt, Belgium
| | - Niels Hellings
- Neuro Immune Connections & Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- University MS Center (UMSC), Hasselt, Belgium
| | - Bieke Broux
- Neuro Immune Connections & Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- University MS Center (UMSC), Hasselt, Belgium
- *Correspondence: Bieke Broux,
| |
Collapse
|