1
|
Gorbould AF, Burnham QF, Lohr MT, Koenders A. Detection of Vkorc1 single nucleotide polymorphisms indicates the presence of anticoagulant rodenticide resistance in Australia's introduced rats †. PEST MANAGEMENT SCIENCE 2025. [PMID: 40448375 DOI: 10.1002/ps.8936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/24/2025] [Accepted: 05/14/2025] [Indexed: 06/02/2025]
Abstract
BACKGROUND Anticoagulant rodenticides (ARs) are used globally to manage pest rodent populations. However, resistance to ARs in target rodent populations challenges pest control efforts and can increase risks to nontarget species. Resistance is frequently associated with nonsynonymous single nucleotide polymorphisms (nsSNPs) in the Vkorc1 gene, and this study carried out the first Vkorc1 survey of introduced rats on the Australian mainland. RESULTS We identified three species of introduced rat using the cytochrome b gene across Brisbane, Melbourne, Perth and Sydney: Rattus rattus (Linnaeus 1758) (Lineage I); Rattus norvegicus (Berkenhout 1769); and Rattus tanezumi (Temminck 1844) (Lineage II). Three nsSNPs were detected in the Vkorc1 gene: Tyr25Phe, Trp59Arg and Phe55Ile. The mutation Tyr25Phe, which is associated with resistance to ARs, was identified in 58 of 108 R. rattus (53.7%) and one of 31 R. tanezumi (3.2%). It has been suggested that the mutation Trp59Arg (detected in two R. rattus) can increase susceptibility to haemorrhage, whereas the mutation Phe55Ile (identified in only one R. rattus) has not been reported previously. No nsSNPs were identified in R. norvegicus. CONCLUSION This is the first update to the resistance status of introduced rats on the Australian mainland since the 1970s and the first to employ genetic screening. The widespread occurrence of Tyr25Phe in urbanized areas of Australia suggests potential resistance to ARs is common in R. rattus. However, practical resistance conferred by Tyr25Phe needs further investigation as does the role of hybridization in the transfer of resistance from the R. rattus to the R. tanezumi nuclear genome. © 2025 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Alicia F Gorbould
- Conservation and Biodiversity Research Centre, School of Science, Edith Cowan University, Joondalup, Australia
| | - Quinton F Burnham
- Conservation and Biodiversity Research Centre, School of Science, Edith Cowan University, Joondalup, Australia
| | - Michael T Lohr
- Conservation and Biodiversity Research Centre, School of Science, Edith Cowan University, Joondalup, Australia
- BirdLife Australia, Melbourne, Australia
| | - Annette Koenders
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| |
Collapse
|
2
|
Agwamba K, Smith L, Gabriel SI, Searle JB, Nachman MW. Genetic structure and demographic history of house mice in western Europe inferred using whole-genome sequences. Proc Biol Sci 2025; 292:20242709. [PMID: 40237079 PMCID: PMC12001078 DOI: 10.1098/rspb.2024.2709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/23/2025] [Accepted: 03/24/2025] [Indexed: 04/17/2025] Open
Abstract
The western house mouse, Mus musculus domesticus, is a human commensal and an outstanding model organism for studying a wide variety of traits and diseases. However, we have few genomic resources for wild mice and only a rudimentary understanding of the demographic history of house mice in Europe. Here, we sequenced 59 whole genomes of mice collected from England, Scotland, Wales, Guernsey, northern France, Italy, Portugal and Spain. We combined this dataset with 24 previously published sequences from southern France, Germany and Iran and compared patterns of population structure and inferred demographic parameters for house mice in western Europe to patterns seen in humans. Principal component and phylogenetic analyses identified three genetic clusters in western European mice. Admixture and f-branch statistics identified historical gene flow between these genetic clusters. Demographic analyses suggest a shared history of population bottlenecks prior to 20 000 years ago. Estimated divergence times between populations of house mice from western Europe ranged from 1500 to 5500 years ago, in general agreement with the zooarchaeological record. These results correspond well with key aspects of contemporary human population structure and the history of migration in western Europe, highlighting the commensal relationship of this important genetic model.
Collapse
Affiliation(s)
- Kennedy Agwamba
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, USA
- Center for Computational Biology, University of California Berkeley, Berkeley, CA, USA
| | - Lydia Smith
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, USA
| | - Sofia I. Gabriel
- Department of Animal Biology, Faculty of Sciences, University of Lisbon, Centre for Ecology Evolution and Environmental Changes, Lisbon, Portugal
| | - Jeremy B. Searle
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Michael W. Nachman
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, USA
- Center for Computational Biology, University of California Berkeley, Berkeley, CA, USA
- Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| |
Collapse
|
3
|
Bankier S, Gudmundsdottir V, Jonmundsson T, Bjarnadottir H, Loureiro J, Wang L, Finkel N, Orth AP, Aspelund T, Launer LJ, Björkegren JL, Jennings LL, Lamb JR, Gudnason V, Michoel T, Emilsson V. Circulating causal protein networks linked to future risk of myocardial infarction. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.07.25321789. [PMID: 39974043 PMCID: PMC11838656 DOI: 10.1101/2025.02.07.25321789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Variations in blood protein levels have been associated with a broad spectrum of complex diseases, including atherosclerotic cardiovascular disease (ACVD). These associations highlight the intricate interplay between local (e.g., cardiovascular) and systemic (non-cardiovascular) factors for the development of ACVD, emphasizing the need for a comprehensive, systems-level understanding of its etiology. To accomplish this, we developed a causal network inference framework by analyzing one of the largest serum proteomics studies to date, the Age, Gene/Environment Susceptibility-Reykjavik Study (AGES), a prospective population-based study of 7,523 serum proteins measured in 5,376 older adults. To reconstruct a causal network of serum proteins, we used cis -acting protein quantitative trait loci (pQTLs) as instrumental variables to infer causal relationships between protein pairs, while accounting for potential unobserved confounding factors. We identified 185 causal protein subnetworks (FDR = 1%, n ≥ 10 members), which collectively interacted with 5,611 target proteins, offering valuable biological insights and an overview of systemic homeostasis. Several subnetworks, many of which interact to establish a hierarchy of directional relationships, were significantly associated with future myocardial infarction and/or its long-term complications like heart failure, as well as with key cardiometabolic traits that contribute to the onset of ACVD.
Collapse
|
4
|
Lopez L, Lang PLM, Marciniak S, Kistler L, Latorre SM, Haile A, Cerda EV, Gamba D, Xu Y, Woods P, Yifru M, Kerby J, McKay JK, Oakley CG, Ågren J, Wondimu T, Bulafu C, Perry GH, Burbano HA, Lasky JR. Museum genomics reveals temporal genetic stasis and global genetic diversity in Arabidopsis thaliana. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.06.636844. [PMID: 39975324 PMCID: PMC11839143 DOI: 10.1101/2025.02.06.636844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Global patterns of population genetic variation through time offer a window into evolutionary processes that maintain diversity. Over time, lineages may expand or contract their distribution, causing turnover in population genetic composition. At individual loci, migration, drift, environmental change (among other processes) may affect allele frequencies. Museum specimens of widely distributed species offer a unique window into the genetics of understudied populations and changes over time. Here, we sequenced genomes of 130 herbarium specimens and 91 new field collections of Arabidopsis thaliana and combined these with published genomes. We sought a broader view of genomic diversity across the species, and to test if population genomic composition is changing through time. We documented extensive and previously uncharacterized diversity in a range of populations in Africa, populations that are under threat from anthropogenic climate change. Through time, we did not find dramatic changes in genomic composition of populations. Instead, we found a pattern of genetic change every 100 years of the same magnitude seen when comparing Eurasian populations that are 185 km apart, potentially due to a combination of drift and changing selection. We found only mixed signals of polygenic adaptation at phenology and physiology QTL. We did find that genes conserved across eudicots show altered levels of directional allele frequency change, potentially due to variable purifying and background selection. Our study highlights how museum specimens can reveal new dimensions of population diversity and show how wild populations are evolving in recent history.
Collapse
Affiliation(s)
- Lua Lopez
- Department of Biology, Pennsylvania State University, University Park, PA, USA
- Department of Biology, California State University, San Bernardino, San Bernardino, CA, USA
| | - Patricia L. M. Lang
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Stephanie Marciniak
- Department of Anthropology, Pennsylvania State University, University Park, PA, USA
| | | | - Sergio M. Latorre
- Centre for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, England, UK
| | - Asnake Haile
- Department of Biology, Pennsylvania State University, University Park, PA, USA
- Department of Plant Biology and Biodiversity Management, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - Diana Gamba
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Yuxing Xu
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Patrick Woods
- Department of Soil and Crop Sciences, Colorado State University, Ft. Collins, CO, USA
| | - Mistire Yifru
- Department of Plant Biology and Biodiversity Management, Addis Ababa University, Addis Ababa, Ethiopia
| | - Jeffrey Kerby
- Aarhus Institute of Advanced Studies, Aarhus, Denmark
| | - John K. McKay
- Department of Soil and Crop Sciences, Colorado State University, Ft. Collins, CO, USA
| | - Christopher G. Oakley
- Department of Botany and Plant Pathology, and The Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Jon Ågren
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Tigist Wondimu
- Department of Plant Biology and Biodiversity Management, Addis Ababa University, Addis Ababa, Ethiopia
| | - Collins Bulafu
- Department of Plant Sciences, Microbiology, and Biotechnology, Makarere University, Kampala, Uganda
| | - George H. Perry
- Department of Biology, Pennsylvania State University, University Park, PA, USA
- Department of Anthropology, Pennsylvania State University, University Park, PA, USA
| | - Hernán A. Burbano
- Centre for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, England, UK
| | - Jesse R. Lasky
- Department of Biology, Pennsylvania State University, University Park, PA, USA
- PAC Herbarium, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
5
|
Fawthrop R, Cerca J, Pacheco G, Sætre GP, Scordato ESC, Ravinet M, Rowe M. Understanding human-commensalism through an ecological and evolutionary framework. Trends Ecol Evol 2025; 40:159-169. [PMID: 39542789 DOI: 10.1016/j.tree.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 11/17/2024]
Abstract
Human-commensalism has been intuitively characterised as an interspecific interaction whereby non-human individuals benefit from tight associations with anthropogenic environments. However, a clear definition of human-commensalism, rooted within an ecological and evolutionary framework, has yet to be proposed. Here, we define human-commensalism as a population-level dependence on anthropogenic resources, associated with genetic differentiation from the ancestral, non-commensal form. Such a definition helps us to understand the origins of human-commensalism and the pace and form of adaptation to anthropogenic niches, and may enable the prediction of future evolution in an increasingly human-modified world. Our discussion encourages greater consideration of the spatial and temporal complexity in anthropogenic niches, promoting a nuanced consideration of human-commensal populations when formulating research questions.
Collapse
Affiliation(s)
- Ruth Fawthrop
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6700 AB, Wageningen, The Netherlands; Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, 9747 AG, Groningen, The Netherlands.
| | - José Cerca
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo 0316, Norway
| | - George Pacheco
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo 0316, Norway
| | - Glenn-Peter Sætre
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo 0316, Norway
| | - Elizabeth S C Scordato
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA, USA
| | - Mark Ravinet
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo 0316, Norway
| | - Melissah Rowe
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6700 AB, Wageningen, The Netherlands
| |
Collapse
|
6
|
Maneepairoj N, Lekcharoen P, Chaisiri K, Sripiboon S. Murine-related helminthiasis: a public health concern at solid waste sites around forest- adjacent communities in Thailand. Front Vet Sci 2025; 11:1463046. [PMID: 39881724 PMCID: PMC11774862 DOI: 10.3389/fvets.2024.1463046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/05/2024] [Indexed: 01/31/2025] Open
Abstract
Murine-related helminthiasis is a frequently overlooked zoonotic disease with significant public health implications. The role of murine rodents in transmitting these infections to other animals remains under-researched. This study aimed to investigate murine-related helminth infections at solid waste sites, particularly in forest-adjacent communities where murine rodent populations are high and multi-host interactions are possible. During a 5-day trapping session, 36 live traps were deployed across different habitats during both wet and dry seasons. Trapped murine rodents and their gastrointestinal (GI) parasites were morphologically evaluated for species identification. The results revealed that a total of 380 murine rodents were captured, with an overall GI helminth infection prevalence of 86.8% (330/380). The adult male murine rodents exhibited higher prevalence, abundance, and species richness of helminths compared to juvenile and female murine rodents. A total of 16 helminth species were identified, with Trichostrongylus morphotype A showing the highest infection prevalence (53.2%). Six zoonotic species were also detected, including Syphacia obvelata (22.4%), Syphacia muris (12.4%), Raillietina spp. (10.8%), Hymenolepis diminuta (10.3%), Vampirolepis nana (10%), and Cyclodontostomum purvisi (2.4%). Increased population of murine rodents was observed at the solid waste sites, as indicated by higher trap success (TS) rates. Forest murine rodents exhibited a significant prevalence of helminth infections and high species diversity. These findings suggest that solid waste sites adjacent to forests may pose a heightened risk for disease transmission, warranting further attention.
Collapse
Affiliation(s)
- Nattapon Maneepairoj
- Department of Large Animal and Wildlife Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Paisin Lekcharoen
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Kittipong Chaisiri
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Supaphen Sripiboon
- Department of Large Animal and Wildlife Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
7
|
Harper K. Archaeogenetics: Four letters from Pompeii. Curr Biol 2024; 34:R1152-R1154. [PMID: 39561712 DOI: 10.1016/j.cub.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
As archaeogenetics - the study of DNA from (pre-)historical samples - comes of age, it complements and contrasts historical and archaeological records in novel ways. DNA from victims of the eruption of Vesuvius that destroyed Pompeii provides an interesting case study.
Collapse
Affiliation(s)
- Kyle Harper
- History of Liberty, University of Oklahoma, Norman, OK, USA; Santa Fe Institute, Santa Fe, NM, USA.
| |
Collapse
|
8
|
Zuckerman MK, Hofman CA. Lessons from ancient pathogens. Science 2024; 385:490-492. [PMID: 39088602 DOI: 10.1126/science.adk0584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Ancient infectious diseases and microbes can be used to address contemporary disease.
Collapse
Affiliation(s)
- Molly K Zuckerman
- Department of Anthropology and Middle Eastern Cultures, Mississippi State University, Mississippi State, MS, USA
- Cobb Institute of Archaeology, Mississippi State University, Mississippi State, MS, USA
- The Department of Anthropology, National Museum of Natural History, Washington, DC, USA
| | - Courtney A Hofman
- Cobb Institute of Archaeology, Mississippi State University, Mississippi State, MS, USA
- The Department of Anthropology, National Museum of Natural History, Washington, DC, USA
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, USA
- Department of Anthropology, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
9
|
Carcauzon V, Herrera JP, Kaufman K, Baudino F, Wickenkamp N, Randriamoria TM, Soarimalala V, Goodman SM, Nunn CL, Lebarbenchon C, Tortosa P. Astroviruses in terrestrial Malagasy mammals. PLoS Negl Trop Dis 2024; 18:e0012263. [PMID: 38875307 PMCID: PMC11262628 DOI: 10.1371/journal.pntd.0012263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/22/2024] [Accepted: 06/01/2024] [Indexed: 06/16/2024] Open
Abstract
Small terrestrial mammals are major hosts of infectious agents responsible for zoonotic diseases. Astroviruses (AstVs)-the cause of non-bacterial gastroenteritis mainly affecting young children-have been detected in a wide array of mammalian and avian host species. However, understanding the factors that influence AstV infection within and across hosts is limited. Here, we investigated the impact of land use changes on AstVs in terrestrial small mammals in rural northeastern Madagascar. We sampled 515 small mammals, representing seven endemic and four introduced species. Twenty-two positive samples were identified, all but one of which were found in the introduced species Mus musculus and Rattus rattus (family Muridae), with a positivity rate of 7.7% (6/78) and 5.6% (15/266), respectively. The non-introduced rodent case was from an endemic shrew-tenrec (family Tenrecidae). We found the highest positivity rate of AstVs infection in brushy regrowth (17.5%, 7/40) as compared to flooded rice fields (4.60%, 8/174), secondary forest (4.1%, 3/74), agroforest (3.6%, 1/28), village (2.61%, 3/115), and semi-intact forest (0%, 0/84). A phylogenetic analysis revealed an association between AstVs and their rodent host species. None of the viruses were phylogenetically related to AstVs previously described in Malagasy bats. This study supports AstV circulation in synanthropic animals in agricultural habitats of Madagascar and highlights the need to assess the spillover risk to human populations in rural areas.
Collapse
Affiliation(s)
- Victoria Carcauzon
- Université de La Réunion, Unité Mixte de Recherche Processus Infectieux en Milieu Insulaire Tropical (UMR PIMIT), CNRS 9192, INSERM 1187, IRD 249, Plateforme Technologique CYROI, Sainte Clotilde, La Réunion, France
| | - James P. Herrera
- Evolutionary Anthropology, Duke University, Durham, North Carolina, United States of America
- Duke Lemur Center SAVA Conservation, Durham, North Carolina, United States of America
| | - Kayla Kaufman
- Evolutionary Anthropology, Duke University, Durham, North Carolina, United States of America
- University of California Santa Barbara, Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California, United States of America
| | - Fiona Baudino
- Université de La Réunion, Unité Mixte de Recherche Processus Infectieux en Milieu Insulaire Tropical (UMR PIMIT), CNRS 9192, INSERM 1187, IRD 249, Plateforme Technologique CYROI, Sainte Clotilde, La Réunion, France
| | - Natalie Wickenkamp
- Evolutionary Anthropology, Duke University, Durham, North Carolina, United States of America
| | | | | | - Steven M. Goodman
- Association Vahatra, Antananarivo, Madagascar
- Field Museum of Natural History, Chicago, Illinois, United States of America
| | - Charles L. Nunn
- Evolutionary Anthropology, Duke University, Durham, North Carolina, United States of America
- Duke Global Health Institute, Durham, North Carolina, United States of America
| | - Camille Lebarbenchon
- Université de La Réunion, Unité Mixte de Recherche Processus Infectieux en Milieu Insulaire Tropical (UMR PIMIT), CNRS 9192, INSERM 1187, IRD 249, Plateforme Technologique CYROI, Sainte Clotilde, La Réunion, France
| | - Pablo Tortosa
- Université de La Réunion, Unité Mixte de Recherche Processus Infectieux en Milieu Insulaire Tropical (UMR PIMIT), CNRS 9192, INSERM 1187, IRD 249, Plateforme Technologique CYROI, Sainte Clotilde, La Réunion, France
| |
Collapse
|
10
|
Kai H, Takada N, Thomson V, Suzuki H. Region-Specific Genetic Diversity of Black Rats ( Rattus rattus Complex) in Southeast and East Asia Shaped by Rapid Population Expansion Events. Zoolog Sci 2024; 41:290-301. [PMID: 38809868 DOI: 10.2108/zs230065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/27/2023] [Indexed: 05/31/2024]
Abstract
Among the six mitochondrial DNA lineages of the black rat (Rattus rattus Complex; RrC), lineages II and IV are widespread in Southeast and East Asia. This study explored their demographic history using 17 new sequences from the Miyako Islands in the Ryukyu archipelago, together with 178 publicly available cytochrome b sequences. We defined six and two haplotype groups showing rapid population expansion signals in Lineages II and IV, respectively. The six haplotype groups of Lineage II were represented by haplotypes from 1) Myanmar/Bangladesh/Northeast India, 2) Laos, 3) Thailand, 4) Indonesia/Philippines, 5) Vietnam/southern China, and 6) the Ryukyu archipelago. These expansion times were estimated using time-dependent evolutionary rates to be 115,300 years ago (ya), 128,500 ya, 9600 ya, 10,600 ya, 7200 ya, and 1400 ya, respectively, although all had large confidence intervals. The two groups of Lineage IV were recovered from the mainland and islands of Southeast Asia with predicted expansion times of 197,000 ya and 5800 ya, respectively. These results suggest that climatic fluctuations during the last 200,000 years of the Quaternary, affected the population dynamics in subtropical areas at different times. Furthermore, the results of the younger rapid expansion events of RrC suggest the possibility of agricultural advancement and dispersal of Neolithic farmers to different areas within the mainland and islands of Southeast Asia during the Holocene. A subset of rats from the Miyako Islands were found to have the same lineage IV haplotypes as those in Southeast Asia, suggesting a recent introduction of these new lineages.
Collapse
Affiliation(s)
- Hajime Kai
- Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Nobuhiro Takada
- Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Vicki Thomson
- Centre for Conservation Ecology and Genomics, University of Canberra, Bruce, ACT 2617, Australia
| | - Hitoshi Suzuki
- Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan,
| |
Collapse
|
11
|
Velo‐Antón G. When aposematism is not enough: Exotic Rattus rattus shows no mercy for carcasses of Salamandra salamandra in insular populations. Ecol Evol 2024; 14:e11229. [PMID: 38751825 PMCID: PMC11094768 DOI: 10.1002/ece3.11229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/16/2024] [Accepted: 03/21/2024] [Indexed: 05/18/2024] Open
Abstract
Predator-prey interaction is a major force driving natural selection. Yet, the identification of species preying on, or consuming, aposematic species is largely unknown. Here, I conduct a study evaluating the role of the exotic Rattus rattus as a consumer and possible predator of the aposematic and toxic Salamandra salamandra. I used camera traps to investigate the response of R. rattus towards S. salamandra carcasses in two insular populations, Ons and San Martiño (NW Spain), which show remarkable contrasting behaviour (nocturnal vs. diurnal activity) and demographic and phenotypic differences. This study unveils R. rattus consumes S. salamandra despite its aposematic colour pattern and toxicity. The high number of salamander carcasses consumed or taken by rats throughout each island (90%-100%) and the lack of other possible predator-prey interactions points to R. rattus as an efficient consumer of S. salamandra in these insular environments, which might exert a high predation pressure on both islands. Yet, the drivers underlying the behavioural and phenotypic differences in these insular populations should be further investigated.
Collapse
|
12
|
Eskew EA, Bird BH, Ghersi BM, Bangura J, Basinski AJ, Amara E, Bah MA, Kanu MC, Kanu OT, Lavalie EG, Lungay V, Robert W, Vandi MA, Fichet-Calvet E, Nuismer SL. Reservoir displacement by an invasive rodent reduces Lassa virus zoonotic spillover risk. Nat Commun 2024; 15:3589. [PMID: 38678025 PMCID: PMC11055883 DOI: 10.1038/s41467-024-47991-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 04/17/2024] [Indexed: 04/29/2024] Open
Abstract
The black rat (Rattus rattus) is a globally invasive species that has been widely introduced across Africa. Within its invasive range in West Africa, R. rattus may compete with the native rodent Mastomys natalensis, the primary reservoir host of Lassa virus, a zoonotic pathogen that kills thousands annually. Here, we use rodent trapping data from Sierra Leone and Guinea to show that R. rattus presence reduces M. natalensis density within the human dwellings where Lassa virus exposure is most likely to occur. Further, we integrate infection data from M. natalensis to demonstrate that Lassa virus zoonotic spillover risk is lower at sites with R. rattus. While non-native species can have numerous negative effects on ecosystems, our results suggest that R. rattus invasion has the indirect benefit of decreasing zoonotic spillover of an endemic pathogen, with important implications for invasive species control across West Africa.
Collapse
Affiliation(s)
- Evan A Eskew
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA.
| | - Brian H Bird
- One Health Institute, School of Veterinary Medicine, University of California - Davis, Davis, CA, USA
| | - Bruno M Ghersi
- One Health Institute, School of Veterinary Medicine, University of California - Davis, Davis, CA, USA
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | | | - Andrew J Basinski
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
| | | | - Mohamed A Bah
- Ministry of Agriculture and Forestry, Freetown, Sierra Leone
| | | | | | | | | | | | | | | | - Scott L Nuismer
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA.
| |
Collapse
|
13
|
Rayfield KM, Mychajliw AM, Singleton RR, Sholts SB, Hofman CA. Uncovering the Holocene roots of contemporary disease-scapes: bringing archaeology into One Health. Proc Biol Sci 2023; 290:20230525. [PMID: 38052246 DOI: 10.1098/rspb.2023.0525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
The accelerating pace of emerging zoonotic diseases in the twenty-first century has motivated cross-disciplinary collaboration on One Health approaches, combining microbiology, veterinary and environmental sciences, and epidemiology for outbreak prevention and mitigation. Such outbreaks are often caused by spillovers attributed to human activities that encroach on wildlife habitats and ecosystems, such as land use change, industrialized food production, urbanization and animal trade. While the origin of anthropogenic effects on animal ecology and biogeography can be traced to the Late Pleistocene, the archaeological record-a long-term archive of human-animal-environmental interactions-has largely been untapped in these One Health approaches, thus limiting our understanding of these dynamics over time. In this review, we examine how humans, as niche constructors, have facilitated new host species and 'disease-scapes' from the Late Pleistocene to the Anthropocene, by viewing zooarchaeological, bioarchaeological and palaeoecological data with a One Health perspective. We also highlight how new biomolecular tools and advances in the '-omics' can be holistically coupled with archaeological and palaeoecological reconstructions in the service of studying zoonotic disease emergence and re-emergence.
Collapse
Affiliation(s)
- Kristen M Rayfield
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA
- Laboratories of Molecular Anthropology & Microbiome Research, University of Oklahoma, Norman, OK, USA
- Department of Anthropology, University of Oklahoma, Norman, OK 73019-0390, USA
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Alexis M Mychajliw
- Laboratories of Molecular Anthropology & Microbiome Research, University of Oklahoma, Norman, OK, USA
- Department of Anthropology, University of Oklahoma, Norman, OK 73019-0390, USA
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Department of Biology & Program in Environmental Studies, Middlebury College, Middlebury, VT 05753-6203, USA
| | - Robin R Singleton
- Laboratories of Molecular Anthropology & Microbiome Research, University of Oklahoma, Norman, OK, USA
- Department of Anthropology, University of Oklahoma, Norman, OK 73019-0390, USA
| | - Sabrina B Sholts
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Courtney A Hofman
- Laboratories of Molecular Anthropology & Microbiome Research, University of Oklahoma, Norman, OK, USA
- Department of Anthropology, University of Oklahoma, Norman, OK 73019-0390, USA
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| |
Collapse
|
14
|
Kim AS, Kreiner JM, Hernández F, Bock DG, Hodgins KA, Rieseberg LH. Temporal collections to study invasion biology. Mol Ecol 2023; 32:6729-6742. [PMID: 37873879 DOI: 10.1111/mec.17176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023]
Abstract
Biological invasions represent an extraordinary opportunity to study evolution. This is because accidental or deliberate species introductions have taken place for centuries across large geographical scales, frequently prompting rapid evolutionary transitions in invasive populations. Until recently, however, the utility of invasions as evolutionary experiments has been hampered by limited information on the makeup of populations that were part of earlier invasion stages. Now, developments in ancient and historical DNA technologies, as well as the quickening pace of digitization for millions of specimens that are housed in herbaria and museums globally, promise to help overcome this obstacle. In this review, we first introduce the types of temporal data that can be used to study invasions, highlighting the timescale captured by each approach and their respective limitations. We then discuss how ancient and historical specimens as well as data available from prior invasion studies can be used to answer questions on mechanisms of (mal)adaptation, rates of evolution, or community-level changes during invasions. By bridging the gap between contemporary and historical invasive populations, temporal data can help us connect pattern to process in invasion science. These data will become increasingly important if invasions are to achieve their full potential as experiments of evolution in nature.
Collapse
Affiliation(s)
- Amy S Kim
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Julia M Kreiner
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fernando Hernández
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dan G Bock
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kathryn A Hodgins
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
15
|
Jamieson A, Carmagnini A, Howard-McCombe J, Doherty S, Hirons A, Dimopoulos E, Lin AT, Allen R, Anderson-Whymark H, Barnett R, Batey C, Beglane F, Bowden W, Bratten J, De Cupere B, Drew E, Foley NM, Fowler T, Fox A, Geigl EM, Gotfredsen AB, Grange T, Griffiths D, Groß D, Haruda A, Hjermind J, Knapp Z, Lebrasseur O, Librado P, Lyons LA, Mainland I, McDonnell C, Muñoz-Fuentes V, Nowak C, O'Connor T, Peters J, Russo IRM, Ryan H, Sheridan A, Sinding MHS, Skoglund P, Swali P, Symmons R, Thomas G, Trolle Jensen TZ, Kitchener AC, Senn H, Lawson D, Driscoll C, Murphy WJ, Beaumont M, Ottoni C, Sykes N, Larson G, Frantz L. Limited historical admixture between European wildcats and domestic cats. Curr Biol 2023; 33:4751-4760.e14. [PMID: 37935117 DOI: 10.1016/j.cub.2023.08.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/07/2023] [Accepted: 08/09/2023] [Indexed: 11/09/2023]
Abstract
Domestic cats were derived from the Near Eastern wildcat (Felis lybica), after which they dispersed with people into Europe. As they did so, it is possible that they interbred with the indigenous population of European wildcats (Felis silvestris). Gene flow between incoming domestic animals and closely related indigenous wild species has been previously demonstrated in other taxa, including pigs, sheep, goats, bees, chickens, and cattle. In the case of cats, a lack of nuclear, genome-wide data, particularly from Near Eastern wildcats, has made it difficult to either detect or quantify this possibility. To address these issues, we generated 75 ancient mitochondrial genomes, 14 ancient nuclear genomes, and 31 modern nuclear genomes from European and Near Eastern wildcats. Our results demonstrate that despite cohabitating for at least 2,000 years on the European mainland and in Britain, most modern domestic cats possessed less than 10% of their ancestry from European wildcats, and ancient European wildcats possessed little to no ancestry from domestic cats. The antiquity and strength of this reproductive isolation between introduced domestic cats and local wildcats was likely the result of behavioral and ecological differences. Intriguingly, this long-lasting reproductive isolation is currently being eroded in parts of the species' distribution as a result of anthropogenic activities.
Collapse
Affiliation(s)
- Alexandra Jamieson
- The Palaeogenomics & Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, The University of Oxford, OX1 3TG Oxford, UK; Palaeogenomics Group, Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, Ludwig-Maximilians-Universität, 80539 Munich, Germany
| | - Alberto Carmagnini
- Palaeogenomics Group, Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, Ludwig-Maximilians-Universität, 80539 Munich, Germany; School of Biological and Chemical Sciences, Queen Mary University of London, E1 4NS London, UK
| | - Jo Howard-McCombe
- School of Biological Sciences, University of Bristol, BS8 1TQ Bristol, UK; RZSS WildGenes Laboratory, Royal Zoological Society of Scotland, EH12 6TS Edinburgh, UK
| | - Sean Doherty
- Department of Archaeology, University of Exeter, EX4 4QE Exeter, UK
| | - Alexandra Hirons
- The Palaeogenomics & Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, The University of Oxford, OX1 3TG Oxford, UK
| | - Evangelos Dimopoulos
- The Palaeogenomics & Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, The University of Oxford, OX1 3TG Oxford, UK; Department of Veterinary Medicine, University of Cambridge, CB3 0ES Cambridge, UK
| | - Audrey T Lin
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - Richard Allen
- The Palaeogenomics & Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, The University of Oxford, OX1 3TG Oxford, UK
| | - Hugo Anderson-Whymark
- Department of Scottish History and Archaeology, National Museums Scotland, EH1 1JF Edinburgh, UK
| | - Ross Barnett
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Colleen Batey
- Institute for Northern Studies, University of the Highlands and Islands, KW15 1FL Kirkwall, UK; Department of Archaeology, University of Durham, DH1 3LE Durham, UK
| | - Fiona Beglane
- CERIS, School of Science, Atlantic Technological University, F91 YW50 Sligo, Ireland
| | - Will Bowden
- Department of Classics and Archaeology, University of Nottingham, NG7 2RD Nottingham, UK
| | - John Bratten
- Department of Anthropology, University of West Florida, Pensacola, FL 32514, USA
| | - Bea De Cupere
- Royal Belgian Institute of Natural Sciences, 1000 Brussels, Belgium
| | - Ellie Drew
- York Archaeological Trust, YO1 7BX York, UK
| | - Nicole M Foley
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Tom Fowler
- Department of Classics and Archaeology, University of Nottingham, NG7 2RD Nottingham, UK
| | - Allison Fox
- Manx National Heritage, Manx Museum, IM1 3LY Douglas, Isle of Man
| | - Eva-Maria Geigl
- Université Paris-Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | | | - Thierry Grange
- Université Paris-Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - David Griffiths
- Department for Continuing Education, University of Oxford, OX1 2JA Oxford, UK
| | - Daniel Groß
- Museum Lolland-Falster, 4800 Nykøbing Falster, Denmark
| | - Ashleigh Haruda
- The Palaeogenomics & Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, The University of Oxford, OX1 3TG Oxford, UK
| | | | - Zoe Knapp
- Department of Archaeology, University of Reading, RG6 6AB Reading, UK
| | - Ophélie Lebrasseur
- Centre for Anthropobiology and Genomics of Toulouse, CNRS UMR 5288, Universite de Toulouse, Universite Paul Sabatier, 31000 Toulouse, France; The Palaeogenomics & Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, The University of Oxford, OX1 3TG Oxford, UK
| | - Pablo Librado
- Centre for Anthropobiology and Genomics of Toulouse, CNRS UMR 5288, Universite de Toulouse, Universite Paul Sabatier, 31000 Toulouse, France
| | - Leslie A Lyons
- Department of Veterinary Medicine & Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Ingrid Mainland
- UHI Archaeology Institute, University of the Highlands and Islands, Orkney, Scotland
| | | | - Violeta Muñoz-Fuentes
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD Cambridge, UK
| | - Carsten Nowak
- Centre for Wildlife Genetics & LOEWE Centre for Translational Biodiversity Genomics (TBG), Senckenberg Research Institute, 60325 Frankfurt, Germany
| | - Terry O'Connor
- BioArCh, Department of Archaeology, University of York, YO10 5DD York, UK
| | - Joris Peters
- SNSB, State Collection of Palaeoanatomy Munich, 85586 Poing, Germany; Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, Ludwig-Maximilians-Universität, 80539 Munich, Germany
| | | | - Hannah Ryan
- The Palaeogenomics & Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, The University of Oxford, OX1 3TG Oxford, UK
| | - Alison Sheridan
- Department of Scottish History and Archaeology, National Museums Scotland, EH1 1JF Edinburgh, UK
| | | | | | - Pooja Swali
- The Francis Crick Institute, NW1 1AT London, UK
| | | | - Gabor Thomas
- Department of Archaeology, University of Reading, RG6 6AB Reading, UK
| | - Theis Zetner Trolle Jensen
- Section for Molecular Ecology and Evolution, GLOBE Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Andrew C Kitchener
- Department of Natural Sciences, National Museums Scotland, EH1 1JF Edinburgh, UK; School of Geosciences, University of Edinburgh, EH8 9XP Edinburgh, UK
| | - Helen Senn
- RZSS WildGenes Laboratory, Royal Zoological Society of Scotland, EH12 6TS Edinburgh, UK
| | - Daniel Lawson
- School of Mathematics, University of Bristol, BS8 1UG Bristol, UK
| | | | - William J Murphy
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Mark Beaumont
- School of Biological Sciences, University of Bristol, BS8 1TQ Bristol, UK
| | - Claudio Ottoni
- Centre of Molecular Anthropology for Ancient DNA Studies, Department of Biology, University of Rome Tor Vergata, 00133 Roma, Italy
| | - Naomi Sykes
- Department of Archaeology, University of Exeter, EX4 4QE Exeter, UK
| | - Greger Larson
- The Palaeogenomics & Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, The University of Oxford, OX1 3TG Oxford, UK.
| | - Laurent Frantz
- Palaeogenomics Group, Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, Ludwig-Maximilians-Universität, 80539 Munich, Germany; School of Biological and Chemical Sciences, Queen Mary University of London, E1 4NS London, UK.
| |
Collapse
|
16
|
Preckler-Quisquater S, Kierepka EM, Reding DM, Piaggio AJ, Sacks BN. Can demographic histories explain long-term isolation and recent pulses of asymmetric gene flow between highly divergent grey fox lineages? Mol Ecol 2023; 32:5323-5337. [PMID: 37632719 DOI: 10.1111/mec.17105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 08/28/2023]
Abstract
Secondary contact zones between deeply divergent, yet interfertile, lineages provide windows into the speciation process. North American grey foxes (Urocyon cinereoargenteus) are divided into western and eastern lineages that diverged approximately 1 million years ago. These ancient lineages currently hybridize in a relatively narrow zone of contact in the southern Great Plains, a pattern more commonly observed in smaller-bodied taxa, which suggests relatively recent contact after a long period of allopatry. Based on local ancestry inference with whole-genome sequencing (n = 43), we identified two distinct Holocene pulses of admixture. The older pulse (500-3500 YBP) reflected unidirectional gene flow from east to west, whereas the more recent pulse (70-200 YBP) of admixture was bi-directional. Augmented with genotyping-by-sequencing data from 216 additional foxes, demographic analyses indicated that the eastern lineage declined precipitously after divergence, remaining small throughout most of the late Pleistocene, and expanding only during the Holocene. Genetic diversity in the eastern lineage was highest in the southeast and lowest near the contact zone, consistent with a westward expansion. Concordantly, distribution modelling indicated that during their isolation, the most suitable habitat occurred far east of today's contact zone or west of the Great Plains. Thus, long-term isolation was likely caused by the small, distant location of the eastern refugium, with recent contact reflecting a large increase in suitable habitat and corresponding demographic expansion from the eastern refugium. Ultimately, long-term isolation in grey foxes may reflect their specialized bio-climatic niche. This system presents an opportunity for future investigation of potential pre- and post-zygotic isolating mechanisms.
Collapse
Affiliation(s)
- Sophie Preckler-Quisquater
- Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Elizabeth M Kierepka
- North Carolina Museum of Natural Sciences, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina, USA
| | - Dawn M Reding
- Department of Biology, Luther College, Decorah, Iowa, USA
| | - Antoinette J Piaggio
- USDA, Wildlife Services, National Wildlife Research Center, Wildlife Genetics Lab, Fort Collins, Colorado, USA
| | - Benjamin N Sacks
- Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, California, USA
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, California, USA
| |
Collapse
|
17
|
Romaniuk AA, Troalen LG, Bendrey R, Herman JS, Owen O, Smith C. Pests or prey? Micromammal species within an ancient anthropic environment at the Norse settlement site of Tuquoy (Westray, Orkney). ROYAL SOCIETY OPEN SCIENCE 2023; 10:221462. [PMID: 37035288 PMCID: PMC10073909 DOI: 10.1098/rsos.221462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Micromammals, like rodents and shrews, adapt rapidly to take advantage of new food sources, habitats and ecological niches, frequently thriving in anthropogenic environments. Their remains, often retrieved during archaeological investigations, can be a valuable source of information about the past environmental conditions as well as interspecies interactions and human activity. However, the research on such finds rarely covers multiple approaches, often relying on single species or data type (e.g. identification/information for proxy studies). Here we investigate micromammal remains from the Norse and medieval (AD tenth-fourteenth centuries) archaeological site at Tuquoy, Orkney, to elucidate the relationships between micromammals, humans and other species present using a variety of data. Four micromammal species were identified, and their species dynamics as well as relationships with humans could be inferred by tracking changes in spatial and temporal location of remains, from their taphonomic history and by age estimation for individual animals. A larger, predatory assemblage was also identified, with species composition differing from that in the rest of the archaeological assemblage, and possibly therefore representing small mammal species composition in the wild. The assemblage was probably deposited by a diurnal raptor, though identification to species is not certain due to post-depositional processes.
Collapse
Affiliation(s)
- Andrzej A. Romaniuk
- School of History, Classics and Archaeology, The University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, UK
- Institute for Advanced Studies in the Humanities, The University of Edinburgh, Hope Park Square, Edinburgh EH8 9NW, UK
| | - Lore G. Troalen
- Department of Collections Services, National Museums Scotland, Chambers Street, Edinburgh EH1 1JF, UK
| | - Robin Bendrey
- School of History, Classics and Archaeology, The University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, UK
| | - Jeremy S. Herman
- Department of Natural Sciences, National Museums Scotland, Chambers Street, Edinburgh EH1 1JF, UK
| | - Olwyn Owen
- Institute of Archaeology, University of the Highlands and Islands, Orkney College, East Road, Kirkwall, Orkney KW15 1LX
| | - Catherine Smith
- Alder Archaeology Ltd, 55 South Methven Street, Perth PH1 5NX, UK
| |
Collapse
|
18
|
Adams MWD, Grant LS, Kovacs TGL, Liang SQT, Norris N, Wesley HE, Alessi MM, Banks PB. Commensal black rats
Rattus rattus
select wild vegetation over urbanised habitats. OIKOS 2022. [DOI: 10.1111/oik.09671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Maxim W. D. Adams
- School of Life and Environmental Sciences, Univ. of Sydney Camperdown New South Wales Australia
| | - Laura S. Grant
- School of Life and Environmental Sciences, Univ. of Sydney Camperdown New South Wales Australia
| | - Toby G. L. Kovacs
- School of Life and Environmental Sciences, Univ. of Sydney Camperdown New South Wales Australia
| | - Stephanie Q. T. Liang
- School of Life and Environmental Sciences, Univ. of Sydney Camperdown New South Wales Australia
| | - Nicholas Norris
- School of Life and Environmental Sciences, Univ. of Sydney Camperdown New South Wales Australia
| | - Hannah E. Wesley
- School of Life and Environmental Sciences, Univ. of Sydney Camperdown New South Wales Australia
| | - Megan M. Alessi
- School of Life and Environmental Sciences, Univ. of Sydney Camperdown New South Wales Australia
| | - Peter B. Banks
- School of Life and Environmental Sciences, Univ. of Sydney Camperdown New South Wales Australia
| |
Collapse
|
19
|
Hitching a ride: the early history of Black rat immigration into southern Africa. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02962-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|