1
|
Hochstadt J, Martínez Pacheco S, Casanova-Acebes M. Embracing diversity: macrophage complexity in cancer. Trends Cancer 2025; 11:351-364. [PMID: 39753470 DOI: 10.1016/j.trecan.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 04/11/2025]
Abstract
Macrophages are myeloid cells that receive, integrate, and respond to tumoral cues. Tumors evolve and are shaped by macrophages, with tumor-associated macrophage (TAM)-tumor sculpting capacities going beyond an increase in their cellular mass. Longitudinal and local heterogeneity of TAM states is now possible with the use of single-cell and spatial transcriptomics. However, understanding TAM biology and its fundamental functional programs is still challenging, probably because of the lack of models that fully integrate TAM complexity. Here, we aim to review TAM diversity not only at the level of single-cell phenotypes but also by integrating complex physiological signals that determine their complexity and plasticity in tumors.
Collapse
Affiliation(s)
- Jan Hochstadt
- Cancer Immunity Laboratory, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Sarai Martínez Pacheco
- Cancer Immunity Laboratory, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - María Casanova-Acebes
- Cancer Immunity Laboratory, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain.
| |
Collapse
|
2
|
Dong Z, He L, Wu J, Xie C, Geng S, Wu J, Zhong C, Li X. Bisphenol A-induced cancer-associated adipocytes promotes breast carcinogenesis via CXCL12/AKT signaling. Mol Cell Endocrinol 2025; 599:112473. [PMID: 39863150 DOI: 10.1016/j.mce.2025.112473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/16/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Bisphenol A (BPA), a commonly used plastic additive, is believed to cause obesity. As an environmental endocrine disruptor, BPA is closely associated with the onset and progression of BC. However, the molecular mechanisms underlying the promotion of breast cancer by BPA remain unclear. As obesity is a significant risk factor for breast cancer, this study aimed at exploring whether BPA facilitates the progression of breast cancer by inducing obesity. Using the National Health and Nutrition Examination Survey data, a positive correlation was observed between BPA exposure and the risk of sex-specific cancers among US adults with body mass index ≥30, suggesting that obesity may be influenced by urinary BPA. 3T3-L1 cells differentiated into mature adipocytes following treatment with 10-8 M BPA, and subsequent treatment with 4T1-conditioned medium acquired properties associated with cancer-associated adipocytes (CAAs). Network pharmacology suggested that CXCL12 may serve as a key target gene in breast cancer progression. Follow-up PCR analysis revealed high CXCL12 expression in BPA-induced CAAs. Overexpression of CXCL12 promoted epithelial-mesenchymal transition (EMT) and 4T1 cell migration by activating the AKT pathway. In vivo, BPA-induced CAAs accelerated tumor growth compared to a controls xenografted with only 4T1 cells. In tissues from the BPA-CAAs group, the expression of CXCL12, markers associated with CAAs, phosphorylated AKT, N-cadherin, and vimentin was markedly elevated, whereas the expression of E-cadherin was reduced. In conclusion, BPA may induce adipose cells to differentiate into CAA-like cells and subsequently advance breast cancer EMT through the CXCL12/AKT pathway.
Collapse
Affiliation(s)
- Zhiyuan Dong
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Liping He
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jinyi Wu
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Chunfeng Xie
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Shanshan Geng
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jieshu Wu
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Caiyun Zhong
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Xiaoting Li
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
3
|
Mo L, Deng M, Adhav R, Chan Y, Lei JH, Su SM, Zhang X, An T, Liu J, Li J, Shu X, Xu J, Wang Y, Chen L, Man YG, Shao NY, Xiang T, Deng CX, Xu X. Oncogenic activation of SMYD3-SHCBP1 promotes breast cancer development and is coupled with resistance to immune therapy. Cell Death Dis 2025; 16:220. [PMID: 40157910 PMCID: PMC11954966 DOI: 10.1038/s41419-025-07570-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/10/2025] [Accepted: 03/18/2025] [Indexed: 04/01/2025]
Abstract
Breast cancer initiation and progression are driven by various oncogenic factors and their effects on the surrounding microenvironments. Through integrative analysis of ChIP-sequencing and RNA-sequencing with fast proliferating mammary epithelial cells from pregnant Brca1MKO and wild type (WT) mice, we found that elevated Smyd3-Shcbp1 signaling is featured with activation of the Ras-MAPK pathway and increased transcription activity in both premalignant mammary epithelium and tumor cells. Smyd3-Shcbp1 signaling shapes the tumor immunosuppressive microenvironment (TIME) and is associated with immune therapy resistance to PD1 antibody treatment. Trametinib, a potent inhibitor of MEK/MAPK, could reverse the expression of Smyd3 and Shcbp1 in both Brca1 mutant and WT tumor bearing mice. We further demonstrated that the combinatory treatment of trametinib together with PD1 antibody enhances the function of effector T cells, sensitizing tumors with elevated Smyd3 and Shcbp1 signaling to αPD1 treatment. This study advances the understanding of breast tumor progression and provides a new selective strategy for breast cancer patients.
Collapse
Affiliation(s)
- Lihua Mo
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, China
| | - Min Deng
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, China
| | - Ragini Adhav
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Yuni Chan
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Josh Haipeng Lei
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, China
| | - Sek Man Su
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, China
| | - Xin Zhang
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, China
| | - Tingting An
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, China
| | - Jianlin Liu
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, China
| | - Jianjie Li
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, China
| | - Xiaodong Shu
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, China
| | - Jun Xu
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, China
| | - Yuqing Wang
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, China
| | - Lin Chen
- Laboratory of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yan-Gao Man
- Department of Pathology, Hackensack Meridian School of Medicine, Nutley, NJ, USA
| | - Ning-Yi Shao
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, China
| | - Tingxiu Xiang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Chu-Xia Deng
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China.
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, China.
- Zhuhai UM Science & Technology Research Institute, Hengqin, China.
| | - Xiaoling Xu
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China.
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, China.
- Zhuhai UM Science & Technology Research Institute, Hengqin, China.
| |
Collapse
|
4
|
Wang X, Qu L, Wen Z, Wu Z, Xue Y, Yang X, Yuan Z, Guo Y, Lin X. PANoptosis-related genes in the prognosis and immune landscape of hepatocellular carcinoma. Immunol Res 2025; 73:51. [PMID: 39946053 PMCID: PMC11825605 DOI: 10.1007/s12026-025-09603-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 02/04/2025] [Indexed: 02/16/2025]
Abstract
In hepatocellular carcinoma (HCC) individuals, the influence of numerous variables on the HCC prognosis has gained widespread recognition. Nevertheless, there remains a need for further elucidation regarding the underlying mechanism of PANoptosis-related genes (PRGs) on HCC. A consensus clustering approach, based on the TCGA-LIHC data, was used to identify specific subtypes linked to PANoptosis in this study. Next, a signature consisting of predictive differentially expressed genes for these subtypes was established using a least absolute shrinkage and selection operator (LASSO) regression analysis. Additionally, the reliability of the signature was confirmed through verification investigations using the data from the ICGC database and TCGA-LIHC. In the end, we developed a nomogram to enhance the clinical effectiveness of our prediction tool. PRG signature in this study has been highly related to the prognosis of individuals diagnosed with HCC, which was established with six genes. Also, this signature and clinicopathological features were put together to create a nomogram. Interestingly, the forecasting efficiency of this combination approach is better than other prediction models in the reported literature. In addition, an examination of the immunological surroundings indicates that the group with low risk exhibited elevated ESTIMATE score, ImmuneScores, and StromalScores. More, significant differences in infiltrating immune cells and the expression levels of immune-related genes were found between the two groups. In HCC patients, the PRG signature exhibits potential as a biomarker, offering a significant point of reference for tailoring individual therapy.
Collapse
Affiliation(s)
- Xiaowu Wang
- The Third Affiliated Hospital of Wenzhou Medical University, Zhejiang Province, Rui'an, 325200, China
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, 318000, Zhejiang Province, China
| | - Liangchen Qu
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, 318000, Zhejiang Province, China
| | - Zhikai Wen
- The Third Affiliated Hospital of Wenzhou Medical University, Zhejiang Province, Rui'an, 325200, China
- Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Zhixuan Wu
- Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Yuxiang Xue
- The Third Affiliated Hospital of Wenzhou Medical University, Zhejiang Province, Rui'an, 325200, China
| | - Xuejia Yang
- Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Ziwei Yuan
- Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Yangyang Guo
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, 318000, Zhejiang Province, China.
- The First Affiliated Hospital of Ningbo University, Ningbo, 315000, Zhejiang Province, China.
| | - Xingcheng Lin
- The Third Affiliated Hospital of Wenzhou Medical University, Zhejiang Province, Rui'an, 325200, China.
| |
Collapse
|
5
|
Coser M, Neamtu BM, Pop B, Cipaian CR, Crisan M. RAGE and its ligands in breast cancer progression and metastasis. Oncol Rev 2025; 18:1507942. [PMID: 39830522 PMCID: PMC11739297 DOI: 10.3389/or.2024.1507942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Breast cancer is the most common form of cancer diagnosed worldwide and the leading cause of death in women globally, according to Globocan 2020. Hence, investigating novel pathways implicated in cancer progression and metastasis could lead to the development of targeted therapies and new treatment strategies in breast cancer. Recent studies reported an interplay between the receptor for advanced glycation end products (RAGE) and its ligands, S100 protein group, advanced glycation end products (AGEs) and high-mobility group box 1 protein (HMGB1) and breast cancer growth and metastasis. Materials and methods We used articles available in the NCBI website database PubMed to write this scoping review. The search words used were 'RAGE receptor' AND/OR 'breast cancer, RAGE ligands, glycation end products'. A total of 90 articles were included. We conducted a meta-analysis to assess the relationship between the RAGE rs1800624 polymorphism and breast cancer risk using fixed-effect or random-effect models to calculate odds ratios (ORs) and their corresponding 95% confidence intervals (95% CIs). Results RAGE upon activation by its ligands enhances downstream signaling pathways, contributing to breast cancer cells migration, growth, angiogenesis, metastasis, and drug resistance. In addition, studies have shown that RAGE and its ligands influence the way breast cancer cells interact with immune cells present in the tumor microenvironment (macrophages, fibroblasts), thus regulating it to promote tumor growth and metastasis. Conclusion Breast cancers with a high expression of RAGE are associated with poor prognosis. Targeting RAGE and its ligands impairs cell invasion and metastasis, showing promising potential for further research as potential prognostic biomarkers or targeted onco-therapeutics.
Collapse
Affiliation(s)
- Madalina Coser
- Department of Histology, Doctoral School “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Bogdan Mihai Neamtu
- Clinical Medical Department, Center for Research in Mathematics and Applications, Faculty of Medicine, “Lucian Blaga” University Sibiu, Sibiu, Romania
- Department of Clinical Research, Pediatric Clinical Hospital Sibiu, Sibiu, Romania
| | - Bogdan Pop
- Department of Pathology, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
- Department of Pathology, “Prof. Dr. ion Chiricuta” Institute of Oncology Cluj-Napoca, Cluj-Napoca, Romania
| | - Calin Remus Cipaian
- Second Medical Clinic, Sibiu County Clinical Emergency Hospital, Sibiu, Romania
- Clinical Medical Department, Faculty of Medicine, “Lucian Blaga” University Sibiu, Sibiu, Romania
| | - Maria Crisan
- Department of Histology, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
- Clinic of Dermatology, Emergency Clinical County Hospital, Cluj-Napoca, Romania
| |
Collapse
|
6
|
Van Linthout S. Shared Mechanisms in Cancer and Cardiovascular Disease: S100A8/9 and the NLRP3 Inflammasome: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2024:S2666-0873(24)00370-3. [PMID: 40260700 DOI: 10.1016/j.jaccao.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 04/24/2025] Open
Abstract
Inflammation and a dysregulated immune system are common denominators in cancer and cardiovascular disease (CVD). The Canakinumab Anti-Inflammatory Thrombosis Outcome Study (CANTOS) highlighted the convergence of interleukin (IL)-1β biology in cancer and CVD, and the potential of anti-IL-1β drugs for the treatment of both disease entities. Accumulating evidence further supports the role of the innate immunity members and IL-1β activators, S100A8/9 and the NLRP3 inflammasome, in both cancer and CVD. This review outlines the common involvement of S100A8/9 and the NLRP3 inflammasome, in cancer and CVD. Specifically, their time-, cell-, and context-dependent actions and hereto-related dichotomous role in different cancers and CVD are addressed, highlighting the need for further insights to allow tailored therapies.
Collapse
Affiliation(s)
- Sophie Van Linthout
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany; German Centre for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany.
| |
Collapse
|
7
|
Lewis SM, Dos Santos C. Epigenetic scars of Brca1 loss point toward breast cancer cell of origin. Nat Genet 2024; 56:2594-2595. [PMID: 39567745 DOI: 10.1038/s41588-024-02021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Affiliation(s)
- Steven M Lewis
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Stony Brook University, Stony Brook, NY, USA
| | | |
Collapse
|
8
|
Demir MF, Lin YH, Costa Cruz PH, Tajima M, Honjo T, Müller E. Blocking S100A9-signaling is detrimental to the initiation of anti-tumor immunity. Front Immunol 2024; 15:1479502. [PMID: 39497822 PMCID: PMC11532050 DOI: 10.3389/fimmu.2024.1479502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/03/2024] [Indexed: 11/07/2024] Open
Abstract
S100A9, a multifunctional protein mainly expressed by neutrophils and monocytes, poses an immunological paradox. In virus infections or sterile inflammation, it functions as an alarmin attracting innate immune cells, as well as mediating proinflammatory effects through TLR4 signaling. However, in cancer, S100A9 levels have been shown to associate with poor prognosis and lack of response to immunotherapy. Its expression by myeloid cells has been related to an immune suppressive phenotype, the so-called myeloid derived suppressor cells (MDSCs). Targeting S100A9 in cancer has therefore been proposed as a potential way to relieve myeloid-mediated immune suppression. Surprisingly, we found that blocking the extracellular TLR4 signaling from S100A9 using the inhibitor Paquinimod, resulted in increased tumor growth and a detrimental effect on anti-PD-L1 efficacy in the CT26 tumor model. This effect was caused by a reduction in the tumor immune infiltration to about half of untreated controls, and the reduction was made up of a 5-fold decrease in Ly6Chigh monocytic cells. The suppressive Ly6G+ myeloid cells compartment was not reduced by Paquinimod treatment, suggesting alternative mechanisms by which S100A9 contributes to myeloid-mediated suppression. Intratumoral injection of recombinant S100A9 early after mice inoculation with CT26 cells had an anti-tumor effect. These findings indicate an important yet understudied role of S100A9 as an alarmin and immune stimulatory signal in cancer settings, and highlight the potential to exploit such signals to promote beneficial anti-tumor responses.
Collapse
Affiliation(s)
- Melike Fusun Demir
- Department of Immunology and Genomic Medicine, Kyoto University, Kyoto, Japan
- Division of Integrated High-Order Regulatory Systems, Center for Cancer Immunotherapy and Immunobiology, Kyoto, Japan
| | - Yu-Hsien Lin
- Division of Integrated High-Order Regulatory Systems, Center for Cancer Immunotherapy and Immunobiology, Kyoto, Japan
| | - Pedro Henrique Costa Cruz
- Division of Integrated High-Order Regulatory Systems, Center for Cancer Immunotherapy and Immunobiology, Kyoto, Japan
| | - Masaki Tajima
- Division of Integrated High-Order Regulatory Systems, Center for Cancer Immunotherapy and Immunobiology, Kyoto, Japan
| | - Tasuku Honjo
- Department of Immunology and Genomic Medicine, Kyoto University, Kyoto, Japan
| | - Elisabeth Müller
- Department of Immunology and Genomic Medicine, Kyoto University, Kyoto, Japan
- Division of Integrated High-Order Regulatory Systems, Center for Cancer Immunotherapy and Immunobiology, Kyoto, Japan
- Tumor Immunology Group, Institute of Pathology, Oslo University Hospital, Oslo, Norway
- Therapy Prediction In Lung Cancer, Department of Cancer Genetics, Institute of Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
9
|
Padzińska-Pruszyńska I, Kucharzewska P, Matejuk A, Górczak M, Kubiak M, Taciak B, Król M. Macrophages: Key Players in the Battle against Triple-Negative Breast Cancer. Int J Mol Sci 2024; 25:10781. [PMID: 39409110 PMCID: PMC11476577 DOI: 10.3390/ijms251910781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a challenging subtype of breast cancer characterized by the absence of estrogen and progesterone receptors and HER2 expression, leading to limited treatment options and a poorer prognosis. TNBC is particularly prevalent in premenopausal African-descent women and is associated with aggressive tumor behavior and higher metastatic potential. Tumor-associated macrophages (TAMs) are abundantly present within the TNBC microenvironment and play pivotal roles in promoting tumor growth, progression, and metastasis through various mechanisms, including immune suppression and enhancement of angiogenesis. This review provides an in-depth overview of TNBC, focusing on its epidemiology, its molecular characteristics, and the critical influence of TAMs. It discusses the pathological and molecular aspects that define TNBC's aggressive nature and reviews current and emerging therapeutic strategies aimed at targeting these dynamics. Special attention is given to the role of TAMs, exploring their potential as therapeutic targets due to their significant impact on tumor behavior and patient outcomes. This review aims to highlight the complexities of the TNBC landscape and to present the innovative approaches that are currently being pursued to improve therapeutic efficacy and patient survival.
Collapse
Affiliation(s)
- Irena Padzińska-Pruszyńska
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.P.-P.); (P.K.); (M.G.); (M.K.); (B.T.)
| | - Paulina Kucharzewska
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.P.-P.); (P.K.); (M.G.); (M.K.); (B.T.)
| | - Agata Matejuk
- Department of Immunology, Collegium Medicum, University of Zielona Góra, 65-417 Zielona Góra, Poland;
| | - Małgorzata Górczak
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.P.-P.); (P.K.); (M.G.); (M.K.); (B.T.)
| | - Małgorzata Kubiak
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.P.-P.); (P.K.); (M.G.); (M.K.); (B.T.)
| | - Bartłomiej Taciak
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.P.-P.); (P.K.); (M.G.); (M.K.); (B.T.)
| | - Magdalena Król
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.P.-P.); (P.K.); (M.G.); (M.K.); (B.T.)
| |
Collapse
|
10
|
Xie X, Chen C, Wang C, Guo Y, Sun B, Tian J, Yan J, Li D, Chen G. Targeting GPX4-mediated ferroptosis protection sensitizes BRCA1-deficient cancer cells to PARP inhibitors. Redox Biol 2024; 76:103350. [PMID: 39265497 PMCID: PMC11415882 DOI: 10.1016/j.redox.2024.103350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/14/2024] Open
Abstract
BRCA1 is one of the most frequently-mutated tumor suppressor genes in ovarian and breast cancers. Loss of BRCA1 triggers homologous recombination (HR) repair deficiency, consequently leading to genomic instability and PARP inhibitors (PARPi)-associated synthetic lethality. Although, the roles of BRCA1 in DNA repair and replication have been extensively investigated, its tumor suppressive functions beyond genome safeguard remain poorly understood. Here, we report that BRCA1 promotes ferroptosis susceptibility through catalyzing K6-linked polyubiquitination of GPX4 and subsequently accelerating GPX4 degradation. Depletion of BRCA1 induces ferroptosis resistance in ovarian cancer cells due to elevated GPX4 protein, and silence of GPX4 significantly suppresses the growth of BRCA1-deficient ovarian cancer xenografts. Importantly, we found that PARPi triggers ferroptosis in ovarian cancer cells, inhibition of GPX4 markedly increase PARPi-induced ferroptosis in BRCA1-deficient ovarian cancer cells. Combined treatment of GPX4 inhibitor and PARPi produces synergistic anti-tumor efficacy in BRCA1-deficient ovarian cancer cells, patient derived organoid (PDO) and xenografts. Thus, our study uncovers a novel mechanism via which BRCA1 exerts tumor suppressive function through regulating ferroptosis, and demonstrates the potential of GPX4 as a therapeutic target for BRCA1-mutant cancers.
Collapse
Affiliation(s)
- Xuexia Xie
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China; Department of Anesthesiology and General Surgery, The First Affiliated Hospital of Jinan University, 510632, Guangzhou, China
| | - Congcong Chen
- Department of Anesthesiology and General Surgery, The First Affiliated Hospital of Jinan University, 510632, Guangzhou, China
| | - Cong Wang
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yongjian Guo
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Binghe Sun
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jiaxin Tian
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jin Yan
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Dake Li
- Department of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China
| | - Guo Chen
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
11
|
Le H, Wang Y, Zhou J, Li D, Gong Z, Zhu F, Wang J, Tian C, Cai W, Wu J. Git2 deficiency promotes MDSCs recruitment in intestine via NF-κB-CXCL1/CXCL12 pathway and ameliorates necrotizing enterocolitis. Mucosal Immunol 2024; 17:1060-1071. [PMID: 39074614 DOI: 10.1016/j.mucimm.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024]
Abstract
Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease in preterm infants and the most common cause of neonatal death, whereas the molecular mechanism of intestinal injury remains unclear accompanied by deficiency of effective therapeutic approaches. GIT2 (G-protein-coupled receptor kinase interacting proteins 2) can affect innate and adaptive immunity and has been involved in multiple inflammatory disorders. In this study, we investigated whether GIT2 participates in the pathogenesis of NEC. Here we found that intestinal Git2 gene expression was significantly increased in NEC patients and NEC mice, which positively correlated with the tissue damage severity, and Git2 deficiency could potently protect against NEC development in mice. Mechanistically, Git2 gene knockout dramatically increased the recruitment of MDSCs in the intestine, and in vivo depletion of MDSCs almost completely abrogated the protective effect of Git2 deficiency on NEC. Moreover, Git2 deficiency induced MDSCs intestinal accumulation mainly relied on CXCL1/CXCL12 signaling, as evidenced by the significant increment of CXCL1 and CXCL12 levels in intestinal epithelium of Git2-/- mice and dramatically decrease of MDSCs accumulation in intestine as well as increase of NEC severity upon treatment of CXCL1/CXCL12 pathway inhibitors. In addition, Git2 deficiency induced up-regulation of CXCL1 and CXCL12 is at least partially mediated through activating NF-κB signaling. Thus, our findings suggest that GIT2 is involved in the pathogenesis of NEC, and targeting GIT2 may be a potential preventive and therapeutic approach for NEC.
Collapse
Affiliation(s)
- Huijuan Le
- Department of pediatric Surgery, Xinhua hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China; Shanghai Institute for Pediatric Research, School of Medicine, Shanghai Jiaotong University, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Yanyan Wang
- Department of pediatric Surgery, Xinhua hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China; Shanghai Institute for Pediatric Research, School of Medicine, Shanghai Jiaotong University, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Jiefei Zhou
- Department of pediatric Surgery, Xinhua hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China; Shanghai Institute for Pediatric Research, School of Medicine, Shanghai Jiaotong University, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Dan Li
- Department of pediatric Surgery, Xinhua hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China; Shanghai Institute for Pediatric Research, School of Medicine, Shanghai Jiaotong University, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Zizhen Gong
- Department of pediatric Surgery, Xinhua hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China; Shanghai Institute for Pediatric Research, School of Medicine, Shanghai Jiaotong University, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Fangxinxing Zhu
- Department of pediatric Surgery, Xinhua hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China; Shanghai Institute for Pediatric Research, School of Medicine, Shanghai Jiaotong University, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Jian Wang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Chunyan Tian
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.
| | - Wei Cai
- Department of pediatric Surgery, Xinhua hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China; Shanghai Institute for Pediatric Research, School of Medicine, Shanghai Jiaotong University, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.
| | - Jin Wu
- Department of pediatric Surgery, Xinhua hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China; Shanghai Institute for Pediatric Research, School of Medicine, Shanghai Jiaotong University, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.
| |
Collapse
|
12
|
Ji Q, Li Z, Guo Y, Zhang X. S100A9, as a potential predictor of prognosis and immunotherapy response for GBM, promotes the malignant progression of GBM cells and migration of M2 macrophages. Aging (Albany NY) 2024; 16:11513-11534. [PMID: 39137310 PMCID: PMC11346789 DOI: 10.18632/aging.205949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 04/22/2024] [Indexed: 08/15/2024]
Abstract
In the past decades, the therapeutic effect of glioblastoma (GBM) has not been significantly improved. Generous evidence indicates that S100A9 has a wide range of functions in tumors, but its exploration in GBM is less. The purpose of this study is to conduct a comprehensive bioinformatics analysis and cytological experiment on S100A9 in GBM. The expression data and clinical data of GBM samples were downloaded from the public database, and comprehensive bioinformatics analysis was performed on S100A9 in GBM using R software. Wound healing assay and transwell assay were used to detect the migration activity of cells, and colony formation assay, EdU staining, and CCK-8 assay were used to detect the proliferation activity of cells. The effect of S100A9 on the migration activity of M2 macrophages was verified by the cell co-culture method. The protein expression was detected by western blotting and immunohistochemical staining. S100A9 is an independent prognostic factor in GBM patients and is related to poor prognosis. It can be used as an effective tool to predict the response of GBM patients to immune checkpoint inhibitors (ICIs). In addition, S100A9 can promote the malignant progression of GBM and the migration of M2 macrophages. On the whole, our study highlights the potential value of S100A9 in predicting prognosis and immunotherapeutic response in GBM patients. More importantly, S100A9 may promote the malignant progress of GBM by involving in some carcinogenic pathways and remodeling the tumor microenvironment (TME).
Collapse
Affiliation(s)
- Qiankun Ji
- Department of Neurosurgery, Zhoukou Central Hospital, Zhoukou, Henan 466000, P.R. China
| | - Zibo Li
- Department of Neurosurgery, Zhoukou Central Hospital, Zhoukou, Henan 466000, P.R. China
| | - Yazhou Guo
- Department of Neurosurgery, Zhoukou Central Hospital, Zhoukou, Henan 466000, P.R. China
| | - Xiaoyang Zhang
- Department of Neurosurgery, Zhoukou Central Hospital, Zhoukou, Henan 466000, P.R. China
| |
Collapse
|
13
|
Lv J, Wang Z, Wang B, Deng C, Wang W, Sun L. S100A9 Induces Macrophage M2 Polarization and Immunomodulatory Role in the Lesion Site After Spinal Cord Injury in Rats. Mol Neurobiol 2024; 61:5525-5540. [PMID: 38206470 DOI: 10.1007/s12035-024-03920-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024]
Abstract
Immune response is pivotal in the secondary injury of spinal cord injury (SCI). Polarization of macrophages (MΦ) influences the immune response in the secondary injury, which is regulated by several immune-related proteins. M2Φ plays the immunomodulatory role in the central nervous system. This study used bioinformatic analysis and machine algorithms to screen hub immune-related proteins after SCI and experimentally investigate the role of the target protein in the M2Φ polarization and immunomodulation in rats and in vitro after SCI. We downloaded GSE151371 and GSE45006, hub immune-related genes were screened using machine learning algorithms, and the expression of S100A9 was verified by datasets. Allen's weight-drop injury SCI model in Sprague-Dawley rat and bone marrow-derived rat MΦ with myelin debris model were used to study the effects of S100A9 on M2Φ polarization and immunomodulation at the lesion site and in vitro. Bioinformatic analysis showed that S100A9 acts as a hub immune-related gene in the SCI patients and rats. S100A9 increased at the lesion site in SCI rats, and its inhibition reduced CD206 and ARG-1 expression. Exogenous S100A9 promoted CD206 and ARG-1 expression in MΦ. S100A9 also increased the expression of PD-L1 and decreased MHC II at the lesion site in SCI rats and MΦ with myelin debris, and enhanced mitochondrial activity in rat MΦ with myelin debris. In conclusion, S100A9 is an indispensable factor in the immune process in secondary injury following SCI.
Collapse
Affiliation(s)
- Junqiao Lv
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Zhiqiang Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Beiyang Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Chen Deng
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Wei Wang
- Department of Urology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Lin Sun
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China.
| |
Collapse
|
14
|
Sutherland L, Lang J, Gonzalez-Juarbe N, Pickett BE. Secondary Analysis of Human Bulk RNA-Seq Dataset Suggests Potential Mechanisms for Letrozole Resistance in Estrogen-Positive (ER+) Breast Cancer. Curr Issues Mol Biol 2024; 46:7114-7133. [PMID: 39057065 PMCID: PMC11275280 DOI: 10.3390/cimb46070424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 06/26/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Estrogen receptor-positive (ER+) breast cancer is common among postmenopausal women and is frequently treated with Letrozole, which inhibits aromatase from synthesizing estrogen from androgens. Decreased estrogen slows the growth of tumors and can be an effective treatment. The increase in Letrozole resistance poses a unique problem for patients. To better understand the underlying molecular mechanism(s) of Letrozole resistance, we reanalyzed transcriptomic data by comparing individuals who responded to Letrozole therapy (responders) to those who were resistant to treatment (non-responders). We identified SOX11 and S100A9 as two significant differentially expressed genes (DEGs) between these patient cohorts, with "PLK1 signaling events" being the most significant signaling pathway. We also identified PRDX4 and E2F8 gene products as being the top mechanistic transcriptional markers for ER+ treatment resistance. Many of the significant DEGs that we identified play a known role in ER+ breast cancer or other types of cancer, which partially validate our results. Several of the gene products we identified are novel in the context of ER+ breast cancer. Many of the genes that we identified warrant further research to elucidate the more specific molecular mechanisms of Letrozole resistance in this patient population and could potentially be used as prognostic markers with further wet lab validation. We anticipate that these findings could contribute to improved detection and therapeutic outcomes in aromatase-resistant ER+ breast cancer patients.
Collapse
Affiliation(s)
- Lincoln Sutherland
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA; (L.S.); (J.L.)
| | - Jacob Lang
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA; (L.S.); (J.L.)
| | - Norberto Gonzalez-Juarbe
- J. Craig Venter Institute, Rockville, MD 20850, USA;
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Brett E. Pickett
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA; (L.S.); (J.L.)
| |
Collapse
|
15
|
Hiller-Vallina S, Mondejar-Ruescas L, Caamaño-Moreno M, Cómitre-Mariano B, Alcivar-López D, Sepulveda JM, Hernández-Laín A, Pérez-Núñez Á, Segura-Collar B, Gargini R. Sexual-biased necroinflammation is revealed as a predictor of bevacizumab benefit in glioblastoma. Neuro Oncol 2024; 26:1213-1227. [PMID: 38411438 PMCID: PMC11226871 DOI: 10.1093/neuonc/noae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is a highly malignant brain tumor that affects men more often than women. In addition, the former shows a poorer survival prognosis. To date, the reason for this sex-specific aggressiveness remains unclear. Therefore, the aim of this study is to investigate tumor processes that explain these sex differences. METHODS This was a retrospective study of GBM patients which was stratified according to sex. A cohort with 73 tumors was analyzed with immunohistochemistry, RNA-seq and RT-qPCR to characterize differences in vascular and immunological profiles. Transcriptomic profiling, gene set enrichment analysis, and pathway enrichment analysis were used for discovering molecular pathways predominant in each group. We further investigated the therapeutic effect of bevacizumab (vascular endothelial growth factor A (VEGFA) blocking antibody) in a retrospective GBM cohort (36 tumors) based on sex differences. RESULTS We found that under hypoxic tumor conditions, 2 distinct tumor immuno-angiogenic ecosystems develop linked to sex differences and ESR1 expression is generated. One of these subgroups, which includes male patients with low ESR1 expression, is characterized by vascular fragility associated with the appearance of regions of necrosis and high inflammation (called necroinflamed tumors). This male-specific tumor subtype shows high inflammation related to myeloid-derived suppressor cells infiltration. Using this stratification, we identified a possible group of patients who could respond to bevacizumab (BVZ) and revealed a genetic signature that may find clinical applications as a predictor of those who may benefit most from this treatment. CONCLUSIONS This study provides a stratification based on the sexual differences in GBM, which associates the poor prognosis with the presence of immunosuppressive myeloid cells in the necrotic areas. This new stratification could change the current prognosis of GBM and identifies those who respond to BVZ treatment.
Collapse
Affiliation(s)
- Sara Hiller-Vallina
- Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, Spain
- Pathology and Neurooncology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Lucia Mondejar-Ruescas
- Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, Spain
- Pathology and Neurooncology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Marta Caamaño-Moreno
- Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, Spain
- Pathology and Neurooncology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Blanca Cómitre-Mariano
- Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, Spain
- Pathology and Neurooncology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Denisse Alcivar-López
- Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, Spain
- Pathology and Neurooncology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Juan M Sepulveda
- Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, Spain
- Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Aurelio Hernández-Laín
- Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, Spain
- Pathology and Neurooncology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Ángel Pérez-Núñez
- Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, Spain
- Department of Neurosurgery, 12 de Octubre University Hospital (i+12), Madrid, Spain
| | - Berta Segura-Collar
- Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, Spain
- Pathology and Neurooncology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Ricardo Gargini
- Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, Spain
- Pathology and Neurooncology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain
- Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, Spain
| |
Collapse
|
16
|
Li Z, Xia Q, He Y, Li L, Yin P. MDSCs in bone metastasis: Mechanisms and therapeutic potential. Cancer Lett 2024; 592:216906. [PMID: 38649108 DOI: 10.1016/j.canlet.2024.216906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Bone metastasis (BM) is a frequent complication associated with advanced cancer that significantly increases patient mortality. Myeloid-derived suppressor cells (MDSCs) play a pivotal role in BM progression by promoting angiogenesis, inhibiting immune responses, and inducing osteoclastogenesis. MDSCs induce immunosuppression through diverse mechanisms, including the generation of reactive oxygen species, nitric oxide, and immunosuppressive cytokines. Within the bone metastasis niche (BMN), MDSCs engage in intricate interactions with tumor, stromal, and bone cells, thereby establishing a complex regulatory network. The biological activities and functions of MDSCs are regulated by the microenvironment within BMN. Conversely, MDSCs actively contribute to microenvironmental regulation, thereby promoting BM development. A comprehensive understanding of the indispensable role played by MDSCs in BM is imperative for the development of novel therapeutic strategies. This review highlights the involvement of MDSCs in BM development, their regulatory mechanisms, and their potential as viable therapeutic targets.
Collapse
Affiliation(s)
- Zhi Li
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China; Department of General Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Qi Xia
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Yujie He
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Lei Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China.
| | - Peihao Yin
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.
| |
Collapse
|
17
|
Feng W, Jiang Y, Zeng L, Ouyang Y, Li H, Tang Y, Luo L, Ouyang L, Xie L, Tan Y, Li Y. SPACA6P-AS: a trailblazer in breast cancer pathobiology and therapeutics. Cell Biol Toxicol 2024; 40:49. [PMID: 38922500 PMCID: PMC11208203 DOI: 10.1007/s10565-024-09870-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/23/2024] [Indexed: 06/27/2024]
Abstract
OBJECTIVE The primary objective of this investigation is to delve into the involvement of the long noncoding RNA (lncRNA) SPACA6P-AS in breast cancer (BC) development, focusing on its expression pattern, association with clinical-pathological features, impact on prognosis, as well as its molecular and immunological implications. METHODS Bioinformatics analysis was conducted utilizing RNA sequencing data of 1083 BC patients from the TCGA database. Functional exploration of SPACA6P-AS was carried out through the construction of survival curves, GO and KEGG enrichment analysis, and single-sample gene set enrichment analysis (ssGSEA). Furthermore, its functionality was validated through in vitro cell experiments and in vivo nude mouse model experiments. RESULTS SPACA6P-AS showed a remarkable increase in expression levels in BC tissues (p < 0.001) and demonstrated a close relationship to poor prognosis (overall survival HR = 1.616, progression-free interval HR = 1.40, disease-specific survival HR = 1.54). Enrichment analysis revealed that SPACA6P-AS could impact biological functions such as protease regulation, endopeptidase inhibitor activity, taste receptor activity, taste transduction, and maturity-onset diabetes of the young pathway. ssGSEA analysis indicated a negative correlation between SPACA6P-AS expression and immune cell infiltration like dendritic cells and neutrophils, while a positive correlation was observed with central memory T cells and T helper 2 cells. Results from in vitro and in vivo experiments illustrated that silencing SPACA6P-AS significantly inhibited the proliferation, migration, and invasion capabilities of BC cells. In vitro experiments also highlighted that dendritic cells with silenced SPACA6P-AS exhibited enhanced capabilities in promoting the proliferation of autologous CD3 + T cells and cytokine secretion. These discoveries elucidate the potential multifaceted roles of SPACA6P-AS in BC, including its potential involvement in modulating immune cell infiltration in the tumor microenvironment. CONCLUSION The high expression of lncRNA SPACA6P-AS in BC is closely linked to poor prognosis and may facilitate tumor progression by influencing specific biological processes, signaling pathways, and the immune microenvironment. The regulatory role of SPACA6P-AS positions it as a prospective biomarker and target for therapeutic approaches for BC diagnosis and intervention.
Collapse
Affiliation(s)
- Wenjie Feng
- Department of Oncology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, People's Republic of China
| | - Yiling Jiang
- Department of Oncology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, People's Republic of China
| | - Lijun Zeng
- Department of Oncology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, People's Republic of China
| | - Yuhan Ouyang
- Department of Oncology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, People's Republic of China
| | - Hailong Li
- Department of Pathology, Changde Hospital, Xiangya School of Medicine, Central South University, the First People's Hospital of Changde City, Changde, Hunan, People's Republic of China
| | - Yuanbin Tang
- Department of Oncology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, People's Republic of China
| | - Lunqi Luo
- Department of Oncology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, People's Republic of China
| | - Lianjie Ouyang
- Department of Oncology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, People's Republic of China
| | - Liming Xie
- Department of Oncology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, People's Republic of China.
| | - Yeru Tan
- Department of Oncology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, People's Republic of China.
| | - Yuehua Li
- Department of Oncology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, People's Republic of China.
| |
Collapse
|
18
|
Turki T, Taguchi YH. maGENEgerZ: An Efficient Artificial Intelligence-Based Framework Can Extract More Expressed Genes and Biological Insights Underlying Breast Cancer Drug Response Mechanism. MATHEMATICS 2024; 12:1536. [DOI: 10.3390/math12101536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Understanding breast cancer drug response mechanisms can play a crucial role in improving treatment outcomes and survival rates. Existing bioinformatics-based approaches are far from perfect and do not adopt computational methods based on advanced artificial intelligence concepts. Therefore, we introduce a novel computational framework based on an efficient support vector machine (esvm) working as follows: First, we downloaded and processed three gene expression datasets related to breast cancer responding and non-responding to treatments from the gene expression omnibus (GEO) according to the following GEO accession numbers: GSE130787, GSE140494, and GSE196093. Our method esvm is formulated as a constrained optimization problem in its dual form as a function of λ. We recover the importance of each gene as a function of λ, y, and x. Then, we select p genes out of n, which are provided as input to enrichment analysis tools, Enrichr and Metascape. Compared to existing baseline methods, including deep learning, results demonstrate the superiority and efficiency of esvm, achieving high-performance results and having more expressed genes in well-established breast cancer cell lines, including MD-MB231, MCF7, and HS578T. Moreover, esvm is able to identify (1) various drugs, including clinically approved ones (e.g., tamoxifen and erlotinib); (2) seventy-four unique genes (including tumor suppression genes such as TP53 and BRCA1); and (3) thirty-six unique TFs (including SP1 and RELA). These results have been reported to be linked to breast cancer drug response mechanisms, progression, and metastasizing. Our method is available publicly on the maGENEgerZ web server.
Collapse
Affiliation(s)
- Turki Turki
- Department of Computer Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Y-h. Taguchi
- Department of Physics, Chuo University, Tokyo 112-8551, Japan
| |
Collapse
|
19
|
Liu Y, Li M, Fang Z, Gao S, Cheng W, Duan Y, Wang X, Feng J, Yu T, Zhang J, Wang T, Hu A, Zhang H, Rong Z, Shakila SS, Shang Y, Kong F, Liu J, Li Y, Ma F. Overexpressing S100A9 ameliorates NK cell dysfunction in estrogen receptor-positive breast cancer. Cancer Immunol Immunother 2024; 73:117. [PMID: 38713229 PMCID: PMC11076447 DOI: 10.1007/s00262-024-03699-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/01/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Estrogen receptor (ER) positive human epidermal growth factor receptor 2 (HER2) negative breast cancer (ER+/HER2-BC) and triple-negative breast cancer (TNBC) are two distinct breast cancer molecular subtypes, especially in tumor immune microenvironment (TIME). The TIME of TNBC is considered to be more inflammatory than that of ER+/HER2-BC. Natural killer (NK) cells are innate lymphocytes that play an important role of tumor eradication in TME. However, studies focusing on the different cell states of NK cells in breast cancer subtypes are still inadequate. METHODS In this study, single-cell mRNA sequencing (scRNA-seq) and bulk mRNA sequencing data from ER+/HER2-BC and TNBC were analyzed. Key regulator of NK cell suppression in ER+/HER2-BC, S100A9, was quantified by qPCR and ELISA in MCF-7, T47D, MDA-MB-468 and MDA-MB-231 cell lines. The prognosis predictability of S100A9 and NK activation markers was evaluated by Kaplan-Meier analyses using TCGA-BRAC data. The phenotype changes of NK cells in ER+/HER2-BC after overexpressing S100A9 in cancer cells were evaluated by the production levels of IFN-gamma, perforin and granzyme B and cytotoxicity assay. RESULTS By analyzing scRNA-seq data, we found that multiple genes involved in cellular stress response were upregulated in ER+/HER2-BC compared with TNBC. Moreover, TLR regulation pathway was significantly enriched using differentially expressed genes (DEGs) from comparing the transcriptome data of ER+/HER2-BC and TNBC cancer cells, and NK cell infiltration high/low groups. Among the DEGs, S100A9 was identified as a key regulator. Patients with higher expression levels of S100A9 and NK cell activation markers had better overall survival. Furthermore, we proved that overexpression of S100A9 in ER+/HER2-cells could improve cocultured NK cell function. CONCLUSION In conclusion, the study we presented demonstrated that NK cells in ER+/HER2-BC were hypofunctional, and S100A9 was an important regulator of NK cell function in ER+BC. Our work contributes to elucidate the regulatory networks between cancer cells and NK cells and may provide theoretical basis for novel drug development.
Collapse
Affiliation(s)
- Yansong Liu
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Mingcui Li
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Zhengbo Fang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Shan Gao
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Weilun Cheng
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Yunqiang Duan
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Xuelian Wang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Jianyuan Feng
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Tianshui Yu
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Jiarui Zhang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Ting Wang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Anbang Hu
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Hanyu Zhang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Zhiyuan Rong
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Suborna S Shakila
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Yuhang Shang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Fanjing Kong
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Jiangwei Liu
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China
| | - Yanling Li
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China.
| | - Fei Ma
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, 150001, China.
| |
Collapse
|
20
|
Tu X, Chen L, Zheng Y, Mu C, Zhang Z, Wang F, Ren Y, Duan Y, Zhang H, Tong Z, Liu L, Sun X, Zhao P, Wang L, Feng X, Fang W, Liu X. S100A9 +CD14 + monocytes contribute to anti-PD-1 immunotherapy resistance in advanced hepatocellular carcinoma by attenuating T cell-mediated antitumor function. J Exp Clin Cancer Res 2024; 43:72. [PMID: 38454445 PMCID: PMC10921725 DOI: 10.1186/s13046-024-02985-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/14/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND The paucity of reliable biomarkers for predicting immunotherapy efficacy in patients with advanced hepatocellular carcinoma (HCC) has emerged as a burgeoning concern with the expanding use of immunotherapy. This study endeavors to delve into the potential peripheral biomarkers capable of prognosticating efficacy in HCC patients who are poised to receive anti-PD-1 monotherapy within the phase III clinical trial, KEYNOTE394. Additionally, we sought to elucidate the underlying molecular mechanisms for resistance to immune checkpoint blockade (ICB) and propose innovative combination immunotherapy strategies for future clinical application. METHODS Patient blood samples were collected for single-cell RNA sequencing to evaluate the immune cell signature before receiving ICB therapy. Subsequently, in vitro assays and in vivo murine model experiments were conducted to validate the mechanism that S100A9+CD14+ monocytes play a role in ICB resistance. RESULTS Our study demonstrates a notable enrichment of S100A9+CD14+ monocytes in the peripheral blood of patients exhibiting suboptimal responses to anti-PD-1 therapy. Moreover, we identified the Mono_S100A9 signature as a predictive biomarker, indicative of reduced efficacy in immunotherapy and decreased survival benefits across various tumor types. Mechanistically, S100A9 activates PD-L1 transcription by directly binding to the CD274 (PD-L1) gene promoter, thereby suppressing T-cell proliferation and cytotoxicity via the PD-1/PD-L1 axis, consequently diminishing the therapeutic effectiveness of subsequent anti-PD-1 treatments. Furthermore, our in vivo studies revealed that inhibiting S100A9 can synergistically enhance the efficacy of anti-PD-1 drugs in the eradication of hepatocellular carcinoma. CONCLUSIONS Our study underscores the significance of S100A9+CD14+ monocytes in predicting inadequate response to ICB treatment and provides insights into the monocyte cell-intrinsic mechanisms of resistance to ICB therapy. We also propose a combined therapeutic approach to enhance ICB efficacy by targeting S100A9.
Collapse
Affiliation(s)
- Xiaoxuan Tu
- Department of Medical Oncology, & Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, People's Republic of China
| | - Longxian Chen
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, People's Republic of China
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yi Zheng
- Department of Medical Oncology, & Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Chenglin Mu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, People's Republic of China
| | - Zhiwei Zhang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, People's Republic of China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Feiyu Wang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, People's Republic of China
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yiqing Ren
- Department of Medical Oncology, & Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Yingxin Duan
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Hangyu Zhang
- Department of Medical Oncology, & Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Zhou Tong
- Department of Medical Oncology, & Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Lulu Liu
- Department of Medical Oncology, & Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Xunqi Sun
- Department of Medical Oncology, & Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Peng Zhao
- Department of Medical Oncology, & Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Lie Wang
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 310058, People's Republic of China
| | - Xinhua Feng
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, People's Republic of China.
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, 321000, People's Republic of China.
| | - Weijia Fang
- Department of Medical Oncology, & Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China.
| | - Xia Liu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, People's Republic of China.
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
21
|
Blanco E, Silva-Pilipich N, Bocanegra A, Chocarro L, Procopio A, Ausín K, Fernandez-Irigoyen J, Fernández L, Razquin N, Igea A, Garnica M, Echaide M, Arasanz H, Vera R, Escors D, Smerdou C, Kochan G. Oleuropein-driven reprogramming of the myeloid cell compartment to sensitise tumours to PD-1/PD-L1 blockade strategies. Br J Cancer 2024; 130:869-879. [PMID: 38195888 PMCID: PMC10912768 DOI: 10.1038/s41416-023-02561-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Previous studies have shown that functional systemic immunity is required for the efficacy of PD-1/PD-L1 blockade immunotherapies in cancer. Hence, systemic reprogramming of immunosuppressive dysfunctional myeloid cells could overcome resistance to cancer immunotherapy. METHODS Reprogramming of tumour-associated myeloid cells with oleuropein was studied by quantitative differential proteomics, phenotypic and functional assays in mice and lung cancer patients. Combinations of oleuropein and two different delivery methods of anti-PD-1 antibodies were tested in colorectal cancer tumour models and in immunotherapy-resistant lung cancer models. RESULTS Oleuropein treatment reprogrammed monocytic and granulocytic myeloid-derived suppressor cells, and tumour-associated macrophages towards differentiation of immunostimulatory subsets. Oleuropein regulated major differentiation programmes associated to immune modulation in myeloid cells, which potentiated T cell responses and PD-1 blockade. PD-1 antibodies were delivered by two different strategies, either systemically or expressed within tumours using a self-amplifying RNA vector. Combination anti-PD-1 therapies with oleuropein increased tumour infiltration by immunostimulatory dendritic cells in draining lymph nodes, leading to systemic antitumour T cell responses. Potent therapeutic activities were achieved in colon cancer and lung cancer models resistant to immunotherapies, even leading to complete tumour regression. DISCUSSION Oleuropein significantly improves the outcome of PD-1/PD-L1 blockade immunotherapy strategies by reprogramming myeloid cells.
Collapse
Affiliation(s)
- Ester Blanco
- Oncoimmunology Unit, Navarrabiomed, Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, Cancer Center Clínica Universidad Navarra (CCUN), and Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Noelia Silva-Pilipich
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, Cancer Center Clínica Universidad Navarra (CCUN), and Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Ana Bocanegra
- Oncoimmunology Unit, Navarrabiomed, Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Luisa Chocarro
- Oncoimmunology Unit, Navarrabiomed, Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Antonio Procopio
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100, Catanzaro, Italy
| | - Karina Ausín
- Proteored-ISCIII, Proteomics Platform, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdISNA, Irunlarrea 3, 31008, Pamplona, Spain
| | - Joaquín Fernandez-Irigoyen
- Proteored-ISCIII, Proteomics Platform, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdISNA, Irunlarrea 3, 31008, Pamplona, Spain
| | - Leticia Fernández
- Oncoimmunology Unit, Navarrabiomed, Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Nerea Razquin
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), Pamplona, Spain
| | - Ana Igea
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, Cancer Center Clínica Universidad Navarra (CCUN), and Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Maider Garnica
- Oncoimmunology Unit, Navarrabiomed, Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Miriam Echaide
- Oncoimmunology Unit, Navarrabiomed, Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Hugo Arasanz
- Oncoimmunology Unit, Navarrabiomed, Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Medical Oncology Unit, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Ruth Vera
- Medical Oncology Unit, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - David Escors
- Oncoimmunology Unit, Navarrabiomed, Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| | - Cristian Smerdou
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, Cancer Center Clínica Universidad Navarra (CCUN), and Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain.
| | - Grazyna Kochan
- Oncoimmunology Unit, Navarrabiomed, Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| |
Collapse
|
22
|
Wang G, Fu J, Liu M, Zheng Q. CXC chemokines: Potential biomarker and immunotherapeutic target for uterine corpus endometrial carcinoma. PLoS One 2024; 19:e0277872. [PMID: 38232115 DOI: 10.1371/journal.pone.0277872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/11/2022] [Indexed: 01/19/2024] Open
Abstract
Uterine corpus endometrial carcinoma (UCEC) is one of the most common type of gynecological malignancies. Multiple lines of evidence indicated that CXC chemokines exerted an anti-tumor immunological role in the tumor microenvironment which were critical regulators of cancer immunity. However, the relevance of CXC chemokines in the evaluation of prognosis and immune infiltration of UCEC remains to be explored. This study utilized various online databases, including TCGA, UALCAN, Kaplan-Meier Plotter, cBioPortal, TIMER2.0, TISIDB, and MethSurv to perform the analysis. Gene expression data from the TCGA-UCEC dataset indicated decreased expression of CXCL2/12 and increased expression of CXCL14/17. CXCL2/12 expression was negatively whereas CXCL14/17 expression was positively correlated with clinicopathological features of UCEC patients, including cancer stage, patients' age, weight and menopause status. Patients with higher CXCL12/14 expression corresponded with better clinical outcomes, which were not influenced by the genetic alterations. The differential expression of CXCL2/12/14/17 was not only significantly correlated with immune infiltration levels, but also the abundance of immune checkpoint inhibitors. Heatmaps of DNA methylation of CXCL2/12/14/17 were investigated, and 4 CpGs of CXCL2, 16 CpGs of CXCL12, 3 CpGs of CXCL14/17 were identified where altered methylation affected the prognosis of UCEC patients. These findings provided novel insights into the immunologic features of UCEC and might pave the way toward the prognostic evaluation and immunotherapy selection based on CXCL2/12/14/17 expression status.
Collapse
Affiliation(s)
- Guang Wang
- Department of Dalian Key Laboratory of Reproduction and Mother-child Genetic, Reproductive & Genetic Medicine Center, Dalian Women and Children's Medical Group, Dalian, Liaoning Province, China
| | - Juan Fu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Mulin Liu
- Department of Clinical Laboratory, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Qin Zheng
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, Liaoning Province, China
| |
Collapse
|
23
|
Huang N, Tang J, Yi X, Zhang M, Li B, Cheng Y, Chen J. Glioma-derived S100A9 polarizes M2 microglia to inhibit CD8+T lymphocytes for immunosuppression via αvβ3 integrin/AKT1/TGFβ1. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119619. [PMID: 37907196 DOI: 10.1016/j.bbamcr.2023.119619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 11/02/2023]
Abstract
Our previous studies showed that S100A9 was overexpressed in glioma and promoted tumor growth. However, S100A9 can also be secreted by tumor cells to regulate the tumor microenvironment (TME). In this study, we aimed to explore the functions of glioma derived-S100A9 in microglial M2 polarization, resulting in inhibition of CD8+ T lymphocytes and promotion of immunosuppression. We first showed that glioma exhibited higher expression and secretion of S100A9 than astrocytes. After knocking down S100A9 in two glioma cell lines, the secretion of S100A9 was repressed. Then, the medium was collected and considered as conditioned medium (CM), which was incubated with microglia. We found that glioma-derived S100A9 drove microglial M2 polarization and increased TGFβ1 secretion. These molecular mechanisms were related to the interaction of S100A9 with αvβ3 integrin and the subsequent activation of AKT1 in microglia. Furthermore, we demonstrated that S100A9-induced M2 microglia negatively affected cell viability, IL-2 and IFN-γ secretion, together with increased early apoptosis in CD8+T lymphocytes via TGFβ1. Additionally, glioma cells were implanted into mouse brains, and we confirmed that S100A9 stimulated microglial M2 polarization, enhanced TGFβ1 levels and repressed CD8+ T lymphocytes in orthotopically transplanted tumors. In human glioma samples, S100A9 expression was positively associated with CD206 expression, but negatively correlated with CD8+T lymphocyte accumulation in the TME. Our data indicated that glioma-derived S100A9 has a promising ability to manipulate non-malignant cells and promote immune evasion in the TME, providing valuable insight into the mechanism by which S100A9 participates in the progression of glioma.
Collapse
Affiliation(s)
- Ning Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Tang
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyao Yi
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Maoxin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Li
- Healthy Ministry, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Health Management Center, Chongqing General Hospital, Chongqing, China
| | - Yuan Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jin Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
24
|
Zhao J, Lin E, Bai Z, Jia Y, Wang B, Dai Y, Zhuo W, Zeng G, Liu X, Cai C, Li P, Zou B, Li J. Cancer-associated fibroblasts induce sorafenib resistance of hepatocellular carcinoma cells through CXCL12/FOLR1. BMC Cancer 2023; 23:1198. [PMID: 38057830 PMCID: PMC10701976 DOI: 10.1186/s12885-023-11613-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 11/04/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Due to the high drug resistance of hepatocellular carcinoma (HCC), sorafenib has limited efficacy in the treatment of advanced HCC. Cancer-associated fibroblasts (CAFs) play an important regulatory role in the induction of chemoresistance. This study aimed to clarify the mechanism underlying CAF-mediated resistance to sorafenib in HCC. METHODS Immunohistochemistry and immunofluorescence showed that the activation of CAFs was enhanced in HCC tissues. CAFs and paracancerous normal fibroblasts (NFs) were isolated from the cancer and paracancerous tissues of HCC, respectively. Cell cloning assays, ELISAs, and flow cytometry were used to detect whether CAFs induced sorafenib resistance in HCC cells via CXCL12. Western blotting and qPCR showed that CXCL12 induces sorafenib resistance in HCC cells by upregulating FOLR1. We investigated whether FOLR1 was the target molecule of CAFs regulating sorafenib resistance in HCC cells by querying gene expression data for human HCC specimens from the GEO database. RESULTS High levels of activated CAFs were present in HCC tissues but not in paracancerous tissues. CAFs decreased the sensitivity of HCC cells to sorafenib. We found that CAFs secrete CXCL12, which upregulates FOLR1 in HCC cells to induce sorafenib resistance. CONCLUSIONS CAFs induce sorafenib resistance in HCC cells through CXCL12/FOLR1.
Collapse
Affiliation(s)
- Jiali Zhao
- Department of Hepatobiliary Surgery, Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China.
| | - En Lin
- Department of Hepatobiliary Surgery, Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Zirui Bai
- Department of Hepatobiliary Surgery, Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Yingbin Jia
- Department of Urology Surgery, Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Bo Wang
- Department of Hepatobiliary Surgery, Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Yihua Dai
- Department of Anesthesiology, Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Wenfeng Zhuo
- Department of Hepatobiliary Surgery, Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Guifang Zeng
- Department of Hepatobiliary Surgery, Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Xialei Liu
- Department of Hepatobiliary Surgery, Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Chaonong Cai
- Department of Hepatobiliary Surgery, Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Peiping Li
- Department of Hepatobiliary Surgery, Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China.
| | - Baojia Zou
- Department of Hepatobiliary Surgery, Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China.
| | - Jian Li
- Department of Hepatobiliary Surgery, Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China.
| |
Collapse
|
25
|
Yang F, Hu D, Du S, Wu L, Gong M, Zhang Y, Yang X, Yang Y, Chen R, Xu Y, Zeng Q. Assessing the double-edged of extracellular signal-regulated kinase/CCAAT-enhancer-binding protein beta signaling pathway in arsenic-induced skin damage and its potential foodborne interventions. ENVIRONMENTAL TOXICOLOGY 2023; 38:2867-2880. [PMID: 37565747 DOI: 10.1002/tox.23922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/06/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023]
Abstract
Arsenic exposure is a major environmental public health challenge worldwide. As typical manifestations for arsenic exposure, the pathogenesis of arsenic-induced skin lesions has not been fully elucidated, as well as the lack of effective control measures. In this study, we first determined the short-term and high-dose arsenic exposure can increase the apoptosis rates, while long-term low-dose arsenic exposure decrease the apoptosis rates. Then, the HaCaT cells with knockdown and overexpression of CCAAT-enhancer-binding protein β (CEBPB) and extracellular signal-regulated kinase (ERK) were constructed. The results demonstrate that knockdown of CEBPB and ERK can reduce NaAsO2 -induced cell apoptosis by inhibiting ERK/CEBPB signaling pathway and vice versa. Further cells were treated with Kaji-Ichigoside F1 (KF1). The results clearly show that KF1 can decrease the arsenic-induced cell apoptosis rates and the expression of ERK/CEBPB signaling pathway-related genes. These results provide evidence that ERK/CEBPB signaling pathway acts as a double-edged sword in arsenic-induced skin damage. Another interesting finding was that KF1 can alleviate arsenic-induced skin cell apoptosis by inhibiting the ERK/CEBPB signaling pathway. This study will contribute to a deeper understanding of the mechanisms of arsenic-induced skin cell apoptosis, and our findings will help to identify a potential food-borne intervention in arsenic detoxification.
Collapse
Affiliation(s)
- Fan Yang
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Guiyang, China
| | - Dexiu Hu
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Guiyang, China
| | - Sufei Du
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Guiyang, China
| | - Liping Wu
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Guiyang, China
| | - Maoyuan Gong
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Guiyang, China
| | - Yuhong Zhang
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Guiyang, China
| | - Xingcan Yang
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Guiyang, China
| | - Yang Yang
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Guiyang, China
| | - Ruobi Chen
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Guiyang, China
| | - Yuyan Xu
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Guiyang, China
| | - Qibing Zeng
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Ecological Food Creation Engineering Research Center, Guizhou Medical University, Guiyang, China
| |
Collapse
|
26
|
Akins EA, Wilkins D, Aghi MK, Kumar S. An engineered glioblastoma model yields novel macrophage-secreted drivers of invasion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.18.567683. [PMID: 38014161 PMCID: PMC10680873 DOI: 10.1101/2023.11.18.567683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Glioblastomas (GBMs) are highly invasive brain tumors replete with brain- and blood-derived macrophages, collectively known as tumor-associated macrophages (TAMs). Targeting TAMs has been proposed as a therapeutic strategy but has thus far yielded limited clinical success in slowing GBM progression, due in part to an incomplete understanding of TAM function in GBM. Here, by using an engineered hyaluronic acid-based 3D invasion platform, patient-derived GBM cells, and multi-omics analysis of GBM tumor microenvironments, we show that M2-polarized macrophages stimulate GBM stem cell (GSC) mesenchymal transition and invasion. We identify TAM-derived transforming growth factor beta induced (TGFβI/BIGH3) as a pro-tumorigenic factor in the GBM microenvironment. In GBM patients, BIGH3 mRNA expression correlates with poor patient prognosis and is highest in the most aggressive GBM molecular subtype. Inhibiting TAM-derived BIGH3 signaling with a blocking antibody or small molecule inhibitor suppresses GSC invasion. Our work highlights the utility of 3D in vitro tumor microenvironment platforms to investigate TAM-cancer cell crosstalk and offers new insights into TAM function to guide novel TAM-targeting therapies.
Collapse
Affiliation(s)
- Erin A. Akins
- University of California, Berkeley – University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Dana Wilkins
- University of California, Berkeley – University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Manish K. Aghi
- Department of Neurosurgery; University of California San Francisco (UCSF)
| | - Sanjay Kumar
- University of California, Berkeley – University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
27
|
Hu YD, Wu K, Liu YJ, Zhang Q, Shen H, Ji J, Fang D, Xi SY. LY6/PLAUR domain containing 3 (LYPD3) maintains melanoma cell stemness and mediates an immunosuppressive microenvironment. Biol Direct 2023; 18:72. [PMID: 37924160 PMCID: PMC10623712 DOI: 10.1186/s13062-023-00424-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/10/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Malignant melanoma is a highly heterogeneous skin cancer with the highest mortality rate among dermatological cancers. Catenins form functional networks in the nucleus to regulate gene expression and determine cell fate. Dysregulation of catenin expression correlates with the malignant characteristics of the tumor. We aimed to investigate the regulatory mechanisms of catenins in melanoma and to further define the function of catenin-related molecular signaling in the tumor microenvironment. METHODS In this study, a bioinformatics approach combined with experimental validation was used to explore the potential tumor biology mechanisms of catenin-related signaling. RESULTS Melanoma patients can be divided into two catenin clusters. Patients defined by high Junction Plakoglobin (JUP), Plakophilin 1 (PKP1), Plakophilin 3 (PKP3) levels (C2) had shorter survival time than other patients (C1). We demonstrated that JUP regulates Anterior Gradient 2 (AGR2)/LY6/PLAUR Domain Containing 3 (LYPD3) to maintain melanoma stemness and promotes glycolysis. We also found that LYPD3 was co-expressed with S100A9 and associated with immunosuppressive tumor microenvironment (TME). CONCLUSION The JUP/AGR2/LYPD3 signaling axis plays an important role in the malignant features of melanoma. Targeting the JUP/AGR2/LYPD3 signaling axis can help develop promising drugs.
Collapse
Affiliation(s)
- Yi-Dou Hu
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, Jiangsu, People's Republic of China
| | - Ke Wu
- The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, People's Republic of China
| | - Yuan-Jie Liu
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, People's Republic of China
- Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Qian Zhang
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, People's Republic of China
- Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Hui Shen
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, Jiangsu, People's Republic of China
| | - Jin Ji
- Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Dong Fang
- Zhenjiang Hospital of Chinese Traditional and Western Medicine, Zhenjiang, Jiangsu, 212000, People's Republic of China.
| | - Song-Yang Xi
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, People's Republic of China.
- Zhenjiang Hospital of Chinese Traditional and Western Medicine, Zhenjiang, Jiangsu, 212000, People's Republic of China.
| |
Collapse
|
28
|
Chung YH, Ortega-Rivera OA, Volckaert BA, Jung E, Zhao Z, Steinmetz NF. Viral nanoparticle vaccines against S100A9 reduce lung tumor seeding and metastasis. Proc Natl Acad Sci U S A 2023; 120:e2221859120. [PMID: 37844250 PMCID: PMC10614828 DOI: 10.1073/pnas.2221859120] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 08/25/2023] [Indexed: 10/18/2023] Open
Abstract
Metastatic cancer accounts for 90% of all cancer-related deaths and continues to be one of the toughest challenges in cancer treatment. A growing body of data indicates that S100A9, a major regulator of inflammation, plays a central role in cancer progression and metastasis, particularly in the lungs, where S100A9 forms a premetastatic niche. Thus, we developed a vaccine against S100A9 derived from plant viruses and virus-like particles. Using multiple tumor mouse models, we demonstrate the effectiveness of the S100A9 vaccine candidates in preventing tumor seeding within the lungs and outgrowth of metastatic disease. The elicited antibodies showed high specificity toward S100A9 without cross-reactivity toward S100A8, another member of the S100A family. When tested in metastatic mouse models of breast cancer and melanoma, the vaccines significantly reduced lung tumor nodules after intravenous challenge or postsurgical removal of the primary tumor. Mechanistically, the vaccines reduce the levels of S100A9 within the lungs and sera, thereby increasing the expression of immunostimulatory cytokines with antitumor function [(interleukin) IL-12 and interferonγ] while reducing levels of immunosuppressive cytokines (IL-10 and transforming growth factorβ). This also correlated with decreased myeloid-derived suppressor cell populations within the lungs. This work has wide-ranging impact, as S100A9 is overexpressed in multiple cancers and linked with poor prognosis in cancer patients. The data presented lay the foundation for the development of therapies and vaccines targeting S100A9 to prevent metastasis.
Collapse
Affiliation(s)
- Young Hun Chung
- Department of Bioengineering, University of California, San Diego, CA92093
- Moores Cancer Center, University of California, San Diego, CA92093
| | | | | | - Eunkyeong Jung
- Department of NanoEngineering, University of California, San Diego, CA92093
| | - Zhongchao Zhao
- Moores Cancer Center, University of California, San Diego, CA92093
- Department of NanoEngineering, University of California, San Diego, CA92093
| | - Nicole F. Steinmetz
- Department of Bioengineering, University of California, San Diego, CA92093
- Moores Cancer Center, University of California, San Diego, CA92093
- Department of NanoEngineering, University of California, San Diego, CA92093
- Department of Radiology, University of California, San Diego, CA92093
- Institute for Materials Discovery and Design, University of California, San Diego, CA92093
- Center for Nano-ImmunoEngineering, University of California, San Diego, CA92093
- Center for Engineering in Cancer, University of California, San Diego, CA92093
| |
Collapse
|
29
|
Zhou H, Zhao C, Shao R, Xu Y, Zhao W. The functions and regulatory pathways of S100A8/A9 and its receptors in cancers. Front Pharmacol 2023; 14:1187741. [PMID: 37701037 PMCID: PMC10493297 DOI: 10.3389/fphar.2023.1187741] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023] Open
Abstract
Inflammation primarily influences the initiation, progression, and deterioration of many human diseases, and immune cells are the principal forces that modulate the balance of inflammation by generating cytokines and chemokines to maintain physiological homeostasis or accelerate disease development. S100A8/A9, a heterodimer protein mainly generated by neutrophils, triggers many signal transduction pathways to mediate microtubule constitution and pathogen defense, as well as intricate procedures of cancer growth, metastasis, drug resistance, and prognosis. Its paired receptors, such as receptor for advanced glycation ends (RAGEs) and toll-like receptor 4 (TLR4), also have roles and effects within tumor cells, mainly involved with mitogen-activated protein kinases (MAPKs), NF-κB, phosphoinositide 3-kinase (PI3K)/Akt, mammalian target of rapamycin (mTOR) and protein kinase C (PKC) activation. In the clinical setting, S100A8/A9 and its receptors can be used complementarily as efficient biomarkers for cancer diagnosis and treatment. This review comprehensively summarizes the biological functions of S100A8/A9 and its various receptors in tumor cells, in order to provide new insights and strategies targeting S100A8/A9 to promote novel diagnostic and therapeutic methods in cancers.
Collapse
Affiliation(s)
- Huimin Zhou
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cong Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rongguang Shao
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanni Xu
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wuli Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
30
|
Fu Y, Liu T, Wang X, Wang Y, Gong Q, Li G, Lin Q, Zhu S. Untargeted metabolomics reveal rhizosphere metabolites mechanisms on continuous ramie cropping. FRONTIERS IN PLANT SCIENCE 2023; 14:1217956. [PMID: 37674737 PMCID: PMC10477603 DOI: 10.3389/fpls.2023.1217956] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/05/2023] [Indexed: 09/08/2023]
Abstract
Ramie is an important fiber feed dual-purpose crop in China and plays an important role in the national economy. However, ramie yield and quality can be reduced after many years of continuous cultivation. Currently, relatively little research has been conducted on rhizosphere metabolites and their pathways in continuous ramie cropping. Therefore, a healthy group (CK) and obstacle groups (XZQG, JZ, DJY, and GXD) with 8 years of continuous cultivation were selected for the study. LC-MS and GC-MS untargeted metabolomics were used to explore and analyze ramie rhizosphere metabolites and pathways. The results revealed that significant differences in the agronomic traits of ramie occurred after 8 years of continuous cultivation, with dwarfed plants and decreased yields in the obstacle groups. Metabolomic analysis identified 49 and 19 rhizosphere metabolites, including lipids, organic acids, phenols, and amino acids. In addition, four differential metabolic pathways (phenylpropanoid biosynthesis, fatty acid metabolism, amino acid metabolism, and ascorbate and aldarate metabolism) were elucidated. It was also clarified that sinapic acid, jasmonic acid, glutamine, and inositol might be the main metabolites affecting ramie continuous-cropping obstacle groups, and they were significantly correlated with ramie agronomic traits and physiological indicators. This provided important insights into the mechanisms affecting continuous ramie cropping. Accordingly, it is expected that the increase or decrease of sinapic acid, jasmonic acid, glutamine, and inositol in the soil will alleviate obstacles to continuous ramie cropping and promote the healthy development of the ramie industry in the future.
Collapse
Affiliation(s)
- Yafen Fu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Tongying Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Xin Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Yanzhou Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Qiulin Gong
- Selenium Resources Development and Utilization Center, Yichun Agricultural and Rural Bureau, Jiangxi, China
| | - Guang Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Qian Lin
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Siyuan Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
31
|
Mo W, Liu S, Zhao X, Wei F, Li Y, Sheng X, Cao W, Ding M, Zhang W, Chen X, Meng L, Yao S, Diao W, Wei H, Guo H. ROS Scavenging Nanozyme Modulates Immunosuppression for Sensitized Cancer Immunotherapy. Adv Healthc Mater 2023; 12:e2300191. [PMID: 37031357 DOI: 10.1002/adhm.202300191] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/24/2023] [Indexed: 04/10/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs), two immunosuppressive myeloid components within the tumor microenvironment (TME), represent fundamental barriers in cancer immunotherapy, whereas current nanomedicines rarely exert dual modulatory roles on these cell types simultaneously. Reactive oxygen species (ROS) not only mediates MDSC-induced immunosuppression but also triggers differentiation and polarization of M2-TAMs. Herein, an ROS scavenging nanozyme, Zr-CeO, with enhanced superoxide dismutase- and catalase-like activities for renal tumor growth inhibition is reported. Mechanistically, intracellular ROS scavenging by Zr-CeO significantly attenuates MDSC immunosuppression via dampening the unfolded protein response, hinders M2-TAM polarization through the ERK and STAT3 pathways, but barely affects neoplastic cells and cancer-associated fibroblasts. Furthermore, Zr-CeO enhances the antitumor effect of PD-1 inhibition in murine renal and breast tumor models, accompanied with substantially decreased MDSC recruitment and reprogrammed phenotype of TAMs in the tumor mass. Upon cell isolation, reversed immunosuppressive phenotypes of MDSCs and TAMs are identified. In addition, Zr-CeO alone or combination therapy enhances T lymphocyte infiltration and IFN-γ production within the TME. Collectively, a promising strategy to impair the quantity and function of immunosuppressive myeloid cells and sensitize immunotherapy in both renal and breast cancers is provided.
Collapse
Affiliation(s)
- Wenjing Mo
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, 210008, China
| | - Shujie Liu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Xiaozhi Zhao
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, 210008, China
| | - Fayun Wei
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, 210008, China
| | - Yuhang Li
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, 210008, China
| | - Xinan Sheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Genitourinary Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Wenmin Cao
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, 210008, China
| | - Meng Ding
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, 210008, China
| | - Wenlong Zhang
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, 210008, China
| | - Xiaoqing Chen
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, 210008, China
| | - Longxiyu Meng
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, 210008, China
| | - Sheng Yao
- Shanghai Junshi Biosciences Co., Ltd., 200126, Shanghai, China
- TopAlliance Biosciences, Inc., Rockville, MD, 20850, USA
| | - Wenli Diao
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, 210008, China
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Hongqian Guo
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, 210008, China
| |
Collapse
|
32
|
Gao ZJ, Fang Z, Yuan JP, Sun SR, Li B. Integrative multi-omics analyses unravel the immunological implication and prognostic significance of CXCL12 in breast cancer. Front Immunol 2023; 14:1188351. [PMID: 37564657 PMCID: PMC10410148 DOI: 10.3389/fimmu.2023.1188351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/12/2023] [Indexed: 08/12/2023] Open
Abstract
Background CXCL12 is a vital factor in physiological and pathological processes, by inducing migration of multiple cells. We aimed to comprehensively detect the role of CXCL12 in breast cancer, and explore novel CXCL12-related biomarkers through integrative multi-omics analyses to build a powerful prognostic model for breast cancer patients. Methods Immunohistochemistry analysis of the tissue microarray was performed to evaluate the correlation between CXCL12 expression levels and breast cancer patient outcomes. Combined single-nucleus and spatial transcriptomics data was used to uncover the expression distribution of CXCL12 in breast cancer microenvironment. CXCL12-related genes were identified by WGCNA analysis. Univariate Cox and LASSO regression analyses were then conducted to screen prognostic genes from above CXCL12-related genes, followed by the construction of the CXCL12-related prognostic signature, identification of risk groups, and external validation of the prognostic signature. Analyses of biological function, mutation landscape, immune checkpoint genes and immune cells, were performed to further reveal the differences between high/low-risk groups. Paired single-cell RNA-seq and bulk RNA-seq were analyzed to further disclose the association between the risk score and the complex tumor immune microenvironment. To screen potential therapeutic agents for breast cancer patients, analyses of gene-drug correlation and sensitivity to immunotherapy were conducted. Results High expression of CXCL12 was linked with a prolonged survival in breast cancer. A total of 402 genes were identified by WGCNA analysis and 11 genes, covering VAT1L, TMEM92, SDC1, RORB, PCSK9, NRN1, NACAD, JPH3, GJA1, BMP8B and ADAMTS2, were screened as the candidate prognostic genes. Next, the prognostic signature was built and validated using these genes to predict the outcomes of breast cancers. The high-risk group patients exhibited significantly inferior prognoses. The combination of the risk score and tumor mutational burden (TMB) had remarkably improved performance in predicting patient outcomes. Besides, high-risk group patients showed higher infiltration of M2-like macrophages. Finally, several potential anticancer drugs were identified. The high-risk group patients were more sensitive to immunotherapy but resistant to docetaxel. Conclusions CXCL12 has important immunological implication and prognostic significance in breast cancer. The CXCL12-related prognostic model could well predict the prognosis and treatment response of breast cancers.
Collapse
Affiliation(s)
- Zhi-Jie Gao
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhou Fang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jing-Ping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Sheng-Rong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Bei Li
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
33
|
Klapp V, Álvarez-Abril B, Leuzzi G, Kroemer G, Ciccia A, Galluzzi L. The DNA Damage Response and Inflammation in Cancer. Cancer Discov 2023; 13:1521-1545. [PMID: 37026695 DOI: 10.1158/2159-8290.cd-22-1220] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/27/2023] [Accepted: 02/23/2023] [Indexed: 04/08/2023]
Abstract
Genomic stability in normal cells is crucial to avoid oncogenesis. Accordingly, multiple components of the DNA damage response (DDR) operate as bona fide tumor suppressor proteins by preserving genomic stability, eliciting the demise of cells with unrepairable DNA lesions, and engaging cell-extrinsic oncosuppression via immunosurveillance. That said, DDR sig-naling can also favor tumor progression and resistance to therapy. Indeed, DDR signaling in cancer cells has been consistently linked to the inhibition of tumor-targeting immune responses. Here, we discuss the complex interactions between the DDR and inflammation in the context of oncogenesis, tumor progression, and response to therapy. SIGNIFICANCE Accumulating preclinical and clinical evidence indicates that DDR is intimately connected to the emission of immunomodulatory signals by normal and malignant cells, as part of a cell-extrinsic program to preserve organismal homeostasis. DDR-driven inflammation, however, can have diametrically opposed effects on tumor-targeting immunity. Understanding the links between the DDR and inflammation in normal and malignant cells may unlock novel immunotherapeutic paradigms to treat cancer.
Collapse
Affiliation(s)
- Vanessa Klapp
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Beatriz Álvarez-Abril
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York
- Department of Hematology and Oncology, Hospital Universitario Morales Meseguer, Murcia, Spain
| | - Giuseppe Leuzzi
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, New York, New York
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, New York
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Alberto Ciccia
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, New York, New York
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, New York
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York
- Sandra and Edward Meyer Cancer Center, New York, New York
- Caryl and Israel Englander Institute for Precision Medicine, New York, New York
| |
Collapse
|
34
|
Yang Y, Li J, Lei W, Wang H, Ni Y, Liu Y, Yan H, Tian Y, Wang Z, Yang Z, Yang S, Yang Y, Wang Q. CXCL12-CXCR4/CXCR7 Axis in Cancer: from Mechanisms to Clinical Applications. Int J Biol Sci 2023; 19:3341-3359. [PMID: 37497001 PMCID: PMC10367567 DOI: 10.7150/ijbs.82317] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 05/16/2023] [Indexed: 07/28/2023] Open
Abstract
Cancer is a multi-step disease caused by the accumulation of genetic mutations and/or epigenetic changes, and is the biggest challenge around the world. Cytokines, including chemokines, exhibit expression changes and disorders in all human cancers. These cytokine abnormalities can disrupt homeostasis and immune function, and make outstanding contributions to various stages of cancer development such as invasion, metastasis, and angiogenesis. Chemokines are a superfamily of small molecule chemoattractive cytokines that mediate a variety of cellular functions. Importantly, the interactions of chemokine members CXCL12 and its receptors CXCR4 and CXCR7 have a broad impact on tumor cell proliferation, survival, angiogenesis, metastasis, and tumor microenvironment, and thus participate in the onset and development of many cancers including leukemia, breast cancer, lung cancer, prostate cancer and multiple myeloma. Therefore, this review aims to summarize the latest research progress and future challenges regarding the role of CXCL12-CXCR4/CXCR7 signaling axis in cancer, and highlights the potential of CXCL12-CXCR4/CXCR7 as a biomarker or therapeutic target for cancer, providing essential strategies for the development of novel targeted cancer therapies.
Collapse
Affiliation(s)
- Yaru Yang
- Department of Orthopedics, Shenmu Hospital, Faculty of Life Sciences and Medicine, Northwest University, Shenmu, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Jiayan Li
- Department of Orthopedics, Shenmu Hospital, Faculty of Life Sciences and Medicine, Northwest University, Shenmu, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Wangrui Lei
- Department of Orthopedics, Shenmu Hospital, Faculty of Life Sciences and Medicine, Northwest University, Shenmu, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Haiying Wang
- Department of Orthopedics, Shenmu Hospital, Faculty of Life Sciences and Medicine, Northwest University, Shenmu, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yunfeng Ni
- Department of Thoracic Surgery, Tangdu Hospital, The Airforce Medical University, Xi'an, China
| | - Yanqing Liu
- Department of Orthopedics, Shenmu Hospital, Faculty of Life Sciences and Medicine, Northwest University, Shenmu, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Huanle Yan
- Department of Orthopedics, Shenmu Hospital, Faculty of Life Sciences and Medicine, Northwest University, Shenmu, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yifan Tian
- Department of Orthopedics, Shenmu Hospital, Faculty of Life Sciences and Medicine, Northwest University, Shenmu, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Zheng Wang
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, Wuhan, China
| | - Zhi Yang
- Department of Thoracic Surgery, Tangdu Hospital, The Airforce Medical University, Xi'an, China
| | - Shulin Yang
- Department of Orthopedics, Shenmu Hospital, Faculty of Life Sciences and Medicine, Northwest University, Shenmu, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yang Yang
- Department of Orthopedics, Shenmu Hospital, Faculty of Life Sciences and Medicine, Northwest University, Shenmu, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Qiang Wang
- Department of Orthopedics, Shenmu Hospital, Faculty of Life Sciences and Medicine, Northwest University, Shenmu, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| |
Collapse
|
35
|
Mabrouk N, Racoeur C, Shan J, Massot A, Ghione S, Privat M, Dondaine L, Ballot E, Truntzer C, Boidot R, Hermetet F, Derangère V, Bruchard M, Végran F, Chouchane L, Ghiringhelli F, Bettaieb A, Paul C. GTN Enhances Antitumor Effects of Doxorubicin in TNBC by Targeting the Immunosuppressive Activity of PMN-MDSC. Cancers (Basel) 2023; 15:3129. [PMID: 37370739 DOI: 10.3390/cancers15123129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/17/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
(1) Background: Immunosuppression is a key barrier to effective anti-cancer therapies, particularly in triple-negative breast cancer (TNBC), an aggressive and difficult to treat form of breast cancer. We investigated here whether the combination of doxorubicin, a standard chemotherapy in TNBC with glyceryltrinitrate (GTN), a nitric oxide (NO) donor, could overcome chemotherapy resistance and highlight the mechanisms involved in a mouse model of TNBC. (2) Methods: Balb/C-bearing subcutaneous 4T1 (TNBC) tumors were treated with doxorubicin (8 mg/Kg) and GTN (5 mg/kg) and monitored for tumor growth and tumor-infiltrating immune cells. The effect of treatments on MDSCs reprogramming was investigated ex vivo and in vitro. (3) Results: GTN improved the anti-tumor efficacy of doxorubicin in TNBC tumors. This combination increases the intra-tumor recruitment and activation of CD8+ lymphocytes and dampens the immunosuppressive function of PMN-MDSCs PD-L1low. Mechanistically, in PMN-MDSC, the doxorubicin/GTN combination reduced STAT5 phosphorylation, while GTN +/- doxorubicin induced a ROS-dependent cleavage of STAT5 associated with a decrease in FATP2. (4) Conclusion: We have identified a new combination enhancing the immune-mediated anticancer therapy in a TNBC mouse model through the reprograming of PMN-MDSCs towards a less immunosuppressive phenotype. These findings prompt the testing of GTN combined with chemotherapies as an adjuvant in TNBC patients experiencing treatment failure.
Collapse
Affiliation(s)
- Nesrine Mabrouk
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, 75006 Paris, France
- LIIC, EA7269, Université de Bourgogne Franche Comté, 21000 Dijon, France
| | - Cindy Racoeur
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, 75006 Paris, France
- LIIC, EA7269, Université de Bourgogne Franche Comté, 21000 Dijon, France
| | - Jingxuan Shan
- Genetic Intelligence Laboratory, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha P.O. Box 24144, Qatar
| | - Aurélie Massot
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, 75006 Paris, France
- LIIC, EA7269, Université de Bourgogne Franche Comté, 21000 Dijon, France
| | - Silvia Ghione
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, 75006 Paris, France
- LIIC, EA7269, Université de Bourgogne Franche Comté, 21000 Dijon, France
| | - Malorie Privat
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, 75006 Paris, France
- LIIC, EA7269, Université de Bourgogne Franche Comté, 21000 Dijon, France
| | - Lucile Dondaine
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, 75006 Paris, France
- LIIC, EA7269, Université de Bourgogne Franche Comté, 21000 Dijon, France
| | - Elise Ballot
- Plateforme de Transfert en Biologie Cancérologique, Centre GFL Leclerc, 21000 Dijon, France
| | - Caroline Truntzer
- Plateforme de Transfert en Biologie Cancérologique, Centre GFL Leclerc, 21000 Dijon, France
| | - Romain Boidot
- Unit of Molecular Biology, Georges-François Leclerc Cancer Center-UNICANCER, CNRS UMR 6302, 21000 Dijon, France
| | | | - Valentin Derangère
- Plateforme de Transfert en Biologie Cancérologique, Centre GFL Leclerc, 21000 Dijon, France
- UBFC, 21000 Dijon, France
| | - Mélanie Bruchard
- CRI UMR INSERM1231, 21000 Dijon, France
- UBFC, 21000 Dijon, France
| | - Frédérique Végran
- Plateforme de Transfert en Biologie Cancérologique, Centre GFL Leclerc, 21000 Dijon, France
- CRI UMR INSERM1231, 21000 Dijon, France
- UBFC, 21000 Dijon, France
| | - Lotfi Chouchane
- Genetic Intelligence Laboratory, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha P.O. Box 24144, Qatar
| | - François Ghiringhelli
- Plateforme de Transfert en Biologie Cancérologique, Centre GFL Leclerc, 21000 Dijon, France
- CRI UMR INSERM1231, 21000 Dijon, France
- UBFC, 21000 Dijon, France
| | - Ali Bettaieb
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, 75006 Paris, France
- LIIC, EA7269, Université de Bourgogne Franche Comté, 21000 Dijon, France
| | - Catherine Paul
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, 75006 Paris, France
- LIIC, EA7269, Université de Bourgogne Franche Comté, 21000 Dijon, France
| |
Collapse
|
36
|
Huang YC, Hou MF, Tsai YM, Pan YC, Tsai PH, Lin YS, Chang CY, Tsai EM, Hsu YL. Involvement of ACACA (acetyl-CoA carboxylase α) in the lung pre-metastatic niche formation in breast cancer by senescence phenotypic conversion in fibroblasts. Cell Oncol (Dordr) 2023; 46:643-660. [PMID: 36607556 PMCID: PMC10205862 DOI: 10.1007/s13402-022-00767-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Reprogramming of metabolism is strongly associated with the development of cancer. However, the role of metabolic reprogramming in the remodeling of pre-metastatic niche (PMN), a key step in metastasis, is still unknown. We aimed to investigate the metabolic alternation during lung PMN formation in breast cancer. METHODS We assessed the transcriptomes and lipidomics of lung of MMTV-PyVT mice by microarray and liquid chromatography-tandem mass mass spectrometry before lung metastasis. The validation of gene or protein expressions was performed by quantitative real-time polymerase chain reaction or immunoblot and immunohistochemistry respectively. The lung fibroblasts were isolated from mice and then co-cultured with breast cancer to identify the influence of cancer on the change of lung fibroblasts in PMN. RESULTS We demonstrated changes in the lipid profile and several lipid metabolism genes in the lungs of breast cancer-bearing MMTV-PyVT mice before cancer spreading. The expression of ACACA (acetyl-CoA carboxylase α) was downregulated in the lung fibroblasts, which contributed to changes in acetylation of protein's lysine residues and the synthesis of fatty acid. The downregulation of ACACA in lung fibroblasts triggered a senescent and inflammatory phenotypic shift of lung fibroblasts in both in vivo and in vitro models. The senescence-associated secretory phenotype of lung fibroblasts enabled the recruitment of immunosuppressive granulocytic myeloid-derived suppressor cells into the lungs through the production of CXCL1 in the lungs. Knock-in of ACACA prevented lung metastasis in the MMTV-PyVT mouse model, further supporting that ACACA was involved in the remodeling of the lung PMN. CONCLUSIONS Taken together, these data revealed a mechanism by which ACACA downregulation directed the formation of an immunosuppressive lung PMN in breast cancer.
Collapse
Affiliation(s)
- Yung-Chi Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung, 807, Taiwan
| | - Ming-Feng Hou
- Department of Biomedical Science and Environment Biology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Ying-Ming Tsai
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Yi-Chung Pan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung, 807, Taiwan
| | - Pei-Hsun Tsai
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Yi-Shiuan Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung, 807, Taiwan
| | - Chao-Yuan Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung, 807, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Anatomy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Eing-Mei Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung, 807, Taiwan
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung, 807, Taiwan.
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan.
| |
Collapse
|
37
|
Zhang X, Sun D, Zhou X, Zhang C, Yin Q, Chen L, Tang Y, Liu Y, Morozova-Roche LA. Proinflammatory S100A9 stimulates TLR4/NF-κB signaling pathways causing enhanced phagocytic capacity of microglial cells. Immunol Lett 2023; 255:54-61. [PMID: 36870421 DOI: 10.1016/j.imlet.2023.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/26/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
Alzheimer's disease (AD) is the main cause of dementia, affecting the increasingly aging population. Growing evidence indicates that neuro-inflammation plays crucial roles, e.g., the association between AD risk genes with innate immune functions. In this study, we demonstrate that moderate concentrations of pro-inflammatory cytokine S100A9 regulate immune response of BV2 microglial cells, i.e., the phagocytic capacity, reflected by elevated number of 1 μm diameter Dsred-stained latex beads in the cytoplasm. In contrast, at high S100A9 concentrations, both the viability and phagocytic capacity of BV2 cells drop substantially. Furthermore, it is uncovered that S100A9 affects phagocytosis of microglia via NF-κB signaling pathways. Application of related target-specific drugs, i.e., IKK and TLR4 inhibitors, effectively suppresses BV2 cells' immune responses. These results suggest that pro-inflammatory S100A9 activates microglial phagocytosis, and possibly contributes to the clearance of amyloidogenic species at the early stage of AD.
Collapse
Affiliation(s)
- Xiaoyin Zhang
- Laboratory of stem cell and Tissue Engineering, Chongqing Medical University, 400016, Chongqing, China
| | - Dan Sun
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon Technology, Northwest University, 710127, Xi'an, China
| | - Xin Zhou
- Laboratory of stem cell and Tissue Engineering, Chongqing Medical University, 400016, Chongqing, China
| | - Ce Zhang
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon Technology, Northwest University, 710127, Xi'an, China
| | - Qing Yin
- Laboratory of stem cell and Tissue Engineering, Chongqing Medical University, 400016, Chongqing, China
| | - Li Chen
- Laboratory of stem cell and Tissue Engineering, Chongqing Medical University, 400016, Chongqing, China
| | - Yong Tang
- Laboratory of stem cell and Tissue Engineering, Chongqing Medical University, 400016, Chongqing, China
| | - Yonggang Liu
- Laboratory of stem cell and Tissue Engineering, Chongqing Medical University, 400016, Chongqing, China.
| | | |
Collapse
|
38
|
Chen Y, Ouyang Y, Li Z, Wang X, Ma J. S100A8 and S100A9 in Cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188891. [PMID: 37001615 DOI: 10.1016/j.bbcan.2023.188891] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023]
Abstract
S100A8 and S100A9 are Ca2+ binding proteins that belong to the S100 family. Primarily expressed in neutrophils and monocytes, S100A8 and S100A9 play critical roles in modulating various inflammatory responses and inflammation-associated diseases. Forming a common heterodimer structure S100A8/A9, S100A8 and S100A9 are widely reported to participate in multiple signaling pathways in tumor cells. Meanwhile, S100A8/A9, S100A8, and S100A9, mainly as promoters, contribute to tumor development, growth and metastasis by interfering with tumor metabolism and the microenvironment. In recent years, the potential of S100A8/A9, S100A9, and S100A8 as tumor diagnostic or prognostic biomarkers has also been demonstrated. In addition, an increasing number of potential therapies targeting S100A8/A9 and related signaling pathways have emerged. In this review, we will first expound on the characteristics of S100A8/A9, S100A9, and S100A8 in-depth, focus on their interactions with tumor cells and microenvironments, and then discuss their clinical applications as biomarkers and therapeutic targets. We also highlight current limitations and look into the future of S100A8/A9 targeted anti-cancer therapy.
Collapse
|
39
|
Zhang Y, Liu F, Feng Y, Xu X, Wang Y, Zhu S, Dong J, Zhao S, Xu B, Feng N. CircRNA circ_0006156 inhibits the metastasis of prostate cancer by blocking the ubiquitination of S100A9. Cancer Gene Ther 2022; 29:1731-1741. [PMID: 35760899 PMCID: PMC9663304 DOI: 10.1038/s41417-022-00492-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/10/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023]
Abstract
Circular RNAs (circRNAs) have been demonstrated to play vital roles in cancer development and progression. However, studies on the association between circRNAs and prostate cancer (PCa) are still lacking. CircRNA sequencing of two pairs of PCa tissues and adjacent normal tissues was conducted in the present study, and qRT-PCR was performed to verify the results. Functional experiments were performed to investigate cellular functions after specific changes. Mass spectrometry analysis after RNA pull-down experiments and Co-IP assays were further conducted. Downstream target proteins were predicted via online databases and detected in vitro by Western blot analysis and in vivo by immunohistochemistry. Hsa_circ_0006156 (subsequently named circ_0006156) expresses at low levels in both PCa tissues and cells, and it significantly inhibits the migration and invasion of PCa cells. Circ_0006156 binds to and blocks the ubiquitination of S100A9. Moreover, functional assays revealed that circ_0006156 represses the malignant progression of PCa by binding to S100A9. Finally, in vivo experiments showed that circ_0006156 suppresses PCa migration and invasion by increasing S100A9, revealing circ_0006156 as a potential novel effective target for PCa treatment.
Collapse
Affiliation(s)
- Yuwei Zhang
- Department of Urology, Affiliated Wuxi No.2 Hospital, Nanjing Medical University, Wuxi, China
| | - Fengping Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yangkun Feng
- Medical College of Nantong University, Nantong, China
| | - Xinyu Xu
- Department of Urology, Affiliated Wuxi No.2 Hospital, Nanjing Medical University, Wuxi, China
| | - Yang Wang
- Department of Urology, Affiliated Wuxi No.2 Hospital, Nanjing Medical University, Wuxi, China
| | - Sha Zhu
- Department of Oncology, Affiliated Wuxi No.2 Hospital, Nanjing Medical University, Wuxi, China
| | - Jian Dong
- Department of Urology, Affiliated Wuxi No.2 Hospital, Nanjing Medical University, Wuxi, China
| | - Shanchao Zhao
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Bin Xu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China.
| | - Ninghan Feng
- Department of Urology, Affiliated Wuxi No.2 Hospital, Nanjing Medical University, Wuxi, China.
- Medical College of Nantong University, Nantong, China.
| |
Collapse
|
40
|
Daily A, Ravishankar P, Wang W, Krone R, Harms S, Klimberg VS. Development and validation of a short-term breast health measure as a supplement to screening mammography. Biomark Res 2022; 10:76. [PMID: 36284356 PMCID: PMC9594920 DOI: 10.1186/s40364-022-00420-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/19/2022] [Indexed: 11/23/2022] Open
Abstract
Background There is a growing body of evidence to support tears as a non-traditional biological fluid in clinical laboratory testing. In addition to the simplicity of tear fluid processing, the ability to access key cancer biomarkers in high concentrations quickly and inexpensively is significantly enhanced. Tear fluid is a dynamic environment rich in both proteomic and genomic information, making it an ideal medium for exploring the potential for biological testing modalities. Methods All protocols involving human subjects were reviewed and approved by the University of Arkansas IRB committee (13-11-289) prior to sample collection. Study enrollment was open to women ages 18 and over from October 30, 2017-June 19, 2019 at The Breast Center, Fayetteville, AR and Bentonville, AR. Convenience sampling was used and samples were age/sex matched, with enrollment open to individuals at any point of the breast health continuum of care. Tear samples were collected using the Schirmer strip method from 847 women. Concentration of selected tear proteins were evaluated using standard sandwich ELISA techniques and the resulting data, combined with demographic and clinical covariates, was analyzed using logistic regression analysis to build a model for classification of samples. Results Logistic regression analysis produced three models, which were then evaluated on cases and controls at two diagnostic thresholds and resulted in sensitivity ranging from 52 to 90% and specificity from 31 to 79%. Sensitivity and specificity variation is dependent on the model being evaluated as well as the selected diagnostic threshold providing avenues for assay optimization. Conclusions and relevance The work presented here builds on previous studies focused on biomarker identification in tear samples. Here we show successful early classification of samples using two proteins and minimal clinical covariates. Supplementary Information The online version contains supplementary material available at 10.1186/s40364-022-00420-1.
Collapse
Affiliation(s)
| | | | | | | | - Steve Harms
- The Breast Center-Medical Associates of Northwest Arkansas, Fayetteville, AR USA
| | - V. Suzanne Klimberg
- grid.176731.50000 0001 1547 9964Department of Surgery, University of Texas Medical Branch, Galveston, TX USA ,grid.240145.60000 0001 2291 4776Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| |
Collapse
|
41
|
Wang H, Li S, Yang Y, Zhang L, Zhang Y, Wei T. Perspectives of metal-organic framework nanosystem to overcome tumor drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:954-970. [PMID: 36627891 PMCID: PMC9771744 DOI: 10.20517/cdr.2022.76] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/14/2022] [Accepted: 08/09/2022] [Indexed: 12/23/2022]
Abstract
Cancer is one of the most harmful diseases in the world, which causes huge numbers of deaths every year. Many drugs have been developed to treat tumors. However, drug resistance usually develops after a period of time, which greatly weakens the therapeutic effect. Tumor drug resistance is characterized by blocking the action of anticancer drugs, resisting apoptosis and DNA repair, and evading immune recognition. To tackle tumor drug resistance, many engineered drug delivery systems (DDS) have been developed. Metal-organic frameworks (MOFs) are one kind of emerging and promising nanocarriers for DDS with high surface area and abundant active sites that make the functionalization simpler and more efficient. These features enable MOFs to achieve advantages easily towards other materials. In this review, we highlight the main mechanisms of tumor drug resistance and the characteristics of MOFs. The applications and opportunities of MOF-based DDS to overcome tumor drug resistance are also discussed, shedding light on the future development of MOFs to address tumor drug resistance.
Collapse
Affiliation(s)
- Huafeng Wang
- School of Environment, Nanjing Normal University, Nanjing 210023, Jiangsu, China.,School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Shi Li
- School of Environment, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Yiting Yang
- School of Environment, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Lei Zhang
- School of Environment, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Yinghao Zhang
- School of Environment, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Tianxiang Wei
- School of Environment, Nanjing Normal University, Nanjing 210023, Jiangsu, China.,Correspondence to: Dr. Tianxiang Wei, School of Environment, Nanjing Normal University, Nanjing 210023, Jiangsu, China. E-mail:
| |
Collapse
|
42
|
Du Y, Xin H, Cao X, Liu Z, He Y, Zhang B, Yan J, Wang D, Guan L, Shen F, Feng B, He Y, Liu J, Jin Q, Pan S, Zhang H, Gao L. Association Between Plasma Exosomes S100A9/C4BPA and Latent Tuberculosis Infection Treatment: Proteomic Analysis Based on a Randomized Controlled Study. Front Microbiol 2022; 13:934716. [PMID: 35935235 PMCID: PMC9355536 DOI: 10.3389/fmicb.2022.934716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundIdentifying host plasma exosome proteins associated with host response to latent tuberculosis infection (LTBI) treatment might promote our understanding of tuberculosis (TB) pathogenesis and provide useful tools for implementing the precise intervention.MethodsBased on an open-label randomized controlled trial (RCT) aiming to evaluate the short-course regimens for LTBI treatment, plasma exosomes from pre- and post-LTBI treatment were retrospectively detected by label-free quantitative protein mass spectrometry and validated by a parallel reaction monitoring method for participants with changed or not changed infection testing results after LTBI treatment. Eligible participants for both screening and verification sets were randomly selected from the based-RCT in a 1:1 ratio by age and gender. Reversion was defined as a decrease in IFN-γ levels from >0.70 IU/ml prior to treatment to 0.20 IU/ml within 1 week of treatment. The predictive ability of the candidate proteins was evaluated by receiver operating characteristic (ROC) analysis.ResultsTotally, two sample sets for screening (n = 40) and validation (n = 60) were included. Each of them included an equal number of subjects with persistent positive or reversed QuantiFERON-TB Gold In-Tube (QFT) results after LTBI. A total of 2,321 exosome proteins were detected and 102 differentially expressed proteins were identified to be associated with QFT reversion. Proteins with high confidence and original values intact were selected to be further verified. Totally, 9 downregulated proteins met the criteria and were validated. After verification, C4BPA and S100A9 were confirmed to be still significantly downregulated (fold change <0.67, p < 0.05). The respective areas under the ROC curve were 0.73 (95% CI: 0.57–0.89) and 0.69 (95% CI: 0.52–0.86) for C4BPA and S100A9, with a combined value of 0.78 (95% CI: 0.63–0.93). The positive and negative predictive values for combined markers were 70.10% (95% CI: 50.22–86.30%) and 55.63% (95% CI: 29.17–61.00%).ConclusionOur findings suggest that downregulated C4BPA and S100A9 in plasma exosomes might be associated with a host positive response to LTBI treatment. Further studies are warranted to verify the findings and potential underlying mechanisms in varied populations with a larger sample size.
Collapse
Affiliation(s)
- Ying Du
- National Health Commission of the People's Republic of China (NHC) Key Laboratory of Systems Biology of Pathogens, Center for Tuberculosis Research, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Henan Xin
- National Health Commission of the People's Republic of China (NHC) Key Laboratory of Systems Biology of Pathogens, Center for Tuberculosis Research, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuefang Cao
- National Health Commission of the People's Republic of China (NHC) Key Laboratory of Systems Biology of Pathogens, Center for Tuberculosis Research, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zisen Liu
- Center for Diseases Control and Prevention of Zhongmu, Zhengzhou, China
| | - Yijun He
- National Health Commission of the People's Republic of China (NHC) Key Laboratory of Systems Biology of Pathogens, Center for Tuberculosis Research, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Zhang
- Center for Diseases Control and Prevention of Zhongmu, Zhengzhou, China
| | - Jiaoxia Yan
- Center for Diseases Control and Prevention of Zhongmu, Zhengzhou, China
| | - Dakuan Wang
- Center for Diseases Control and Prevention of Zhongmu, Zhengzhou, China
| | - Ling Guan
- The Sixth People's Hospital of Zhengzhou, Zhengzhou, China
| | - Fei Shen
- The Sixth People's Hospital of Zhengzhou, Zhengzhou, China
| | - Boxuan Feng
- National Health Commission of the People's Republic of China (NHC) Key Laboratory of Systems Biology of Pathogens, Center for Tuberculosis Research, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongpeng He
- National Health Commission of the People's Republic of China (NHC) Key Laboratory of Systems Biology of Pathogens, Center for Tuberculosis Research, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianmin Liu
- The Sixth People's Hospital of Zhengzhou, Zhengzhou, China
| | - Qi Jin
- National Health Commission of the People's Republic of China (NHC) Key Laboratory of Systems Biology of Pathogens, Center for Tuberculosis Research, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shouguo Pan
- Center for Diseases Control and Prevention of Zhongmu, Zhengzhou, China
- Shouguo Pan
| | - Haoran Zhang
- National Health Commission of the People's Republic of China (NHC) Key Laboratory of Systems Biology of Pathogens, Center for Tuberculosis Research, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Haoran Zhang
| | - Lei Gao
- National Health Commission of the People's Republic of China (NHC) Key Laboratory of Systems Biology of Pathogens, Center for Tuberculosis Research, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Lei Gao
| |
Collapse
|