1
|
Shaw EV, Castillo-Blas C, Lambden T, de Santos B, Turner B, Lampronti GI, Laulainen JEM, Robertson GP, Chester AM, Ye C, Guan S, Karlsson JKG, Martinez V, Brekalo I, Karadeniz B, Cabrera S, McHugh LN, Užarević K, Alemán J, Fraile A, Evans RC, Midgley PA, Keen DA, Moya X, Bennett TD. Structural insights of mechanochemically amorphised MIL-125-NH 2. Chem Commun (Camb) 2025; 61:5019-5022. [PMID: 40059691 DOI: 10.1039/d4cc06320a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
In this work, we investigated the response of the metal-organic framework MIL-125-NH2 to ball-milling. Both localised and bulk analyses revealed prolongued ball-milling results in a complete loss of long-range structural order. Investigation of this disorder revealed partial retention of the local bonding of the secondary building unit, suggesting structure collapse progressed primarily through metal-linker bond breakage. We explored the photocatalytic performance of the materials, and examined the materials' band gap using UV-Vis reflectance spectroscopy.
Collapse
Affiliation(s)
- Emily V Shaw
- Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, UK.
| | - Celia Castillo-Blas
- Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, UK.
| | - Timothy Lambden
- Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, UK.
| | - Beatriz de Santos
- Organic Chemistry Department, Science Faculty, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente, 7, 28049 Madrid, Spain
| | - Bethan Turner
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK
| | - Giulio I Lampronti
- Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, UK.
| | - Joonatan E M Laulainen
- Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, UK.
| | - Georgina P Robertson
- Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, UK.
- Diamond Light Source Ltd., Diamond House, Harwell Campus, Didcot, Oxfordshire, UK
| | - Ashleigh M Chester
- Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, UK.
| | - Chumei Ye
- Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, UK.
- Maxwell Centre, Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Shaoliang Guan
- Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, UK.
- Maxwell Centre, Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Joshua K G Karlsson
- Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, UK.
| | - Valentina Martinez
- Division of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ivana Brekalo
- Division of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Bahar Karadeniz
- Division of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Silvia Cabrera
- Inorganic Chemistry Department, Science Faculty, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente, 7, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Science (IAdChem), Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente, 7, 28049 Madrid, Spain
| | - Lauren N McHugh
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK
| | - Krunoslav Užarević
- Division of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Jose Alemán
- Organic Chemistry Department, Science Faculty, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente, 7, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Science (IAdChem), Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente, 7, 28049 Madrid, Spain
| | - Alberto Fraile
- Organic Chemistry Department, Science Faculty, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente, 7, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Science (IAdChem), Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente, 7, 28049 Madrid, Spain
| | - Rachel C Evans
- Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, UK.
| | - Paul A Midgley
- Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, UK.
| | - David A Keen
- ISIS Facility, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire OX11 0QX, UK
| | - Xavier Moya
- Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, UK.
| | - Thomas D Bennett
- School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand.
| |
Collapse
|
2
|
Castillo-Blas C, García MJ, Chester AM, Mazaj M, Guan S, Robertson GP, Kono A, Steele JMA, León-Alcaide L, Poletto-Rodrigues B, Chater PA, Cabrera S, Krajnc A, Wondraczek L, Keen DA, Alemán J, Bennett TD. Structural and Interfacial Characterization of a Photocatalytic Titanium MOF-Phosphate Glass Composite. ACS APPLIED MATERIALS & INTERFACES 2025; 17:15793-15803. [PMID: 40033699 PMCID: PMC11912187 DOI: 10.1021/acsami.4c18444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Metal-organic framework (MOF) composites are proposed as solutions to the mechanical instability of pure MOF materials. Here, we present a new compositional series of recently discovered MOF-crystalline inorganic glass composites. In this case, formed by the combination of a photocatalytic titanium MOF (MIL-125-NH2) and a phosphate-based glass (20%Na2O-10%Na2SO4-70%P2O5). This new family of composites has been synthesized and characterized using powder X-ray diffraction, thermal gravimetric analysis, differential scanning calorimetry, scanning electron microscopy, and X-ray total scattering. Through analysis of the pair distribution function extracted from X-ray total scattering data, the atom-atom interactions at the MOF-glass interface are described. Nitrogen and carbon dioxide isotherms demonstrate good surface area values despite the pelletization and mixing of the MOF with a dense inorganic glass. The catalytic activity of these materials was investigated in the photooxidation of amines to imines, showing the retention of the photocatalytic effectiveness of the parent pristine MOF.
Collapse
Affiliation(s)
- Celia Castillo-Blas
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, United Kingdom
| | - Montaña J García
- Organic Chemistry Department, Science Faculty, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente, 7, 28049 Madrid, Spain
| | - Ashleigh M Chester
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, United Kingdom
| | - Matjaž Mazaj
- Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Shaoliang Guan
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, United Kingdom
- Maxwell Centre, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Georgina P Robertson
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, United Kingdom
- Diamond Light Source Ltd., Diamond House, Harwell Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Ayano Kono
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, United Kingdom
| | - James M A Steele
- Maxwell Centre, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
- Department of Chemistry Yusuf Hamied, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Luis León-Alcaide
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, c/Catedrático José Beltrán 2, Paterna 46980, Spain
| | - Bruno Poletto-Rodrigues
- Otto-Schott Institute of Materials Research, University of Jena, Fraunhoferstrasse 6, 07743 Jena, Germany
| | - Philip A Chater
- Diamond Light Source Ltd., Diamond House, Harwell Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Silvia Cabrera
- Inorganic Chemistry Department, Science Faculty, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente, 7, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente, 7, 28049 Madrid, Spain
| | - Andraž Krajnc
- Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Lothar Wondraczek
- Department of Chemistry Yusuf Hamied, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - David A Keen
- ISIS Facility, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Jose Alemán
- Organic Chemistry Department, Science Faculty, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente, 7, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente, 7, 28049 Madrid, Spain
| | - Thomas D Bennett
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, United Kingdom
| |
Collapse
|
3
|
Romero-Muñiz I, Loukopoulos E, Xiong Y, Zamora F, Platero-Prats AE. Exploring porous structures without crystals: advancements with pair distribution function in metal- and covalent organic frameworks. Chem Soc Rev 2024; 53:11772-11803. [PMID: 39400325 DOI: 10.1039/d4cs00267a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The pair distribution function (PDF) is a versatile characterisation tool in materials science, capable of retrieving atom-atom distances on a continuous scale (from a few angstroms to nanometres), without being restricted to crystalline samples. Typically, total scattering experiments are performed using high-energy synchrotron X-rays, neutrons or electrons to achieve a high atomic resolution in a short time. Recently, PDF analysis provides a powerful approach to target current characterisation challenges in the field of metal- and covalent organic frameworks. By identifying molecular interactions on the pore surfaces, tracking complex structural transformations involving disorder states, and elucidating nucleation and growth mechanisms, structural analysis using PDF has provided invaluable insights into these materials. This review article highlights the significance of PDF analysis in advancing our understanding of MOFs and COFs, paving the way for innovative applications and discoveries in porous materials research.
Collapse
Affiliation(s)
- Ignacio Romero-Muñiz
- Departamento de Química Inorgánica Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Edward Loukopoulos
- Departamento de Química Inorgánica Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Ying Xiong
- Departamento de Química Inorgánica Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Félix Zamora
- Departamento de Química Inorgánica Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Ana E Platero-Prats
- Departamento de Química Inorgánica Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
4
|
Osaro E, Fajardo-Rojas F, Cooper GM, Gómez-Gualdrón D, Colón YJ. Active learning of alchemical adsorption simulations; towards a universal adsorption model. Chem Sci 2024:d4sc02156h. [PMID: 39391382 PMCID: PMC11459438 DOI: 10.1039/d4sc02156h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024] Open
Abstract
Adsorption is a fundamental process studied in materials science and engineering because it plays a critical role in various applications, including gas storage and separation. Understanding and predicting gas adsorption within porous materials demands comprehensive computational simulations that are often resource intensive, limiting the identification of promising materials. Active learning (AL) methods offer an effective strategy to reduce the computational burden by selectively acquiring critical data for model training. Metal-organic frameworks (MOFs) exhibit immense potential across various adsorption applications due to their porous structure and their modular nature, leading to diverse pore sizes and chemistry that serve as an ideal platform to develop adsorption models. Here, we demonstrate the efficacy of AL in predicting gas adsorption within MOFs using "alchemical" molecules and their interactions as surrogates for real molecules. We first applied AL separately to each MOF, reducing the training dataset size by 57.5% while retaining predictive accuracy. Subsequently, we amalgamated the refined datasets across 1800 MOFs to train a multilayer perceptron (MLP) model, successfully predicting adsorption of real molecules. Furthermore, by integrating MOF features into the AL framework using principal component analysis (PCA), we navigated MOF space effectively, achieving high predictive accuracy with only a subset of MOFs. Our results highlight AL's efficiency in reducing dataset size, enhancing model performance, and offering insights into adsorption phenomenon in large datasets of MOFs. This study underscores AL's crucial role in advancing computational material science and developing more accurate and less data intensive models for gas adsorption in porous materials.
Collapse
Affiliation(s)
- Etinosa Osaro
- Department of Chemical and Biomolecular Engineering, University of Notre Dame IN 46556 USA
| | - Fernando Fajardo-Rojas
- Department of Chemical and Biological Engineering, Colorado School of Mines 1500 Illinois St Golden CO 80401 USA
| | - Gregory M Cooper
- Department of Chemical and Biomolecular Engineering, University of Notre Dame IN 46556 USA
| | - Diego Gómez-Gualdrón
- Department of Chemical and Biological Engineering, Colorado School of Mines 1500 Illinois St Golden CO 80401 USA
| | - Yamil J Colón
- Department of Chemical and Biomolecular Engineering, University of Notre Dame IN 46556 USA
| |
Collapse
|
5
|
Shaw EV, Chester AM, Robertson GP, Castillo-Blas C, Bennett TD. Synthetic and analytical considerations for the preparation of amorphous metal-organic frameworks. Chem Sci 2024; 15:10689-10712. [PMID: 39027308 PMCID: PMC11253190 DOI: 10.1039/d4sc01433b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Metal-organic frameworks (MOFs) are hybrid porous materials presenting several tuneable properties, allowing them to be utilised for a wide range of applications. To date, focus has been on the preparation of novel crystalline MOFs for specific applications. Recently, interest in amorphous MOFs (aMOFs), defined by their lack of correlated long-range order, is growing. This is due to their potential favourable properties compared to their crystalline equivalents, including increased defect concentration, improved processability and gas separation ability. Direct synthesis of these disordered materials presents an alternative method of preparation to post-synthetic amorphisation of a crystalline framework, potentially allowing for the preparation of aMOFs with varying compositions and structures, and very different properties to crystalline MOFs. This perspective summarises current literature on directly synthesised aMOFs, and proposes methods that could be utilised to modify existing syntheses for crystalline MOFs to form their amorphous counterparts. It outlines parameters that could discourage the ordering of crystalline MOFs, before examining the potential properties that could emerge. Methodologies of structural characterisation are discussed, in addition to the necessary analyses required to define a topologically amorphous structure.
Collapse
Affiliation(s)
- Emily V Shaw
- Department of Materials Science & Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge UK
| | - Ashleigh M Chester
- Department of Materials Science & Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge UK
| | - Georgina P Robertson
- Department of Materials Science & Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge UK
| | - Celia Castillo-Blas
- Department of Materials Science & Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge UK
| | - Thomas D Bennett
- Department of Materials Science & Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge UK
| |
Collapse
|
6
|
Daliran S, Oveisi AR, Kung CW, Sen U, Dhakshinamoorthy A, Chuang CH, Khajeh M, Erkartal M, Hupp JT. Defect-enabling zirconium-based metal-organic frameworks for energy and environmental remediation applications. Chem Soc Rev 2024; 53:6244-6294. [PMID: 38743011 DOI: 10.1039/d3cs01057k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
This comprehensive review explores the diverse applications of defective zirconium-based metal-organic frameworks (Zr-MOFs) in energy and environmental remediation. Zr-MOFs have gained significant attention due to their unique properties, and deliberate introduction of defects further enhances their functionality. The review encompasses several areas where defective Zr-MOFs exhibit promise, including environmental remediation, detoxification of chemical warfare agents, photocatalytic energy conversions, and electrochemical applications. Defects play a pivotal role by creating open sites within the framework, facilitating effective adsorption and remediation of pollutants. They also contribute to the catalytic activity of Zr-MOFs, enabling efficient energy conversion processes such as hydrogen production and CO2 reduction. The review underscores the importance of defect manipulation, including control over their distribution and type, to optimize the performance of Zr-MOFs. Through tailored defect engineering and precise selection of functional groups, researchers can enhance the selectivity and efficiency of Zr-MOFs for specific applications. Additionally, pore size manipulation influences the adsorption capacity and transport properties of Zr-MOFs, further expanding their potential in environmental remediation and energy conversion. Defective Zr-MOFs exhibit remarkable stability and synthetic versatility, making them suitable for diverse environmental conditions and allowing for the introduction of missing linkers, cluster defects, or post-synthetic modifications to precisely tailor their properties. Overall, this review highlights the promising prospects of defective Zr-MOFs in addressing energy and environmental challenges, positioning them as versatile tools for sustainable solutions and paving the way for advancements in various sectors toward a cleaner and more sustainable future.
Collapse
Affiliation(s)
- Saba Daliran
- Department of Organic Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad 68151-44316, Iran.
| | - Ali Reza Oveisi
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran.
| | - Chung-Wei Kung
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan.
| | - Unal Sen
- Department of Materials Science and Engineering, Faculty of Engineering, Eskisehir Technical University, Eskisehir 26555, Turkey
| | - Amarajothi Dhakshinamoorthy
- Departamento de Quimica, Universitat Politècnica de València, Av. De los Naranjos s/n, 46022 Valencia, Spain
- School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| | - Cheng-Hsun Chuang
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan.
| | - Mostafa Khajeh
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran.
| | - Mustafa Erkartal
- Department of Basic Sciences, Faculty of Engineering, Architecture and Design, Bartin University, Bartin 74110, Turkey
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA.
| |
Collapse
|
7
|
Sapnik AF, Thorne MF, Castillo-Blas C, Keenan L, Johnson T, Bennett TD. Transient intermediate in the formation of an amorphous metal-organic framework. SOFT MATTER 2024; 20:2338-2347. [PMID: 38372182 DOI: 10.1039/d3sm01658g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Amorphous metal-organic frameworks are rarely formed via direct synthesis. Our limited understanding of their atomic assembly in solution prevents full exploitation of their unique structural complexity. Here, we use in situ synchrotron X-ray absorption spectroscopy with sub-second time resolution to probe the formation of the amorphous Fe-BTC framework. Using a combination of spectral fingerprinting, linear combination analysis, and principal component analysis coupled with kinetic analyses, we reveal a multi-stage formation mechanism that, crucially, proceeds via the generation of a transient intermediate species.
Collapse
Affiliation(s)
- Adam F Sapnik
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK.
| | - Michael F Thorne
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK.
| | - Celia Castillo-Blas
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK.
| | - Luke Keenan
- Diamond Light Source Ltd, Diamond House, Harwell Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Timothy Johnson
- Johnson Matthey Technology Centre, Blount's Court, Sonning Common, RG4 9NH, UK
| | - Thomas D Bennett
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK.
| |
Collapse
|
8
|
Thaggard GC, Park KC, Lim J, Maldeni Kankanamalage BKP, Haimerl J, Wilson GR, McBride MK, Forrester KL, Adelson ER, Arnold VS, Wetthasinghe ST, Rassolov VA, Smith MD, Sosnin D, Aprahamian I, Karmakar M, Bag SK, Thakur A, Zhang M, Tang BZ, Castaño JA, Chaur MN, Lerch MM, Fischer RA, Aizenberg J, Herges R, Lehn JM, Shustova NB. Breaking the photoswitch speed limit. Nat Commun 2023; 14:7556. [PMID: 37985777 PMCID: PMC10660956 DOI: 10.1038/s41467-023-43405-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
The forthcoming generation of materials, including artificial muscles, recyclable and healable systems, photochromic heterogeneous catalysts, or tailorable supercapacitors, relies on the fundamental concept of rapid switching between two or more discrete forms in the solid state. Herein, we report a breakthrough in the "speed limit" of photochromic molecules on the example of sterically-demanding spiropyran derivatives through their integration within solvent-free confined space, allowing for engineering of the photoresponsive moiety environment and tailoring their photoisomerization rates. The presented conceptual approach realized through construction of the spiropyran environment results in ~1000 times switching enhancement even in the solid state compared to its behavior in solution, setting a record in the field of photochromic compounds. Moreover, integration of two distinct photochromic moieties in the same framework provided access to a dynamic range of rates as well as complementary switching in the material's optical profile, uncovering a previously inaccessible pathway for interstate rapid photoisomerization.
Collapse
Affiliation(s)
- Grace C Thaggard
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Kyoung Chul Park
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Jaewoong Lim
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA
| | | | - Johanna Haimerl
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Gina R Wilson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Margaret K McBride
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Kelly L Forrester
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Esther R Adelson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Virginia S Arnold
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Shehani T Wetthasinghe
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Vitaly A Rassolov
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Mark D Smith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Daniil Sosnin
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA
| | - Ivan Aprahamian
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA
| | - Manisha Karmakar
- Department of Chemistry, Jadavpur University, 700032, Kolkata, India
| | - Sayan Kumar Bag
- Department of Chemistry, Jadavpur University, 700032, Kolkata, India
| | - Arunabha Thakur
- Department of Chemistry, Jadavpur University, 700032, Kolkata, India
| | - Minjie Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong Shenzhen, Guangdong, 518172, China
- Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou, 510640, China
- AIE Institute, Guangzhou Development District, Huangpu, Guangzhou, 510530, China
| | - Jorge A Castaño
- Departamento de Química, Universidad del Valle, AA 25360, Cali, Colombia
| | - Manuel N Chaur
- Departamento de Química, Universidad del Valle, AA 25360, Cali, Colombia
- Centro de Excelencia en Neuvos Materiales (CENM), Universidad del Valle, AA 25360, Cali, Colombia
| | - Michael M Lerch
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Roland A Fischer
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Joanna Aizenberg
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Rainer Herges
- Otto Diels Institute of Organic Chemistry, University of Kiel, 24118, Kiel, Germany
| | - Jean-Marie Lehn
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 67000, Strasbourg, France
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA.
| |
Collapse
|
9
|
Chester AM, Castillo-Blas C, Sajzew R, Rodrigues BP, Mas-Balleste R, Moya A, Snelson JE, Collins SM, Sapnik AF, Robertson GP, Irving DJM, Wondraczek L, Keen DA, Bennett TD. Structural insights into hybrid immiscible blends of metal-organic framework and sodium ultraphosphate glasses. Chem Sci 2023; 14:11737-11748. [PMID: 37920351 PMCID: PMC10619634 DOI: 10.1039/d3sc02305b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/09/2023] [Indexed: 11/04/2023] Open
Abstract
Recently, increased attention has been focused on amorphous metal-organic frameworks (MOFs) and, more specifically, MOF glasses, the first new glass category discovered since the 1970s. In this work, we explore the fabrication of a compositional series of hybrid blends, the first example of blending a MOF and inorganic glass. We combine ZIF-62(Zn) glass and an inorganic glass, 30Na2O-70P2O5, to combine the chemical versatility of the MOF glass with the mechanical properties of the inorganic glass. We investigate the interfacial interactions between the two components using pair distribution function analysis and solid state NMR spectroscopy, and suggest potential interactions between the two phases. Thermal analysis of the blend samples indicated that they were less thermally stable than the starting materials and had a Tg shifted relative to the pristine materials. Annular dark field scanning transmission electron microscopy tomography, X-ray energy dispersive spectroscopy (EDS), nanoindentation and 31P NMR all indicated close mixing of the two phases, suggesting the formation of immiscible blends.
Collapse
Affiliation(s)
- Ashleigh M Chester
- Department of Materials Science and Metallurgy, University of Cambridge Cambridge CB3 0FS UK
| | - Celia Castillo-Blas
- Department of Materials Science and Metallurgy, University of Cambridge Cambridge CB3 0FS UK
| | - Roman Sajzew
- Otto Schott Institute Materials Research, University of Jena Fraunhoferstrasse 6 07743 Jena Germany
| | - Bruno P Rodrigues
- Otto Schott Institute Materials Research, University of Jena Fraunhoferstrasse 6 07743 Jena Germany
| | - Ruben Mas-Balleste
- Department of Inorganic Chemistry, Universidad Autónoma de Madrid 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Alicia Moya
- Department of Inorganic Chemistry, Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Jessica E Snelson
- School of Chemical and Process Engineering, School of Chemistry, Bragg Centre for Materials Research, University of Leeds Woodhouse Lane LS2 9JT UK
| | - Sean M Collins
- School of Chemical and Process Engineering, School of Chemistry, Bragg Centre for Materials Research, University of Leeds Woodhouse Lane LS2 9JT UK
| | - Adam F Sapnik
- Department of Materials Science and Metallurgy, University of Cambridge Cambridge CB3 0FS UK
| | - Georgina P Robertson
- Department of Materials Science and Metallurgy, University of Cambridge Cambridge CB3 0FS UK
- Diamond Light Source Ltd Diamond House, Harwell Campus, Didcot, Oxfordshire OX11 0DE UK
| | - Daniel J M Irving
- Diamond Light Source Ltd Diamond House, Harwell Campus, Didcot, Oxfordshire OX11 0DE UK
| | - Lothar Wondraczek
- Otto Schott Institute Materials Research, University of Jena Fraunhoferstrasse 6 07743 Jena Germany
| | - David A Keen
- ISIS Facility, Rutherford Appleton Laboratory Harwell Campus, Didcot, Oxfordshire OX11 0QX UK
| | - Thomas D Bennett
- Department of Materials Science and Metallurgy, University of Cambridge Cambridge CB3 0FS UK
| |
Collapse
|
10
|
Castillo-Blas C, Chester AM, Cosquer RP, Sapnik AF, Corti L, Sajzew R, Poletto-Rodrigues B, Robertson GP, Irving DJ, McHugh LN, Wondraczek L, Blanc F, Keen DA, Bennett TD. Interfacial Bonding between a Crystalline Metal-Organic Framework and an Inorganic Glass. J Am Chem Soc 2023; 145:22913-22924. [PMID: 37819708 PMCID: PMC10603780 DOI: 10.1021/jacs.3c04248] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Indexed: 10/13/2023]
Abstract
The interface within a composite is critically important for the chemical and physical properties of these materials. However, experimental structural studies of the interfacial regions within metal-organic framework (MOF) composites are extremely challenging. Here, we provide the first example of a new MOF composite family, i.e., using an inorganic glass matrix host in place of the commonly used organic polymers. Crucially, we also decipher atom-atom interactions at the interface. In particular, we dispersed a zeolitic imidazolate framework (ZIF-8) within a phosphate glass matrix and identified interactions at the interface using several different analysis methods of pair distribution function and multinuclear multidimensional magic angle spinning nuclear magnetic resonance spectroscopy. These demonstrated glass-ZIF atom-atom correlations. Additionally, carbon dioxide uptake and stability tests were also performed to check the increment of the surface area and the stability and durability of the material in different media. This opens up possibilities for creating new composites that include the intrinsic chemical properties of the constituent MOFs and inorganic glasses.
Collapse
Affiliation(s)
- Celia Castillo-Blas
- Department
of Materials Science and Metallurgy, University
of Cambridge, Cambridge CB3 0FS, U.K.
| | - Ashleigh M. Chester
- Department
of Materials Science and Metallurgy, University
of Cambridge, Cambridge CB3 0FS, U.K.
| | - Ronan P. Cosquer
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K.
| | - Adam F. Sapnik
- Department
of Materials Science and Metallurgy, University
of Cambridge, Cambridge CB3 0FS, U.K.
| | - Lucia Corti
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K.
- Leverhulme
Research Centre for Functional Materials Design, Materials Innovation
Factory, University of Liverpool, Liverpool L7 3NY, U.K.
| | - Roman Sajzew
- Otto
Schott Institute of Materials Research, University of Jena, Fraunhoferstrasse 6, 07743 Jena, Germany
| | - Bruno Poletto-Rodrigues
- Otto
Schott Institute of Materials Research, University of Jena, Fraunhoferstrasse 6, 07743 Jena, Germany
| | - Georgina P. Robertson
- Department
of Materials Science and Metallurgy, University
of Cambridge, Cambridge CB3 0FS, U.K.
- Diamond
Light Source Ltd., Diamond House, Harwell Campus, Didcot, Oxfordshire OX11 0QX, U.K.
| | - Daniel J.M. Irving
- Diamond
Light Source Ltd., Diamond House, Harwell Campus, Didcot, Oxfordshire OX11 0QX, U.K.
| | - Lauren N. McHugh
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K.
| | - Lothar Wondraczek
- Otto
Schott Institute of Materials Research, University of Jena, Fraunhoferstrasse 6, 07743 Jena, Germany
| | - Frédéric Blanc
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K.
- Leverhulme
Research Centre for Functional Materials Design, Materials Innovation
Factory, University of Liverpool, Liverpool L7 3NY, U.K.
- Stephenson
Institute for Renewable Energy, University of Liverpool, Crown Street, Liverpool L69 7ZF, U.K.
| | - David A. Keen
- ISIS
Facility, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire OX11 0QX, U.K.
| | - Thomas D. Bennett
- Department
of Materials Science and Metallurgy, University
of Cambridge, Cambridge CB3 0FS, U.K.
| |
Collapse
|
11
|
Abstract
The melting phenomenon in metal-organic frameworks (MOFs) has been recognised as one of the fourth generation MOF paradigm behaviours. Molten MOFs have high processibility for producing mechanically robust glassy MOF macrostructures, and they also offer highly tunable interfacial characteristics when combined with other types of functional materials, such as crystalline MOFs, inorganic glass and metal halide perovskites. As a result, MOF glass composites have emerged as a family of functional materials with dynamic properties and hierarchical structural control. These nanocomposites allow for sophisticated materials science studies as well as the fabrication of next-generation separation, catalysis, optical, and biomedical devices. Here, we review the approaches for designing, fabricating, and characterising MOF glass composites. We determine the key application opportunities enabled by these composites and explore the remaining hurdles, such as improving thermal and chemical compatibility, regulating interfacial properties, and scalability.
Collapse
Affiliation(s)
- Rijia Lin
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Milton Chai
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Yinghong Zhou
- School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia
| | - Vicki Chen
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia.
- University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Thomas D Bennett
- Department of Materials Science and Metallurgy, Cambridge University, CB3 0FS, Cambridge, UK
| | - Jingwei Hou
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
12
|
Sapnik AF, Sun C, Laulainen JEM, Johnstone DN, Brydson R, Johnson T, Midgley PA, Bennett TD, Collins SM. Mapping nanocrystalline disorder within an amorphous metal-organic framework. Commun Chem 2023; 6:92. [PMID: 37169838 PMCID: PMC10175482 DOI: 10.1038/s42004-023-00891-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/27/2023] [Indexed: 05/13/2023] Open
Abstract
Intentionally disordered metal-organic frameworks (MOFs) display rich functional behaviour. However, the characterisation of their atomic structures remains incredibly challenging. X-ray pair distribution function techniques have been pivotal in determining their average local structure but are largely insensitive to spatial variations in the structure. Fe-BTC (BTC = 1,3,5-benzenetricarboxylate) is a nanocomposite MOF, known for its catalytic properties, comprising crystalline nanoparticles and an amorphous matrix. Here, we use scanning electron diffraction to first map the crystalline and amorphous components to evaluate domain size and then to carry out electron pair distribution function analysis to probe the spatially separated atomic structure of the amorphous matrix. Further Bragg scattering analysis reveals systematic orientational disorder within Fe-BTC's nanocrystallites, showing over 10° of continuous lattice rotation across single particles. Finally, we identify candidate unit cells for the crystalline component. These independent structural analyses quantify disorder in Fe-BTC at the critical length scale for engineering composite MOF materials.
Collapse
Affiliation(s)
- Adam F Sapnik
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| | - Chao Sun
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK
| | | | - Duncan N Johnstone
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| | - Rik Brydson
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK
| | - Timothy Johnson
- Johnson Matthey Technology Centre, Blount's Court, Sonning Common, Reading, UK
| | - Paul A Midgley
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| | - Thomas D Bennett
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| | - Sean M Collins
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK.
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK.
- School of Chemistry, University of Leeds, Leeds, UK.
| |
Collapse
|
13
|
Abstract
Computational modeling is increasingly used to assist in the discovery of supramolecular materials. Supramolecular materials are typically primarily built from organic components that are self-assembled through noncovalent bonding and have potential applications, including in selective binding, sorption, molecular separations, catalysis, optoelectronics, sensing, and as molecular machines. In this review, the key areas where computational prediction can assist in the discovery of supramolecular materials, including in structure prediction, property prediction, and the prediction of how to synthesize a hypothetical material are discussed, before exploring the potential impact of artificial intelligence techniques on the field. Throughout, the importance of close integration with experimental materials discovery programs will be highlighted. A series of case studies from the author's work across some different supramolecular material classes will be discussed, before finishing with a discussion of the outlook for the field.
Collapse
Affiliation(s)
- Kim E. Jelfs
- Department of Chemistry, Molecular Sciences Research HubImperial College LondonLondonUK
| |
Collapse
|
14
|
Bechis I, Sapnik AF, Tarzia A, Wolpert EH, Addicoat MA, Keen DA, Bennett TD, Jelfs KE. Modeling the Effect of Defects and Disorder in Amorphous Metal-Organic Frameworks. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:9042-9054. [PMID: 36313398 PMCID: PMC9609304 DOI: 10.1021/acs.chemmater.2c01528] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/29/2022] [Indexed: 05/26/2023]
Abstract
Amorphous metal-organic frameworks (aMOFs) are a class of disordered framework materials with a defined local order given by the connectivity between inorganic nodes and organic linkers, but absent long-range order. The rational development of function for aMOFs is hindered by our limited understanding of the underlying structure-property relationships in these systems, a consequence of the absence of long-range order, which makes experimental characterization particularly challenging. Here, we use a versatile modeling approach to generate in silico structural models for an aMOF based on Fe trimers and 1,3,5-benzenetricarboxylate (BTC) linkers, Fe-BTC. We build a phase space for this material that includes nine amorphous phases with different degrees of defects and local order. These models are analyzed through a combination of structural analysis, pore analysis, and pair distribution functions. Therefore, we are able to systematically explore the effects of the variation of each of these features, both in isolation and combined, for a disordered MOF system, something that would not be possible through experiment alone. We find that the degree of local order has a greater impact on structure and properties than the degree of defects. The approach presented here is versatile and allows for the study of different structural features and MOF chemistries, enabling the derivation of design rules for the rational development of aMOFs.
Collapse
Affiliation(s)
- Irene Bechis
- Department
of Chemistry, Imperial College London, Molecular Sciences Research Hub,
White City Campus, London W12 0BZ, U.K.
| | - Adam F. Sapnik
- Department
of Materials Science and Metallurgy, University
of Cambridge, Cambridge CB3 0FS, U.K.
| | - Andrew Tarzia
- Department
of Chemistry, Imperial College London, Molecular Sciences Research Hub,
White City Campus, London W12 0BZ, U.K.
| | - Emma H. Wolpert
- Department
of Chemistry, Imperial College London, Molecular Sciences Research Hub,
White City Campus, London W12 0BZ, U.K.
| | - Matthew A. Addicoat
- School
of Science and Technology, Nottingham Trent
University, Clifton Lane, Nottingham NG11 8NS, U.K.
| | - David A. Keen
- ISIS
Neutron and Muon Facility, Rutherford Appleton
Laboratory, Harwell Campus, Didcot, Oxfordshire OX11 0QX, U.K.
| | - Thomas D. Bennett
- Department
of Materials Science and Metallurgy, University
of Cambridge, Cambridge CB3 0FS, U.K.
| | - Kim E. Jelfs
- Department
of Chemistry, Imperial College London, Molecular Sciences Research Hub,
White City Campus, London W12 0BZ, U.K.
| |
Collapse
|