1
|
Liu F, Jiao F, Wang T, Li Z, Song H, Wu S, Zhang X, Wang H, Chen C, Lu Y. Free reactive oxygen species-independent dual enzymatic activity of iron single-atom catalyst for hydrogel-assisted portable visual analysis. J Colloid Interface Sci 2025; 686:420-429. [PMID: 39908834 DOI: 10.1016/j.jcis.2025.01.265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/21/2025] [Accepted: 01/30/2025] [Indexed: 02/07/2025]
Abstract
Since the enzymatic-like activity of Fe3O4 was reported, research on iron-based nanozymes has undergone vigorous development. However, most of previously reported iron-based nanozymes, including iron single-atom nanozymes, always rely on free reactive oxygen species (ROS) to exert their catalytic effects, especially the OH derived from Fenton-like reaction mediated by H2O2. In this study, we present an iron single-atom nanozyme (SA-FeNC) with catalytic mechanisms akin to that of natural cytochrome c oxidase and horseradish peroxidase. This nanozyme catalyzes the oxidation of substrates via a surface Fe(IV) = O intermediate pathway, without generating free ROS. Notably, SA-FeNC demonstrates exceptional catalytic activity in the absence of H2O2, and high concentration of H2O2 is crucial for exhibiting peroxidase-like activity, which complements the toolbox of oxidase mimics. Leveraging this remarkable oxidase-like activity, colorimetric ascorbic acid assay with excellent analytical performance was established and further engineered into a portable gel/smartphone sensing platform, rendering it an attractive option for point-of-care detection of total antioxidant capacity detection. Furthermore, the development of an acid phosphatase detection-initiated colorimetric NAND logic gate is anticipated. This work not only opens up new horizons for the exploration of oxidase-like activities of Fe-based single-atom nanozymes, but also provides new ideas for the construction of portable gel sensing platforms and the coupling of nanozymes with information technology.
Collapse
Affiliation(s)
- Fangning Liu
- School of Materials Science and Engineering, University of Jinan, Jinan 250022 China
| | - Fangwen Jiao
- Department of Pathogen Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023 China
| | - Tingting Wang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022 China
| | - Zhe Li
- School of Materials Science and Engineering, University of Jinan, Jinan 250022 China
| | - Hao Song
- School of Materials Science and Engineering, University of Jinan, Jinan 250022 China
| | - Shumin Wu
- School of Materials Science and Engineering, University of Jinan, Jinan 250022 China
| | - Xueli Zhang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022 China
| | - Hao Wang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022 China
| | - Chuanxia Chen
- School of Materials Science and Engineering, University of Jinan, Jinan 250022 China.
| | - Yizhong Lu
- School of Materials Science and Engineering, University of Jinan, Jinan 250022 China.
| |
Collapse
|
2
|
Ma Z, Chen Z, Yuan Z, Ren C, Zhang B, Cui Y, Li X, Jagadeesh RV, Beller M. Synthesis of aromatic amides from lignin and its derivatives. Nat Commun 2025; 16:3476. [PMID: 40216764 PMCID: PMC11992226 DOI: 10.1038/s41467-025-58559-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 03/24/2025] [Indexed: 04/14/2025] Open
Abstract
Benzamides constitute an important class of bulk and fine chemicals as well as essential parts of many life science molecules. Currently, all these compounds are majorly produced from petrochemical-based feedstocks. Notably the selective aerobic oxidative conversion of lignin and lignin-derived compounds to primary, secondary, and tertiary amides and phenols offers the potential for a more sustainable synthesis of valuable building blocks for fine chemicals, monomers for polymers, biologically active molecules, and diverse consumer products. Here we present the concept of "lignin to amides" which is demonstrated by a one-pot, multi-step oxidation process utilizing molecular oxygen and a 3d-metal catalyst with highly dispersed and stable cobalt species (Co-SACs) supported on nitrogen-doped carbon in water as solvent. Moreover, our cobalt-based methodology allows for the cost-efficient transformation of a lignin and its variety of derivates simply using O2 and organic amines. Mechanistic investigations and control experiments suggest that the process involves an initial dehydrogenation of Cα-OH, cleavage of the Cβ-O as well as C(O)-C bond and condensation of the resulting carboxylic acids with amines. Spectroscopic studies indicate that the formation of superoxide species (O2●-) and specific Co-nitrogen sites anchored on mesoporous carbon sheets are key for the success of this transformation.
Collapse
Affiliation(s)
- Zhuang Ma
- Leibniz-Institut für Katalyse e.V., Rostock, Germany
| | - Zupeng Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, China
| | - Zeli Yuan
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Changyue Ren
- Leibniz-Institut für Katalyse e.V., Rostock, Germany
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Binyu Zhang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Yanbin Cui
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Xinmin Li
- Leibniz-Institut für Katalyse e.V., Rostock, Germany.
- School of Pharmacy, Zunyi Medical University, Zunyi, China.
| | - Rajenahally V Jagadeesh
- Leibniz-Institut für Katalyse e.V., Rostock, Germany.
- Nanotechnology Centre, Centre for Energy and Environmental Technologies (CEET), VŠB-Technical University of Ostrava, Ostrava-Poruba, Czech Republic.
- Department of Chemistry, REVA University, Bangalore, India.
| | | |
Collapse
|
3
|
Kute AD, Kale HB, Gawande MB. Iron N-Doped Carbon Nanoarchitectonics for C─H Bond Activation of Methylarenes and Esterification Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409707. [PMID: 40091378 DOI: 10.1002/smll.202409707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/28/2025] [Indexed: 03/19/2025]
Abstract
Nowadays, selective oxidation of sp3 C-H bond in methylarene to benzaldehyde under eco-friendly conditions is a promising way to produce aldehyde derivatives. In this work, scalable iron nanoparticles adorned on surface engineered nitrogen-doped carbon (FeNP@NC-BA) fabricated via wet chemistry followed by high-temperature pyrolysis. It is observed that nitrogen-coordinated Fe nanoparticles play a crucial role as active sites in facilitating both the toluene oxidation and esterification reaction due to its nitrogen-rich Fe NPs contain and low C/N ratio in FeNP@NC-BA catalyst. The FeNP@NC-BA catalyst and N-hydroxyphthalimide cooperatively converted methylarenes to corresponding aryl aldehydes with 99% conversion and selectivity, without over-oxidation of benzaldehyde to benzoic acid at room temperature. Further, EPR analysis is used to probe the free radical pathway followed in C-H activation. Additionally, FeNP@NC-BA catalyst employed for microwave-assisted esterification of acids with alcohols leads to 99% conversion and selectivity. The compatibility of FeNP@NC-BA nanoarchitectonics employed for the highly efficient synthesis of selective 24 benzaldehyde derivatives and 42 ester products. Furthermore, a gram-scale catalyst reusability study proved the wide applicability of FeNP@NC-BA catalyst. Thus, Fe nanoparticles decorated with N-doped carbon catalysts provide a durable, easily recoverable, and environmentally friendly metal-based catalyst for oxidation and esterification reactions.
Collapse
Affiliation(s)
- Arun D Kute
- Institute of Chemical Technology Mumbai, Marathwada Campus, Jalna, Maharashtra, 431213, India
| | - Hanumant B Kale
- Institute of Chemical Technology Mumbai, Marathwada Campus, Jalna, Maharashtra, 431213, India
| | - Manoj B Gawande
- Institute of Chemical Technology Mumbai, Marathwada Campus, Jalna, Maharashtra, 431213, India
- Centre for Energy and Environmental Technologies (CEET), Nanotechnology Centre, VŠB-Technical University of Ostrava, 17. Listopadu 2172/15, Poruba, Ostrava, 708 00, Czech Republic
| |
Collapse
|
4
|
Roy D, Deori K. Structure-activity relationships in the development of single atom catalysts for sustainable organic transformations. NANOSCALE ADVANCES 2025; 7:1243-1271. [PMID: 39911731 PMCID: PMC11792631 DOI: 10.1039/d4na00433g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 01/15/2025] [Indexed: 02/07/2025]
Abstract
Single atom catalysts (SACs), which can provide the combined benefits of homogeneous and heterogeneous catalysts, are a revolutionary concept in the field of material research. The highly exposed catalytic surfaces, unsaturated sites, as well as unique structural and electronic properties of SACs have the potential to catalyze numerous reactions with unmatched efficiency and durability when stabilized on a suitable support. In this review, we have provided an intuitive insight into the strategies adopted in the last 5 years for morphology control of SACs to know about its impact on metal-support interaction and various organic transformations with special reference to metal oxides, alloys, metal-organic frameworks (MOFs) and carbon-based supports. This review also includes a brief description of unparalleled potentials of SACs and the recent advances in the catalysis of industrially important organic transformations, with special emphasis on the C-C cross-coupling reaction, biomass conversion, hydrogenation, oxidation and click chemistry. This unprecedented and unique perspective will highlight the interactions occurring within SACs that are responsible for their high catalytic efficiency, which will potentially benefit various organic transformations. We have also suggested plausible synergy of various other concepts such as defect engineering and piezocatalysis with SACs, which can provide a new direction to sustainable chemistry. A good understanding of the different types of metal-support interactions will help researchers develop morphology-controlled SACs with tunable properties and establish mechanisms for their exceptional catalytic behaviour in industrially important organic transformations.
Collapse
Affiliation(s)
- Deepshikha Roy
- KD's NAME (NanoMat&Energy) Lab, Department of Chemistry, Dibrugarh University Dibrugarh 786004 India
| | - Kalyanjyoti Deori
- KD's NAME (NanoMat&Energy) Lab, Department of Chemistry, Dibrugarh University Dibrugarh 786004 India
| |
Collapse
|
5
|
Sun K, Su T, Lu GP, Franke R, Neumann H, Beller M. A Highly Dispersed Heterogeneous Cobalt Catalyst for Efficient Domino Hydroformylation Reductive Amination of Olefins. Angew Chem Int Ed Engl 2025; 64:e202419370. [PMID: 39887518 DOI: 10.1002/anie.202419370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Indexed: 02/01/2025]
Abstract
The hydroaminomethylation of alkenes using CO and H2 proceeds efficiently in the presence of a heterogeneous Co-N/C catalyst with highly dispersed metal centers. Various secondary and tertiary amines can be effectively synthesized from cyclic and linear aliphatic alkenes using this specific material. The active sites of the optimal catalyst result from the synergistic effect of atomically dispersed Co sites with their surrounding N atoms, and the high surface area as well as structural defects of the NC support. The broad applicability (>54 examples), including pharmaceutically relevant molecules, together with the high activity and reusability, underline the general applicability of this catalytic system.
Collapse
Affiliation(s)
- Kangkang Sun
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China)
- Applied Homogeneous Catalysis, Leibniz-Institut für Katalyse e.V, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Tianyue Su
- School of Chemical Engineering, Nanjing University of Science & Technology, Xiaolingwei 200, Nanjing, 210094, P. R. China)
| | - Guo-Ping Lu
- School of Chemical Engineering, Nanjing University of Science & Technology, Xiaolingwei 200, Nanjing, 210094, P. R. China)
| | - Robert Franke
- Evonik Industries AG, Paul-Baumann-Straße 1, 45772, Marl, Germany)
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Helfried Neumann
- Applied Homogeneous Catalysis, Leibniz-Institut für Katalyse e.V, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Matthias Beller
- Applied Homogeneous Catalysis, Leibniz-Institut für Katalyse e.V, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| |
Collapse
|
6
|
Hamada S, Kubozono S, Sakamoto K, Yano K, Tanaka Y, Kobayashi Y, Furuta T. One-Pot, Telescoped Aryl Nitrile Synthesis from Benzylic Silyl Ethers. J Org Chem 2025; 90:1597-1604. [PMID: 39840449 DOI: 10.1021/acs.joc.4c02624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
A one-pot, telescoped transformation of silyl ethers into cyanides that proceeds via silyl-ether oxidation mediated by nitroxyl-radical catalyst 1 and [bis(trifluoroacetoxy)iodo]benzene followed by an imine formation-oxidation sequence using iodine and aqueous ammonia is reported. This transformation is effective for the site-selective transformation of benzylic and allylic silyl ethers in the presence of other silyl ethers. Using an O-protected oxime and a catalytic amount of triflic acid instead of iodine/aqueous ammonia is also effective for cyanation.
Collapse
Affiliation(s)
- Shohei Hamada
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Suzuka Kubozono
- Laboratory of Pharmaceutical Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | - Kaori Sakamoto
- Laboratory of Pharmaceutical Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | - Kyoko Yano
- Laboratory of Pharmaceutical Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | - Yuka Tanaka
- Laboratory of Pharmaceutical Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | - Yusuke Kobayashi
- Laboratory of Pharmaceutical Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | - Takumi Furuta
- Laboratory of Pharmaceutical Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| |
Collapse
|
7
|
Melchionna M, Fornasiero P. On the Tracks to "Smart" Single-Atom Catalysts. J Am Chem Soc 2025; 147:2275-2290. [PMID: 39757830 PMCID: PMC11760184 DOI: 10.1021/jacs.4c15803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/07/2025]
Abstract
Despite their enormous impact in modern heterogeneous catalysis, single-atom catalysts (SACs) continue to puzzle the catalysis community, which often struggles to draw correct conclusions in SAC-catalyzed experiments. In many cases, the reasons for such an uncertainty originate from the lack of knowledge of the exact single-atom evolution under operative conditions and the fundamental factors controlling the fate of the single atom in relation to the catalytic mechanism. This has led to confusion also about correct definition and terminology, where the coined term single-site catalysts reflects the difficulty in defining the true active species as well as in obtaining long-range ordered homogeneous supports [Chi, S.; et al. J. Catal. 2023, 419, 49-57. DOI: 10.1016/j.jcat.2023.02.003]. Most recent studies have attempted to clarify several of the key aspects that are in play during SAC catalysis. However, one largely overlooked opportunity is to take advantage of all the dynamic phenomena occurring at the single metal site to turn the conventional catalytic sequences into a smart, stimulus-responsive, and controllable evolution of the single atom under operative conditions. Such "smartness" could potentially unleash pathways that mitigate some of the typical drawbacks of SACs, such as selectivity and stability. Here we present our vision on these yet-unexplored opportunities for exploiting the dynamicity of SACs, and we discuss various examples that could be the cornerstones for the advent of a next generation of SACs, that we term here "smart" single-atom catalysts (SSACs). Despite smart-behaving SACs still being far from realization, the clues provided here suggest pathways to achieve this goal.
Collapse
Affiliation(s)
- Michele Melchionna
- Department of Chemical and
Pharmaceutical Sciences, Center for Energy, Environment and Transport
Giacomo Ciamiciam, INSTM Trieste Research Unit and ICCOM-CNR Trieste
Research Unit, University of Trieste, Via L. Giorgieri 134127Trieste, Italy
| | - Paolo Fornasiero
- Department of Chemical and
Pharmaceutical Sciences, Center for Energy, Environment and Transport
Giacomo Ciamiciam, INSTM Trieste Research Unit and ICCOM-CNR Trieste
Research Unit, University of Trieste, Via L. Giorgieri 134127Trieste, Italy
| |
Collapse
|
8
|
Gigi S, Cohen T, Florio D, Levi A, Stone D, Katoa O, Li J, Liu J, Remennik S, Camargo FVA, Cerullo G, Frenkel AI, Banin U. Photocatalytic Semiconductor-Metal Hybrid Nanoparticles: Single-Atom Catalyst Regime Surpasses Metal Tips. ACS NANO 2025; 19:2507-2517. [PMID: 39760373 PMCID: PMC11760151 DOI: 10.1021/acsnano.4c13603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/07/2025]
Abstract
Semiconductor-metal hybrid nanoparticles (HNPs) are promising materials for photocatalytic applications, such as water splitting for green hydrogen generation. While most studies have focused on Cd containing HNPs, the realization of actual applications will require environmentally compatible systems. Using heavy-metal free ZnSe-Au HNPs as a model, we investigate the dependence of their functionality and efficiency on the cocatalyst metal domain characteristics ranging from the single-atom catalyst (SAC) regime to metal-tipped systems. The SAC regime was achieved via the deposition of individual atomic cocatalysts on the semiconductor nanocrystals in solution. Utilizing a combination of electron microscopy, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy, we established the presence of single Au atoms on the ZnSe nanorod surface. Upon increased Au concentration, this transitions to metal tip growth. Photocatalytic hydrogen generation measurements reveal a strong dependence on the cocatalyst loading with a sharp response maximum in the SAC regime. Ultrafast dynamics studies show similar electron decay kinetics for the pristine ZnSe nanorods and the ZnSe-Au HNPs in either SAC or tipped systems. This indicates that electron transfer is not the rate-limiting step for the photocatalytic process. Combined with the structural-chemical characterization, we conclude that the enhanced photocatalytic activity is due to the higher reactivity of the single-atom sites. This holistic view establishes the significance of SAC-HNPs, setting the stage for designing efficient and sustainable heavy-metal-free photocatalyst nanoparticles for numerous applications.
Collapse
Affiliation(s)
- Shira Gigi
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The
Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Tal Cohen
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The
Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Diego Florio
- Dipartimento
di Fisica, Politecnico di Milano, Milano 20133, Italy
- Istituto
di Fotonica e Nanotecnologie, Consiglio
Nazionale delle Ricerche, Milano 20133, Italy
| | - Adar Levi
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The
Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - David Stone
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The
Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Ofer Katoa
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The
Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Junying Li
- Department
of Materials Science and Chemical Engineering, Stony Brook University, Stony
Brook, New York 11794, United States
| | - Jing Liu
- Department
of Mathematics and Physics, Manhattan University, Riverdale, New York 10471, United States
| | - Sergei Remennik
- The
Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Franco V. A. Camargo
- Istituto
di Fotonica e Nanotecnologie, Consiglio
Nazionale delle Ricerche, Milano 20133, Italy
| | - Giulio Cerullo
- Dipartimento
di Fisica, Politecnico di Milano, Milano 20133, Italy
- Istituto
di Fotonica e Nanotecnologie, Consiglio
Nazionale delle Ricerche, Milano 20133, Italy
| | - Anatoly I. Frenkel
- Department
of Materials Science and Chemical Engineering, Stony Brook University, Stony
Brook, New York 11794, United States
- Chemistry
Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Uri Banin
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The
Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
9
|
Liu X, Han B, Wu C, Zhou P, Jia M, Zhu L, Zhang Z. Manganese Carbodiimide (MnNCN): A New Heterogeneous Mn Catalyst for the Selective Synthesis of Nitriles from Alcohols. Angew Chem Int Ed Engl 2025; 64:e202413799. [PMID: 39283173 DOI: 10.1002/anie.202413799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Indexed: 11/03/2024]
Abstract
Earth-abundant manganese oxides (MnOx) were competitive candidates when screening catalysts for ammoxidation of alcohols into nitriles due to their redox property. However, over-oxidation and possible acid-catalyzed hydrolysis of nitriles into amides still limited the application of MnOx in nitrile synthesis. In this work, manganese carbodiimide (MnNCN) was first reported to be robust for the ammoxidation of alcohols into nitriles, avoiding over-oxidation and the hydrolysis. Besides the high activity and selectivity, MnNCN demonstrated wide substrate scope including the ammoxidation of primary alcohols into nitriles, the oxidative C-C bonds cleavage and ammoxidation of secondary alcohols, phenyl substituted aliphatic alcohols, and diols into nitriles. Controlled experiments and DFT calculation results revealed that the excellent catalytic performance of MnNCN originated from its high ability in the activation of O2 molecules, and favorable oxidative dehydrogenation of C=N bonds in the aldimine intermediates (RCH=NH) into nitriles, inhibiting the competitive side reaction of the oxidation of aldehydes into carboxylic acids, followed to amide byproducts. Moreover, the hydrolysis of nitriles was also inhibited over MnNCN for its weak acidity as compared with MnOx. This study provided new insights into Mn-catalyzed aerobic oxidations as a highly important complement to manganese oxides.
Collapse
Affiliation(s)
- Xixi Liu
- Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central Minzu University, Wuhan, 430074, P. R. China
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Bo Han
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Chongbei Wu
- Hebei Vocational University of Technology and Engineering, Hebei, 054000, PR China
| | - Peng Zhou
- Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Meilin Jia
- College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhhot, 010022, P. R.China
| | - Liangfang Zhu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Zehui Zhang
- Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central Minzu University, Wuhan, 430074, P. R. China
| |
Collapse
|
10
|
M V, Joshi H, A S A, Dey R. Supported Nickel Nanoparticles as Catalyst in Direct sp 3 C-H Alkylation of 9H-Fluorene Using Alcohols as Alkylating Agent. Chem Asian J 2025; 20:e202400989. [PMID: 39400506 DOI: 10.1002/asia.202400989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/29/2024] [Accepted: 10/12/2024] [Indexed: 10/15/2024]
Abstract
Herein, we report an inexpensive first-row transition metal Ni heterogeneous catalytic system for the Csp 3-mono alkylation of fluorene using alcohols as alkylating agents via borrowing hydrogen strategy. The catalytic protocol displayed versatility with high yields of the desired products using various types of primary alcohols, including aryl/hetero aryl methanols, and aliphatic alcohols as alkylating agents. The catalyst Ni NPs@N-C was synthesized via high-temperature pyrolysis strategy, using ZIF-8 as the sacrificial template. The Ni NPs@N-C catalyst was characterized by XPS, HR-TEM, HAADF-STEM, XRD and ICP-MS. The catalyst is stable even in the air at room temperature, displayed excellent activity and could be recycled 5 times without appreciable loss of its activity.
Collapse
Affiliation(s)
- Vageesh M
- Department of Chemistry, National Institute of Technology Calicut, 673601, Kozhikode, Kerala, India
| | - Harsh Joshi
- Department of Chemistry, National Institute of Technology Calicut, 673601, Kozhikode, Kerala, India
| | - Anupriya A S
- Department of Chemistry, National Institute of Technology Calicut, 673601, Kozhikode, Kerala, India
| | - Raju Dey
- Department of Chemistry, National Institute of Technology Calicut, 673601, Kozhikode, Kerala, India
| |
Collapse
|
11
|
Xiao X, Zhuang Z, Yin S, Zhu J, Gan T, Yu R, Wu J, Tian X, Jiang Y, Wang D, Zhao F. Topological transformation of microbial proteins into iron single-atom sites for selective hydrogen peroxide electrosynthesis. Nat Commun 2024; 15:10758. [PMID: 39737987 DOI: 10.1038/s41467-024-55041-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 11/29/2024] [Indexed: 01/01/2025] Open
Abstract
The emergence of single-atom catalysts offers exciting prospects for the green production of hydrogen peroxide; however, their optimal local structure and the underlying structure-activity relationships remain unclear. Here we show trace Fe, up to 278 mg/kg and derived from microbial protein, serve as precursors to synthesize a variety of Fe single-atom catalysts containing FeN5-xOx (1 ≤ x ≤ 4) moieties through controlled pyrolysis. These moieties resemble the structural features of nonheme Fe-dependent enzymes while being effectively confined on a microbe-derived, electrically conductive carbon support, enabling high-current density electrolysis. A comparative analysis involving catalysts derived from eleven representative microbes reveals that the presence of 0.05 wt% Fe single-atom sites leads to a significant 26% increase in hydrogen peroxide selectivity. Remarkably, the optimal catalyst featuring FeN3O2 sites demonstrates a selectivity of up to 93.7% and generates hydrogen peroxide in a flow cell at an impressive rate of 29.6 mol g-1 h-1 at 200 mA cm-2. This work achieves structural fine-tuning of metal single-atom sites at the trace level and provides topological insights into single-atom catalyst design to achieve cost-efficient hydrogen peroxide production.
Collapse
Affiliation(s)
- Xiaofeng Xiao
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing, China
- Department of Chemical Engineering, Columbia University, New York, NY, USA
| | - Shuhu Yin
- College of Chemistry and Chemical Engineering, Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen, China
| | - Jiexin Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
| | - Tao Gan
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Ruohan Yu
- Nanostructure Research Centre, Wuhan University of Technology, Wuhan, China
| | - Jinsong Wu
- Nanostructure Research Centre, Wuhan University of Technology, Wuhan, China
| | - Xiaochun Tian
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Yanxia Jiang
- College of Chemistry and Chemical Engineering, Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, China.
| | - Feng Zhao
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.
| |
Collapse
|
12
|
Gan Q, Zhou W, Zhang X, Lin Y, Huang S, Lu GP. Selective Hydrodeoxygenation of Lignin-Derived Phenolic Monomers to Cyclohexanol over Tungstated Zirconia Supported Ruthenium Catalysts. CHEMSUSCHEM 2024; 17:e202400644. [PMID: 38923356 DOI: 10.1002/cssc.202400644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/28/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
The selective hydrodeoxygenation (HDO) of lignin-derived methoxyphenols to cyclohexanol is one of the most significant transformation in biomass conversion since cyclohexanol is an important industrial raw material. This study has disclosed a series of tungstated zirconia with different Zr/W ratio supported Ru catalysts (Ru/xZrW, x means the molar ration of Zr/W) for the hydrodeoxygenation (HDO) of guaiacol to cyclohexanol. Among these catalysts, Ru/16ZrW has the best catalytic activity, which can achieve 92 % yield of cyclohexanol under the conditions of 180 °C and 1 MPa H2 pressure for 2 h (TOF 231 h-1). Compared with Ru/ZrO2, Ru/16ZrW has smaller particles, more dispersed and electron-rich Ru species, significant hydrogen spillover and more acid sites, which are the main reason for its excellent performance on this reaction. Apart from guaiacol, other methoxy substitution phenols and organosolv lignin can also be converted into cyclohexanol via hydrodeoxygenation reactions over this catalyst.
Collapse
Affiliation(s)
- Quan Gan
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Weihao Zhou
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xueping Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yamei Lin
- International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Wenyuanstreet 200, Nanjing 210032, China
| | - Shenlin Huang
- International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Guo-Ping Lu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
13
|
Ye BC, Li WH, Zhang X, Chen J, Gao Y, Wang D, Pan H. Advancing Heterogeneous Organic Synthesis With Coordination Chemistry-Empowered Single-Atom Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402747. [PMID: 39291881 DOI: 10.1002/adma.202402747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/17/2024] [Indexed: 09/19/2024]
Abstract
For traditional metal complexes, intricate chemistry is required to acquire appropriate ligands for controlling the electron and steric hindrance of metal active centers. Comparatively, the preparation of single-atom catalysts is much easier with more straightforward and effective accesses for the arrangement and control of metal active centers. The presence of coordination atoms or neighboring functional atoms on the supports' surface ensures the stability of metal single-atoms and their interactions with individual metal atoms substantially regulate the performance of metal active centers. Therefore, the collaborative interaction between metal and the surrounding coordination environment enhances the initiation of reaction substrates and the formation and transformation of crucial intermediate compounds, which imparts single-atom catalysts with significant catalytic efficacy, rendering them a valuable framework for investigating the correlation between structure and activity, as well as the reaction mechanism of catalysts in organic reactions. Herein, comprehensive overviews of the coordination interaction for both homogeneous metal complexes and single-atom catalysts in organic reactions are provided. Additionally, reflective conjectures about the advancement of single-atom catalysts in organic synthesis are also proposed to present as a reference for later development.
Collapse
Affiliation(s)
- Bo-Chao Ye
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wen-Hao Li
- Department of Chemistry, Northeastern University, Shenyang, 110819, China
| | - Xia Zhang
- Department of Chemistry, Northeastern University, Shenyang, 110819, China
| | - Jian Chen
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Yong Gao
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| |
Collapse
|
14
|
Wang Q, Cheng Y, Yang HB, Su C, Liu B. Integrative catalytic pairs for efficient multi-intermediate catalysis. NATURE NANOTECHNOLOGY 2024; 19:1442-1451. [PMID: 39103451 DOI: 10.1038/s41565-024-01716-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/06/2024] [Indexed: 08/07/2024]
Abstract
Single-atom catalysts (SACs) have attracted considerable research interest owing to their combined merits of homogeneous and heterogeneous catalysts. However, the uniform and isolated active sites of SACs fall short in catalysing complex chemical processes that simultaneously involve multiple intermediates. In this Review, we highlight an emerging class of catalysts with adjacent binary active centres, which is called integrative catalytic pairs (ICPs), showing not only atomic-scale site-to-site electronic interactions but also synergistic catalytic effects. Compared with SACs or their derivative dual-atom catalysts (DACs), multi-interactive intermediates on ICPs can overcome kinetic barriers, adjust reaction pathways and break the universal linear scaling relations as the smallest active units. Starting from this active-site design principle, each single active atom can be considered as a brick to further build integrative catalytic clusters (ICCs) with desirable configurations, towards trimer or even larger multi-atom units depending on the requirement of a given reaction.
Collapse
Affiliation(s)
- Qilun Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
- International Collaboration Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China
| | - Yaqi Cheng
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Hong Bin Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, China.
| | - Chenliang Su
- International Collaboration Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China.
| | - Bin Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China.
- Department of Chemistry, Hong Kong Institute of Clean Energy (HKICE) and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
15
|
Ma Z, Kuloor C, Kreyenschulte C, Bartling S, Malina O, Haumann M, Menezes PW, Zbořil R, Beller M, Jagadeesh RV. Development of Iron-Based Single Atom Materials for General and Efficient Synthesis of Amines. Angew Chem Int Ed Engl 2024; 63:e202407859. [PMID: 38923207 DOI: 10.1002/anie.202407859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/12/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Earth abundant metal-based heterogeneous catalysts with highly active and at the same time stable isolated metal sites constitute a key factor for the advancement of sustainable and cost-effective chemical synthesis. In particular, the development of more practical, and durable iron-based materials is of central interest for organic synthesis, especially for the preparation of chemical products related to life science applications. Here, we report the preparation of Fe-single atom catalysts (Fe-SACs) entrapped in N-doped mesoporous carbon support with unprecedented potential in the preparation of different kinds of amines, which represent privileged class of organic compounds and find increasing application in daily life. The optimal Fe-SACs allow for the reductive amination of a broad range of aldehydes and ketones with ammonia and amines to produce diverse primary, secondary, and tertiary amines including N-methylated products as well as drugs, agrochemicals, and other biomolecules (amino acid esters and amides) utilizing green hydrogen.
Collapse
Affiliation(s)
- Zhuang Ma
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, Rostock, D-18059, Germany
| | - Chakreshwara Kuloor
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, Rostock, D-18059, Germany
| | - Carsten Kreyenschulte
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, Rostock, D-18059, Germany
| | - Stephan Bartling
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, Rostock, D-18059, Germany
| | - Ondrej Malina
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, Ostrava-Poruba, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Palacky University Olomouc, Olomouc, Czech Republic
| | - Michael Haumann
- Physics Department, Freie Universität Berlin, Berlin, Germany
| | - Prashanth W Menezes
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
- Department of Chemistry, Technical University of Berlin, Berlin, Germany
| | - Radek Zbořil
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, Ostrava-Poruba, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Palacky University Olomouc, Olomouc, Czech Republic
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, Rostock, D-18059, Germany
| | - Rajenahally V Jagadeesh
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, Rostock, D-18059, Germany
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, Ostrava-Poruba, Czech Republic
| |
Collapse
|
16
|
Zhu F, Yu Y, Yu Z, Qiu H, Lu GP, Chen Z, Hu J, Lin Y. S-Doping Regulated Iron Spin States in Fe-N-C Single-Atom Material for Enhanced Peroxidase-Mimicking Activity at Neutral pH. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311848. [PMID: 38556630 DOI: 10.1002/smll.202311848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/01/2024] [Indexed: 04/02/2024]
Abstract
Designing biomimetic nanomaterials with peroxidase (POD)-like activity at neutral pH remains a significant challenge. An S-doping strategy is developed to afford an iron single-atom nanomaterial (Fe1@CN-S) with high POD-like activity under neutral conditions. To the best of knowledge, there is the first example on the achievement of excellent POD-like activity under neutral conditions by regulating the active site structure. S-doping not only promotes the dissociation of the N─H bond in 3,3″,5,5″-tetramethylbenzidine (TMB), but also facilitates the desorption of OH* by the transformation of iron species' spin states from middle-spin (MS FeII) to low-spin (LS FeII). Meanwhile, LS FeII sites typically have more unfilled d orbitals, thereby exhibiting stronger interactions with H2O2 than MS FeII, which can enhance POD-like activity. Finally, a one-pot visual detection of glucose at pH 7 is performed, demonstrating the best selectivity and sensitivity than previous reports.
Collapse
Affiliation(s)
- Fuying Zhu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - YueYi Yu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Zhixuan Yu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Haochen Qiu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Guo-Ping Lu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, P. R. China
| | - Zhong Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jun Hu
- School of Chemical Engineering, Northwest University, Xi'an, 710069, P. R. China
| | - Yamei Lin
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, P. R. China
- International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, P. R. China
| |
Collapse
|
17
|
Baruah MJ, Dutta R, Zaki MEA, Bania KK. Heterogeneous Iron-Based Catalysts for Organic Transformation Reactions: A Brief Overview. Molecules 2024; 29:3177. [PMID: 38999129 PMCID: PMC11243350 DOI: 10.3390/molecules29133177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Iron (Fe) is considered to be one of the most significant elements due to its wide applications. Recent years have witnessed a burgeoning interest in Fe catalysis as a sustainable and cost-effective alternative to noble metal catalysis in organic synthesis. The abundance and low toxicity of Fe, coupled with its competitive reactivity and selectivity, underscore its appeal for sustainable synthesis. A lot of catalytic reactions have been performed using heterogeneous catalysts of Fe oxide hybridized with support systems like aluminosilicates, clays, carbonized materials, metal oxides or polymeric matrices. This review provides a comprehensive overview of the latest advancements in Fe-catalyzed organic transformation reactions. Highlighted areas include cross-coupling reactions, C-H activation, asymmetric catalysis, and cascade processes, showcasing the versatility of Fe across a spectrum of synthetic methodologies. Emphasis is placed on mechanistic insights, elucidating the underlying principles governing iron-catalyzed reactions. Challenges and opportunities in the field are discussed, providing a roadmap for future research endeavors. Overall, this review illuminates the transformative potential of Fe catalysis in driving innovation and sustainability in organic chemistry, with implications for drug discovery, materials science, and beyond.
Collapse
Affiliation(s)
- Manash J Baruah
- Department of Chemistry, DCB Girls' College, Jorhat 785001, Assam, India
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Rupjyoti Dutta
- CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Magdi E A Zaki
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Kusum K Bania
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur 784028, Assam, India
| |
Collapse
|
18
|
Wang C, Li J, Shao T, Zhang D, Mai Y, Li Y, Besenbacher F, Niemantsverdriet H, Rosei F, Zhong J, Su R. Electric Field Enhanced Ammoxidation of Aldehydes Using Supported Fe Clusters Under Ambient Oxygen Pressure. Angew Chem Int Ed Engl 2023:e202313313. [PMID: 37930876 DOI: 10.1002/anie.202313313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/18/2023] [Accepted: 11/06/2023] [Indexed: 11/08/2023]
Abstract
Heterogeneous catalytic ammoxidation provides an eco-friendly route for the cyanide-free synthesis of nitrile compounds, which are important precursors for synthetic chemistry and pharmaceutical applications. However, in general such a process requires high pressures of molecular oxygen at elevated temperatures to accelerate the oxygen reduction and imine dehydrogenation steps, which is highly risky in practical applications. Here, we report an electric field enhanced ammoxidation system using a supported Fe clusters catalyst (Fe/NC), which enables efficient synthesis of nitriles from the corresponding aldehydes under ambient air pressure at room temperature (RT). A synergistic effect between the external electric field and the Fe/NC catalyst promotes the ammonia activation and the dehydrogenation of the generated imine intermediates and avoids the unwanted backwards reaction to aldehydes. This electric field enhanced ammoxidation system presents high efficiency and selectivity for the conversion of a series of aldehydes under mild conditions with high durability, rendering it an attractive process for the green synthesis of nitriles with fragile functional groups.
Collapse
Affiliation(s)
- Chao Wang
- Soochow Institute for Energy and Materials InnovationS (SIEMIS), Soochow University, Suzhou, 215006, China
- SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No.1, Yanqi Economic Development Zone C#, Beijing, 101407, China
| | - Jialu Li
- Soochow Institute for Energy and Materials InnovationS (SIEMIS), Soochow University, Suzhou, 215006, China
- SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No.1, Yanqi Economic Development Zone C#, Beijing, 101407, China
| | - Tianyu Shao
- Soochow Institute for Energy and Materials InnovationS (SIEMIS), Soochow University, Suzhou, 215006, China
- SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No.1, Yanqi Economic Development Zone C#, Beijing, 101407, China
| | - Dongsheng Zhang
- Soochow Institute for Energy and Materials InnovationS (SIEMIS), Soochow University, Suzhou, 215006, China
- SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No.1, Yanqi Economic Development Zone C#, Beijing, 101407, China
| | - Yuanqiang Mai
- Soochow Institute for Energy and Materials InnovationS (SIEMIS), Soochow University, Suzhou, 215006, China
- SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No.1, Yanqi Economic Development Zone C#, Beijing, 101407, China
| | - Yongwang Li
- SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No.1, Yanqi Economic Development Zone C#, Beijing, 101407, China
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, CAS, Taiyuan, 030001, China
| | - Flemming Besenbacher
- Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Hans Niemantsverdriet
- SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No.1, Yanqi Economic Development Zone C#, Beijing, 101407, China
- Syngaschem BV, Valeriaanlaan 16, 5672 XD, Nuenen (The, Netherlands
| | - Federico Rosei
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgeri 1, 34127, Trieste, Italy
| | - Jun Zhong
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Ren Su
- Soochow Institute for Energy and Materials InnovationS (SIEMIS), Soochow University, Suzhou, 215006, China
- SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No.1, Yanqi Economic Development Zone C#, Beijing, 101407, China
| |
Collapse
|
19
|
Saptal VB, Ruta V, Bajada MA, Vilé G. Single-Atom Catalysis in Organic Synthesis. Angew Chem Int Ed Engl 2023; 62:e202219306. [PMID: 36918356 DOI: 10.1002/anie.202219306] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/16/2023]
Abstract
Single-atom catalysts hold the potential to significantly impact the chemical sector, pushing the boundaries of catalysis in new, uncharted directions. These materials, featuring isolated metal species ligated on solid supports, can exist in many coordination environments, all of which have shown important functions in specific transformations. Their emergence has also provided exciting opportunities for mimicking metalloenzymes and bridging the gap between homogeneous and heterogeneous catalysis. This Review outlines the impressive progress made in recent years regarding the use of single-atom catalysts in organic synthesis. We also illustrate potential knowledge gaps in the search for more sustainable, earth-abundant single-atom catalysts for synthetic applications.
Collapse
Affiliation(s)
- Vitthal B Saptal
- Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Vincenzo Ruta
- Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Mark A Bajada
- Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Gianvito Vilé
- Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| |
Collapse
|
20
|
Sun JL, Jiang H, Dixneuf PH, Zhang M. Reductive Coupling of Nitroarenes and HCHO for General Synthesis of Functional Ethane-1,2-diamines by a Cobalt Single-Atom Catalyst. J Am Chem Soc 2023; 145:17329-17336. [PMID: 37418675 DOI: 10.1021/jacs.3c04857] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Despite the extensive applications, selective and diverse access to N,N'-diarylethane-1,2-diamines remains, to date, a challenge. Here, by developing a bifunctional cobalt single-atom catalyst (CoSA-N/NC), we present a general method for direct synthesis of such compounds via selective reductive coupling of cheap and abundant nitroarenes and formaldehyde, featuring good substrate and functionality compatibility, an easily accessible base metal catalyst with excellent reusability, and high step and atom efficiency. Mechanistic studies reveal that the N-anchored cobalt single atoms (CoN4) serve as the catalytically active sites for the reduction processes, the N-doped carbon support enriches the HCHO to timely trap the in situ formed hydroxyamines and affords the requisite nitrones under weak alkaline conditions, and the subsequent inverse electron demand 1,3-dipolar cycloaddition of the nitrones and imines followed by hydrodeoxygenation of the cycloadducts furnishes the products. In this work, the concept of catalyst-controlled nitroarene reduction to in situ create specific building blocks is anticipated to develop more useful chemical transformations.
Collapse
|
21
|
Ren P, Zhang T, Jain N, Ching HYV, Jaworski A, Barcaro G, Monti S, Silvestre-Albero J, Celorrio V, Chouhan L, Rokicińska A, Debroye E, Kuśtrowski P, Van Doorslaer S, Van Aert S, Bals S, Das S. An Atomically Dispersed Mn-Photocatalyst for Generating Hydrogen Peroxide from Seawater via the Water Oxidation Reaction (WOR). J Am Chem Soc 2023. [PMID: 37487055 DOI: 10.1021/jacs.3c03785] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
In this work, we have fabricated an aryl amino-substituted graphitic carbon nitride (g-C3N4) catalyst with atomically dispersed Mn capable of generating hydrogen peroxide (H2O2) directly from seawater. This new catalyst exhibited excellent reactivity, obtaining up to 2230 μM H2O2 in 7 h from alkaline water and up to 1800 μM from seawater under identical conditions. More importantly, the catalyst was quickly recovered for subsequent reuse without appreciable loss in performance. Interestingly, unlike the usual two-electron oxygen reduction reaction pathway, the generation of H2O2 was through a less common two-electron water oxidation reaction (WOR) process in which both the direct and indirect WOR processes occurred; namely, photoinduced h+ directly oxidized H2O to H2O2 via a one-step 2e- WOR, and photoinduced h+ first oxidized a hydroxide (OH-) ion to generate a hydroxy radical (•OH), and H2O2 was formed indirectly by the combination of two •OH. We have characterized the material, at the catalytic sites, at the atomic level using electron paramagnetic resonance, X-ray absorption near edge structure, extended X-ray absorption fine structure, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, magic-angle spinning solid-state NMR spectroscopy, and multiscale molecular modeling, combining classical reactive molecular dynamics simulations and quantum chemistry calculations.
Collapse
Affiliation(s)
- Peng Ren
- Department of Chemistry, University of Antwerp, Antwerp 2020, Belgium
| | - Tong Zhang
- Department of Chemistry, University of Antwerp, Antwerp 2020, Belgium
| | - Noopur Jain
- EMAT and NANOlab Center of Excellence, Department of Physics, University of Antwerp, Antwerp 2020, Belgium
| | - H Y Vincent Ching
- Department of Chemistry, University of Antwerp, Antwerp 2020, Belgium
| | - Aleksander Jaworski
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden
| | - Giovanni Barcaro
- CNR-IPCF, Institute for Chemical and Physical Processes, Area della Ricerca, Pisa I-56124, Italy
| | - Susanna Monti
- CNR-ICCOM, Institute of Chemistry of Organometallic Compounds, Area della Ricerca, Pisa I-56124, Italy
| | | | - Veronica Celorrio
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K
| | - Lata Chouhan
- Department of Chemistry, KU Leuven, Leuven 3001, Belgium
| | - Anna Rokicińska
- Department of Chemical Technology, Jagiellonian University, Krakow 30-387, Poland
| | - Elke Debroye
- Department of Chemistry, KU Leuven, Leuven 3001, Belgium
| | - Piotr Kuśtrowski
- Department of Chemical Technology, Jagiellonian University, Krakow 30-387, Poland
| | | | - Sandra Van Aert
- EMAT and NANOlab Center of Excellence, Department of Physics, University of Antwerp, Antwerp 2020, Belgium
| | - Sara Bals
- EMAT and NANOlab Center of Excellence, Department of Physics, University of Antwerp, Antwerp 2020, Belgium
| | - Shoubhik Das
- Department of Chemistry, University of Antwerp, Antwerp 2020, Belgium
| |
Collapse
|
22
|
Masuda R, Yasukawa T, Yamashita Y, Maki T, Yoshida T, Kobayashi S. Heterogeneous Single-Atom Zinc on Nitrogen-Doped Carbon Catalyzed Electrochemical Allylation of Imines. J Am Chem Soc 2023. [PMID: 37224473 DOI: 10.1021/jacs.3c03674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Organometallic reagents are effective for carbon-carbon bond formation; however, consumption of stoichiometric amounts of metals is problematic. We developed electrochemical allylation reactions of imines catalyzed by nitrogen-doped carbon-supported single-atom zinc, which were fixed on a cathode to afford a range of homoallylic amines efficiently. The system could suppress generation of metallic waste, and the catalyst electrode showed advantages over bulk zinc in terms of activity and robustness. An electrochemical flow reaction was also successfully performed to produce the homoallylic amine continuously with minimum amounts of waste.
Collapse
Affiliation(s)
- Ryusuke Masuda
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomohiro Yasukawa
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasuhiro Yamashita
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tei Maki
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomoko Yoshida
- Research Center for Artificial Photosynthesis, Osaka Metropolitan University, Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Shu Kobayashi
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
23
|
Bates JS, Johnson MR, Khamespanah F, Root TW, Stahl SS. Heterogeneous M-N-C Catalysts for Aerobic Oxidation Reactions: Lessons from Oxygen Reduction Electrocatalysts. Chem Rev 2023; 123:6233-6256. [PMID: 36198176 PMCID: PMC10073352 DOI: 10.1021/acs.chemrev.2c00424] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Nonprecious metal heterogeneous catalysts composed of first-row transition metals incorporated into nitrogen-doped carbon matrices (M-N-Cs) have been studied for decades as leading alternatives to Pt for the electrocatalytic O2 reduction reaction (ORR). More recently, similar M-N-C catalysts have been shown to catalyze the aerobic oxidation of organic molecules. This Focus Review highlights mechanistic similarities and distinctions between these two reaction classes and then surveys the aerobic oxidation reactions catalyzed by M-N-Cs. As the active-site structures and kinetic properties of M-N-C aerobic oxidation catalysts have not been extensively studied, the array of tools and methods used to characterize ORR catalysts are presented with the goal of supporting further advances in the field of aerobic oxidation.
Collapse
Affiliation(s)
- Jason S. Bates
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Mathew R. Johnson
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Fatemeh Khamespanah
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Thatcher W. Root
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Shannon S. Stahl
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| |
Collapse
|
24
|
Jiao J, Wang X, Wei C, Zhao Y. Bioinspired Electrode for the Production and Timely Separation of Nitrile and Hydrogen. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2208044. [PMID: 36938916 DOI: 10.1002/smll.202208044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Replacing electrocatalytic oxygen evolution reaction (OER) with amine oxidation reaction is adopted to boost clean and environment-friendly energy source hydrogen (H2 ) in water. However, the electrocatalytic reaction is severely restricted by the strong adsorption of product on the catalyst surface. Inspired by the cooperation of flavin adenine dinucleotide and mitochondria membrane in biological system, the catalysis-separation complex electrodes are introduced to promote the desorption of product and hinder its readsorption by applying polytetrafluoroethylene (PTFE)-separation membrane on the one side of electrode, which is benefit for the cleanness of active sites on the catalyst surface for the continuous production and timely separation of nitrile and hydrogen. With the intermolecular force between PTFE and nitrile, the nitrile droplets can be quickly desorbed and separated from catalyst surface of anode, and the size of nitrile droplets on the catalyst surface is only 0.23% to that without PTFE. As a result, the current at 1.49 VRHE from the catalyst with PTFE membrane is about 33 times to that of catalyst without PTFE after long-term operation. Moreover, the cathode with PTFE membrane also achieves the rapid desorption of H2 bubbles and stable cathodic current because of the strong absorption of PTFE to H2 .
Collapse
Affiliation(s)
- Junrong Jiao
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Xiaobing Wang
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Chengyu Wei
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Yong Zhao
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| |
Collapse
|
25
|
Valle-González OA, Salazar-Bello ÁI, Armando Luján-Montelongo J. Stereoselective synthesis of vinyl nitriles through a Ramberg-Bäcklund approach. Org Biomol Chem 2023; 21:2894-2898. [PMID: 36928119 DOI: 10.1039/d3ob00214d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The applicability of vinyl nitriles in the preparation of pharmaceuticals, polymers, and other valuable materials benefits from robust preparative methodologies. In this work, we present a novel approach for the synthesis of vinyl nitriles based on the Ramberg-Bäcklund olefination reaction (RBR). While there are few examples for accessing functionalized olefins using the RBR, we believe that this methodology embodies useful means for installing privileged vinylnitrile building blocks, such as the acrylonitrile fragment of the US FDA-approved antiviral rilpivirine.
Collapse
Affiliation(s)
- Octavio A Valle-González
- Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav), Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, 07360 Ciudad de México, Mexico.
| | - Ángel I Salazar-Bello
- Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav), Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, 07360 Ciudad de México, Mexico.
| | - J Armando Luján-Montelongo
- Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav), Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, 07360 Ciudad de México, Mexico.
| |
Collapse
|
26
|
Hülsey MJ, Wang S, Zhang B, Ding S, Yan N. Approaching Molecular Definition on Oxide-Supported Single-Atom Catalysts. Acc Chem Res 2023; 56:561-572. [PMID: 36795591 DOI: 10.1021/acs.accounts.2c00728] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
ConspectusSingle-atom catalysts (SACs) offer unique advantages such as high (noble) metal utilization through maximum possible dispersion, large metal-support contact areas, and oxidation states usually unattainable in classic nanoparticle catalysis. In addition, SACs can serve as models for determining active sites, a simultaneously desired as well as elusive target in the field of heterogeneous catalysis. Due to the complexity of heterogeneous catalysts bearing a variety of different sites on metal particles and the respective support as well as at their interface, studies of intrinsic activities and selectivities remain largely inconclusive. While SACs could close this gap, many supported SACs remain intrinsically ill-defined due to complexities arising from the variety of different adsorption sites for atomically dispersed metals, hampering the establishment of meaningful structure-activity correlations. In addition to overcoming this limitation, well-defined SACs could even be utilized to shed light on fundamental phenomena in catalysis that remain ambiguous when studies are obscured by the complexity of heterogeneous catalysts.In this Account, we describe approaches to break down the complexity of supported single-atom catalysts through the careful choice of oxide supports with specific binding motives as well as the adsorption of well-defined ligands such as ionic liquids on single metal sites. An example of molecularly defined oxide supports is polyoxometalates (POMs), which are metal oxo clusters with precisely known composition and structure. POMs exhibit a limited number of sites to anchor atomically dispersed metals such as Pt, Pd, and Rh. Polyoxometalate-supported single-atom catalysts (POM-SACs) thus represent ideal systems for the in situ spectroscopic study of single atom sites during reactions as, in principle, all sites are identical and thus equally active in catalytic reactions. We have utilized this benefit in studies of the mechanism of CO and alcohol oxidation reactions as well as the hydro(deoxy)genation of various biomass-derived compounds. More so, the redox properties of polyoxometalates can be finely tuned by changing the composition of the support while keeping the geometry of the single-atom active site largely constant. We further developed soluble analogues of heterogeneous POM-SACs, opening the door to advanced liquid-phase nuclear magnetic resonance (NMR) and UV-vis techniques but, in particular, to electrospray ionization mass spectrometry (ESI-MS) which proves powerful in determining catalytic intermediates as well as their gas-phase reactivity. Employing this technique, we were able to resolve some of the long-standing questions about hydrogen spillover, demonstrating the broad utility of studies on defined model catalysts.
Collapse
Affiliation(s)
- Max J Hülsey
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585 Singapore
| | - Sikai Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585 Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| | - Bin Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585 Singapore
| | - Shipeng Ding
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585 Singapore
| | - Ning Yan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585 Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| |
Collapse
|
27
|
Zhang X, Zhang Q, Reng J, Lin Y, Tang Y, Liu G, Wang P, Lu GP. N, S Co-Coordinated Zinc Single-Atom Catalysts for N-Alkylation of Aromatic Amines with Alcohols: The Role of S-Doping in the Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:445. [PMID: 36770405 PMCID: PMC9919690 DOI: 10.3390/nano13030445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
S-doping emerged as a promising approach to further improve the catalytic performance of carbon-based materials for organic synthesis. Herein, a facile and gram-scale strategy was developed using zeolitic imidazole frameworks (ZIFs) as a precursor for the fabrication of the ZIF-derived N, S co-doped carbon-supported zinc single-atom catalyst (CNS@Zn1-AA) via the pyrolysis of S-doped ZIF-8, which was modified by aniline, ammonia and thiourea and prepared by one-pot ball milling at room temperature. This catalyst, in which Zn is dispersed as the single atom, displays superior activity in N-alkylation via the hydrogen-borrowing strategy (120 °C, turnover frequency (TOF) up to 8.4 h-1). S-doping significantly enhanced the catalytic activity of CNS@Zn1-AA, as it increased the specific surface area and defects of this material and simultaneously increased the electron density of Zn sites in this catalyst. Furthermore, this catalyst had excellent stability and recyclability, and no obvious loss in activity after eight runs.
Collapse
Affiliation(s)
- Xueping Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Xiaolingwei 200, Nanjing 210094, China
| | - Qiang Zhang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jiacheng Reng
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Xiaolingwei 200, Nanjing 210094, China
| | - Yamei Lin
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Wenyuanstreet 200, Nanjing 210032, China
| | - Yongxing Tang
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Xiaolingwei 200, Nanjing 210094, China
| | - Guigao Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Xiaolingwei 200, Nanjing 210094, China
| | - Pengcheng Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Xiaolingwei 200, Nanjing 210094, China
| | - Guo-Ping Lu
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Xiaolingwei 200, Nanjing 210094, China
| |
Collapse
|
28
|
Xian C, He J, He Y, Nie J, Yuan Z, Sun J, Martens WN, Qin J, Zhu HY, Zhang Z. High Nitrile Yields of Aerobic Ammoxidation of Alcohols Achieved by Generating •O 2- and Br • Radicals over Iron-Modified TiO 2 Photocatalysts. J Am Chem Soc 2022; 144:23321-23331. [PMID: 36516341 DOI: 10.1021/jacs.2c07061] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Catalytic ammoxidation of alcohols into nitriles is an essential reaction in organic synthesis. While highly desirable, conducting the synthesis at room temperature is challenging, using NH3 as the nitrogen source, O2 as the oxidant, and a catalyst without noble metals. Herein, we report robust photocatalysts consisting of Fe(III)-modified titanium dioxide (Fe/TiO2) for ammoxidation reactions at room temperature utilizing oxygen at atmospheric pressure, NH3 as the nitrogen source, and NH4Br as an additive. To the best of our knowledge, this is the first example of catalytic ammoxidation of alcohols over a photocatalyst using such cheap and benign materials. Various (hetero) aromatic nitriles were synthesized at high yields, and aliphatic alcohols could also be transformed into corresponding nitriles at considerable yields. The modification of TiO2 with Fe(III) facilitates the formation of active •O2- radicals and increases the adsorption of NH3 and amino intermediates on the catalyst, accelerating the ammoxidation to yield nitriles. The additive NH4Br impressively improves the catalytic efficiency via the formation of bromine radicals (Br•) from Br-, which works synergistically with •O2- to capture H• from Cα-H, which is present in benzyl alcohol and the intermediate aldimine (RCH═NH), to generate the active carbon-centered radicals. Further, the generation of Br• from the Br- additive consumes the photogenerated holes and OH• radicals to prevent over-oxidation, significantly improving the selectivity toward nitriles. This amalgamation of function and synergy of the Fe(III)-doped TiO2 and NH4Br reveals new opportunities for developing semiconductor-based photocatalytic systems for fine chemical synthesis.
Collapse
Affiliation(s)
- Chensheng Xian
- School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Jie He
- School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Yurong He
- School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Jiabao Nie
- School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Ziliang Yuan
- School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Jie Sun
- School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Wayde N Martens
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Jingzhong Qin
- School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Huai-Yong Zhu
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Zehui Zhang
- School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, P. R. China
| |
Collapse
|
29
|
Qian Z, Wang L, Dzakpasu M, Tian Y, Ding D, Chen R, Wang G, Yang S. Spontaneous Fe III/Fe II redox cycling in single-atom catalysts: Conjugation effect and electron delocalization. iScience 2022; 26:105902. [PMID: 36691626 PMCID: PMC9860487 DOI: 10.1016/j.isci.2022.105902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/21/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022] Open
Abstract
The mechanism of spontaneous FeIII/FeII redox cycling in iron-centered single-atom catalysts (I-SACs) is often overlooked. Consequently, pathways for continuous SO4 ·-/HO⋅ generation during peroxymonosulfate (PMS) activation by I-SACs remain unclear. Herein, the evolution of the iron center and ligand in I-SACs was comprehensively investigated. I-SACs could be considered as a coordination complex created by iron and a heteroatom N-doped carbonaceous ligand. The ligand-field theory could well explain the electronic behavior of the complex, whereby electrons delocalized by the conjugation effect of the ligand were confirmed to be responsible for the FeIII/FeII redox cycle. The possible pyridinic ligand in I-SACs was demonstrably weaker than the pyrrolic ligand in FeIII reduction due to its shielding effect on delocalized π orbitals by local lone-pair electrons. The results of this study significantly advance our understanding of the mechanism of spontaneous FeIII/FeII redox cycling and radical generation pathways in the I-SACs/PMS process.
Collapse
Affiliation(s)
- Zheng Qian
- School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, No. 13, Yanta Road, Xi’an, Shaanxi 710055, China
| | - Lingzhen Wang
- School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, No. 13, Yanta Road, Xi’an, Shaanxi 710055, China
| | - Mawuli Dzakpasu
- School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, No. 13, Yanta Road, Xi’an, Shaanxi 710055, China
| | - Yujia Tian
- School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, No. 13, Yanta Road, Xi’an, Shaanxi 710055, China
| | - Dahu Ding
- College of Resources and Environmental Sciences, Nanjing Agricultural University, No. 1, Weigang, Nanjing, Jiangsu 210095, China
| | - Rongzhi Chen
- College of Resources and Environment, University of Chinese Academic of Science, 19A Yuquan Road, Beijing, 100049, China,Corresponding author
| | - Gen Wang
- School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, No. 13, Yanta Road, Xi’an, Shaanxi 710055, China
| | - Shengjiong Yang
- School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, No. 13, Yanta Road, Xi’an, Shaanxi 710055, China,Corresponding author
| |
Collapse
|
30
|
Yang M, Wu K, Sun S, Duan J, Liu X, Cui J, Liang S, Ren Y. Unprecedented Relay Catalysis of Curved Fe 1–N 4 Single-Atom Site for Remarkably Efficient 1O 2 Generation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Man Yang
- Engineering Research Center of Conducting Materials and Composite Technology, Ministry of Education; Shaanxi Engineering Research Center of Metal-Based Heterogeneous Materials and Advanced Manufacturing Technology; Shaanxi Province Key Laboratory for Electrical Materials and Infiltration Technology; School of Materials Science and Engineering, Xi’an University of Technology, Xi’an710048, Shaanxi, People’s Republic of China
| | - Keying Wu
- Engineering Research Center of Conducting Materials and Composite Technology, Ministry of Education; Shaanxi Engineering Research Center of Metal-Based Heterogeneous Materials and Advanced Manufacturing Technology; Shaanxi Province Key Laboratory for Electrical Materials and Infiltration Technology; School of Materials Science and Engineering, Xi’an University of Technology, Xi’an710048, Shaanxi, People’s Republic of China
| | - Shaodong Sun
- Engineering Research Center of Conducting Materials and Composite Technology, Ministry of Education; Shaanxi Engineering Research Center of Metal-Based Heterogeneous Materials and Advanced Manufacturing Technology; Shaanxi Province Key Laboratory for Electrical Materials and Infiltration Technology; School of Materials Science and Engineering, Xi’an University of Technology, Xi’an710048, Shaanxi, People’s Republic of China
| | - Jianglin Duan
- Interdisciplinary Research Center of Biology & Catalysis; School of Life Sciences, Northwestern Polytechnical University, Xi’an710072, Shaanxi, People’s Republic of China
| | - Xin Liu
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao066004, Hebei, People’s Republic of China
| | - Jie Cui
- Engineering Research Center of Conducting Materials and Composite Technology, Ministry of Education; Shaanxi Engineering Research Center of Metal-Based Heterogeneous Materials and Advanced Manufacturing Technology; Shaanxi Province Key Laboratory for Electrical Materials and Infiltration Technology; School of Materials Science and Engineering, Xi’an University of Technology, Xi’an710048, Shaanxi, People’s Republic of China
| | - Shuhua Liang
- Engineering Research Center of Conducting Materials and Composite Technology, Ministry of Education; Shaanxi Engineering Research Center of Metal-Based Heterogeneous Materials and Advanced Manufacturing Technology; Shaanxi Province Key Laboratory for Electrical Materials and Infiltration Technology; School of Materials Science and Engineering, Xi’an University of Technology, Xi’an710048, Shaanxi, People’s Republic of China
| | - Yujing Ren
- Interdisciplinary Research Center of Biology & Catalysis; School of Life Sciences, Northwestern Polytechnical University, Xi’an710072, Shaanxi, People’s Republic of China
| |
Collapse
|
31
|
Su T, Cai C. Nitrogen and Phosphorus Dual-Coordinated Single-Atom Mn: MnN 2P Active Sites for Catalytic Transfer Hydrogenation of Nitroarenes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55568-55576. [PMID: 36509748 DOI: 10.1021/acsami.2c16265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The coordination environment of atomically metal sites can modulate the electronic states and geometric structure of single-atom catalysts, which determine their catalytic performance. In this work, the porous carbon-supported N, P dual-coordinated Mn single-atom catalyst was successfully prepared via the phosphatization of zeolitic imidazolate frameworks and followed by pyrolysis at 900 °C. The optimal Mn1-N/P-C catalyst with atomic MnN2P structure has displayed better catalytic activity than the related catalyst with Mn-Nx structure in catalytic transfer hydrogenation of nitroarenes using formic acid as the hydrogen donor. We find that the doping of P source plays a crucial role in improving the catalytic performance, which affects the morphology and electronic properties of catalyst. This is the first Mn heterogeneous catalyst example for the reduction of nitroarenes, and it also revealed that the MnN2P configuration is a more promising alternative in heterogeneous catalysis.
Collapse
Affiliation(s)
- Tianyue Su
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Xiaolingwei 200, Nanjing 210094, P. R. China
| | - Chun Cai
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Xiaolingwei 200, Nanjing 210094, P. R. China
| |
Collapse
|
32
|
Wang J, Yang X, Li N, Wang L. NH
4
Br‐Promoted Single‐Step and Transition‐Metal‐Free Conversion of Aldehydes to Nitriles in Ammonia Water. ChemistrySelect 2022. [DOI: 10.1002/slct.202203982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Jin Wang
- School of Pharmacy Yancheng Teachers University Yancheng 224007 Jiangsu Province China
| | - Xiao‐Qin Yang
- School of Pharmacy Yancheng Teachers University Yancheng 224007 Jiangsu Province China
| | - Na Li
- School of Pharmacy Yancheng Teachers University Yancheng 224007 Jiangsu Province China
| | - Li.‐Li Wang
- School of Pharmacy Yancheng Teachers University Yancheng 224007 Jiangsu Province China
| |
Collapse
|
33
|
Lin Y, Wang F, Ren E, Zhu F, Zhang Q, Lu GP. N, Si-codoped carbon-based iron catalyst for efficient, selective synthesis of pyrroles from nitroarenes: The role of Si doping. J Catal 2022. [DOI: 10.1016/j.jcat.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
34
|
Patil R, Liu S, Yadav A, Khaorapapong N, Yamauchi Y, Dutta S. Superstructures of Zeolitic Imidazolate Frameworks to Single- and Multiatom Sites for Electrochemical Energy Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203147. [PMID: 36323587 DOI: 10.1002/smll.202203147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/24/2022] [Indexed: 06/16/2023]
Abstract
The exploration of electrocatalysts with high catalytic activity and long-term stability for electrochemical energy conversion is significant yet remains challenging. Zeolitic imidazolate framework (ZIF)-derived superstructures are a source of atomic-site-containing electrocatalysts. These atomic sites anchor the guest encapsulation and self-assembly of aspheric polyhedral particles produced using microreactor fabrication. This review provides an overview of ZIF-derived superstructures by highlighting some of the key structural types, such as open carbon cages, 1D superstructures, hollow structures, and the interconversion of superstructures. The fundamentals and representative structures are outlined to demonstrate the role of superstructures in the construction of materials with atomic sites, such as single- and dual-atom materials. Then, the roles of ZIF-derived single-atom sites for the electroreduction of CO2 and electrochemical synthesis of H2 O2 are discussed, and their electrochemical performance for energy conversion is outlined. Finally, the perspective on advancing single- and dual-atom electrode-based electrochemical processes with enhanced redox activity and a low-impedance charge-transfer pathway for cathodes is provided. The challenges associated with ZIF-derived superstructures for electrochemical energy conversion are discussed.
Collapse
Affiliation(s)
- Rahul Patil
- Electrochemical Energy and Sensor Research Laboratory, Amity Institute of Click Chemistry Research and Studies, Amity University, 201303, Noida, India
| | - Shude Liu
- JST-ERATO Yamauchi Materials Space-Tectonics Project, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Anubha Yadav
- Electrochemical Energy and Sensor Research Laboratory, Amity Institute of Click Chemistry Research and Studies, Amity University, 201303, Noida, India
| | - Nithima Khaorapapong
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, 40002, Khon Kaen, Thailand
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space-Tectonics Project, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Saikat Dutta
- Electrochemical Energy and Sensor Research Laboratory, Amity Institute of Click Chemistry Research and Studies, Amity University, 201303, Noida, India
| |
Collapse
|
35
|
Cui J, Li L, Shao S, Gao J, Wang K, Yang Z, Zeng S, Diao C, Zhao Y, Hu C. Regulating the Metal–Support Interaction: Double Jump to Reach the Efficiency Apex of the Fe–N4-Catalyzed Fenton-like Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Jiahao Cui
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education & Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, P. R. China
| | - Lina Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education & Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, P. R. China
| | - Siting Shao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education & Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, P. R. China
| | - Jingyu Gao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education & Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, P. R. China
| | - Kun Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education & Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, P. R. China
| | - Zhenchun Yang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education & Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, P. R. China
| | - Shiqi Zeng
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education & Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, P. R. China
| | - Caozheng Diao
- Singapore Synchrotron Light Source, National University of Singapore, Singapore 117603, Singapore
| | - Yubao Zhao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education & Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, P. R. China
| | - Chun Hu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education & Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, P. R. China
| |
Collapse
|
36
|
Qin J, Han B, Liu X, Dai W, Wang Y, Luo H, Lu X, Nie J, Xian C, Zhang Z. An enzyme-mimic single Fe-N 3 atom catalyst for the oxidative synthesis of nitriles via C─C bond cleavage strategy. SCIENCE ADVANCES 2022; 8:eadd1267. [PMID: 36206338 PMCID: PMC9544340 DOI: 10.1126/sciadv.add1267] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/23/2022] [Indexed: 05/31/2023]
Abstract
The cleavage and functionalization of recalcitrant carbon─carbon bonds is highly challenging but represents a very powerful tool for value-added transformation of feedstock chemicals. Here, an enzyme-mimic iron single-atom catalyst (SAC) bearing iron (III) nitride (FeN3) motifs was prepared and found to be robust for cleavage and cyanation of carbon-carbon bonds in secondary alcohols and ketones. High nitrile yields are obtained with a wide variety of functional groups. The prepared FeN3-SAC exhibits high enzyme-like activity and is capable of generating a dioxygen-to-superoxide radical at room temperature, while the commonly reported FeN4-SAC bearing FeN4 motifs was inactive. Density functional theory (DFT) calculation reveals that the activation energy of dioxygen activation and the activation energy of the rate-determining step of nitrile formation are lower over FeN3-SAC than FeN4-SAC. In addition, DFT calculation also explains the catalyst's high selectivity for nitriles.
Collapse
Affiliation(s)
- Jingzhong Qin
- Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central University for Nationalities, Wuhan 430074, P. R. China
| | - Bo Han
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Xixi Liu
- Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central University for Nationalities, Wuhan 430074, P. R. China
| | - Wen Dai
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Yanxin Wang
- Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central University for Nationalities, Wuhan 430074, P. R. China
| | - Huihui Luo
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Xiaomei Lu
- Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central University for Nationalities, Wuhan 430074, P. R. China
| | - Jiabao Nie
- Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central University for Nationalities, Wuhan 430074, P. R. China
| | - Chensheng Xian
- Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central University for Nationalities, Wuhan 430074, P. R. China
| | - Zehui Zhang
- Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central University for Nationalities, Wuhan 430074, P. R. China
| |
Collapse
|
37
|
Wang F, Zhu F, Ren E, Zhu G, Lu GP, Lin Y. Recent Advances in Carbon-Based Iron Catalysts for Organic Synthesis. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193462. [PMID: 36234590 PMCID: PMC9565280 DOI: 10.3390/nano12193462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 05/13/2023]
Abstract
Carbon-based iron catalysts combining the advantages of iron and carbon material are efficient and sustainable catalysts for green organic synthesis. The present review summarizes the recent examples of carbon-based iron catalysts for organic reactions, including reduction, oxidation, tandem and other reactions. In addition, the introduction strategies of iron into carbon materials and the structure and activity relationship (SAR) between these catalysts and organic reactions are also highlighted. Moreover, the challenges and opportunities of organic synthesis over carbon-based iron catalysts have also been addressed. This review will stimulate more systematic and in-depth investigations on carbon-based iron catalysts for exploring sustainable organic chemistry.
Collapse
Affiliation(s)
- Fei Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Fuying Zhu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Enxiang Ren
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Guofu Zhu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Guo-Ping Lu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, China
- Correspondence: (G.-P.L.); (Y.L.)
| | - Yamei Lin
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
- Correspondence: (G.-P.L.); (Y.L.)
| |
Collapse
|
38
|
Surface Organometallic Chemistry for Single-site Catalysis and Single-atom Catalysis. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2211-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
39
|
Chen L, Wu J, Lu GP, Zhang Q, Su T, Cai C. Al(PO3)3 supported NiMo bimetallic catalyst for selective synthesis of fatty alcohols from lipids. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
40
|
Recent Insight in Transition Metal Anchored on Nitrogen-Doped Carbon Catalysts: Preparation and Catalysis Application. ELECTROCHEM 2022. [DOI: 10.3390/electrochem3030036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The design and preparation of novel, high-efficiency, and low-cost heterogeneous catalysts are important topics in academic and industry research. In the past, inorganic materials, metal oxide, and carbon materials were used as supports for the development of heterogeneous catalysts due to their excellent properties, such as high specific surface areas and tunable porous structures. However, the properties of traditional pristine carbon materials cannot keep up with the sustained growth and requirements of industry and scientific research, since the introduction of nitrogen atoms into carbon materials may significantly enhance a variety of their physicochemical characteristics, which gradually become appropriate support for synthesizing supported transition metal catalysts. In the past several decades, the transition metal anchored on nitrogen-doped carbon catalysts has attracted a tremendous amount of interest as potentially useful catalysts for diverse chemical reactions. Compared with original carbon support, the doping of nitrogen atoms can significantly regulate the physicochemical properties of carbon materials and allow active metal species uniformly dispersed on the support. The various N species in support also play a critical role in accelerating the catalytic performance in some reactions. Besides, the interaction between support and transition metal active sites can offer an anchor site to stabilize metal species during the preparation process and then improve reaction performance, atomic utilization, and stability. In this review, we highlight the recent advances and the remaining challenges in the preparation and application of transition metal anchored on nitrogen-doped carbon catalysts.
Collapse
|
41
|
Wang F, Zhu F, Ren E, Zhang Q, Lu GP, Lin Y. Fe–FeO x nanoparticles encapsulated in N-doped carbon material: a facile catalyst for selective synthesis of quinazolines from alcohols in water. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01562e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Fe–FeOx@NC catalyst with N-doped carbon encapsulated Fe–FeOx nanoparticles has excellent performance in the synthesis of quinazolines.
Collapse
Affiliation(s)
- Fei Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Fuying Zhu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Enxiang Ren
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Qiang Zhang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Guo-Ping Lu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, PR China
| | - Yamei Lin
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| |
Collapse
|