1
|
Wolf G, Leippe P, Onstein S, Goldmann U, Frommelt F, Teoh ST, Girardi E, Wiedmer T, Superti-Furga G. The genetic interaction map of the human solute carrier superfamily. Mol Syst Biol 2025:10.1038/s44320-025-00105-5. [PMID: 40355755 DOI: 10.1038/s44320-025-00105-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 05/15/2025] Open
Abstract
Solute carriers (SLCs), the largest superfamily of transporter proteins in humans with about 450 members, control the movement of molecules across membranes. A typical human cell expresses over 200 different SLCs, yet their collective influence on cell phenotypes is not well understood due to overlapping substrate specificities and expression patterns. To address this, we performed systematic pairwise gene double knockouts using CRISPR-Cas12a and -Cas9 in human colon carcinoma cells. A total of 1,088,605 guide combinations were used to interrogate 35,421 SLC-SLC and SLC-enzyme double knockout combinations across multiple growth conditions, uncovering 1236 genetic interactions with a growth phenotype. Further exploration of an interaction between the mitochondrial citrate/malate exchanger SLC25A1 and the zinc transporter SLC39A1 revealed an unexpected role for SLC39A1 in metabolic reprogramming and anti-apoptotic signaling. This full-scale genetic interaction map of human SLC transporters is the backbone for understanding the intricate functional network of SLCs in cellular systems and generates hypotheses for pharmacological target exploitation in cancer and other diseases. The results are available at https://re-solute.eu/resources/dashboards/genomics/ .
Collapse
Affiliation(s)
- Gernot Wolf
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Philipp Leippe
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Svenja Onstein
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Ulrich Goldmann
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Fabian Frommelt
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Shao Thing Teoh
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Enrico Girardi
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
- Solgate GmbH, IST Park Building, 3400, Klosterneuburg, Austria
| | - Tabea Wiedmer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria.
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria.
- Fondazione Ri.MED, Palermo, Italy.
| |
Collapse
|
2
|
Ocana A, Pandiella A, Privat C, Bravo I, Luengo-Oroz M, Amir E, Gyorffy B. Integrating artificial intelligence in drug discovery and early drug development: a transformative approach. Biomark Res 2025; 13:45. [PMID: 40087789 PMCID: PMC11909971 DOI: 10.1186/s40364-025-00758-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/05/2025] [Indexed: 03/17/2025] Open
Abstract
Artificial intelligence (AI) can transform drug discovery and early drug development by addressing inefficiencies in traditional methods, which often face high costs, long timelines, and low success rates. In this review we provide an overview of how to integrate AI to the current drug discovery and development process, as it can enhance activities like target identification, drug discovery, and early clinical development. Through multiomics data analysis and network-based approaches, AI can help to identify novel oncogenic vulnerabilities and key therapeutic targets. AI models, such as AlphaFold, predict protein structures with high accuracy, aiding druggability assessments and structure-based drug design. AI also facilitates virtual screening and de novo drug design, creating optimized molecular structures for specific biological properties. In early clinical development, AI supports patient recruitment by analyzing electronic health records and improves trial design through predictive modeling, protocol optimization, and adaptive strategies. Innovations like synthetic control arms and digital twins can reduce logistical and ethical challenges by simulating outcomes using real-world or virtual patient data. Despite these advancements, limitations remain. AI models may be biased if trained on unrepresentative datasets, and reliance on historical or synthetic data can lead to overfitting or lack generalizability. Ethical and regulatory issues, such as data privacy, also challenge the implementation of AI. In conclusion, in this review we provide a comprehensive overview about how to integrate AI into current processes. These efforts, although they will demand collaboration between professionals, and robust data quality, have a transformative potential to accelerate drug development.
Collapse
Affiliation(s)
- Alberto Ocana
- Experimental Therapeutics in Cancer Unit, Medical Oncology Department, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos and CIBERONC, Madrid, Spain.
- INTHEOS-CEU-START Catedra, Facultad de Medicina, Universidad CEU San Pablo, 28668 Boadilla del Monte, Madrid, Spain.
| | - Atanasio Pandiella
- Instituto de Biología Molecular y Celular del Cáncer, CSIC, IBSAL and CIBERONC, Salamanca, 37007, Spain
| | - Cristian Privat
- , CancerAppy, Av Ribera de Axpe, 28, Erando, 48950, Vizcaya, Spain
| | - Iván Bravo
- Facultad de Farmacia, Universidad de Castilla La Mancha, Albacete, Spain
| | | | - Eitan Amir
- Princess Margaret Cancer Center, Toronto, Canada
| | - Balazs Gyorffy
- Department of Bioinformatics, Semmelweis University, Tűzoltó U. 7-9, Budapest, 1094, Hungary
- Research Centre for Natural Sciences, Hungarian Research Network, Magyar Tudosok Korutja 2, Budapest, 1117, Hungary
- Department of Biophysics, Medical School, University of Pecs, Pecs, 7624, Hungary
| |
Collapse
|
3
|
Wolf G, Craigon C, Teoh ST, Essletzbichler P, Onstein S, Cassidy D, Uijttewaal ECH, Dvorak V, Cao Y, Bensimon A, Elling U, Ciulli A, Superti-Furga G. The efflux pump ABCC1/MRP1 constitutively restricts PROTAC sensitivity in cancer cells. Cell Chem Biol 2025; 32:291-306.e6. [PMID: 39755121 DOI: 10.1016/j.chembiol.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/24/2024] [Accepted: 11/27/2024] [Indexed: 01/06/2025]
Abstract
Proteolysis targeting chimeras (PROTACs) are bifunctional molecules that induce selective protein degradation by linking an E3 ubiquitin ligase enzyme to a target protein. This approach allows scope for targeting "undruggable" proteins, and several PROTACs have reached the stage of clinical candidates. However, the roles of cellular transmembrane transporters in PROTAC uptake and efflux remain underexplored. Here, we utilized transporter-focused genetic screens to identify the ATP-binding cassette transporter ABCC1/MRP1 as a key PROTAC resistance factor. Unlike the previously identified inducible PROTAC exporter ABCB1/MDR1, ABCC1 is highly expressed among cancers of various origins and constitutively restricts PROTAC bioavailability. Moreover, in a genome-wide PROTAC resistance screen, we identified candidates involved in processes such as ubiquitination, mTOR signaling, and apoptosis as genetic factors involved in PROTAC resistance. In summary, our findings reveal ABCC1 as a crucial constitutively active efflux pump limiting PROTAC efficacy in various cancer cells, offering insights for overcoming drug resistance.
Collapse
Affiliation(s)
- Gernot Wolf
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Conner Craigon
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee DD1 5JJ, UK
| | - Shao Thing Teoh
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Patrick Essletzbichler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Svenja Onstein
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Diane Cassidy
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee DD1 5JJ, UK
| | - Esther C H Uijttewaal
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Vojtech Dvorak
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Yuting Cao
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee DD1 5JJ, UK
| | - Ariel Bensimon
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Ulrich Elling
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Alessio Ciulli
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee DD1 5JJ, UK
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
4
|
El Kassem G, Hillmer J, Boettcher M. Evaluation of Cas13d as a tool for genetic interaction mapping. Nat Commun 2025; 16:1631. [PMID: 39952934 PMCID: PMC11828948 DOI: 10.1038/s41467-025-56747-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 01/28/2025] [Indexed: 02/17/2025] Open
Abstract
Mapping genetic interactions (GIs) is crucial for understanding genetic network complexity. In this study, we investigate the utility of Cas13d, a CRISPR system targeting RNA, for GI mapping and compare it to Cas9 and Cas12a, two DNA nucleases commonly used for GI mapping. We find that Cas13d induces faster target gene perturbation and generates more uniform cell populations with double perturbations than Cas9 or Cas12a. We then encounter Cas13d gRNA-gRNA interference when concatenating gRNAs targeting different genes into one gRNA array, which we overcome by a dual promoter gRNA expression strategy. Moreover, by concatenating three gRNAs targeting the same gene into one array, we are able to maximize the Cas13d-mediated knockdown effects. Combining these strategies enhances proliferation phenotypes while reducing library size and facilitates reproducible quantification of GIs in oncogenic signaling pathways. Our study highlights the potential of Cas13d for GI mapping, promising advancements in understanding therapeutically relevant drug response pathways.
Collapse
Affiliation(s)
- Ghanem El Kassem
- Universitätsmedizin Halle, Martin Luther University Halle-Wittenberg, Halle (Saale), 06120, Halle, Germany
| | - Jasmine Hillmer
- Universitätsmedizin Halle, Martin Luther University Halle-Wittenberg, Halle (Saale), 06120, Halle, Germany
| | - Michael Boettcher
- Universitätsmedizin Halle, Martin Luther University Halle-Wittenberg, Halle (Saale), 06120, Halle, Germany.
| |
Collapse
|
5
|
Jin W, Deng Y, La Marca JE, Lelliott EJ, Diepstraten ST, König C, Tai L, Snetkova V, Dorighi KM, Hoberecht L, Hedditch MG, Whelan L, Healey G, Fayle D, Lau K, Potts MA, Chen MZ, Johnston APR, Liao Y, Shi W, Kueh AJ, Haley B, Fortin JP, Herold MJ. Advancing the genetic engineering toolbox by combining AsCas12a knock-in mice with ultra-compact screening. Nat Commun 2025; 16:974. [PMID: 39885149 PMCID: PMC11782673 DOI: 10.1038/s41467-025-56282-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 01/09/2025] [Indexed: 02/01/2025] Open
Abstract
Cas12a is a next-generation gene editing tool that enables multiplexed gene targeting. Here, we present a mouse model that constitutively expresses enhanced Acidaminococcus sp. Cas12a (enAsCas12a) linked to an mCherry fluorescent reporter. We demonstrate efficient single and multiplexed gene editing in vitro, using primary and transformed cells from enAsCas12a mice. We further demonstrate successful in vivo gene editing, using normal and cancer-prone enAsCas12a stem cells to reconstitute the haematopoietic system of wild-type mice. We also present compact, genome-wide Cas12a knockout libraries, with four crRNAs per gene encoded across one (Scherzo) or two (Menuetto) vectors, and demonstrate the utility of these libraries across methodologies: in vitro enrichment and drop-out screening in lymphoma cells and immortalised fibroblasts, respectively, and in vivo screens to identify lymphoma-driving events. Finally, we demonstrate CRISPR multiplexing via simultaneous gene knockout (via Cas12a) and activation (via dCas9-SAM) using primary T cells and fibroblasts. Our enAsCas12a mouse and accompanying crRNA libraries enhance genome engineering capabilities and complement current CRISPR technologies.
Collapse
Affiliation(s)
- Wei Jin
- Olivia Newton-John Cancer Research Institute, Heidelberg, Melbourne, Australia
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, Australia
| | - Yexuan Deng
- Olivia Newton-John Cancer Research Institute, Heidelberg, Melbourne, Australia
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, Australia
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - John E La Marca
- Olivia Newton-John Cancer Research Institute, Heidelberg, Melbourne, Australia
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, Australia
| | - Emily J Lelliott
- Olivia Newton-John Cancer Research Institute, Heidelberg, Melbourne, Australia
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Melbourne, Australia
| | - Sarah T Diepstraten
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, Australia
| | - Christina König
- Olivia Newton-John Cancer Research Institute, Heidelberg, Melbourne, Australia
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Melbourne, Australia
| | - Lin Tai
- Olivia Newton-John Cancer Research Institute, Heidelberg, Melbourne, Australia
| | - Valentina Snetkova
- Department of Molecular Biology, Genentech, Inc., South San Francisco, California, USA
| | - Kristel M Dorighi
- Department of Molecular Biology, Genentech, Inc., South San Francisco, California, USA
| | - Luke Hoberecht
- Computational Sciences, Genentech, Inc., South San Francisco, California, USA
| | - Millicent G Hedditch
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Australia
| | - Lauren Whelan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Australia
| | - Geraldine Healey
- Olivia Newton-John Cancer Research Institute, Heidelberg, Melbourne, Australia
| | - Dan Fayle
- Olivia Newton-John Cancer Research Institute, Heidelberg, Melbourne, Australia
| | - Kieran Lau
- Olivia Newton-John Cancer Research Institute, Heidelberg, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Melbourne, Australia
| | - Margaret A Potts
- Olivia Newton-John Cancer Research Institute, Heidelberg, Melbourne, Australia
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Melbourne, Australia
| | - Moore Z Chen
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Australia
| | - Angus P R Johnston
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Australia
| | - Yang Liao
- Olivia Newton-John Cancer Research Institute, Heidelberg, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Melbourne, Australia
| | - Wei Shi
- Olivia Newton-John Cancer Research Institute, Heidelberg, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Melbourne, Australia
| | - Andrew J Kueh
- Olivia Newton-John Cancer Research Institute, Heidelberg, Melbourne, Australia
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Melbourne, Australia
| | - Benjamin Haley
- Department of Molecular Biology, Genentech, Inc., South San Francisco, California, USA
- Université de Montréal, Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Rosemont, Canada
| | | | - Marco J Herold
- Olivia Newton-John Cancer Research Institute, Heidelberg, Melbourne, Australia.
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, Australia.
- School of Cancer Medicine, La Trobe University, Bundoora, Melbourne, Australia.
| |
Collapse
|
6
|
Hu Y, Comjean A, Rodiger J, Chen W, Kim AR, Qadiri M, Gao C, Zirin J, Mohr S, Perrimon N. FlyRNAi.org 2025 update-expanded resources for new technologies and species. Nucleic Acids Res 2025; 53:D958-D965. [PMID: 39435987 PMCID: PMC11701652 DOI: 10.1093/nar/gkae917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/18/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024] Open
Abstract
The design, analysis and mining of large-scale 'omics studies with the goal of advancing biological and biomedical understanding require use of a range of bioinformatics tools, including approaches tailored to needs specific to a given species and/or technology. The FlyRNAi database at the Drosophila RNAi Screening Center and Transgenic RNAi Project (DRSC/TRiP) Functional Genomics Resources (https://fgr.hms.harvard.edu/tools) supports an increasingly broad group of technologies and species. Recently, for example, we expanded the database to include additional new data-centric resources that facilitate mining and analysis of single-cell transcriptomics. In addition, we have applied our approaches to CRISPR reagent and gene-centric bioinformatics approaches in Drosophila to arthropod vectors of infectious diseases. Building on our previous comprehensive reports on the FlyRNAi database, here we focus on new and updated resources with a primary focus on data-centric tools. Altogether, our suite of online resources supports various stages of functional genomics studies for Drosophila and other arthropods, and facilitate a wide range of reagent design, analysis, data mining and analysis approaches by biologists and biomedical experts studying Drosophila, other common genetic model species, arthropod vectors and/or human biology.
Collapse
Affiliation(s)
- Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Aram Comjean
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Jonathan Rodiger
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- LifeMine Therapeutics, 30 Acorn Park Dr, Cambridge, MA 02140, USA
| | - Weihang Chen
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Ah-Ram Kim
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Mujeeb Qadiri
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Chenxi Gao
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Jonathan Zirin
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Stephanie E Mohr
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Howard Hughes Medical Institute, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| |
Collapse
|
7
|
Ngoi NYL, Gallo D, Torrado C, Nardo M, Durocher D, Yap TA. Synthetic lethal strategies for the development of cancer therapeutics. Nat Rev Clin Oncol 2025; 22:46-64. [PMID: 39627502 DOI: 10.1038/s41571-024-00966-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2024] [Indexed: 12/20/2024]
Abstract
Synthetic lethality is a genetic phenomenon whereby the simultaneous presence of two different genetic alterations impairs cellular viability. Importantly, targeting synthetic lethal interactions offers potential therapeutic strategies for cancers with alterations in pathways that might otherwise be considered undruggable. High-throughput screening methods based on modern CRISPR-Cas9 technologies have emerged and become crucial for identifying novel synthetic lethal interactions with the potential for translation into biologically rational cancer therapeutic strategies as well as associated predictive biomarkers of response capable of guiding patient selection. Spurred by the clinical success of PARP inhibitors in patients with BRCA-mutant cancers, novel agents targeting multiple synthetic lethal interactions within DNA damage response pathways are in clinical development, and rational strategies targeting synthetic lethal interactions spanning alterations in epigenetic, metabolic and proliferative pathways have also emerged and are in late preclinical and/or early clinical testing. In this Review, we provide a comprehensive overview of established and emerging technologies for synthetic lethal drug discovery and development and discuss promising therapeutic strategies targeting such interactions.
Collapse
Affiliation(s)
- Natalie Y L Ngoi
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - David Gallo
- Repare Therapeutics, Inc., Montreal, Quebec, Canada
| | - Carlos Torrado
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mirella Nardo
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel Durocher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
8
|
He T, Xiao L, Qiao Y, Klingbeil O, Young E, Wu XS, Mannan R, Mahapatra S, Redin E, Cho H, Bao Y, Kandarpa M, Ching-Yi Tien J, Wang X, Eyunni S, Zheng Y, Kim N, Zheng H, Hou S, Su F, Miner SJ, Mehra R, Cao X, Abbineni C, Samajdar S, Ramachandra M, Dhanasekaran SM, Talpaz M, Parolia A, Rudin CM, Vakoc CR, Chinnaiyan AM. Targeting the mSWI/SNF complex in POU2F-POU2AF transcription factor-driven malignancies. Cancer Cell 2024; 42:1336-1351.e9. [PMID: 39029462 DOI: 10.1016/j.ccell.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/19/2024] [Accepted: 06/11/2024] [Indexed: 07/21/2024]
Abstract
The POU2F3-POU2AF2/3 transcription factor complex is the master regulator of the tuft cell lineage and tuft cell-like small cell lung cancer (SCLC). Here, we identify a specific dependence of the POU2F3 molecular subtype of SCLC (SCLC-P) on the activity of the mammalian switch/sucrose non-fermentable (mSWI/SNF) chromatin remodeling complex. Treatment of SCLC-P cells with a proteolysis targeting chimera (PROTAC) degrader of mSWI/SNF ATPases evicts POU2F3 and its coactivators from chromatin and attenuates downstream signaling. B cell malignancies which are dependent on the POU2F1/2 cofactor, POU2AF1, are also sensitive to mSWI/SNF ATPase degraders, with treatment leading to chromatin eviction of POU2AF1 and IRF4 and decreased IRF4 signaling in multiple myeloma cells. An orally bioavailable mSWI/SNF ATPase degrader significantly inhibits tumor growth in preclinical models of SCLC-P and multiple myeloma without signs of toxicity. This study suggests that POU2F-POU2AF-driven malignancies have an intrinsic dependence on the mSWI/SNF complex, representing a therapeutic vulnerability.
Collapse
Affiliation(s)
- Tongchen He
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Lanbo Xiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Yuanyuan Qiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Olaf Klingbeil
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Eleanor Young
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xiaoli S Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Rahul Mannan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Somnath Mahapatra
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Esther Redin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hanbyul Cho
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yi Bao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Malathi Kandarpa
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jean Ching-Yi Tien
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xiaoju Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sanjana Eyunni
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yang Zheng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - NamHoon Kim
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Heng Zheng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Siyu Hou
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Fengyun Su
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stephanie J Miner
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rohit Mehra
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xuhong Cao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | - Saravana M Dhanasekaran
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Moshe Talpaz
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Abhijit Parolia
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Charles M Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Medicine Graduate School of Medicine Sciences, New York, NY 10065, USA
| | | | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
9
|
He T, Xiao L, Qiao Y, Klingbeil O, Young E, Wu XS, Mannan R, Mahapatra S, Eyunni S, Ching-Yi Tien J, Wang X, Zheng Y, Kim N, Zheng H, Hou S, Su F, Miner SJ, Mehra R, Cao X, Abbineni C, Samajdar S, Ramachandra M, Parolia A, Vakoc CR, Chinnaiyan AM. Targeting the mSWI/SNF Complex in POU2F-POU2AF Transcription Factor-Driven Malignancies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576669. [PMID: 38328238 PMCID: PMC10849552 DOI: 10.1101/2024.01.22.576669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The POU2F3-POU2AF2/3 (OCA-T1/2) transcription factor complex is the master regulator of the tuft cell lineage and tuft cell-like small cell lung cancer (SCLC). Here, we found that the POU2F3 molecular subtype of SCLC (SCLC-P) exhibits an exquisite dependence on the activity of the mammalian switch/sucrose non-fermentable (mSWI/SNF) chromatin remodeling complex. SCLC-P cell lines were sensitive to nanomolar levels of a mSWI/SNF ATPase proteolysis targeting chimera (PROTAC) degrader when compared to other molecular subtypes of SCLC. POU2F3 and its cofactors were found to interact with components of the mSWI/SNF complex. The POU2F3 transcription factor complex was evicted from chromatin upon mSWI/SNF ATPase degradation, leading to attenuation of downstream oncogenic signaling in SCLC-P cells. A novel, orally bioavailable mSWI/SNF ATPase PROTAC degrader, AU-24118, demonstrated preferential efficacy in the SCLC-P relative to the SCLC-A subtype and significantly decreased tumor growth in preclinical models. AU-24118 did not alter normal tuft cell numbers in lung or colon, nor did it exhibit toxicity in mice. B cell malignancies which displayed a dependency on the POU2F1/2 cofactor, POU2AF1 (OCA-B), were also remarkably sensitive to mSWI/SNF ATPase degradation. Mechanistically, mSWI/SNF ATPase degrader treatment in multiple myeloma cells compacted chromatin, dislodged POU2AF1 and IRF4, and decreased IRF4 signaling. In a POU2AF1-dependent, disseminated murine model of multiple myeloma, AU-24118 enhanced survival compared to pomalidomide, an approved treatment for multiple myeloma. Taken together, our studies suggest that POU2F-POU2AF-driven malignancies have an intrinsic dependence on the mSWI/SNF complex, representing a therapeutic vulnerability.
Collapse
Affiliation(s)
- Tongchen He
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- These authors contributed equally
| | - Lanbo Xiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- These authors contributed equally
| | - Yuanyuan Qiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Olaf Klingbeil
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Eleanor Young
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Xiaoli S. Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Rahul Mannan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Somnath Mahapatra
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Sanjana Eyunni
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Jean Ching-Yi Tien
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Xiaoju Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yang Zheng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - NamHoon Kim
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Heng Zheng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Siyu Hou
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Fengyun Su
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Stephanie J. Miner
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Rohit Mehra
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Xuhong Cao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | - Abhijit Parolia
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | | | - Arul M. Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
- Lead contact
| |
Collapse
|
10
|
Esmaeili Anvar N, Lin C, Ma X, Wilson LL, Steger R, Sangree AK, Colic M, Wang SH, Doench JG, Hart T. Efficient gene knockout and genetic interaction screening using the in4mer CRISPR/Cas12a multiplex knockout platform. Nat Commun 2024; 15:3577. [PMID: 38678031 PMCID: PMC11055879 DOI: 10.1038/s41467-024-47795-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 04/12/2024] [Indexed: 04/29/2024] Open
Abstract
Genetic interactions mediate the emergence of phenotype from genotype, but technologies for combinatorial genetic perturbation in mammalian cells are challenging to scale. Here, we identify background-independent paralog synthetic lethals from previous CRISPR genetic interaction screens, and find that the Cas12a platform provides superior sensitivity and assay replicability. We develop the in4mer Cas12a platform that uses arrays of four independent guide RNAs targeting the same or different genes. We construct a genome-scale library, Inzolia, that is ~30% smaller than a typical CRISPR/Cas9 library while also targeting ~4000 paralog pairs. Screens in cancer cells demonstrate discrimination of core and context-dependent essential genes similar to that of CRISPR/Cas9 libraries, as well as detection of synthetic lethal and masking/buffering genetic interactions between paralogs of various family sizes. Importantly, the in4mer platform offers a fivefold reduction in library size compared to other genetic interaction methods, substantially reducing the cost and effort required for these assays.
Collapse
Affiliation(s)
- Nazanin Esmaeili Anvar
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center UTHealth, Houston, TX, USA
| | - Chenchu Lin
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xingdi Ma
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center UTHealth, Houston, TX, USA
| | - Lori L Wilson
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ryan Steger
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Annabel K Sangree
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Medina Colic
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sidney H Wang
- Center for Human Genetics, The Brown foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - John G Doench
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Traver Hart
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
11
|
Djajawi TM, Wichmann J, Vervoort SJ, Kearney CJ. Tumor immune evasion: insights from CRISPR screens and future directions. FEBS J 2024; 291:1386-1399. [PMID: 37971319 DOI: 10.1111/febs.17003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/02/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Despite the clinical success of cancer immunotherapies including immune checkpoint blockade and adoptive cellular therapies across a variety of cancer types, many patients do not respond or ultimately relapse; however, the molecular underpinnings of this are not fully understood. Thus, a system-level understating of the routes to tumor immune evasion is required to inform the design of the next generation of immunotherapy approaches. CRISPR screening approaches have proved extremely powerful in identifying genes that promote tumor immune evasion or sensitize tumor cells to destruction by the immune system. These large-scale efforts have brought to light decades worth of fundamental immunology and have uncovered the key immune-evasion pathways subverted in cancers in an acquired manner in patients receiving immune-modulatory therapies. The comprehensive discovery of the main pathways involved in immune evasion has spurred the development and application of novel immune therapies to target this process. Although successful, conventional CRISPR screening approaches are hampered by a number of limitations, which obfuscate a complete understanding of the precise molecular regulation of immune evasion in cancer. Here, we provide a perspective on screening approaches to interrogate tumor-lymphocyte interactions and their limitations, and discuss further development of technologies to improve such approaches and discovery capability.
Collapse
Affiliation(s)
- Tirta Mario Djajawi
- Olivia Newton-John Cancer Research Institute, Heidelberg, Vic., Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Vic., Australia
| | - Johannes Wichmann
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
| | - Stephin J Vervoort
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
| | - Conor J Kearney
- Olivia Newton-John Cancer Research Institute, Heidelberg, Vic., Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Vic., Australia
| |
Collapse
|
12
|
Walton RT, Qin Y, Blainey PC. CROPseq-multi: a versatile solution for multiplexed perturbation and decoding in pooled CRISPR screens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.17.585235. [PMID: 38558968 PMCID: PMC10979941 DOI: 10.1101/2024.03.17.585235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Forward genetic screens seek to dissect complex biological systems by systematically perturbing genetic elements and observing the resulting phenotypes. While standard screening methodologies introduce individual perturbations, multiplexing perturbations improves the performance of single-target screens and enables combinatorial screens for the study of genetic interactions. Current tools for multiplexing perturbations are incompatible with pooled screening methodologies that require mRNA-embedded barcodes, including some microscopy and single cell sequencing approaches. Here, we report the development of CROPseq-multi, a CROPseq1-inspired lentiviral system to multiplex Streptococcus pyogenes (Sp) Cas9-based perturbations with mRNA-embedded barcodes. CROPseq-multi has equivalent per-guide activity to CROPseq and low lentiviral recombination frequencies. CROPseq-multi is compatible with enrichment screening methodologies and optical pooled screens, and is extensible to screens with single-cell sequencing readouts. For optical pooled screens, an optimized and multiplexed in situ detection protocol improves barcode detection efficiency 10-fold, enables detection of recombination events, and increases decoding efficiency 3-fold relative to CROPseq. CROPseq-multi is a widely applicable multiplexing solution for diverse SpCas9-based genetic screening approaches.
Collapse
Affiliation(s)
- Russell T. Walton
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - Yue Qin
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Eric and Wendy Schmidt Center, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Paul C. Blainey
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| |
Collapse
|
13
|
Pulice JL, Meyerson M. Dosage amplification dictates oncogenic regulation by the NKX2-1 lineage factor in lung adenocarcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.563996. [PMID: 37994369 PMCID: PMC10664179 DOI: 10.1101/2023.10.26.563996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Amplified oncogene expression is a critical and widespread driver event in cancer, yet our understanding of how amplification-mediated elevated dosage mediates oncogenic regulation is limited. Here, we find that the most significant focal amplification event in lung adenocarcinoma (LUAD) targets a lineage super-enhancer near the NKX2-1 lineage transcription factor. The NKX2-1 super-enhancer is targeted by focal and co-amplification with NKX2-1, and activation or repression controls NKX2-1 expression. We find that NKX2-1 is a widespread dependency in LUAD cell lines, where NKX2-1 pioneers enhancer accessibility to drive a lineage addicted state in LUAD, and NKX2-1 confers persistence to EGFR inhibitors. Notably, we find that oncogenic NKX2-1 regulation requires expression above a minimum dosage threshold-NKX2-1 dosage below this threshold is insufficient for cell viability, enhancer remodeling, and TKI persistence. Our data suggest that copy-number amplification can be a gain-of-function alteration, wherein amplification elevates oncogene expression above a critical dosage required for oncogenic regulation and cancer cell survival.
Collapse
Affiliation(s)
- John L. Pulice
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Biological and Biomedical Sciences Program, Harvard University, Cambridge, MA, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Matthew Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Lead contact
| |
Collapse
|
14
|
Feng Q, Ning X, Qin L, Li J, Li C. Quantitative and modularized CRISPR/dCas9-dCpf1 dual function system in Saccharomyces cerevisiae. Front Bioeng Biotechnol 2023; 11:1218832. [PMID: 38026848 PMCID: PMC10666755 DOI: 10.3389/fbioe.2023.1218832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: Both CRISPR/dCas9 and CRISPR/dCpf1 genome editing systems have shown exciting promises in modulating yeast cell metabolic pathways. However, each system has its deficiencies to overcome. In this study, to achieve a compensatory effect, we successfully constructed a dual functional CRISPR activation/inhibition (CRISPRa/i) system based on Sp-dCas9 and Fn-dCpf1 proteins, along with their corresponding complementary RNAs. Methods: We validated the high orthogonality and precise quantity targeting of selected yeast promoters. Various activating effector proteins (VP64, p65, Rta, and VP64-p65-Rta) and inhibiting effector proteins (KRAB, MeCP2, and KRAB-MeCP2), along with RNA scaffolds of MS2, PP7 and crRNA arrays were implemented in different combinations to investigate quantitative promoter strength. In the CRISPR/dCas9 system, the regulation rate ranged from 81.9% suppression to 627% activation in the mCherry gene reporter system. Studies on crRNA point mutations and crRNA arrays were conducted in the CRISPR/dCpf1 system, with the highest transcriptional inhibitory rate reaching up to 530% higher than the control. Furthermore, the orthogonal CRISPR/dCas9-dCpf1 inhibition system displayed distinct dual functions, simultaneously regulating the mCherry gene by dCas9/gRNA (54.6% efficiency) and eGFP gene by dCpf1/crRNA (62.4% efficiency) without signal crosstalk. Results and discussion: Finally, we established an engineered yeast cell factory for β-carotene production using the CRISPR/dCas9-dCpf1 bifunctional system to achieve targeted modulation of both heterologous and endogenous metabolic pathways in Saccharomyces cerevisiae. The system includes an activation module of CRISPRa/dCas9 corresponding to a gRNA-protein complex library of 136 plasmids, and an inhibition module of CRISPRi/dCpf1 corresponding to a small crRNA array library. Results show that this CRISPR/dCas9-dCpf1 bifunctional orthogonal system is more quantitatively effective and expandable for simultaneous CRISPRa/i network control compared to single-guide edition, demonstrating higher potential of future application in yeast biotechnology.
Collapse
Affiliation(s)
- Qing Feng
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, School of Chemistry and Chemical Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing, China
| | - Xiaoyu Ning
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, School of Chemistry and Chemical Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing, China
| | - Lei Qin
- Key Lab for Industrial Biocatalysis, Department of Chemical Engineering, Ministry of Education, Tsinghua University, Beijing, China
| | - Jun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, School of Chemistry and Chemical Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing, China
| | - Chun Li
- Key Lab for Industrial Biocatalysis, Department of Chemical Engineering, Ministry of Education, Tsinghua University, Beijing, China
| |
Collapse
|
15
|
Chen QH, Qian YD, Niu YJ, Hu CY, Meng YH. Characterization of an efficient CRISPR-iCas9 system in Yarrowia lipolytica for the biosynthesis of carotenoids. Appl Microbiol Biotechnol 2023; 107:6299-6313. [PMID: 37642716 DOI: 10.1007/s00253-023-12731-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/20/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
The application of clustered regularly interspaced short palindromic repeats-Cas (CRISPR-Cas9) technology in the genetic modification of Yarrowia lipolytica is challenged by low efficiency and low throughput. Here, a highly efficient CRISPR-iCas9 (with D147Y and P411T mutants) genetic manipulation tool was established for Y. lipolytica, which was further utilized to integrate carotene synthetic key genes and significantly improve the target product yield. First, CRISPR-iCas9 could shorten the time of genetic modification and enable the rapid knockout of nonsense suppressors. iCas9 can lead to more than 98% knockout efficiency for NHEJ-mediated repair after optimal target disruption of a single gene, 100% knockout efficiency for a single gene-guided version, and more than 80% knockout efficiency for multiple genes simultaneously in Y. lipolytica. Subsequently, this technology allowed for rapid one-step integration of large fragments (up to 9902-bp) of genes into chromosomes. Finally, YL-ABTG and YL-ABTG2Z were further constructed through CRISPR-iCas9 integration of key genes in a one-step process, resulting in a maximum β-carotene and zeaxanthin content of 3.12 mg/g and 2.33 mg/g dry cell weight, respectively. Therefore, CRISPR-iCas9 technology provides a feasible approach to genetic modification for efficient biosynthesis of biological compounds in Y. lipolytica. KEY POINTS: • iCas9 with D147Y and P411T mutants improved the CRISPR efficiency in Y. lipolytica. • CRISPR-iCas9 achieved efficient gene knockout and integration in Y. lipolytica. • CRISPR-iCas9 rapidly modified Y. lipolytica for carotenoid bioproduction.
Collapse
Affiliation(s)
- Qi Hang Chen
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian, Shaanxi, 710119, People's Republic of China
| | - Ya Dan Qian
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian, Shaanxi, 710119, People's Republic of China
| | - Yong Jie Niu
- Xian Healthful Biotechnology Co, Ltd. Hangtuo Road, Xian, Shaanxi, 710100, People's Republic of China
| | - Ching Yuan Hu
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian, Shaanxi, 710119, People's Republic of China
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Yong Hong Meng
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian, Shaanxi, 710119, People's Republic of China.
| |
Collapse
|
16
|
Griffith AL, Zheng F, McGee AV, Miller NW, Szegletes ZM, Reint G, Gademann F, Nwolah I, Hegde M, Liu YV, Goodale A, Doench JG. Optimization of Cas12a for multiplexed genome-scale transcriptional activation. CELL GENOMICS 2023; 3:100387. [PMID: 37719144 PMCID: PMC10504673 DOI: 10.1016/j.xgen.2023.100387] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/28/2023] [Accepted: 08/01/2023] [Indexed: 09/19/2023]
Abstract
Cas12a CRISPR technology, unlike Cas9, allows for facile multiplexing of guide RNAs from a single transcript, simplifying combinatorial perturbations. While Cas12a has been implemented for multiplexed knockout genetic screens, it has yet to be optimized for CRISPR activation (CRISPRa) screens in human cells. Here, we develop a new Cas12a-based transactivation domain (TAD) recruitment system using the ALFA nanobody and demonstrate simultaneous activation of up to four genes. We screen a genome-wide library to identify modulators of growth and MEK inhibition, and we compare these results with those obtained with open reading frame (ORF) overexpression and Cas9-based CRISPRa. We find that the activity of multiplexed arrays is largely predictable from the best-performing guide and provide criteria for selecting active guides. We anticipate that these results will greatly accelerate the exploration of gene function and combinatorial phenotypes at scale.
Collapse
Affiliation(s)
- Audrey L. Griffith
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, 75 Ames St., Cambridge, MA 02142, USA
| | - Fengyi Zheng
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, 75 Ames St., Cambridge, MA 02142, USA
| | - Abby V. McGee
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, 75 Ames St., Cambridge, MA 02142, USA
| | - Nathan W. Miller
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, 75 Ames St., Cambridge, MA 02142, USA
| | - Zsofia M. Szegletes
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, 75 Ames St., Cambridge, MA 02142, USA
| | - Ganna Reint
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, 75 Ames St., Cambridge, MA 02142, USA
| | - Fabian Gademann
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, 75 Ames St., Cambridge, MA 02142, USA
| | - Ifunanya Nwolah
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, 75 Ames St., Cambridge, MA 02142, USA
| | - Mudra Hegde
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, 75 Ames St., Cambridge, MA 02142, USA
| | - Yanjing V. Liu
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, 75 Ames St., Cambridge, MA 02142, USA
| | - Amy Goodale
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, 75 Ames St., Cambridge, MA 02142, USA
| | - John G. Doench
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, 75 Ames St., Cambridge, MA 02142, USA
| |
Collapse
|
17
|
Anvar NE, Lin C, Ma X, Wilson LL, Steger R, Sangree AK, Colic M, Wang SH, Doench JG, Hart T. Efficient gene knockout and genetic interactions: the IN4MER CRISPR/Cas12a multiplex knockout platform. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.03.522655. [PMID: 36712129 PMCID: PMC9881895 DOI: 10.1101/2023.01.03.522655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Genetic interactions mediate the emergence of phenotype from genotype, but initial technologies for combinatorial genetic perturbation in mammalian cells suffer from inefficiency and are challenging to scale. Recent focus on paralog synthetic lethality in cancer cells offers an opportunity to evaluate different approaches and improve on the state of the art. Here we report a meta-analysis of CRISPR genetic interactions screens, identifying a candidate set of background-independent paralog synthetic lethals, and find that the Cas12a platform provides superior sensitivity and assay replicability. We demonstrate that Cas12a can independently target up to four genes from a single guide array, and we build on this knowledge by constructing a genome-scale library that expresses arrays of four guides per clone, a platform we call 'in4mer'. Our genome-scale human library, with only 49k clones, is substantially smaller than a typical CRISPR/Cas9 monogenic library while also targeting more than four thousand paralog pairs, triples, and quads. Proof of concept screens in four cell lines demonstrate discrimination of core and context-dependent essential genes similar to that of state-of-the-art CRISPR/Cas9 libraries, as well as detection of synthetic lethal and masking/buffering genetic interactions between paralogs of various family sizes, a capability not offered by any extant library. Importantly, the in4mer platform offers a fivefold reduction in the number of clones required to assay genetic interactions, dramatically improving the cost and effort required for these studies.
Collapse
Affiliation(s)
- Nazanin Esmaeili Anvar
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center UTHealth, Houston, TX, USA
| | - Chenchu Lin
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xingdi Ma
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center UTHealth, Houston, TX, USA
| | - Lori L. Wilson
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ryan Steger
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Annabel K. Sangree
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Medina Colic
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sidney H. Wang
- Center for Human Genetics, The Brown foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - John G. Doench
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Traver Hart
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
18
|
Konda P, Garinet S, Van Allen EM, Viswanathan SR. Genome-guided discovery of cancer therapeutic targets. Cell Rep 2023; 42:112978. [PMID: 37572322 DOI: 10.1016/j.celrep.2023.112978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/22/2023] [Accepted: 07/28/2023] [Indexed: 08/14/2023] Open
Abstract
The success of precision oncology-which aims to match the right therapies to the right patients based on molecular status-is predicated on a robust pipeline of molecular targets against which therapies can be developed. Recent advances in genomics and functional genetics have enabled the unbiased discovery of novel molecular targets at scale. We summarize the promise and challenges in integrating genomic and functional genetic landscapes of cancer to establish the next generation of cancer targets.
Collapse
Affiliation(s)
- Prathyusha Konda
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Simon Garinet
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Srinivas R Viswanathan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
19
|
Cetin R, Wegner M, Luwisch L, Saud S, Achmedov T, Süsser S, Vera-Guapi A, Müller K, Matthess Y, Quandt E, Schaubeck S, Beisel CL, Kaulich M. Optimized metrics for orthogonal combinatorial CRISPR screens. Sci Rep 2023; 13:7405. [PMID: 37149686 PMCID: PMC10164157 DOI: 10.1038/s41598-023-34597-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 05/04/2023] [Indexed: 05/08/2023] Open
Abstract
CRISPR-based gene perturbation enables unbiased investigations of single and combinatorial genotype-to-phenotype associations. In light of efforts to map combinatorial gene dependencies at scale, choosing an efficient and robust CRISPR-associated (Cas) nuclease is of utmost importance. Even though SpCas9 and AsCas12a are widely used for single, combinatorial, and orthogonal screenings, side-by-side comparisons remain sparse. Here, we systematically compared combinatorial SpCas9, AsCas12a, and CHyMErA in hTERT-immortalized retinal pigment epithelial cells and extracted performance-critical parameters for combinatorial and orthogonal CRISPR screens. Our analyses identified SpCas9 to be superior to enhanced and optimized AsCas12a, with CHyMErA being largely inactive in the tested conditions. Since AsCas12a contains RNA processing activity, we used arrayed dual-gRNAs to improve AsCas12a and CHyMErA applications. While this negatively influenced the effect size range of combinatorial AsCas12a applications, it enhanced the performance of CHyMErA. This improved performance, however, was limited to AsCas12a dual-gRNAs, as SpCas9 gRNAs remained largely inactive. To avoid the use of hybrid gRNAs for orthogonal applications, we engineered the multiplex SpCas9-enAsCas12a approach (multiSPAS) that avoids RNA processing for efficient orthogonal gene editing.
Collapse
Affiliation(s)
- Ronay Cetin
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Martin Wegner
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Leah Luwisch
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Sarada Saud
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Tatjana Achmedov
- Helmholtz-Centre for Infection Research (HZI), Helmholtz Institute for RNA-Based Infection Research (HIRI), 97080, Würzburg, Germany
| | - Sebastian Süsser
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Antonella Vera-Guapi
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Konstantin Müller
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Yves Matthess
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Eva Quandt
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195, Barcelona, Spain
| | - Simone Schaubeck
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Chase L Beisel
- Helmholtz-Centre for Infection Research (HZI), Helmholtz Institute for RNA-Based Infection Research (HIRI), 97080, Würzburg, Germany
- Medical Faculty, University of Würzburg, 97080, Würzburg, Germany
| | - Manuel Kaulich
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
- Frankfurt Cancer Institute, 60596, Frankfurt am Main, Germany.
- Cardio-Pulmonary Institute, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
20
|
Petiwala S, Modi A, Anton T, Murphy E, Kadri S, Hu H, Lu C, Flister MJ, Verduzco D. Optimization of Genomewide CRISPR Screens Using AsCas12a and Multi-Guide Arrays. CRISPR J 2023; 6:75-82. [PMID: 36787117 DOI: 10.1089/crispr.2022.0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Genomewide loss-of-function (LOF) screening using clustered regularly interspaced short palindromic repeats (CRISPR) has facilitated the discovery of novel gene functions across diverse physiological and pathophysiological systems. A challenge with conventional genomewide CRISPR-Cas9 libraries is the unwieldy size (60,000-120,000 constructs), which is resource intensive and prohibitive in some experimental contexts. One solution to streamlining CRISPR screening is by multiplexing two or more guides per gene on a single construct, which enables functional redundancy to compensate for suboptimal gene knockout by individual guides. In this regard, AsCas12a (Cpf1) and its derivatives, for example, enhanced AsCas12a (enAsCas12a), have enabled multiplexed guide arrays to be specifically and efficiently processed for genome editing. Prior studies have established that multiplexed CRISPR-Cas12a libraries perform comparably to the larger equivalent CRISPR-Cas9 libraries, yet the most efficient CRISPR-Cas12a library design remains unresolved. In this study, we demonstrate that CRISPR-Cas12a genomewide LOF screening performed optimally with three guides arrayed per gene construct and could be adapted to robotic cell culture without noticeable differences in screen performance. Thus, the conclusions from this study provide novel insight to streamlining genomewide LOF screening using CRISPR-Cas12a and robotic cell culture.
Collapse
Affiliation(s)
| | - Apexa Modi
- Abbvie Inc., Genomics Research Center, Illinois, USA
| | - Tifani Anton
- Abbvie Inc., Genomics Research Center, Illinois, USA
| | - Erin Murphy
- Abbvie Inc., Genomics Research Center, Illinois, USA
| | - Sabah Kadri
- Abbvie Inc., Genomics Research Center, Illinois, USA
| | - Hengcheng Hu
- Abbvie Inc., Genomics Research Center, Illinois, USA
| | - Charles Lu
- Abbvie Inc., Genomics Research Center, Illinois, USA
| | | | | |
Collapse
|