1
|
Bank MS, Ho QT, Kutti T, Kögel T, Rodushkin I, van der Meeren T, Wiech M, Rastrick S. Multi-isotopic composition of brown crab (Cancer pagurus) and seafloor sediment from a mine tailing sea disposal impacted fjord ecosystem. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134406. [PMID: 38688218 DOI: 10.1016/j.jhazmat.2024.134406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024]
Abstract
Sea disposal of mine tailings in fjord ecosystems is an important coastal management issue in Norway and occurs at the land-sea interface. Here we studied accumulation of heavy metals in brown crab (Cancer pagurus) and seafloor sediment from Jøssingfjord, Norway during 2018 to evaluate long-term, legacy pollution effects of coastal mine tailing sea disposal activities. Nickel and copper sediment pollution in the mine tailing sea disposal area was classified as moderate and severe, respectively, under Norwegian environmental quality standards, and highlights the persistent hazard and legacy impacts of heavy metals in these impacted fjord ecosystems. Mercury, zinc, and arsenic had stronger affinities to brown crab muscle likely due to the presence of thiols, and availability of metal binding sites. Our multi-isotopic composition data showed that lead isotopes were the most useful source apportionment tool for this fjord. Overall, our study highlights the importance and value of measuring several different heavy metals and multiple isotopic signatures in different crab organs and seafloor sediment to comprehensively evaluate fjord pollution and kinetic uptake dynamics. Brown crabs were suitable eco-indicators of benthic ecosystem heavy metal pollution in a fjord ecosystem still experiencing short- and long-term physical and chemical impacts from coastal mining sea disposal activities.
Collapse
Affiliation(s)
- Michael S Bank
- Institute of Marine Research, Bergen, Norway; University of Massachusetts Amherst, Amherst, MA, USA.
| | | | - Tina Kutti
- Institute of Marine Research, Bergen, Norway
| | - Tanja Kögel
- Institute of Marine Research, Bergen, Norway
| | - Ilia Rodushkin
- Division of Geosciences, Luleå University of Technology, SE-971 87 Luleå, Sweden; ALS Scandinavia AB, SE-971 87 Luleå, Sweden
| | | | | | | |
Collapse
|
2
|
Bos R, Zheng W, Lindström S, Sanei H, Waajen I, Fendley IM, Mather TA, Wang Y, Rohovec J, Navrátil T, Sluijs A, van de Schootbrugge B. Climate-forced Hg-remobilization associated with fern mutagenesis in the aftermath of the end-Triassic extinction. Nat Commun 2024; 15:3596. [PMID: 38678037 PMCID: PMC11519498 DOI: 10.1038/s41467-024-47922-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/12/2024] [Indexed: 04/29/2024] Open
Abstract
The long-term effects of the Central Atlantic Magmatic Province, a large igneous province connected to the end-Triassic mass-extinction (201.5 Ma), remain largely elusive. Here, we document the persistence of volcanic-induced mercury (Hg) pollution and its effects on the biosphere for ~1.3 million years after the extinction event. In sediments recovered in Germany (Schandelah-1 core), we record not only high abundances of malformed fern spores at the Triassic-Jurassic boundary, but also during the lower Jurassic Hettangian, indicating repeated vegetation disturbance and stress that was eccentricity-forced. Crucially, these abundances correspond to increases in sedimentary Hg-concentrations. Hg-isotope ratios (δ202Hg, Δ199Hg) suggest a volcanic source of Hg-enrichment at the Triassic-Jurassic boundary but a terrestrial source for the early Jurassic peaks. We conclude that volcanically injected Hg across the extinction was repeatedly remobilized from coastal wetlands and hinterland areas during eccentricity-forced phases of severe hydrological upheaval and erosion, focusing Hg-pollution in the Central European Basin.
Collapse
Affiliation(s)
- Remco Bos
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Princetonlaan 8, 3584, CB, Utrecht, The Netherlands.
| | - Wang Zheng
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, 300072, Tianjin, China.
| | - Sofie Lindström
- Department of Geosciences and Natural Resource Management, Copenhagen University, Øster Voldgade 10, DK-1350, Copenhagen K, Denmark
| | - Hamed Sanei
- Lithospheric Organic Carbon (LOC) Group, Department of Geoscience, Aarhus University, Høegh-Guldbergs gade 2, 8000C, Aarhus, Denmark
| | - Irene Waajen
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Princetonlaan 8, 3584, CB, Utrecht, The Netherlands
| | - Isabel M Fendley
- Department of Earth Sciences, University of Oxford, Parks Road, Oxford, OX1 3PR, UK
- Department of Geosciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Tamsin A Mather
- Department of Earth Sciences, University of Oxford, Parks Road, Oxford, OX1 3PR, UK
| | - Yang Wang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, 300072, Tianjin, China
| | - Jan Rohovec
- Institute of Geology of the Czech Academy of Sciences, Rozvojová 269, Prague, 6 165 00, Czech Republic
| | - Tomáš Navrátil
- Institute of Geology of the Czech Academy of Sciences, Rozvojová 269, Prague, 6 165 00, Czech Republic
| | - Appy Sluijs
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Princetonlaan 8, 3584, CB, Utrecht, The Netherlands
| | - Bas van de Schootbrugge
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Princetonlaan 8, 3584, CB, Utrecht, The Netherlands
| |
Collapse
|
3
|
Xu H, Hong Q, Zhang ZY, Cai X, Fan Y, Liu Z, Huang W, Yan N, Qu Z, Zhang L. SO 2-Driven In Situ Formation of Superstable Hg 3Se 2Cl 2 for Effective Flue Gas Mercury Removal. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5424-5432. [PMID: 36939455 DOI: 10.1021/acs.est.2c09640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Flue gas mercury removal is mandatory for decreasing global mercury background concentration and ecosystem protection, but it severely suffers from the instability of traditional demercury products (e.g., HgCl2, HgO, HgS, and HgSe). Herein, we demonstrate a superstable Hg3Se2Cl2 compound, which offers a promising next-generation flue gas mercury removal strategy. Theoretical calculations revealed a superstable Hg bonding structure in Hg3Se2Cl2, with the highest mercury dissociation energy (4.71 eV) among all known mercury compounds. Experiments demonstrate its unprecedentedly high thermal stability (>400 °C) and strong acid resistance (5% H2SO4). The Hg3Se2Cl2 compound could be produced via the reduction of SeO32- to nascent active Se0 by the flue gas component SO2 and the subsequent combination of Se0 with Hg0 and Cl- ions or HgCl2. During a laboratory-simulated experiment, this Hg3Se2Cl2-based strategy achieves >96% removal efficiencies of both Hg0 and HgCl2 enabling nearly zero Hg0 re-emission. As expected, real mercury removal efficiency under Se-rich industrial flue gas conditions is much more efficient than Se-poor counterparts, confirming the feasibility of this Hg3Se2Cl2-based strategy for practical applications. This study sheds light on the importance of stable demercury products in flue gas mercury treatment and also provides a highly efficient and safe flue gas demercury strategy.
Collapse
Affiliation(s)
- Haomiao Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qinyuan Hong
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhao-Yang Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200092, China
| | - Xiangling Cai
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yurui Fan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhisong Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Wenjun Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Naiqiang Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zan Qu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lizhi Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
Shen J, Chen J, Yu J, Algeo TJ, Smith RMH, Botha J, Frank TD, Fielding CR, Ward PD, Mather TA. Mercury evidence from southern Pangea terrestrial sections for end-Permian global volcanic effects. Nat Commun 2023; 14:6. [PMID: 36596767 PMCID: PMC9810726 DOI: 10.1038/s41467-022-35272-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/25/2022] [Indexed: 01/04/2023] Open
Abstract
The latest Permian mass extinction (LPME) was triggered by magmatism of the Siberian Traps Large Igneous Province (STLIP), which left an extensive record of sedimentary Hg anomalies at Northern Hemisphere and tropical sites. Here, we present Hg records from terrestrial sites in southern Pangea, nearly antipodal to contemporaneous STLIP activity, providing insights into the global distribution of volcanogenic Hg during this event and its environmental processing. These profiles (two from Karoo Basin, South Africa; two from Sydney Basin, Australia) exhibit significant Hg enrichments within the uppermost Permian extinction interval as well as positive Δ199Hg excursions (to ~0.3‰), providing evidence of long-distance atmospheric transfer of volcanogenic Hg. These results demonstrate the far-reaching effects of the Siberian Traps as well as refine stratigraphic placement of the LPME interval in the Karoo Basin at a temporal resolution of ~105 years based on global isochronism of volcanogenic Hg anomalies.
Collapse
Affiliation(s)
- Jun Shen
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan, Hubei, 430074, People's Republic of China.
| | - Jiubin Chen
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Jianxin Yu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, Hubei, 430074, People's Republic of China
| | - Thomas J Algeo
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan, Hubei, 430074, People's Republic of China.,State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, Hubei, 430074, People's Republic of China.,Department of Geosciences, University of Cincinnati, Cincinnati, OH, 45221-0013, USA
| | - Roger M H Smith
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, 2050, South Africa.,Iziko South African Museum, PO Box 61, Cape Town, 8000, South Africa
| | - Jennifer Botha
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, 2050, South Africa.,National Museum, PO Box 266, Bloemfontein, 9300, South Africa
| | - Tracy D Frank
- Department of Earth Sciences, University of Connecticut, Storrs, CT, 06269, USA
| | | | - Peter D Ward
- Department of Biology, University of Washington, Seattle, WA, 98195-1800, USA
| | - Tamsin A Mather
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, UK
| |
Collapse
|
5
|
Cuff AR, Demuth OE, Michel K, Otero A, Pintore R, Polet DT, Wiseman ALA, Hutchinson JR. Walking-and Running and Jumping-with Dinosaurs and Their Cousins, Viewed Through the Lens of Evolutionary Biomechanics. Integr Comp Biol 2022; 62:icac049. [PMID: 35595475 DOI: 10.1093/icb/icac049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Archosauria diversified throughout the Triassic Period before experiencing two mass extinctions near its end ∼201 Mya, leaving only the crocodile-lineage (Crocodylomorpha) and bird-lineage (Dinosauria) as survivors; along with the pterosaurian flying reptiles. About 50 years ago, the "locomotor superiority hypothesis" (LSH) proposed that dinosaurs ultimately dominated by the Early Jurassic Period because their locomotion was superior to other archosaurs'. This idea has been debated continuously since, with taxonomic and morphological analyses suggesting dinosaurs were "lucky" rather than surviving due to being biologically superior. However, the LSH has never been tested biomechanically. Here we present integration of experimental data from locomotion in extant archosaurs with inverse and predictive simulations of the same behaviours using musculoskeletal models, showing that we can reliably predict how extant archosaurs walk, run and jump. These simulations have been guiding predictive simulations of extinct archosaurs to estimate how they moved, and we show our progress in that endeavour. The musculoskeletal models used in these simulations can also be used for simpler analyses of form and function such as muscle moment arms, which inform us about more basic biomechanical similarities and differences between archosaurs. Placing all these data into an evolutionary and biomechanical context, we take a fresh look at the LSH as part of a critical review of competing hypotheses for why dinosaurs (and a few other archosaur clades) survived the Late Triassic extinctions. Early dinosaurs had some quantifiable differences in locomotor function and performance vs. some other archosaurs, but other derived dinosaurian features (e.g., metabolic or growth rates, ventilatory abilities) are not necessarily mutually exclusive from the LSH; or maybe even an opportunistic replacement hypothesis; in explaining dinosaurs' success.
Collapse
Affiliation(s)
- A R Cuff
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, United Kingdom
- Human Anatomy Resource Centre, University of Liverpool, Liverpool, United Kingdom
| | - O E Demuth
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, United Kingdom
- Department of Earth Sciences, University of Cambridge, United Kingdom
| | - K Michel
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, United Kingdom
| | - A Otero
- CONICET - División Paleontología de Vertebrados, Facultad de Ciencias Naturales y Museo, Anexo Laboratorios, La Plata, Argentina
| | - R Pintore
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, United Kingdom
- Mécanismes adaptatifs et évolution (MECADEV) / UMR 7179, CNRS / Muséum National d'Histoire Naturelle, France
| | - D T Polet
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, United Kingdom
| | - A L A Wiseman
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, United Kingdom
- McDonald Institute for Archaeological Research, University of Cambridge, United Kingdom
| | - J R Hutchinson
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, United Kingdom
| |
Collapse
|