1
|
He N, Li Y, Liu F, Dong X, Ma D. Adipocytes regulate monocyte development through the OGT-NEFA-CD36/FABP4 pathway in high-fat diet-induced obesity. Cell Death Dis 2025; 16:401. [PMID: 40389445 PMCID: PMC12089399 DOI: 10.1038/s41419-025-07721-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 04/17/2025] [Accepted: 05/06/2025] [Indexed: 05/21/2025]
Abstract
Obesity, resulting from excessive adipocyte accumulation, is a primary risk for various diseases. Although its impact on hematopoietic stem cell (HSC) function has been reported, its effects on HSC differentiation remain controversial. O-GlcNAc transferase (OGT), which catalyzes the attachment of N-acetylglucosamine to serine and threonine residues in proteins, acts as a metabolic sensor capable of regulating diverse physiological processes. This study demonstrates that obesity is associated with higher peripheral monocyte levels. Adipocyte OGT is crucial for monocyte development in high-fat diet (HFD)-induced obesity, promoting an increase in peripheral blood monocytes through transcriptional activation of nonesterified fatty acids (NEFA), a critical energy substrate. Loss of adipocyte OGT decreases serum NEFA levels, reduces white adipose tissue, and inhibits HSC differentiation into monocytes in HFD-induced obesity. Mechanistically, the regulated effect of adipocyte OGT on monocyte development may be mediated by NEFA-cluster of differentiation 36/fatty acid binding protein 4 (CD36/FABP4) pathway in HSCs in HFD-induced obesity. These findings establish the critical role of adipocyte OGT in hematopoietic homeostasis and monocyte development.
Collapse
Affiliation(s)
- Na He
- Advanced Medical Research InstiTabletute, Shandong University, Shandong, 250012, China
- Department of Hematology, Qilu Hospital of Shandong University, Shandong, 250012, China
| | - Yingjie Li
- Department of Health Management Center, Qilu Hospital of Shandong University, Shandong, 250012, China
| | - Fabao Liu
- Advanced Medical Research InstiTabletute, Shandong University, Shandong, 250012, China
| | - Xifeng Dong
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital of Shandong University, Shandong, 250012, China.
| |
Collapse
|
2
|
Cui X, Zhu Y, Zeng L, Zhang M, Uddin A, Gillespie TW, McCullough LE, Zhao S, Torres MA, Wan Y. Pharmacological Dissection Identifies Retatrutide Overcomes the Therapeutic Barrier of Obese TNBC Treatments through Suppressing the Interplay between Glycosylation and Ubiquitylation of YAP. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407494. [PMID: 39868848 PMCID: PMC11923992 DOI: 10.1002/advs.202407494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 01/13/2025] [Indexed: 01/28/2025]
Abstract
Triple-negative breast cancer (TNBC) in obese patients remains challenging. Recent studies have linked obesity to an increased risk of TNBC and malignancies. Through multiomic analysis and experimental validation, a dysfunctional Eukaryotic Translation Initiation Factor 3 Subunit H (EIF3H)/Yes-associated protein (YAP) proteolytic axis is identified as a pivotal junction mediating the interplay between cancer-associated adipocytes and the response to anti-cancer drugs in TNBC. Mechanistically, cancer-associated adipocytes drive metabolic reprogramming resulting in an upregulated hexosamine biosynthetic pathway (HBP). This aberrant upregulation of HBP promotes YAP O-GlcNAcylation and the subsequent recruitment of EIF3H deubiquitinase, which stabilizes YAP, thus promoting tumor growth and chemotherapy resistance. It is found that Retatrutide, an anti-obesity agent, inhibits HBP and YAP O-GlcNAcylation leading to increased YAP degradation through the deprivation of EIF3H-mediated deubiquitylation of YAP. In preclinical models of obese TNBC, Retatrutide downregulates HBP, decreases YAP protein levels, and consequently decreases tumor size and enhances chemotherapy efficacy. This effect is particularly pronounced in obese mice bearing TNBC tumors. Overall, these findings reveal a critical interplay between adipocyte-mediated metabolic reprogramming and EIF3H-mediated YAP proteolytic control, offering promising therapeutic strategies to mitigate the adverse effects of obesity on TNBC progression.
Collapse
Affiliation(s)
- Xin Cui
- Department of Pharmacology and Chemical BiologyEmory University School of MedicineAtlantaGA30322USA
| | - Yueming Zhu
- Department of Pharmacology and Chemical BiologyEmory University School of MedicineAtlantaGA30322USA
- Winship Cancer InstituteEmory University School of MedicineAtlantaGA30322USA
| | - Lidan Zeng
- Department of Pharmacology and Chemical BiologyEmory University School of MedicineAtlantaGA30322USA
| | - Mengyuan Zhang
- Department of Biochemistry and Molecular BiologyInstitute of BioinformaticsUniversity of GeorgiaAthensGA30602USA
| | - Amad Uddin
- Department of Pharmacology and Chemical BiologyEmory University School of MedicineAtlantaGA30322USA
| | - Theresa W. Gillespie
- Winship Cancer InstituteEmory University School of MedicineAtlantaGA30322USA
- Department of SurgeryEmory University School of MedicineAtlantaGA30322USA
- Department of Hematology and Medical OncologyEmory University School of MedicineAtlantaGA30322USA
| | - Lauren E. McCullough
- Winship Cancer InstituteEmory University School of MedicineAtlantaGA30322USA
- Department of EpidemiologyEmory University Rollins School of Public HealthAtlantaGA30322USA
| | - Shaying Zhao
- Department of Biochemistry and Molecular BiologyInstitute of BioinformaticsUniversity of GeorgiaAthensGA30602USA
| | - Mylin A. Torres
- Winship Cancer InstituteEmory University School of MedicineAtlantaGA30322USA
- Department of Radiation OncologyEmory University School of MedicineAtlantaGA30322USA
| | - Yong Wan
- Department of Pharmacology and Chemical BiologyEmory University School of MedicineAtlantaGA30322USA
- Winship Cancer InstituteEmory University School of MedicineAtlantaGA30322USA
- Department of Hematology and Medical OncologyEmory University School of MedicineAtlantaGA30322USA
| |
Collapse
|
3
|
Lerévérend C, Kotaich N, Cartier L, De Boni M, Lahire S, Fichel C, Thiebault C, Brabencova E, Maquin C, Barbosa E, Corsois L, Hotton J, Guendouzen S, Guilbert P, Lepagnol-Bestel AM, Cahen-Doidy L, Lehmann-Che J, Devy J, Bensussan A, Le Jan S, Pommier A, Merrouche Y, Le Naour R, Vignot S, Potteaux S. Enhanced expression of galectin-9 in triple negative breast cancer cells following radiotherapy: Implications for targeted therapy. Int J Cancer 2025; 156:229-242. [PMID: 39077999 DOI: 10.1002/ijc.35107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/15/2024] [Accepted: 06/27/2024] [Indexed: 07/31/2024]
Abstract
Optimizations are expected in the development of immunotherapy for the treatment of Triple-negative breast cancer (TNBC). We studied the expression of galectin-9 (Gal-9) after irradiation and assessed the differential impacts of its targeting with or without radiotherapy. Tumor resections from TNBC patients who received neoadjuvant radiotherapy revealed higher levels of Gal-9 in comparison to their baseline level, only in non-responder patients. Gal-9 expression was also found to be increased in TNBC tumor biopsies and cell lines after irradiation. We investigated the therapeutic advantage of targeting Gal-9 after radiotherapy in mice. Irradiated 4T1 cells or control non-irradiated 4T1 cells were injected into BALB/c mice. Anti-Gal-9 antibody treatment decreased tumor progression only in mice injected with irradiated 4T1 cells. This proof-of-concept study demonstrates that Gal-9 could be considered as a dynamic biomarker after radiotherapy for TNBC and suggests that Gal-9 induced-overexpression could represent an opportunity to develop new therapeutic strategies for TNBC patients.
Collapse
Affiliation(s)
- Cédric Lerévérend
- Université de Reims Champagne Ardenne, IRMAIC UR 7509, Reims, France
| | - Nour Kotaich
- Université de Reims Champagne Ardenne, IRMAIC UR 7509, Reims, France
| | | | - Manon De Boni
- Département de Recherche, Institut Godinot, Reims, France
| | - Sarah Lahire
- Université de Reims Champagne Ardenne, IRMAIC UR 7509, Reims, France
| | - Caroline Fichel
- Université de Reims Champagne Ardenne, IRMAIC UR 7509, Reims, France
| | | | - Eva Brabencova
- Centre de ressources biologiques, Institut Godinot, Reims, France
| | - Célia Maquin
- Centre de ressources biologiques, Institut Godinot, Reims, France
| | - Elodie Barbosa
- Centre de ressources biologiques, Institut Godinot, Reims, France
| | | | - Judicael Hotton
- Département de chirurgie oncologique, Institut Godinot, Reims, France
| | | | | | | | | | - Jacqueline Lehmann-Che
- Université Paris Cité, INSERM, U976 HIPI, Paris, France
- Molecular Oncology Unit, Saint Louis Hospital, APHP, Paris, France
| | - Jérôme Devy
- Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, Reims, France
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Reims, Cedex, France
| | | | - Sébastien Le Jan
- Université de Reims Champagne Ardenne, IRMAIC UR 7509, Reims, France
| | - Arnaud Pommier
- Université de Reims Champagne Ardenne, IRMAIC UR 7509, Reims, France
| | - Yacine Merrouche
- Université de Reims Champagne Ardenne, IRMAIC UR 7509, Reims, France
- Département de Recherche, Institut Godinot, Reims, France
| | - Richard Le Naour
- Université de Reims Champagne Ardenne, IRMAIC UR 7509, Reims, France
| | - Stéphane Vignot
- Université de Reims Champagne Ardenne, IRMAIC UR 7509, Reims, France
- Département de Recherche, Institut Godinot, Reims, France
| | - Stephane Potteaux
- Université de Reims Champagne Ardenne, IRMAIC UR 7509, Reims, France
- Département de Recherche, Institut Godinot, Reims, France
- Inserm, Délégation régionale Paris Île-de-France Centre Nord, Paris, France
| |
Collapse
|
4
|
Lill CB, Fitter S, Zannettino ACW, Vandyke K, Noll JE. Molecular and cellular mechanisms of chemoresistance in paediatric pre-B cell acute lymphoblastic leukaemia. Cancer Metastasis Rev 2024; 43:1385-1399. [PMID: 39102101 PMCID: PMC11554931 DOI: 10.1007/s10555-024-10203-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024]
Abstract
Paediatric patients with relapsed B cell acute lymphoblastic leukaemia (B-ALL) have poor prognosis, as relapse-causing clones are often refractory to common chemotherapeutics. While the molecular mechanisms leading to chemoresistance are varied, significant evidence suggests interactions between B-ALL blasts and cells within the bone marrow microenvironment modulate chemotherapy sensitivity. Importantly, bone marrow mesenchymal stem cells (BM-MSCs) and BM adipocytes are known to support B-ALL cells through multiple distinct molecular mechanisms. This review discusses the contribution of integrin-mediated B-ALL/BM-MSC signalling and asparagine supplementation in B-ALL chemoresistance. In addition, the role of adipocytes in sequestering anthracyclines and generating a BM niche favourable for B-ALL survival is explored. Furthermore, this review discusses the role of BM-MSCs and adipocytes in promoting a quiescent and chemoresistant B-ALL phenotype. Novel treatments which target these mechanisms are discussed herein, and are needed to improve dismal outcomes in patients with relapsed/refractory disease.
Collapse
Affiliation(s)
- Caleb B Lill
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
- Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Stephen Fitter
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
- Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Andrew C W Zannettino
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
- Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Kate Vandyke
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
- Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Jacqueline E Noll
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia.
- Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia.
| |
Collapse
|
5
|
Tsukamoto T. The expression of Galectin-9 correlates with mTOR and AMPK in murine colony-forming erythroid progenitors. Eur J Haematol 2024; 113:416-425. [PMID: 38853593 DOI: 10.1111/ejh.14249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024]
Abstract
OBJECTIVES Galectin-9 (Gal-9) is an immune checkpoint ligand for T-cell immunoglobulin and mucin domain 3. Although the roles of Gal-9 in regulating immune responses have been well investigated, their biological roles have yet to be fully documented. This study aimed to analyse the expression of Gal-9 bone marrow (BM) cells in C57BL/6J (B6) mice. Furthermore, the co-expression of Gal-9 with the mammalian target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) was investigated. METHODS The BM cells in adult C57BL/6J (B6) mice were collected and analysed in vitro. RESULTS In a flow cytometric analysis of BM cells, Gal-9 was highly expressed in c-KithiSca-1-CD34-CD71+ erythroid progenitors (EPs), whereas it was downregulated in more differentiated c-KitloCD71+TER119+ cells. Subsequently, a negative selection of CD3-B220-Sca-1-CD34-CD41-CD16/32- EPs was performed. This resulted in substantial enrichment of KithiCD71+Gal-9+ cells and erythroid colony-forming units (CFU-Es), suggesting that the colony-forming subset of EPs are included in the KithiCD71+Gal-9+ population. Furthermore, we found that EPs had lower mTOR and AMPK expression levels in Gal-9 knockout B6 mice than in wild-type B6 mice. CONCLUSIONS These results may stimulate further investigation of the role of Gal-9 in haematopoiesis.
Collapse
Affiliation(s)
- Tetsuo Tsukamoto
- Department of Health Informatics, Niigata University of Health of Welfare, Niigata, Japan
- Department of Immunology, Faculty of Medicine, Kindai University, Osaka, Japan
| |
Collapse
|
6
|
Shil RK, Mohammed NBB, Dimitroff CJ. Galectin-9 - ligand axis: an emerging therapeutic target for multiple myeloma. Front Immunol 2024; 15:1469794. [PMID: 39386209 PMCID: PMC11461229 DOI: 10.3389/fimmu.2024.1469794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Galectin-9 (Gal-9) is a tandem-repeat galectin with diverse roles in immune homeostasis, inflammation, malignancy, and autoimmune diseases. In cancer, Gal-9 displays variable expression patterns across different tumor types. Its interactions with multiple binding partners, both intracellularly and extracellularly, influence key cellular processes, including immune cell modulation and tumor microenvironment dynamics. Notably, Gal-9 binding to cell-specific glycoconjugate ligands has been implicated in both promoting and suppressing tumor progression. Here, we provide insights into Gal-9 and its involvement in immune homeostasis and cancer biology with an emphasis on multiple myeloma (MM) pathophysiology, highlighting its complex and context-dependent dual functions as a pro- and anti-tumorigenic molecule and its potential implications for therapy in MM patients.
Collapse
Affiliation(s)
- Rajib K. Shil
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Norhan B. B. Mohammed
- The Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, United States
- Department of Medical Biochemistry, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Charles J. Dimitroff
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| |
Collapse
|
7
|
Yang W, Zeng H, Jin Y. Robotic pancreaticoduodenectomy in patients with overweight or obesity: a meta-analysis protocol. BMJ Open 2024; 14:e080605. [PMID: 39019640 PMCID: PMC11284876 DOI: 10.1136/bmjopen-2023-080605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 06/24/2024] [Indexed: 07/19/2024] Open
Abstract
INTRODUCTION The prevalence of overweight or obesity among patients undergoing pancreaticoduodenectomy is on the rise. The utilisation of robotic assistance has the potential to enhance the feasibility of performing minimally invasive pancreaticoduodenectomy in this particular group of patients who are at a higher risk. The objective of this meta-analysis is to assess the safety and effectiveness of robotic pancreaticoduodenectomy in individuals with overweight or obesity. METHODS AND ANALYSIS This investigation will systematically search for randomised controlled trials (RCTs) and non-randomised comparative studies that compare robotic pancreaticoduodenectomy with open or laparoscopic pancreaticoduodenectomy in patients with overweight or obesity, using PubMed, Embase and the Cochrane Library databases. The methodological quality of studies will be evaluated using the Cochrane risk of bias tool for RCTs and the Newcastle-Ottawa Scale for observational studies. RevMan software (V.5.4.1) will be used for statistical analysis. The OR and weighted mean differences will be calculated separately for dichotomous and continuous data. The selection of a fixed-effects or random-effects model will depend on the level of heterogeneity observed among the included studies. ETHICS AND DISSEMINATION This study will be conducted based on data in the published literature from publicly available databases. Therefore, ethics approval is not applicable. The results will be disseminated in a peer-reviewed journal. PROSPERO REGISTRATION NUMBER CRD42023462321.
Collapse
Affiliation(s)
- Wenxiao Yang
- Business School, University of Shanghai for Science & Technology, Shanghai, China
| | - Hai Zeng
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yueling Jin
- Shanghai Science and Technology Museum, Shanghai, China
| |
Collapse
|
8
|
Yamaguchi H, Hsu JM, Sun L, Wang SC, Hung MC. Advances and prospects of biomarkers for immune checkpoint inhibitors. Cell Rep Med 2024; 5:101621. [PMID: 38906149 PMCID: PMC11293349 DOI: 10.1016/j.xcrm.2024.101621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/22/2024] [Accepted: 05/29/2024] [Indexed: 06/23/2024]
Abstract
Immune checkpoint inhibitors (ICIs) activate anti-cancer immunity by blocking T cell checkpoint molecules such as programmed death 1 (PD-1) and cytotoxic T lymphocyte-associated protein 4 (CTLA-4). Although ICIs induce some durable responses in various cancer patients, they also have disadvantages, including low response rates, the potential for severe side effects, and high treatment costs. Therefore, selection of patients who can benefit from ICI treatment is critical, and identification of biomarkers is essential to improve the efficiency of ICIs. In this review, we provide updated information on established predictive biomarkers (tumor programmed death-ligand 1 [PD-L1] expression, DNA mismatch repair deficiency, microsatellite instability high, and tumor mutational burden) and potential biomarkers currently under investigation such as tumor-infiltrated and peripheral lymphocytes, gut microbiome, and signaling pathways related to DNA damage and antigen presentation. In particular, this review aims to summarize the current knowledge of biomarkers, discuss issues, and further explore future biomarkers.
Collapse
Affiliation(s)
- Hirohito Yamaguchi
- Graduate Institute of Cell Biology, China Medical University, Taichung City 406040, Taiwan; Graduate Institute of Biomedical Sciences and Institute of Biochemistry and Molecular Biology, China Medical University, Taichung City 406040, Taiwan; Cancer Biology and Precision Therapeutics Center and Research Center for Cancer Biology, China Medical University, Taichung City 40402, Taiwan
| | - Jung-Mao Hsu
- Graduate Institute of Biomedical Sciences and Institute of Biochemistry and Molecular Biology, China Medical University, Taichung City 406040, Taiwan; Cancer Biology and Precision Therapeutics Center and Research Center for Cancer Biology, China Medical University, Taichung City 40402, Taiwan
| | - Linlin Sun
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Shao-Chun Wang
- Graduate Institute of Biomedical Sciences and Institute of Biochemistry and Molecular Biology, China Medical University, Taichung City 406040, Taiwan; Cancer Biology and Precision Therapeutics Center and Research Center for Cancer Biology, China Medical University, Taichung City 40402, Taiwan; Center for Molecular Medicine, China Medical University Hospital, Taichung City 40402, Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences and Institute of Biochemistry and Molecular Biology, China Medical University, Taichung City 406040, Taiwan; Cancer Biology and Precision Therapeutics Center and Research Center for Cancer Biology, China Medical University, Taichung City 40402, Taiwan; Center for Molecular Medicine, China Medical University Hospital, Taichung City 40402, Taiwan.
| |
Collapse
|
9
|
Panting RG, Kotecha RS, Cheung LC. The critical role of the bone marrow stromal microenvironment for the development of drug screening platforms in leukemia. Exp Hematol 2024; 133:104212. [PMID: 38552942 DOI: 10.1016/j.exphem.2024.104212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/21/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024]
Abstract
Extensive research over the past 50 years has resulted in significant improvements in survival for patients diagnosed with leukemia. Despite this, a subgroup of patients harboring high-risk genetic alterations still suffer from poor outcomes. There is a desperate need for new treatments to improve survival, yet consistent failure exists in the translation of in vitro drug development to clinical application. Preclinical screening conventionally utilizes tumor cell monocultures to assess drug activity; however, emerging research has acknowledged the vital role of the tumor microenvironment in treatment resistance and disease relapse. Current co-culture drug screening methods frequently employ fibroblasts as the designated stromal cell component. Alternative stromal cell types that are known to contribute to chemoresistance are often absent in preclinical evaluations of drug efficacy. This review highlights mechanisms of chemoresistance by a range of different stromal constituents present in the bone marrow microenvironment. Utilizing an array of stromal cell types at the early stages of drug screening may enhance the translation of in vitro drug development to clinical use. Ultimately, we highlight the need to consider the bone marrow microenvironment in drug screening platforms for leukemia to develop superior therapies for the treatment of high-risk patients with poor prognostic outcomes.
Collapse
Affiliation(s)
- Rhiannon G Panting
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, Western Australia, Australia; Curtin Medical School, Curtin University, Perth, Western Australia, Australia
| | - Rishi S Kotecha
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, Western Australia, Australia; Curtin Medical School, Curtin University, Perth, Western Australia, Australia; School of Medicine, University of Western Australia, Perth, Western Australia, Australia; Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children's Hospital, Perth, Western Australia, Australia
| | - Laurence C Cheung
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, Western Australia, Australia; Curtin Medical School, Curtin University, Perth, Western Australia, Australia; Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia.
| |
Collapse
|
10
|
Yıldırım C. Galectin-9, a pro-survival factor inducing immunosuppression, leukemic cell transformation and expansion. Mol Biol Rep 2024; 51:571. [PMID: 38662155 DOI: 10.1007/s11033-024-09563-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Leukemia is a malignancy of the bone marrow and blood originating from self-renewing cancerous immature blast cells or transformed leukocytes. Despite improvements in treatments, leukemia remains still a serious disease with poor prognosis because of disease heterogeneity, drug resistance and relapse. There is emerging evidence that differentially expression of co-signaling molecules play a critical role in tumor immune evasion. Galectin-9 (Gal-9) is one of the key proteins that leukemic cells express, secrete, and use to proliferate, self-renew, and survive. It also suppresses host immune responses controlled by T and NK cells, enabling leukemic cells to evade immune surveillance. The present review provides the molecular mechanisms of Gal-9-induced immune evasion in leukemia. Understanding the complex immune evasion machinery driven by Gal-9 expressing leukemic cells will enable the identification of novel therapeutic strategies for efficient immunotherapy in leukemic patients. Combined treatment approaches targeting T-cell immunoglobulin and mucin domain-3 (Tim-3)/Gal-9 and other immune checkpoint pathways can be considered, which may enhance the efficacy of host effector cells to attack leukemic cells.
Collapse
Affiliation(s)
- Cansu Yıldırım
- Atatürk Vocational School of Health Services, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey.
| |
Collapse
|
11
|
Tsilingiris D, Vallianou NG, Spyrou N, Kounatidis D, Christodoulatos GS, Karampela I, Dalamaga M. Obesity and Leukemia: Biological Mechanisms, Perspectives, and Challenges. Curr Obes Rep 2024; 13:1-34. [PMID: 38159164 PMCID: PMC10933194 DOI: 10.1007/s13679-023-00542-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE OF REVIEW To examine the epidemiological data on obesity and leukemia; evaluate the effect of obesity on leukemia outcomes in childhood acute lymphoblastic leukemia (ALL) survivors; assess the potential mechanisms through which obesity may increase the risk of leukemia; and provide the effects of obesity management on leukemia. Preventive (diet, physical exercise, obesity pharmacotherapy, bariatric surgery) measures, repurposing drugs, candidate therapeutic agents targeting oncogenic pathways of obesity and insulin resistance in leukemia as well as challenges of the COVID-19 pandemic are also discussed. RECENT FINDINGS Obesity has been implicated in the development of 13 cancers, such as breast, endometrial, colon, renal, esophageal cancers, and multiple myeloma. Leukemia is estimated to account for approximately 2.5% and 3.1% of all new cancer incidence and mortality, respectively, while it represents the most frequent cancer in children younger than 5 years. Current evidence indicates that obesity may have an impact on the risk of leukemia. Increased birthweight may be associated with the development of childhood leukemia. Obesity is also associated with worse outcomes and increased mortality in leukemic patients. However, there are several limitations and challenges in meta-analyses and epidemiological studies. In addition, weight gain may occur in a substantial number of childhood ALL survivors while the majority of studies have documented an increased risk of relapse and mortality among patients with childhood ALL and obesity. The main pathophysiological pathways linking obesity to leukemia include bone marrow adipose tissue; hormones such as insulin and the insulin-like growth factor system as well as sex hormones; pro-inflammatory cytokines, such as IL-6 and TNF-α; adipocytokines, such as adiponectin, leptin, resistin, and visfatin; dyslipidemia and lipid signaling; chronic low-grade inflammation and oxidative stress; and other emerging mechanisms. Obesity represents a risk factor for leukemia, being among the only known risk factors that could be prevented or modified through weight loss, healthy diet, and physical exercise. Pharmacological interventions, repurposing drugs used for cardiometabolic comorbidities, and bariatric surgery may be recommended for leukemia and obesity-related cancer prevention.
Collapse
Affiliation(s)
- Dimitrios Tsilingiris
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Dragana, 68100, Alexandroupolis, Greece
| | - Natalia G Vallianou
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, 10676, Athens, Greece
| | - Nikolaos Spyrou
- Tisch Cancer Institute Icahn School of Medicine at Mount Sinai, 1190 One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Dimitris Kounatidis
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, 10676, Athens, Greece
| | | | - Irene Karampela
- 2nd Department of Critical Care, Medical School, University of Athens, Attikon General University Hospital, 1 Rimini Str, 12462, Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias str, 11527, Athens, Greece.
| |
Collapse
|
12
|
Kellner AV, Hunter R, Do P, Eggert J, Jaffe M, Geitgey DK, Lee M, Hamilton JAG, Ross AJ, Ank RS, Bender RL, Ma R, Porter CC, Dreaden EC, Au-Yeung BB, Haynes KA, Henry CJ, Salaita K. The T-cell niche tunes immune function through modulation of the cytoskeleton and TCR-antigen forces. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578101. [PMID: 38352441 PMCID: PMC10862838 DOI: 10.1101/2024.01.31.578101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Obesity is a major public health crisis given its rampant growth and association with an increased risk for cancer. Interestingly, patients with obesity tend to have an increased tumor burden and decreased T-cell function. It remains unclear how obesity compromises T-cell mediated immunity. To address this question, we modeled the adipocyte niche using the secretome released from adipocytes as well as the niche of stromal cells and investigated how these factors modulated T-cell function. We found that the secretomes altered antigen-specific T-cell receptor (TCR) triggering and activation. RNA-sequencing analysis identified thousands of gene targets modulated by the secretome including those associated with cytoskeletal regulation and actin polymerization. We next used molecular force probes to show that T-cells exposed to the adipocyte niche display dampened force transmission to the TCR-antigen complex and conversely, stromal cell secreted factors lead to significantly enhanced TCR forces. These results were then validated in diet-induced obese mice. Importantly, secretome-mediated TCR force modulation mirrored the changes in T-cell functional responses in human T-cells using the FDA-approved immunotherapy, blinatumomab. Thus, this work shows that the adipocyte niche contributes to T-cell dysfunction through cytoskeletal modulation and reduces TCR triggering by dampening TCR forces consistent with the mechanosensor model of T-cell activation.
Collapse
|
13
|
Zhang M, Liu C, Li Y, Li H, Zhang W, Liu J, Wang L, Sun C. Galectin-9 in cancer therapy: from immune checkpoint ligand to promising therapeutic target. Front Cell Dev Biol 2024; 11:1332205. [PMID: 38264357 PMCID: PMC10803597 DOI: 10.3389/fcell.2023.1332205] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/22/2023] [Indexed: 01/25/2024] Open
Abstract
Galectin-9 (Gal-9) is a vital member of the galectin family, functioning as a multi-subtype galactose lectin with diverse biological roles. Recent research has revealed that Gal-9's interaction with tumors is an independent factor that influences tumor progression. Furthermore, Gal-9 in the immune microenvironment cross-talks with tumor-associated immune cells, informing the clarification of Gal-9's identity as an immune checkpoint. A thorough investigation into Gal-9's role in various cancer types and its interaction with the immune microenvironment could yield novel strategies for subsequent targeted immunotherapy. This review focuses on the latest advances in understanding the direct and indirect cross-talk between Gal-9 and hematologic malignancies, in addition to solid tumors. In addition, we discuss the prospects of Gal-9 in tumor immunotherapy, including its cross-talk with the ligand TIM-3 and its potential in immune-combination therapy.
Collapse
Affiliation(s)
- Minpu Zhang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cun Liu
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Ye Li
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Huayao Li
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Wenfeng Zhang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Jingyang Liu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Liquan Wang
- Department of Thyroid and Breast Surgery, Weifang People’s Hospital, Weifang, China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| |
Collapse
|
14
|
Johnston H, Youshanlouei HR, Osei C, Patel AA, DuVall A, Wang P, Wanjari P, Segal J, Venkataraman G, Cheng JX, Gurbuxani S, Lager A, Fitzpatrick C, Thirman M, Nawas M, Liu H, Drazer M, Odenike O, Larson R, Stock W, Saygin C. Socioeconomic determinants of the biology and outcomes of acute lymphoblastic leukemia in adults. Blood Adv 2024; 8:164-171. [PMID: 38039510 PMCID: PMC10787242 DOI: 10.1182/bloodadvances.2023011862] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 12/03/2023] Open
Abstract
ABSTRACT Various socioeconomic and biologic factors affect cancer health disparities and differences in health outcomes. To better characterize the socioeconomic vs biologic determinants of acute lymphoblastic leukemia (ALL) outcomes, we conducted a single-institution, retrospective analysis of adult patients with ALL treated at the University of Chicago (UChicago) from 2010 to 2022 and compared our outcomes with the US national data (the Surveillance, Epidemiology, and End Results [SEER] database). Among 221 adult patients with ALL treated at UChicago, BCR::ABL1 was more frequent in patients with higher body mass index (BMI; odds ratio [OR], 7.64; 95% confidence interval [CI], 1.17-49.9) and non-Hispanic Black (NHB) ancestry (59% vs 24% in non-Hispanic White (NHW) and 20% in Hispanic patients; P = .001). In a multivariable analysis, age (hazard ratio [HR], 6.93; 95% CI, 2.27-21.1) and higher BMI at diagnosis (HR, 10.3; 95% CI, 2.56-41.5) were independent predictors of poor overall survival (OS). In contrast, race or income were not predictors of OS in the UChicago cohort. Analysis of the national SEER database (2010-2020) demonstrated worse survival outcomes in Hispanic and NHB patients than in NHW patients among adolescent and young adults (AYAs) but not in older adults (aged >40 years). Both AYA and older adult patients with higher median household income had better OS than those with lower income. Therefore, multidisciplinary medical care coupled with essential supportive care services offered at centers experienced in ALL care may alleviate the socioeconomic disparities in ALL outcomes in the United States.
Collapse
Affiliation(s)
| | | | - Clinton Osei
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL
| | - Anand A. Patel
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL
| | - Adam DuVall
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL
| | - Peng Wang
- Department of Pathology, University of Chicago, Chicago, IL
| | | | - Jeremy Segal
- Department of Pathology, University of Chicago, Chicago, IL
| | | | - Jason X. Cheng
- Department of Pathology, University of Chicago, Chicago, IL
| | | | - Angela Lager
- Department of Pathology, University of Chicago, Chicago, IL
| | | | - Michael Thirman
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL
| | - Mariam Nawas
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL
| | - Hongtao Liu
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL
| | - Michael Drazer
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL
| | - Olatoyosi Odenike
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL
| | - Richard Larson
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL
| | - Wendy Stock
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL
| | - Caner Saygin
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL
| |
Collapse
|
15
|
Meira C, Silva J, Quadros H, Silva L, Barreto B, Rocha V, Bomfim L, Santos E, Soares M. Galectins in Protozoan Parasitic Diseases: Potential Applications in Diagnostics and Therapeutics. Cells 2023; 12:2671. [PMID: 38067100 PMCID: PMC10705098 DOI: 10.3390/cells12232671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Neglected tropical diseases (NTDs) constitute a group of diseases that generally develop in tropical or subtropical climatic conditions and are related to poverty. Within the spectrum of NTDs, diseases caused by protozoa such as malaria, Chagas disease, and leishmaniasis exhibit elevated mortality rates, thereby constituting a substantial public health concern. Beyond their protozoan etiology, these NTDs share other similarities, such as the challenge of control and the lack of affordable, safe, and effective drugs. In view of the above, the need to explore novel diagnostic predictors and therapeutic targets for the treatment of these parasitic diseases is evident. In this context, galectins are attractive because they are a set of lectins bound to β-galactosides that play key roles in a variety of cellular processes, including host-parasite interaction such as adhesion and entry of parasites into the host cells, and participate in antiparasitic immunity in either a stimulatory or inhibitory manner, especially the galectins-1, -2, -3, and -9. These functions bestow upon galectins significant therapeutic prospects in the context of managing and diagnosing NTDs. Thus, the present review aims to elucidate the potential role of galectins in the diagnosis and treatment of malaria, leishmaniasis, and Chagas disease.
Collapse
Affiliation(s)
- Cássio Meira
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 21040-900, Bahia, Brazil; (J.S.); (H.Q.); (L.S.); (B.B.); (V.R.); (L.B.)
- SENAI Institute of Innovation in Health Advanced Systems (ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Bahia, Brazil;
| | - Jaqueline Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 21040-900, Bahia, Brazil; (J.S.); (H.Q.); (L.S.); (B.B.); (V.R.); (L.B.)
| | - Helenita Quadros
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 21040-900, Bahia, Brazil; (J.S.); (H.Q.); (L.S.); (B.B.); (V.R.); (L.B.)
| | - Laís Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 21040-900, Bahia, Brazil; (J.S.); (H.Q.); (L.S.); (B.B.); (V.R.); (L.B.)
| | - Breno Barreto
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 21040-900, Bahia, Brazil; (J.S.); (H.Q.); (L.S.); (B.B.); (V.R.); (L.B.)
- SENAI Institute of Innovation in Health Advanced Systems (ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Bahia, Brazil;
- Institute of Health Sciences, Federal University of Bahia (UFBA), Salvador 40170-110, Bahia, Brazil
| | - Vinícius Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 21040-900, Bahia, Brazil; (J.S.); (H.Q.); (L.S.); (B.B.); (V.R.); (L.B.)
- SENAI Institute of Innovation in Health Advanced Systems (ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Bahia, Brazil;
| | - Larissa Bomfim
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 21040-900, Bahia, Brazil; (J.S.); (H.Q.); (L.S.); (B.B.); (V.R.); (L.B.)
| | - Emanuelle Santos
- SENAI Institute of Innovation in Health Advanced Systems (ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Bahia, Brazil;
| | - Milena Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 21040-900, Bahia, Brazil; (J.S.); (H.Q.); (L.S.); (B.B.); (V.R.); (L.B.)
- SENAI Institute of Innovation in Health Advanced Systems (ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Bahia, Brazil;
| |
Collapse
|
16
|
Kung CP, Skiba MB, Crosby EJ, Gorzelitz J, Kennedy MA, Kerr BA, Li YR, Nash S, Potiaumpai M, Kleckner AS, James DL, Coleman MF, Fairman CM, Galván GC, Garcia DO, Gordon MJ, His M, Hornbuckle LM, Kim SY, Kim TH, Kumar A, Mahé M, McDonnell KK, Moore J, Oh S, Sun X, Irwin ML. Key takeaways for knowledge expansion of early-career scientists conducting Transdisciplinary Research in Energetics and Cancer (TREC): a report from the TREC Training Workshop 2022. J Natl Cancer Inst Monogr 2023; 2023:149-157. [PMID: 37139978 PMCID: PMC10157760 DOI: 10.1093/jncimonographs/lgad005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 05/05/2023] Open
Abstract
The overall goal of the annual Transdisciplinary Research in Energetics and Cancer (TREC) Training Workshop is to provide transdisciplinary training for scientists in energetics and cancer and clinical care. The 2022 Workshop included 27 early-to-mid career investigators (trainees) pursuing diverse TREC research areas in basic, clinical, and population sciences. The 2022 trainees participated in a gallery walk, an interactive qualitative program evaluation method, to summarize key takeaways related to program objectives. Writing groups were formed and collaborated on this summary of the 5 key takeaways from the TREC Workshop. The 2022 TREC Workshop provided a targeted and unique networking opportunity that facilitated meaningful collaborative work addressing research and clinical needs in energetics and cancer. This report summarizes the 2022 TREC Workshop's key takeaways and future directions for innovative transdisciplinary energetics and cancer research.
Collapse
Affiliation(s)
- Che-Pei Kung
- Division of Molecular Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Meghan B Skiba
- Division of Biobehavioral Health Science, College of Nursing, University of Arizona, Tucson, AZ, USA
| | | | - Jessica Gorzelitz
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA, USA
| | - Mary A Kennedy
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Bethany A Kerr
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, USA
- Wake Forest Baptist Comprehensive Cancer Center, Winston Salem, NC, USA
| | - Yun Rose Li
- Departments of Radiation Oncology and Cancer Genetics and Epigenetics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- Division of Quantitative Medicine and Systems Biology, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Sarah Nash
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Melanie Potiaumpai
- Milton S. Hershey College of Medicine, Public Health Sciences, Pennsylvania State University, Hershey, PA, USA
| | - Amber S Kleckner
- Department of Pain and Translational Symptom Science, School of Nursing, University of Maryland, Baltimore, MD, USA
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Dara L James
- Community Mental Health Nursing Department, College of Nursing, University of South Alabama, Mobile, AL, USA
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ, USA
| | - Michael F Coleman
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ciaran M Fairman
- Exercise Science Department, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Gloria C Galván
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - David O Garcia
- Department of Health Promotion Sciences, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Max J Gordon
- Department of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mathilde His
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, Lyon, France
| | - Lyndsey M Hornbuckle
- Department of Kinesiology, Recreation, and Sport Studies, University of Tennessee, Knoxville, TN, USA
| | - So-Youn Kim
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tae-Hyung Kim
- Department of Pathology, School of Medicine, University of New Mexico, Albuquerque, NM, USA
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | - Amanika Kumar
- Department of Obstetrics and Gynecology and Oncology, Mayo Clinic, Rochester, MN, USA
| | - Mélanie Mahé
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Karen K McDonnell
- Cancer Survivorship Research Center, College of Nursing, University of South Carolina, Columbia, SC, USA
| | - Jade Moore
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
| | - Sangphil Oh
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Xinghui Sun
- Department of Biochemistry, University of Nebraska—Lincoln, Lincoln, NE, USA
| | - Melinda L Irwin
- Department of Chronic Disease Epidemiology, Yale University School of Public Health, New Haven, CT, USA
- Yale Cancer Center, New Haven, CT, USA
| |
Collapse
|
17
|
Geitgey DK, Lee M, Cottrill KA, Jaffe M, Pilcher W, Bhasin S, Randall J, Ross AJ, Salemi M, Castillo-Castrejon M, Kilgore MB, Brown AC, Boss JM, Johnston R, Fitzpatrick AM, Kemp ML, English R, Weaver E, Bagchi P, Walsh R, Scharer CD, Bhasin M, Chandler JD, Haynes KA, Wellberg EA, Henry CJ. The 'omics of obesity in B-cell acute lymphoblastic leukemia. J Natl Cancer Inst Monogr 2023; 2023:12-29. [PMID: 37139973 PMCID: PMC10157791 DOI: 10.1093/jncimonographs/lgad014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 05/05/2023] Open
Abstract
The obesity pandemic currently affects more than 70 million Americans and more than 650 million individuals worldwide. In addition to increasing susceptibility to pathogenic infections (eg, SARS-CoV-2), obesity promotes the development of many cancer subtypes and increases mortality rates in most cases. We and others have demonstrated that, in the context of B-cell acute lymphoblastic leukemia (B-ALL), adipocytes promote multidrug chemoresistance. Furthermore, others have demonstrated that B-ALL cells exposed to the adipocyte secretome alter their metabolic states to circumvent chemotherapy-mediated cytotoxicity. To better understand how adipocytes impact the function of human B-ALL cells, we used a multi-omic RNA-sequencing (single-cell and bulk transcriptomic) and mass spectroscopy (metabolomic and proteomic) approaches to define adipocyte-induced changes in normal and malignant B cells. These analyses revealed that the adipocyte secretome directly modulates programs in human B-ALL cells associated with metabolism, protection from oxidative stress, increased survival, B-cell development, and drivers of chemoresistance. Single-cell RNA sequencing analysis of mice on low- and high-fat diets revealed that obesity suppresses an immunologically active B-cell subpopulation and that the loss of this transcriptomic signature in patients with B-ALL is associated with poor survival outcomes. Analyses of sera and plasma samples from healthy donors and those with B-ALL revealed that obesity is associated with higher circulating levels of immunoglobulin-associated proteins, which support observations in obese mice of altered immunological homeostasis. In all, our multi-omics approach increases our understanding of pathways that may promote chemoresistance in human B-ALL and highlight a novel B-cell-specific signature in patients associated with survival outcomes.
Collapse
Affiliation(s)
- Delaney K Geitgey
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Atlanta, GA, USA
| | - Miyoung Lee
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Atlanta, GA, USA
| | - Kirsten A Cottrill
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Maya Jaffe
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - William Pilcher
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Swati Bhasin
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Atlanta, GA, USA
- Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Jessica Randall
- Emory Integrated Computational Core, Emory University, Atlanta, GA, USA
| | - Anthony J Ross
- Riley Children’s Health, Indiana University Health, Indianapolis, IN, USA
| | - Michelle Salemi
- Proteomics Core Facility, University of California Davis Genome Center, Davis, 95616, CA
| | - Marisol Castillo-Castrejon
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Matthew B Kilgore
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ayjha C Brown
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Atlanta, GA, USA
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Atlanta, GA, USA
| | - Rich Johnston
- Emory Integrated Computational Core, Emory University, Atlanta, GA, USA
| | - Anne M Fitzpatrick
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Melissa L Kemp
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Emory Integrated Proteomics Core, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Eric Weaver
- Shimadzu Scientific Instruments, Columbia, MD, USA
| | - Pritha Bagchi
- Emory Integrated Proteomics Core, Emory University School of Medicine, Atlanta, GA, USA
| | - Ryan Walsh
- Shimadzu Scientific Instruments, Columbia, MD, USA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Atlanta, GA, USA
| | - Manoj Bhasin
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Children’s Healthcare of Atlanta, Atlanta, GA, USA
- Winship Cancer Institute, Atlanta, GA, USA
| | - Joshua D Chandler
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Karmella A Haynes
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Atlanta, GA, USA
| | - Elizabeth A Wellberg
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Curtis J Henry
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Atlanta, GA, USA
- Children’s Healthcare of Atlanta, Atlanta, GA, USA
- Winship Cancer Institute, Atlanta, GA, USA
| |
Collapse
|
18
|
Morishita A, Oura K, Tadokoro T, Shi T, Fujita K, Tani J, Atsukawa M, Masaki T. Galectin-9 in Gastroenterological Cancer. Int J Mol Sci 2023; 24:ijms24076174. [PMID: 37047155 PMCID: PMC10094448 DOI: 10.3390/ijms24076174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/07/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Immunochemotherapy has become popular in recent years. The detailed mechanisms of cancer immunity are being elucidated, and new developments are expected in the future. Apoptosis allows tissues to maintain their form, quantity, and function by eliminating excess or abnormal cells. When apoptosis is inhibited, the balance between cell division and death is disrupted and tissue homeostasis is impaired. This leads to dysfunction and the accumulation of genetically abnormal cells, which can contribute to carcinogenesis. Lectins are neither enzymes nor antibodies but proteins that bind sugar chains. Among soluble endogenous lectins, galectins interact with cell surface sugar chains outside the cell to regulate signal transduction and cell growth. On the other hand, intracellular lectins are present at the plasma membrane and regulate signal transduction by regulating receptor–ligand interactions. Galectin-9 expressed on the surface of thymocytes induces apoptosis of T lymphocytes and plays an essential role in immune self-tolerance by negative selection in the thymus. Furthermore, the administration of extracellular galectin-9 induces apoptosis of human cancer and immunodeficient cells. However, the detailed pharmacokinetics of galectin-9 in vivo have not been elucidated. In addition, the cell surface receptors involved in galectin-9-induced apoptosis of cancer cells have not been identified, and the intracellular pathways involved in apoptosis have not been fully investigated. We have previously reported that galectin-9 induces apoptosis in various gastrointestinal cancers and suppresses tumor growth. However, the mechanism of galectin-9 and apoptosis induction in gastrointestinal cancers and the detailed mechanisms involved in tumor growth inhibition remain unknown. In this article, we review the effects of galectin-9 on gastrointestinal cancers and its mechanisms.
Collapse
|
19
|
Garcia-Gimenez A, Richardson SE. The role of microenvironment in the initiation and evolution of B-cell precursor acute lymphoblastic leukemia. Front Oncol 2023; 13:1150612. [PMID: 36959797 PMCID: PMC10029760 DOI: 10.3389/fonc.2023.1150612] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/21/2023] [Indexed: 03/09/2023] Open
Abstract
B cell precursor acute lymphoblastic leukemia (BCP-ALL) is a malignant disorder of immature B lineage immune progenitors and is the commonest cancer in children. Despite treatment advances it remains a leading cause of death in childhood and response rates in adults remain poor. A preleukemic state predisposing children to BCP-ALL frequently arises in utero, with an incidence far higher than that of transformed leukemia, offering the potential for early intervention to prevent disease. Understanding the natural history of this disease requires an appreciation of how cell-extrinsic pressures, including microenvironment, immune surveillance and chemotherapy direct cell-intrinsic genetic and epigenetic evolution. In this review, we outline how microenvironmental factors interact with BCP-ALL at different stages of tumorigenesis and highlight emerging therapeutic avenues.
Collapse
Affiliation(s)
- Alicia Garcia-Gimenez
- Department of Haematology, Wellcome Trust—Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Simon E. Richardson
- Department of Haematology, Wellcome Trust—Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Cambridge University Hospitals, Cambridge, United Kingdom
- *Correspondence: Simon E. Richardson,
| |
Collapse
|
20
|
Peng Q, Zhang G, Guo X, Dai L, Xiong M, Zhang Z, Chen L, Zhang Z. Galectin-9/Tim-3 pathway mediates dopaminergic neurodegeneration in MPTP-induced mouse model of Parkinson's disease. Front Mol Neurosci 2022; 15:1046992. [PMID: 36479526 PMCID: PMC9719949 DOI: 10.3389/fnmol.2022.1046992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/03/2022] [Indexed: 09/10/2024] Open
Abstract
Galectin-9 (Gal-9) is a crucial immunoregulatory mediator in the central nervous system. Microglial activation and neuroinflammation play a key role in the degeneration of dopaminergic neurons in the substantia nigra (SN) in Parkinson's disease (PD). However, it remains unknown whether Gal-9 is involved in the pathogenesis of PD. We found that MPP+ treatment promoted the expression of Gal-9 and pro-inflammatory cytokines (IL-6, IL-1β, TNF-α, and MIP-1α) in a concentration-dependent manner in BV2 cells. Gal-9 enhanced neurodegeneration and oxidative stress induced by MPP+ in SH-SY5Y cells and primary neurons. Importantly, deletion of Gal-9 or blockade of Tim-3 ameliorated microglial activation, reduced dopaminergic neuronal loss, and improved motor performance in an MPTP-induced mouse model of PD. These observations demonstrate a pathogenic role of the Gal-9/Tim-3 pathway in exacerbating microglial activation, neuroinflammation, oxidative stress, and dopaminergic neurodegeneration in the pathogenesis of PD.
Collapse
Affiliation(s)
- Qinyu Peng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Guoxin Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaodi Guo
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijun Dai
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Min Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liam Chen
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
21
|
Galectin-1 in Obesity and Type 2 Diabetes. Metabolites 2022; 12:metabo12100930. [PMID: 36295832 PMCID: PMC9606923 DOI: 10.3390/metabo12100930] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
Galectin-1 is a carbohydrate-binding protein expressed in many tissues. In recent years, increasing evidence has emerged for the role of galectin-1 in obesity, insulin resistance and type 2 diabetes. Galectin-1 has been highly conserved through evolution and is involved in key cellular functions such as tissue maturation and homeostasis. It has been shown that galectin-1 increases in obesity, both in the circulation and in the adipose tissue of human and animal models. Several proteomic studies have independently identified an increased galectin-1 expression in the adipose tissue in obesity and in insulin resistance. Large population-based cohorts have demonstrated associations for circulating galectin-1 and markers of insulin resistance and incident type 2 diabetes. Furthermore, galectin-1 is associated with key metabolic pathways including glucose and lipid metabolism, as well as insulin signalling and inflammation. Intervention studies in animal models alter animal weight and metabolic profile. Several studies have also linked galectin-1 to the progression of complications in diabetes, including kidney disease and retinopathy. Here, we review the current knowledge on the clinical potential of galectin-1 in obesity and type 2 diabetes.
Collapse
|