1
|
Yang Q, Chen D, Liu X, Li W, Zheng H, Cai X, Li R. Identification of nanoparticle infiltration in human breast milk: Chemical profiles and trajectory pathways. Proc Natl Acad Sci U S A 2025; 122:e2500552122. [PMID: 40354532 DOI: 10.1073/pnas.2500552122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/03/2025] [Indexed: 05/14/2025] Open
Abstract
Breast milk is crucial for infant health, offering essential nutrients and immune protection. However, despite increasing exposure risks from nanoparticles (NPs), their potential infiltration into human breast milk remains poorly understood. This study provides a comprehensive chemical profile of NPs in human breast milk, analyzing their elemental composition, surface charge, hydrodynamic size, and crystallinity. NPs were detected in 42 out of 53 milk samples, with concentrations reaching up to 1.12 × 1011 particles/mL. These particles comprised nine elements, with O, Si, Fe, Cu, and Al being the most frequently detected across all samples. We establish a mechanistic axis for NP infiltration, involving penetration of the intestine/air-blood barriers, circulation in blood vessels, crossing the blood-milk barrier via transcytosis or immune cell-mediated transfer, and eventual accumulation in milk. Structure-activity relationship analysis reveals that smaller, neutral-charged NPs exhibit stronger infiltration capacity, offering potential for regulating NP behavior at biological barriers through engineering design. This study provides the chemical profiles of NPs in human breast milk and uncovers their infiltration pathways.
Collapse
Affiliation(s)
- Qing Yang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Di Chen
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xi Liu
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Wenjie Li
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Huizhen Zheng
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaoming Cai
- Center for Genetic Epidemiology and Genomics, School of Public Health, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ruibin Li
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, Vysoká škola báňská-Technical University of Ostrava, Ostrava 70800, Czech Republic
| |
Collapse
|
2
|
Gu Y, Feuerstein ML, Warth B. High-Throughput Solid Phase Extraction for Targeted and Nontargeted Exposomics. Anal Chem 2025; 97:6075-6082. [PMID: 40080444 PMCID: PMC11948174 DOI: 10.1021/acs.analchem.4c06177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/31/2025] [Accepted: 02/28/2025] [Indexed: 03/15/2025]
Abstract
Characterizing the chemical exposome relies on advanced instrumentation including tandem mass spectrometry coupled to liquid chromatography (LC-MS/MS), and nontargeted analysis (NTA) using high-resolution MS. However, proper sample pretreatment, balancing broad analyte coverage, method robustness, and throughput remain a major bottleneck in exposomics. Here, we developed a robust and scalable solid phase extraction (SPE) protocol for human urine and plasma and optimized it for a panel of 94 highly diverse environmental and food-related contaminants (LogP -0.7 to 6.8). Extraction recoveries (RE) and signal suppression and enhancement (SSE) were determined using targeted LC-MS/MS. Acceptable REs (60-140%) were achieved for >70% of analytes, and acceptable SSE values (60-140%) for 86% and 90% in urine and plasma, respectively. Subsequently, the method was transferred to 96-well plate format, significantly improving throughput to meet the capacity requirements needed for exposome-wide association studies (ExWAS). The established workflow is approximately 10× faster than routinely used metabolomics-based protein precipitation approaches when comparing the estimated total analysis time for 1000 samples. The method's applicability for NTA and suspect screening was tested and compared to a generic protein precipitation protocol using NIST standard reference materials for urine (SRM 3672) and plasma (SRM 1950). Favorable performance was shown for the protein precipitation workflow while the SPE protocol demonstrated promising results. The developed workflow is thus not only superior for future high-throughput targeted exposomics but also offers an option for NTA applications. The presented well-balanced approach is scalable and also applicable to research in the fields of pharmacology, food safety, and systems toxicology.
Collapse
Affiliation(s)
- Yunyun Gu
- Faculty
of Chemistry, Department of Food Chemistry and Toxicology, University of Vienna, 1090 Vienna, Austria
- University
of Vienna, Vienna Doctoral School of Chemistry, Währinger Straße 42, 1090 Vienna, Austria
| | - Max Lennart Feuerstein
- Faculty
of Chemistry, Department of Food Chemistry and Toxicology, University of Vienna, 1090 Vienna, Austria
- Exposome
Austria, Research Infrastructure and National EIRENE Node, 1090 Vienna, Austria
| | - Benedikt Warth
- Faculty
of Chemistry, Department of Food Chemistry and Toxicology, University of Vienna, 1090 Vienna, Austria
- University
of Vienna, Vienna Doctoral School of Chemistry, Währinger Straße 42, 1090 Vienna, Austria
- Exposome
Austria, Research Infrastructure and National EIRENE Node, 1090 Vienna, Austria
| |
Collapse
|
3
|
Hernandes VV, Warth B. Modular, Scalable, and Customizable LC-HRMS for Exposomics. Methods Mol Biol 2025; 2855:41-66. [PMID: 39354300 DOI: 10.1007/978-1-0716-4116-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
In this chapter, we describe a multi-purpose, reversed-phase liquid chromatography-high-resolution mass spectrometry (LC-HRMS) workflow for acquiring high-quality, non-targeted exposomics data utilizing data-dependent acquisition (DDA) combined with the use of toxicant inclusion lists for semi-targeted analysis. In addition, we describe expected retention times for >160 highly diverse xenobiotics in human plasma and serum samples. The method described is intended to serve as a generic LC-HRMS exposomics workflow for research and educational purposes. Moreover, it may be employed as a primer, allowing for further adaptations according to specialized research needs, e.g., by including reference and/or internal standards, by expanding to data-independent acquisition (DIA), or by modifying the list of compounds prioritized in fragmentation experiments (MS2).
Collapse
Affiliation(s)
- Vinicius Verri Hernandes
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Exposome Austria, Research Infrastructure and National EIRENE Node, Vienna, Austria
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria.
- Exposome Austria, Research Infrastructure and National EIRENE Node, Vienna, Austria.
| |
Collapse
|
4
|
Vo DK, Trinh KTL. Emerging Biomarkers in Metabolomics: Advancements in Precision Health and Disease Diagnosis. Int J Mol Sci 2024; 25:13190. [PMID: 39684900 DOI: 10.3390/ijms252313190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/01/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Metabolomics has come to the fore as an efficient tool in the search for biomarkers that are critical for precision health approaches and improved diagnostics. This review will outline recent advances in biomarker discovery based on metabolomics, focusing on metabolomics biomarkers reported in cancer, neurodegenerative disorders, cardiovascular diseases, and metabolic health. In cancer, metabolomics provides evidence for unique oncometabolites that are important for early disease detection and monitoring of treatment responses. Metabolite profiling for conditions such as neurodegenerative and mental health disorders can offer early diagnosis and mechanisms into the disease especially in Alzheimer's and Parkinson's diseases. In addition to these, lipid biomarkers and other metabolites relating to cardiovascular and metabolic disorders are promising for patient stratification and personalized treatment. The gut microbiome and environmental exposure also feature among the influential factors in biomarker discovery because they sculpt individual metabolic profiles, impacting overall health. Further, we discuss technological advances in metabolomics, current clinical applications, and the challenges faced by metabolomics biomarker validation toward precision medicine. Finally, this review discusses future opportunities regarding the integration of metabolomics into routine healthcare to enable preventive and personalized approaches.
Collapse
Affiliation(s)
- Dang-Khoa Vo
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Kieu The Loan Trinh
- BioNano Applications Research Center, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
5
|
Krausová M, Ayeni KI, Gu Y, Borutzki Y, O'Bryan J, Perley L, Silasi M, Wisgrill L, Johnson CH, Warth B. Longitudinal biomonitoring of mycotoxin exposure during pregnancy in the Yale Pregnancy Outcome Prediction Study. ENVIRONMENT INTERNATIONAL 2024; 194:109081. [PMID: 39615253 DOI: 10.1016/j.envint.2024.109081] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/06/2024] [Accepted: 10/15/2024] [Indexed: 12/22/2024]
Abstract
Mycotoxins are fungal toxins that may trigger adverse health effects in pregnant women and their unborn children. Yet, data is scarce on the dynamic exposure patterns of mycotoxins in pregnant women, especially in the United States. This study assessed mycotoxin exposure profiles in women (n = 50) from the Yale Pregnancy Outcome Prediction Study (YPOPS) cohort at four distinct time points. Multi-analyte human biomonitoring assays based on liquid chromatography tandem mass spectrometry (LC-MS/MS), were developed for human serum and plasma matrices. The serum method was applied, together with an established urine method, to quantify mycotoxin levels in longitudinally collected matched serum (n = 200) and spot urine (n = 200) samples throughout pregnancy. The serum samples were mostly contaminated by the potential carcinogen ochratoxin A (detection rate: 46 %; median: 0.09 ng/mL), the hepato- and nephrotoxic citrinin (detection rate: 32 %; median: 0.02 ng/mL) and two enniatins (EnnB; detection rate: 97 %; median: 0.01 ng/mL and EnnB1; detection rate: 12 %; median: 0.003 ng/mL) which may act as immunotoxins. The most prevalent mycotoxins quantified in urine included deoxynivalenol (detection rate: 99 %; median: 23 ng/mL), alternariol monomethyl ether (detection rate: 69 %; median: 0.04 ng/mL), and zearalenone (detection rate: 63 %; median: 0.16 ng/mL). Seven other biomarkers of exposure including the highly estrogenic α-zearalenol and genotoxic Alternaria toxins, were also determined. Carcinogenic aflatoxins were not detected in any of the samples. Exposure assessment was based on the urinary data and performed by calculating probable daily intakes and comparing the human biomonitoring guidance value (HBM-GV) for deoxynivalenol. The results showed that the individuals exceeded the tolerable daily intake for deoxynivalenol and zearalenone on average at 28 % and 2 % over the different time points. Using the HBM-GV approach, the average exceedances for deoxynivalenol increased to 48 % indicating high exposure. For all the samples in which ochratoxin A was quantified, the estimated margin of exposure for neoplastic effects was below 10,000, indicating possible health concerns. Overall, this study showed that pregnant women were exposed to several regulated and emerging mycotoxins and that exposome-scale assessment should be a future priority in susceptible populations to better characterize xenobiotic exposure.
Collapse
Affiliation(s)
- Magdaléna Krausová
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Kolawole I Ayeni
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Yunyun Gu
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Yasmin Borutzki
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Jane O'Bryan
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Lauren Perley
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Michelle Silasi
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA; Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Mercy Hospital St. Louis, St. Louis, MO 63141, USA
| | - Lukas Wisgrill
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Comprehensive Center for Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria; Exposome Austria, Research Infrastructure and National EIRENE Node, Austria
| | - Caroline H Johnson
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06510, United States of America
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria; Exposome Austria, Research Infrastructure and National EIRENE Node, Austria.
| |
Collapse
|
6
|
Marchiandi J, Dagnino S, Zander-Fox D, Green MP, Clarke BO. Characterization of Chemical Exposome in A Paired Human Preconception Pilot Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20352-20365. [PMID: 39508786 DOI: 10.1021/acs.est.4c04356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Parental preconception exposure to synthetic chemicals may have critical influences on fertility and reproduction. Here, we present a robust LC-MS/MS method covering up to 95 diverse xenobiotics in human urine, serum, seminal and follicular fluids to support exposome-wide assessment in reproductive health outcomes. Extraction recoveries of validated analytes ranged from 62% to 137% and limits of quantification from 0.01 to 6.0 ng/mL in all biofluids. We applied the validated method to a preconception cohort of Australian couples (n = 30) receiving fertility treatment. In total, 36 and 38 xenobiotics were detected across the paired biofluids of males and females, respectively, including PFAS, parabens, organic UV-filters, plastic additives, antimicrobials, and other industrial chemicals. Results showed 39% of analytes in males and 37% in females were equally detected in paired serum, urine, and reproductive fluids. The first detection of the sunscreen ingredient avobenzone and the industrial chemical 4-nitrophenol in follicular and seminal fluids suggests they can cross both blood-follicle/testis barriers, indicating potential risks for fertility. Further, the blood-follicle transfer of perfluorobutanoic acid, PFOA, PFHxS, PFOS, and oxybenzone corroborate that serum concentrations can be reliable proxies for assessing exposure within the ovarian microenvironment. In conclusion, we observed significant preconception exposure to multiple endocrine disruptors in couples and identified potential xenobiotics relevant to male and female fertility impairments.
Collapse
Affiliation(s)
- Jaye Marchiandi
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria 3010, Australia
| | - Sonia Dagnino
- Transporters in Imaging and Radiotherapy in Oncology (TIRO), School of Medicine, Direction de la Recherche Fondamentale (DRF), Institut des sciences du vivant Fréderic Joliot, Commissariat à l'Energie Atomique et aux énergies alternatives (CEA), Université Côte d'Azur (UCA), 28 Avenue de Valombrose, 06107 Nice, France
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, W12 7TA London, U.K
| | - Deirdre Zander-Fox
- Monash IVF Group Pty, Cremorne, Melbourne, Victoria 3121, Australia
- Department of Obstetrics & Gynaecology, Monash University, Clayton, Melbourne, Victoria 3168, Australia
| | - Mark P Green
- Monash IVF Group Pty, Cremorne, Melbourne, Victoria 3121, Australia
- School of BioSciences, University of Melbourne, Victoria 3010, Australia
| | - Bradley O Clarke
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
7
|
Xie H, Sdougkou K, Bonnefille B, Papazian S, Bergdahl IA, Rantakokko P, Martin JW. Chemical Exposomics in Human Plasma by Lipid Removal and Large-Volume Injection Gas Chromatography-High-Resolution Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17592-17605. [PMID: 39376097 PMCID: PMC11465644 DOI: 10.1021/acs.est.4c05942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 10/09/2024]
Abstract
For comprehensive chemical exposomics in blood, analytical workflows are evolving through advances in sample preparation and instrumental methods. We hypothesized that gas chromatography-high-resolution mass spectrometry (GC-HRMS) workflows could be enhanced by minimizing lipid coextractives, thereby enabling larger injection volumes and lower matrix interference for improved target sensitivity and nontarget molecular discovery. A simple protocol was developed for small plasma volumes (100-200 μL) by using isohexane (H) to extract supernatants of acetonitrile-plasma (A-P). The HA-P method was quantitative for a wide range of hydrophobic multiclass target analytes (i.e., log Kow > 3.0), and the extracts were free of major lipids, thereby enabling robust large-volume injections (LVIs; 25 μL) in long sequences (60-70 h, 70-80 injections) to a GC-Orbitrap HRMS. Without lipid removal, LVI was counterproductive because method sensitivity suffered from the abundant matrix signal, resulting in low ion injection times to the Orbitrap. The median method quantification limit was 0.09 ng/mL (range 0.005-4.83 ng/mL), and good accuracy was shown for a certified reference serum. Applying the method to plasma from a Swedish cohort (n = 32; 100 μL), 51 of 103 target analytes were detected. Simultaneous nontarget analysis resulted in 112 structural annotations (12.8% annotation rate), and Level 1 identification was achieved for 7 of 8 substances in follow-up confirmations. The HA-P method is potentially scalable for application in cohort studies and is also compatible with many liquid-chromatography-based exposomics workflows.
Collapse
Affiliation(s)
- Hongyu Xie
- Department
of Environmental Science, Stockholm University, 106 91 Stockholm, Sweden
| | - Kalliroi Sdougkou
- Department
of Environmental Science, Stockholm University, 106 91 Stockholm, Sweden
| | - Bénilde Bonnefille
- Department
of Environmental Science, Stockholm University, 106 91 Stockholm, Sweden
- National
Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, 171 65 Solna, Sweden
| | - Stefano Papazian
- Department
of Environmental Science, Stockholm University, 106 91 Stockholm, Sweden
- National
Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, 171 65 Solna, Sweden
| | - Ingvar A. Bergdahl
- Department
of Public Health and Clinical Medicine, Section for Sustainable Health, Umeå University, 901 87 Umeå, Sweden
| | - Panu Rantakokko
- Department
of Public Health, Lifestyles and Living Environments Unit, National Institute for Health and Welfare, Neulaniementie 4, 702 10 Kuopio, Finland
| | - Jonathan W. Martin
- Department
of Environmental Science, Stockholm University, 106 91 Stockholm, Sweden
- National
Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, 171 65 Solna, Sweden
| |
Collapse
|
8
|
Peach JT, Puntscher H, Höger H, Marko D, Warth B. Rats exposed to Alternaria toxins in vivo exhibit altered liver activity highlighted by disruptions in riboflavin and acylcarnitine metabolism. Arch Toxicol 2024; 98:3477-3489. [PMID: 38951189 PMCID: PMC11402861 DOI: 10.1007/s00204-024-03810-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024]
Abstract
Natural toxins produced by Alternaria fungi include the mycotoxins alternariol, tenuazonic acid and altertoxins I and II. Several of these toxins have shown high toxicity even at low levels including genotoxic, mutagenic, and estrogenic effects. However, the metabolic effects of toxin exposure from Alternaria are understudied, especially in the liver as a key target. To gain insight into the impact of Alternaria toxin exposure on the liver metabolome, rats (n = 21) were exposed to either (1) a complex culture extract with defined toxin profiles from Alternaria alternata (50 mg/kg body weight), (2) the isolated, highly genotoxic altertoxin-II (ATX-II) (0.7 mg/kg of body weight) or (3) a solvent control. The complex mixture contained a spectrum of Alternaria toxins including a controlled dose of ATX-II, matching the concentration of the isolated ATX-II. Liver samples were collected after 24 h and analyzed via liquid chromatography-high-resolution mass spectrometry (LC-HRMS). Authentic reference standards (> 100) were used to identify endogenous metabolites and exogenous compounds from the administered exposures in tandem with SWATH-acquired MS/MS data which was used for non-targeted analysis/screening. Screening for metabolites produced by Alternaria revealed several compounds solely isolated in the liver of rats exposed to the complex culture, confirming results from a previously performed targeted biomonitoring study. This included the altersetin and altercrasin A that were tentatively identified. An untargeted metabolomics analysis found upregulation of acylcarnitines in rats receiving the complex Alternaria extract as well as downregulation of riboflavin in rats exposed to both ATX-II and the complex mixture. Taken together, this work provides a mechanistic view of Alternari toxin exposure and new suspect screening insights into hardly characterized Alternaria toxins.
Collapse
Affiliation(s)
- Jesse T Peach
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Hannes Puntscher
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Harald Höger
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria.
- Exposome Austria, Research Infrastructure and National EIRENE Node, Vienna, Austria.
| |
Collapse
|
9
|
Chang CW, Hsu JY, Hsiao PZ, Sung PS, Liao PC. Optimized analytical strategy based on high-resolution mass spectrometry for unveiling associations between long-term chemical exposome in hair and Alzheimer's disease. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116955. [PMID: 39213755 DOI: 10.1016/j.ecoenv.2024.116955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/24/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Exposure to environmental pollutants or contaminants is correlated with detrimental effects on human health, such as neurodegenerative diseases. Adopting hair as a biological matrix for biomonitoring is a significant innovation, since it can reflect the long-term chemical exposome, spanning months to years. However, only a limited number of studies have developed analytical strategies for profiling the chemical exposome in this heterogeneous biological matrix. In this study, a systematic investigation of the chemical extraction procedure from human hair was conducted, using a design of experiments and a high-resolution mass spectrometry (HRMS)-based suspect screening approach. The PlackettBurman (PB) design was applied to identify the significant variables influencing the number of detected features. Then, a central composite design was implemented to optimize the levels of each identified significant variable. Under the optimal conditions-15-minute pulverization, 25 mg of hair weight, 40 min of sonication, and a sonication temperature of 35 °C-approximately 32,000 and 15,000 aligned features were detected in positive and negative ion modes, respectively. This optimized analytical procedure was applied to hair samples from patients with Alzheimer's disease (AD) and individuals with normal cognitive function. Overall, 307 chemicals were identified using the suspect screening approach, with 37 chemicals differentiating patients with AD from controls. This study not only optimized an analytical procedure for characterizing the long-term chemical exposome in human hair but also explored the associations between AD and environmental factors.
Collapse
Affiliation(s)
- Chih-Wei Chang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Jen-Yi Hsu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Ping-Zu Hsiao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Pi-Shan Sung
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Pao-Chi Liao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
| |
Collapse
|
10
|
Sdougkou K, Papazian S, Bonnefille B, Xie H, Edfors F, Fagerberg L, Uhlén M, Bergström G, Martin LJ, Martin JW. Longitudinal Exposomics in a Multiomic Wellness Cohort Reveals Distinctive and Dynamic Environmental Chemical Mixtures in Blood. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16302-16315. [PMID: 39236221 PMCID: PMC11411717 DOI: 10.1021/acs.est.4c05235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Chemical exposomes can now be comprehensively measured in human blood, but knowledge of their variability and longitudinal stability is required for robust application in cohort studies. Here, we applied high-resolution chemical exposomics to plasma of 46 adults, each sampled 6 times over 2 years in a multiomic cohort, resulting in 276 individual exposomes. In addition to quantitative analysis of 83 priority target analytes, we discovered and semiquantified substances that have rarely or never been reported in humans, including personal care products, pesticide transformation products, and polymer additives. Hierarchical cluster analysis for 519 confidently annotated substances revealed unique and distinctive coexposures, including clustered pesticides, poly(ethylene glycols), chlorinated phenols, or natural substances from tea and coffee; interactive heatmaps were publicly deposited to support open exploration of the complex (meta)data. Intraclass correlation coefficients (ICC) for all annotated substances demonstrated the relatively low stability of the exposome compared to that of proteome, microbiome, and endogenous small molecules. Implications are that the chemical exposome must be measured more frequently than other omics in longitudinal studies and four longitudinal exposure types are defined that can be considered in study design. In this small cohort, mixed-effect models nevertheless revealed significant associations between testosterone and perfluoroalkyl substances, demonstrating great potential for longitudinal exposomics in precision health research.
Collapse
Affiliation(s)
- Kalliroi Sdougkou
- Department of Environmental Science, Stockholm University, Stockholm 106 91, Sweden
| | - Stefano Papazian
- Department of Environmental Science, Stockholm University, Stockholm 106 91, Sweden
- National Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, Solna 171 65, Sweden
| | - Bénilde Bonnefille
- Department of Environmental Science, Stockholm University, Stockholm 106 91, Sweden
- National Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, Solna 171 65, Sweden
| | - Hongyu Xie
- Department of Environmental Science, Stockholm University, Stockholm 106 91, Sweden
| | - Fredrik Edfors
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm 100 44, Sweden
| | - Linn Fagerberg
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm 100 44, Sweden
| | - Mathias Uhlén
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm 100 44, Sweden
| | - Göran Bergström
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
- Department of Clinical Physiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg 413 45, Sweden
| | | | - Jonathan W Martin
- Department of Environmental Science, Stockholm University, Stockholm 106 91, Sweden
- National Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, Solna 171 65, Sweden
| |
Collapse
|
11
|
Pavicich MA, Roose L, Meerpoel C, Raes K, De Saeger S. Unraveling the fate of mycotoxins during the production of legume protein and other derived products. NPJ Sci Food 2024; 8:59. [PMID: 39231995 PMCID: PMC11375180 DOI: 10.1038/s41538-024-00303-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
Consumers are increasingly looking for healthier and sustainable diets. Plant-based diets rich in legumes satisfy this demand. Legumes contain protein, dietary fibers and starch. Technological processes can separate these fractions, which can be used as supplements, or as ingredients. Nonetheless, legumes are susceptible to fungal infection, causing a potential health concern, since some fungi can produce mycotoxins: toxic secondary metabolites. The aim of this work was to analyze the fate of mycotoxins during different stages of the production process of legume derived products from the raw materials to final products. An extraction followed by liquid chromatography-tandem mass spectrometry was used for the analysis, revealing the presence of enniatin B (ENN B), alternariol monomethyl ether (AME), deoxynivalenol, T2-toxin, nivalenol, fumonisin B1 and sterigmatocystin in raw materials, intermediate products and side streams. The alkaline solubilization steps, were effective in reducing ENN B; however, AME was found in one of the final products.
Collapse
Affiliation(s)
- María Agustina Pavicich
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, B-9000, Belgium.
| | - Lief Roose
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, B-9000, Belgium
| | - Celine Meerpoel
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, B-9000, Belgium
| | - Katleen Raes
- Research Unit VEG-i-TEC, Faculty of Bioscience Engineering, Ghent University, Kortrijk, B-8500, Belgium
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, B-9000, Belgium
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Gauteng, South Africa
| |
Collapse
|
12
|
Verri Hernandes V, Warth B. Bridging Targeted (Zeno MRM-HR) and Untargeted (SWATH) LC-HRMS in a Single Run for Sensitive Exposomics. Anal Chem 2024; 96:12710-12717. [PMID: 39056508 PMCID: PMC11307248 DOI: 10.1021/acs.analchem.4c01630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/28/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
Traditionally, chemical exposure has been assessed by low-resolution mass spectrometry via targeted approaches due to the typically extremely low concentration of such compounds in biological samples. Nevertheless, untargeted approaches are now becoming a promising tool for a broader investigation of the exposome, covering additional compounds, their biotransformation products, and possible metabolic alterations (metabolomics). However, despite broad compound coverage, untargeted metabolomics still underperforms in ultratrace biomonitoring analysis. To overcome these analytical limitations, we present the development of the first combined targeted/untargeted LC-MS method, merging MRM-HR and SWATH experiments in one analytical run, making use of Zeno technology for improved sensitivity. Multiple reaction monitoring transitions were optimized for 135 highly diverse toxicants including mycotoxins, plasticizers, PFAS, personal care products ingredients, and industrial side products as well as potentially beneficial xenobiotics such as phytohormones. As a proof of concept, standard reference materials of human plasma (SRM 1950) and serum (SRM 1958) were analyzed with both Zeno MRM-HR + SWATH and SWATH-only methodologies. Results demonstrated a significant increase in sensitivity represented by the detection of lower concentration levels in spiked SRM materials (mean value: 2.2 and 3 times lower concentrations for SRMs 1950 and 1958, respectively). Overall, the detection frequency was increased by 68% (19 to 32 positive detections) in the MRM-HR + SWATH mode compared to the SWATH-only. This work presents a promising avenue for addressing the outstanding key challenge in the small-molecule omics field: finding a balance between high sensitivity and broad chemical coverage. It was demonstrated for exposomic applications but might be transferred to lipidomics and metabolomics workflows.
Collapse
Affiliation(s)
- Vinicius Verri Hernandes
- Department
of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Exposome
Austria, Research Infrastructure and National EIRENE Node, 1090 Vienna, Austria
| | - Benedikt Warth
- Department
of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Exposome
Austria, Research Infrastructure and National EIRENE Node, 1090 Vienna, Austria
| |
Collapse
|
13
|
Hossain MZ, Feuerstein ML, Gu Y, Warth B. Scaling up a targeted exposome LC-MS/MS biomonitoring method by incorporating veterinary drugs and pesticides. Anal Bioanal Chem 2024; 416:4369-4382. [PMID: 38937289 PMCID: PMC11271401 DOI: 10.1007/s00216-024-05374-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024]
Abstract
Humans are exposed to a cocktail of food-related and environmental contaminants, potentially contributing to the etiology of chronic diseases. Better characterizing the "exposome" is a challenging task and requires broad human biomonitoring (HBM). Veterinary drugs (VDs)/antibiotics, widely used and regulated in food and animal production, however, are typically not yet included in exposomics workflows. Therefore, in this work, a previously established multianalyte liquid chromatography-tandem mass spectrometry (LC-MS/MS) method covering >80 diverse xenobiotics was expanded by >40 VDs/antibiotics and pesticides. It was investigated if the generic workflow allowed for the successful integration of a high number of new analytes in a proof-of-principle study. The expanded method was successfully in-house validated and specificity, matrix effects, linearity, intra- and inter-day precision, accuracy, limits of quantification, and detection were evaluated. The optimized method demonstrated satisfactory recovery (81-120%) for most of the added analytes with acceptable RSDs (<20%) at three spiking levels. The majority of VDs/antibiotics and pesticides (69%) showed matrix effects within a range of 50-140%. Moreover, sensitivity was excellent with median LODs and LOQs of 0.10 ng/mL and 0.31 ng/mL, respectively. In total, the expanded method can be used to detect and quantify more than 120 highly diverse analytes in a single analytical run. To the best of the authors' knowledge, this work represents the first targeted biomonitoring method integrating VDs with various other classes of pollutants including plasticizers, PFAS, bisphenols, mycotoxins, and personal care products. It demonstrates the potential to expand targeted multianalyte methods towards additional groups of potentially toxic chemicals.
Collapse
Affiliation(s)
- Md Zakir Hossain
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090, Vienna, Austria
| | - Max L Feuerstein
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090, Vienna, Austria
- Exposome Austria, Research Infrastructure and National EIRENE Node, Vienna, Austria
| | - Yunyun Gu
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090, Vienna, Austria
- Vienna Doctoral School of Chemistry, University of Vienna, Währinger Straße 42, 1090, Vienna, Austria
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090, Vienna, Austria.
- Exposome Austria, Research Infrastructure and National EIRENE Node, Vienna, Austria.
- Vienna Doctoral School of Chemistry, University of Vienna, Währinger Straße 42, 1090, Vienna, Austria.
| |
Collapse
|
14
|
Oesterle I, Ayeni KI, Ezekiel CN, Berry D, Rompel A, Warth B. Insights into the early-life chemical exposome of Nigerian infants and potential correlations with the developing gut microbiome. ENVIRONMENT INTERNATIONAL 2024; 188:108766. [PMID: 38801800 DOI: 10.1016/j.envint.2024.108766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
Early-life exposure to natural and synthetic chemicals can impact acute and chronic health conditions. Here, a suspect screening workflow anchored on high-resolution mass spectrometry was applied to elucidate xenobiotics in breast milk and matching stool samples collected from Nigerian mother-infant pairs (n = 11) at three time points. Potential correlations between xenobiotic exposure and the developing gut microbiome, as determined by 16S rRNA gene amplicon sequencing, were subsequently explored. Overall, 12,192 and 16,461 features were acquired in the breast milk and stool samples, respectively. Following quality control and suspect screening, 562 and 864 features remained, respectively, with 149 of these features present in both matrices. Taking advantage of 242 authentic reference standards measured for confirmatory purposes of food bio-actives and toxicants, 34 features in breast milk and 68 features in stool were identified and semi-quantified. Moreover, 51 and 78 features were annotated with spectral library matching, as well as 416 and 652 by in silico fragmentation tools in breast milk and stool, respectively. The analytical workflow proved its versatility to simultaneously determine a diverse panel of chemical classes including mycotoxins, endocrine-disrupting chemicals (EDCs), antibiotics, plasticizers, perfluorinated alkylated substances (PFAS), and pesticides, although it was originally optimized for polyphenols. Spearman rank correlation of the identified features revealed significant correlations between chemicals of the same classification such as polyphenols. One-way ANOVA and differential abundance analysis of the data obtained from stool samples revealed that molecules of plant-based origin elevated as complementary foods were introduced to the infants' diets. Annotated compounds in the stool, such as tricetin, positively correlated with the genus Blautia. Moreover, vulgaxanthin negatively correlated with Escherichia-Shigella. Despite the limited sample size, this exploratory study provides high-quality exposure data of matched biospecimens obtained from mother-infant pairs in sub-Saharan Africa and shows potential correlations between the chemical exposome and the gut microbiome.
Collapse
Affiliation(s)
- Ian Oesterle
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, 1090 Vienna, Austria; Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, 1090 Wien, Austria(1); University of Vienna, Vienna Doctoral School of Chemistry (DoSChem), 1090 Vienna, Austria
| | - Kolawole I Ayeni
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, 1090 Vienna, Austria; Department of Microbiology, Babcock University, Ilishan-Remo, Ogun State, Nigeria
| | - Chibundu N Ezekiel
- Department of Microbiology, Babcock University, Ilishan-Remo, Ogun State, Nigeria; University of Natural Resources and Life Sciences Vienna (BOKU), Department of Agrobiotechnology (IFA-Tulln), Institute for Bioanalytics and Agro-Metabolomics, Konrad-Lorenz Str. 20, 3430 Tulln, Austria
| | - David Berry
- University of Vienna, Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, 1030 Vienna, Austria
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, 1090 Wien, Austria(1); University of Vienna, Vienna Doctoral School of Chemistry (DoSChem), 1090 Vienna, Austria
| | - Benedikt Warth
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, 1090 Vienna, Austria; University of Vienna, Vienna Doctoral School of Chemistry (DoSChem), 1090 Vienna, Austria; Exposome Austria, Research Infrastructure and National EIRENE Node, Austria.
| |
Collapse
|
15
|
Foreman AL, Warth B, Hessel EVS, Price EJ, Schymanski EL, Cantelli G, Parkinson H, Hecht H, Klánová J, Vlaanderen J, Hilscherova K, Vrijheid M, Vineis P, Araujo R, Barouki R, Vermeulen R, Lanone S, Brunak S, Sebert S, Karjalainen T. Adopting Mechanistic Molecular Biology Approaches in Exposome Research for Causal Understanding. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7256-7269. [PMID: 38641325 PMCID: PMC11064223 DOI: 10.1021/acs.est.3c07961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/21/2024]
Abstract
Through investigating the combined impact of the environmental exposures experienced by an individual throughout their lifetime, exposome research provides opportunities to understand and mitigate negative health outcomes. While current exposome research is driven by epidemiological studies that identify associations between exposures and effects, new frameworks integrating more substantial population-level metadata, including electronic health and administrative records, will shed further light on characterizing environmental exposure risks. Molecular biology offers methods and concepts to study the biological and health impacts of exposomes in experimental and computational systems. Of particular importance is the growing use of omics readouts in epidemiological and clinical studies. This paper calls for the adoption of mechanistic molecular biology approaches in exposome research as an essential step in understanding the genotype and exposure interactions underlying human phenotypes. A series of recommendations are presented to make the necessary and appropriate steps to move from exposure association to causation, with a huge potential to inform precision medicine and population health. This includes establishing hypothesis-driven laboratory testing within the exposome field, supported by appropriate methods to read across from model systems research to human.
Collapse
Affiliation(s)
- Amy L. Foreman
- European
Molecular Biology Laboratory & European Bioinformatics Institute
(EMBL-EBI), Wellcome Trust Genome Campus, Hinxton CB10 1SD, U.K.
| | - Benedikt Warth
- Department
of Food Chemistry and Toxicology, University
of Vienna, 1090 Vienna, Austria
| | - Ellen V. S. Hessel
- National
Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Elliott J. Price
- RECETOX,
Faculty of Science, Masaryk University, Kotlarska 2, Brno 60200, Czech Republic
| | - Emma L. Schymanski
- Luxembourg
Centre for Systems Biomedicine, University
of Luxembourg, 6 avenue
du Swing, L-4367 Belvaux, Luxembourg
| | - Gaia Cantelli
- European
Molecular Biology Laboratory & European Bioinformatics Institute
(EMBL-EBI), Wellcome Trust Genome Campus, Hinxton CB10 1SD, U.K.
| | - Helen Parkinson
- European
Molecular Biology Laboratory & European Bioinformatics Institute
(EMBL-EBI), Wellcome Trust Genome Campus, Hinxton CB10 1SD, U.K.
| | - Helge Hecht
- RECETOX,
Faculty of Science, Masaryk University, Kotlarska 2, Brno 60200, Czech Republic
| | - Jana Klánová
- RECETOX,
Faculty of Science, Masaryk University, Kotlarska 2, Brno 60200, Czech Republic
| | - Jelle Vlaanderen
- Institute
for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Heidelberglaan 8 3584 CS Utrecht, The Netherlands
| | - Klara Hilscherova
- RECETOX,
Faculty of Science, Masaryk University, Kotlarska 2, Brno 60200, Czech Republic
| | - Martine Vrijheid
- Institute
for Global Health (ISGlobal), Barcelona
Biomedical Research Park (PRBB), Doctor Aiguader, 88, 08003 Barcelona, Spain
- Universitat
Pompeu Fabra, Carrer
de la Mercè, 12, Ciutat Vella, 08002 Barcelona, Spain
- Centro de Investigación Biomédica en Red
Epidemiología
y Salud Pública (CIBERESP), Av. Monforte de Lemos, 3-5. Pebellón 11, Planta 0, 28029 Madrid, Spain
| | - Paolo Vineis
- Department
of Epidemiology and Biostatistics, School of Public Health, Imperial College, London SW7 2AZ, U.K.
| | - Rita Araujo
- European Commission, DG Research and Innovation, Sq. Frère-Orban 8, 1000 Bruxelles, Belgium
| | | | - Roel Vermeulen
- Institute
for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Heidelberglaan 8 3584 CS Utrecht, The Netherlands
| | - Sophie Lanone
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France
| | - Søren Brunak
- Novo
Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Blegdamsvej 3B, 2200 København, Denmark
| | - Sylvain Sebert
- Research
Unit of Population Health, University of
Oulu, P.O. Box 8000, FI-90014 Oulu, Finland
| | - Tuomo Karjalainen
- European Commission, DG Research and Innovation, Sq. Frère-Orban 8, 1000 Bruxelles, Belgium
| |
Collapse
|
16
|
Berger S, Oesterle I, Ayeni KI, Ezekiel CN, Rompel A, Warth B. Polyphenol exposure of mothers and infants assessed by LC-MS/MS based biomonitoring in breast milk. Anal Bioanal Chem 2024; 416:1759-1774. [PMID: 38363307 PMCID: PMC10899372 DOI: 10.1007/s00216-024-05179-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/17/2024]
Abstract
Exposure to polyphenols is relevant throughout critical windows of infant development, including the breastfeeding phase. However, the quantitative assessment of polyphenols in human breast milk has received limited attention so far, though polyphenols may positively influence infant health. Therefore, a targeted LC-MS/MS assay was developed to investigate 86 analytes representing different polyphenol classes in human breast milk. The sample preparation consisted of liquid extraction, salting out, freeze-out, and a dilution step. Overall, nearly 70% of the chemically diverse polyphenols fulfilled all strict validation criteria for full quantitative assessment. The remaining analytes did not fulfill all criteria at every concentration level, but can still provide useful semi-quantitative insights into nutritional and biomedical research questions. The limits of detection for all analyzed polyphenols were in the range of 0.0041-87 ng*mL-1, with a median of 0.17 ng*mL-1. Moreover, the mean recovery was determined to be 82% and the mean signal suppression and enhancement effect was 117%. The developed assay was applied in a proof-of-principle study to investigate polyphenols in breast milk samples provided by twelve Nigerian mothers at three distinct time points post-delivery. In total, 50 polyphenol analytes were detected with almost half being phenolic acids. Phase II metabolites, including genistein-7-β-D-glucuronide, genistein-7-sulfate, and daidzein-7-β-D-glucuronide, were also detected in several samples. In conclusion, the developed method was demonstrated to be fit-for-purpose to simultaneously (semi-) quantify a wide variety of polyphenols in breast milk. It also demonstrated that various polyphenols including their biotransformation products were present in breast milk and therefore likely transferred to infants where they might impact microbiome development and infant health.
Collapse
Affiliation(s)
- Sabrina Berger
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1090, Vienna, Austria
| | - Ian Oesterle
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1090, Vienna, Austria
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, 1090, Wien, Austria
- Vienna Doctoral School of Chemistry (DoSChem), University of Vienna, 1090, Vienna, Austria
| | - Kolawole I Ayeni
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1090, Vienna, Austria
- Department of Microbiology, Babcock University, Ilishan-Remo, Ogun State, Nigeria
| | - Chibundu N Ezekiel
- Institute for Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz Str. 20, 3430, Tulln, Austria
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, 1090, Wien, Austria
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1090, Vienna, Austria.
- Exposome Austria, Research Infrastructure and National EIRENE Node, Vienna, Austria.
| |
Collapse
|
17
|
Balcells C, Xu Y, Gil-Solsona R, Maitre L, Gago-Ferrero P, Keun HC. Blurred lines: Crossing the boundaries between the chemical exposome and the metabolome. Curr Opin Chem Biol 2024; 78:102407. [PMID: 38086287 DOI: 10.1016/j.cbpa.2023.102407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/22/2023] [Accepted: 11/09/2023] [Indexed: 02/09/2024]
Abstract
The aetiology of every human disease lies in a combination of genetic and environmental factors, each contributing in varying proportions. While genomics investigates the former, a comparable holistic paradigm was proposed for environmental exposures in 2005, marking the onset of exposome research. Since then, the exposome definition has broadened to include a wide array of physical, chemical, and psychosocial factors that interact with the human body and potentially alter the epigenome, the transcriptome, the proteome, and the metabolome. The chemical exposome, deeply intertwined with the metabolome, includes all small molecules originating from diet as well as pharmaceuticals, personal care and consumer products, or pollutants in air and water. The set of techniques to interrogate these exposures, primarily mass spectrometry and nuclear magnetic resonance spectroscopy, are also extensively used in metabolomics. Recent advances in untargeted metabolomics using high resolution mass spectrometry have paved the way for the development of methods able to provide in depth characterisation of both the internal chemical exposome and the endogenous metabolome simultaneously. Herein we review the available tools, databases, and workflows currently available for such work, and discuss how these can bridge the gap between the study of the metabolome and the exposome.
Collapse
Affiliation(s)
- Cristina Balcells
- Institute of Developmental and Reproductive Biology (IRDB), Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK.
| | - Yitao Xu
- Institute of Developmental and Reproductive Biology (IRDB), Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Rubén Gil-Solsona
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - Léa Maitre
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Pablo Gago-Ferrero
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - Hector C Keun
- Institute of Developmental and Reproductive Biology (IRDB), Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
18
|
Scher MS. The science of uncertainty guides fetal-neonatal neurology principles and practice: diagnostic-prognostic opportunities and challenges. Front Neurol 2024; 15:1335933. [PMID: 38352135 PMCID: PMC10861710 DOI: 10.3389/fneur.2024.1335933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024] Open
Abstract
Fetal-neonatal neurologists (FNNs) consider diagnostic, therapeutic, and prognostic decisions strengthened by interdisciplinary collaborations. Bio-social perspectives of the woman's health influence evaluations of maternal-placental-fetal (MPF) triad, neonate, and child. A dual cognitive process integrates "fast thinking-slow thinking" to reach shared decisions that minimize bias and maintain trust. Assessing the science of uncertainty with uncertainties in science improves diagnostic choices across the developmental-aging continuum. Three case vignettes highlight challenges that illustrate this approach. The first maternal-fetal dyad involved a woman who had been recommended to terminate her pregnancy based on an incorrect diagnosis of an encephalocele. A meningocele was subsequently identified when she sought a second opinion with normal outcome for her child. The second vignette involved two pregnancies during which fetal cardiac rhabdomyoma was identified, suggesting tuberous sclerosis complex (TSC). One woman sought an out-of-state termination without confirmation using fetal brain MRI or postmortem examination. The second woman requested pregnancy care with postnatal evaluations. Her adult child experiences challenges associated with TSC sequelae. The third vignette involved a prenatal diagnosis of an open neural tube defect with arthrogryposis multiplex congenita. The family requested prenatal surgical closure of the defect at another institution at their personal expense despite receiving a grave prognosis. The subsequent Management of Myelomeningocele Study (MOMS) would not have recommended this procedure. Their adult child requires medical care for global developmental delay, intractable epilepsy, and autism. These three evaluations involved uncertainties requiring shared clinical decisions among all stakeholders. Falsely negative or misleading positive interpretation of results reduced chances for optimal outcomes. FNN diagnostic skills require an understanding of dynamic gene-environment interactions affecting reproductive followed by pregnancy exposomes that influence the MPF triad health with fetal neuroplasticity consequences. Toxic stressor interplay can impair the neural exposome, expressed as anomalous and/or destructive fetal brain lesions. Functional improvements or permanent sequelae may be expressed across the lifespan. Equitable and compassionate healthcare for women and families require shared decisions that preserve pregnancy health, guided by person-specific racial-ethnic, religious, and bio-social perspectives. Applying developmental origins theory to neurologic principles and practice supports a brain health capital strategy for all persons across each generation.
Collapse
Affiliation(s)
- Mark Steven Scher
- Fetal/Neonatal Neurology Program, Division of Pediatric Neurology, Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
19
|
Chen X, Lv Z, Yang Y, Yang R, Shan G, Zhu L. Screening Novel Per- and Polyfluoroalkyl Substances in Human Blood Based on Nontarget Analysis and Underestimated Potential Health Risks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:150-159. [PMID: 38153813 DOI: 10.1021/acs.est.3c06675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Nontarget analysis has gained prominence in screening novel perfluoroalkyl and polyfluoroalkyl substances (PFASs) in the environment, yet remaining limited in human biological matrices. In this study, 155 whole blood samples were collected from the general population in Shijiazhuang City, China. By nontarget analysis, 31 legacy and novel PFASs were assigned with the confidence level of 3 or above. For the first time, 11 PFASs were identified in human blood, including C1 and C3 perfluoroalkyl sulfonic acids (PFSAs), C4 ether PFSA, C8 ether perfluoroalkyl carboxylic acid (ether PFCA), C4-5 unsaturated perfluoroalkyl alcohols, C9-10 carboxylic acid-perfluoroalkyl sulfonamides (CA-PFSMs), and C1 perfluoroalkyl sulfonamide. It is surprising that the targeted PFASs were the highest in the suburban population which was impacted by industrial emission, while the novel PFASs identified by nontarget analysis, such as C1 PFSA and C9-11 CA-PFSMs, were the highest in the rural population who often drank contaminated groundwater. Combining the toxicity prediction results of the bioaccumulation potential, lethality to rats, and binding affinity to target proteins, C3 PFSA, C4 and C7 ether PFSAs, and C9-11 CA-PFSMs exhibit great health risks. These findings emphasize the necessity of broadening nontarget analysis in assessing the PFAS exposure risks, particularly in rural populations.
Collapse
Affiliation(s)
- Xin Chen
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Zixuan Lv
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Yi Yang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Rongyan Yang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Guoqiang Shan
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|
20
|
Galindo-Aldana G, Torres-González C. Neuropsychology and Electroencephalography in Rural Children at Neurodevelopmental Risk: A Scoping Review. Pediatr Rep 2023; 15:722-740. [PMID: 38133433 PMCID: PMC10747224 DOI: 10.3390/pediatric15040065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/03/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Children from rural areas face numerous possibilities of neurodevelopmental conditions that may compromise their well-being and optimal development. Neuropsychology and electroencephalography (EEG) have shown strong agreement in detecting correlations between these two variables and suggest an association with specific environmental and social risk factors. The present scoping review aims to describe studies reporting associations between EEG features and cognitive impairment in children from rural or vulnerable environments and describe the main risk factors influencing EEG abnormalities in these children. The method for this purpose was based on a string-based review from PubMed, EBSCOhost, and Web of Science, following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA). Qualitative and quantitative analyses were conducted from the outcomes that complied with the selected criteria. In total, 2280 records were identified; however, only 26 were eligible: 15 for qualitative and 11 for quantitative analysis. The findings highlight the significant literature on EEG and its relationship with cognitive impairment from studies in children with epilepsy and malnutrition. In general, there is evidence for the advantages of implementing EEG diagnosis and research techniques in children living under risk conditions. Specific associations between particular EEG features and cognitive impairment are described in the reviewed literature in children. Further research is needed to better describe and integrate the state of the art regarding EEG feature extraction.
Collapse
Affiliation(s)
- Gilberto Galindo-Aldana
- Laboratory of Neuroscience and Cognition, Mental Health, Profession, and Society Research Group, Autonomous University of Baja California, Hwy. 3, Col. Gutierrez, Mexicali 21725, Mexico;
| | | |
Collapse
|
21
|
Ayeni KI, Jamnik T, Fareed Y, Flasch M, Braun D, Uhl M, Hartmann C, Warth B. The Austrian children's biomonitoring survey 2020 Part B: Mycotoxins, phytotoxins, phytoestrogens and food processing contaminants. Food Chem Toxicol 2023; 182:114173. [PMID: 37925015 DOI: 10.1016/j.fct.2023.114173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/13/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023]
Abstract
This study assessed the levels of environment and food-related exposures in urine of Austrian school children aged six to ten (n = 85) focusing on mycotoxins, phytoestrogens, and food processing by-products using two multi-analyte LC-MS/MS methods. Out of the 55 biomarkers of exposure reported in this study, 22 were quantified in the first void urine samples. Mycotoxins frequently quantified included zearalenone (detection rate 100%; median 0.11 ng/mL), deoxynivalenol (99%; 15 ng/mL), alternariol monomethyl ether (75%; 0.04 ng/mL), and ochratoxin A (19%; 0.03 ng/mL). Several phytoestrogens, including genistein, daidzein, and its metabolite equol, were detected in all samples at median concentrations of 22 ng/mL, 43 ng/mL, and 14 ng/mL, respectively. The food processing by-product 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), was detected in 4% of the samples (median 0.016 ng/mL). None of the investigated samples contained the tested phytotoxins that were rarely considered for human biomonitoring previously (pyrrolizidine alkaloids, tropane alkaloids, aristolochic acids). When relating estimated exposure to current health-based guidance values, 22% of the children exceeded the tolerable daily intake for deoxynivalenol, and the estimated MOE for OTA indicates possible health risks for some children. The results clearly demonstrate frequent low-level (co-)exposure and warrant further exposome-scale exposure assessments, especially in susceptible sub-populations and longitudinal settings.
Collapse
Affiliation(s)
- Kolawole I Ayeni
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Straße 38, 1090, Vienna, Austria; Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, Nigeria
| | - Thomas Jamnik
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Straße 38, 1090, Vienna, Austria
| | - Yasmin Fareed
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Straße 38, 1090, Vienna, Austria
| | - Mira Flasch
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Straße 38, 1090, Vienna, Austria
| | - Dominik Braun
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Straße 38, 1090, Vienna, Austria
| | - Maria Uhl
- Environment Agency Austria (Umweltbundesamt GmbH), Spittelauer Lände 5, 1090, Vienna, Austria; Exposome Austria, Research Infrastructure and National EIRENE Node, Austria
| | - Christina Hartmann
- Environment Agency Austria (Umweltbundesamt GmbH), Spittelauer Lände 5, 1090, Vienna, Austria
| | - Benedikt Warth
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Straße 38, 1090, Vienna, Austria; Exposome Austria, Research Infrastructure and National EIRENE Node, Austria.
| |
Collapse
|
22
|
Fan Y, Guo L, Wang R, Xu J, Fang Y, Wang W, Lv J, Tang W, Wang H, Xu DX, Tao L, Huang Y. Low transplacental transfer of PFASs in the small-for-gestational-age (SGA) new-borns: Evidence from a Chinese birth cohort. CHEMOSPHERE 2023; 340:139964. [PMID: 37633609 DOI: 10.1016/j.chemosphere.2023.139964] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Early life in utero exposure to per- and polyfluoroalkyl substances (PFASs) and infiltration through the placenta into cord blood pose significant risk to fetal development. Accumulating knowledge suggests that PFASs pass through the placenta in multiple transportation ways, not limiting to passive transport but also active transport or facilitated diffusion. Therefore, we propose that the transplacental transfer efficiency (TTE) could be re-evaluated as traditional cord to maternal ratio-based method might overlook certain biological or health information from the mother and fetus. In this study, we investigated 30 PFAS chemicals in paired maternal and cord serum from 195 births classified as small-for-gestational-age (SGA) and matched appropriate-for-gestational-age (AGA). PFASs were ubiquitously detected in the maternal and serum samples, with PFOA, PFOS, 6:2 Cl-PFESA and other dominant compounds. We adopted a modified TTE estimation method (TTEm), taking into consideration of the total burden mass of PFASs in the blood from mother to fetus. Using the modified TTEm, a significant (p < 0.05) decrease was observed in the PFAS transplacental transfer potential in SGA (1.6%-11.3%) compared to AGA (2.3%-21.1%), suggesting a reverse association between TTE and SGA birth risk. This is the first study attempted to re-evaluate the TTE of PFAS and indicates that TTEm might be more advantageous to reflect the transplacental transfer potency of chemicals particularly when transportation mechanisms are multi-faceted.
Collapse
Affiliation(s)
- Yijun Fan
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China; Department of Gynecology and Obstetrics, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Liyan Guo
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Ruolan Wang
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China; Department of Gynecology and Obstetrics, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jingjing Xu
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Yuanyuan Fang
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China; Department of Gynecology and Obstetrics, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenxin Wang
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China; Department of Gynecology and Obstetrics, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jia Lv
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Weitian Tang
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Lin Tao
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China.
| | - Yichao Huang
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China.
| |
Collapse
|
23
|
Flasch M, Koellensperger G, Warth B. Comparing the sensitivity of a low- and a high-resolution mass spectrometry approach for xenobiotic trace analysis: An exposome-type case study. Anal Chim Acta 2023; 1279:341740. [PMID: 37827628 DOI: 10.1016/j.aca.2023.341740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 10/14/2023]
Abstract
The chemical exposome consists of environmental exposures experienced throughout a lifetime but to date analytical approaches to investigate the plethora of low-abundance chemicals remain very limited. Liquid chromatography high-resolution mass spectrometry (HRMS) is commonly applied in untargeted exposome-wide analyses of xenobiotics in biological samples; however, human biomonitoring approaches usually utilize targeted low-resolution triple quadrupole (QQQ) mass spectrometry tailored to a small number of chemicals. HRMS can cover a broader chemical space but the detection of molecules from low-level exposure amidst a background of highly-abundant endogenous molecules has proven to be difficult. In this study, a triple quadrupole (QQQ) and a high-resolution mass spectrometer (HRMS) with identical chromatography were utilized to determine the limits of quantitation (LOQ) of >100 xenobiotics and estrogenic hormones in pure solvent and human urine. Both instrumental platforms are currently applied in exposure assessment studies and were operated in their most frequently used acquisition mode (full scan for HRMS and multiple reaction monitoring for QQQ) to mimic typical applications. For HRMS analyses, the median LOQ was 0.9 and 1.2 ng/mL in solvent and urine, respectively, while for low-resolution QQQ measurements, the median LOQ was 0.1 and 0.2 ng/mL in solvent and urine, respectively. To evaluate the calculated LOQs in complex biological samples, spot urine samples from 24 Nigerian female volunteers were investigated. The higher LOQ values for HRMS resulted in less quantified low-abundance analytes and decreased the number of compounds detected below the LOQ. Even at chronic low-dose exposure, such compounds might be relevant for human health because of high individual toxicity or potential mixture effects. Nevertheless, HRMS enabled the additional screening for exposure to unexpected/unknown analytes, including emerging compounds and biotransformation products. Therefore, a synergy between high- and low-resolution mass spectrometry may currently be the best option to elucidate and quantify xenobiotics in comprehensive exposome-wide association studies (ExWAS).
Collapse
Affiliation(s)
- Mira Flasch
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Straße 38, 1090, Vienna, Austria; University of Vienna, Vienna Doctoral School in Chemistry, Währinger Straße 42, 1090, Vienna, Austria
| | - Gunda Koellensperger
- University of Vienna, Faculty of Chemistry, Department of Analytical Chemistry, Währinger Straße 38, 1090, Vienna, Austria; Exposome Austria, Research Infrastructure and National EIRENE Hub, Austria
| | - Benedikt Warth
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Straße 38, 1090, Vienna, Austria; Exposome Austria, Research Infrastructure and National EIRENE Hub, Austria.
| |
Collapse
|
24
|
Wang Z, Ma Q, Zheng P, Xie S, Yao K, Zhang J, Shao B, Jiang H. Generation of broad-spectrum recombinant antibody and construction of colorimetric immunoassay for tropane alkaloids: Recognition mechanism and application. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132247. [PMID: 37597393 DOI: 10.1016/j.jhazmat.2023.132247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/27/2023] [Accepted: 08/06/2023] [Indexed: 08/21/2023]
Abstract
Tropane alkaloids (TAs) have emerged as plant toxins, related to poisoning events. The development of stable antibodies is crucial to ensure the effectiveness of immunological methods in quickly and accurately monitoring these alkaloids. In this study, based on hybridoma, the variable region gene of monoclonal antibody (mAb) was amplified, and the recombinant antibody (rAb) gene sequence (VH-Linker-VL) was successfully constructed and expressed in HEK293F. The obtained rAb has kept the same performance as mAb, and the IC50 of 29 TAs ranged from 0.12 to 2642.78 ng/mL. In the recognition mechanism, the docking and dynamics model identified hydrophobic interaction as the most critical force. Substituent will impact recognition by influencing the spatial structure and hydrophobic properties. Then, a colorimetric immunoassay based on rAb was established, five types of water and thirty-nine nectars of honey were tested. The results demonstrated the absence of TAs in environmental water, whereas atropine was detected in more than 13.47% of honey samples at concentrations exceeding 1 μg/kg. The results show a good correlation with UHPLC-MS/MS, suggesting that the immunoassay has excellent screening ability. The data on TAs in honey and water could serve as a foundation for developing relevant policies.
Collapse
Affiliation(s)
- Zile Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Qiang Ma
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Pimiao Zheng
- College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, People's Republic of China
| | - Sanlei Xie
- College of Veterinary Medicine, Southwest University, Chongqing 400715, People's Republic of China
| | - Kai Yao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, People's Republic of China
| | - Jing Zhang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, People's Republic of China
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, People's Republic of China
| | - Haiyang Jiang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China.
| |
Collapse
|
25
|
Huang W, Pan XF, Tang S, Sun F, Wu P, Yuan J, Sun W, Pan A, Chen D. Target Exposome for Characterizing Early Gestational Exposure to Contaminants of Emerging Concern and Association with Gestational Diabetes Mellitus. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13408-13418. [PMID: 37651547 DOI: 10.1021/acs.est.3c04492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Characterization of gestational exposure to complex contaminants of emerging concern (CECs) is critical to the identification of environmental risk factors for pregnancy complications. However, determination of various CECs with diverse physicochemical properties in biological fluids is technically challenging. In the present study, we developed a target exposome protocol, consisting of simple liquid-liquid extraction-based sample preparation and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis, to determine 325 CECs covering 11 subclasses, including poly- and perfluoroalkyl substances, organophosphate esters, ultraviolet (UV) stabilizers, synthetic antioxidants, phthalate esters, and several others. The protocol exhibits exceptional advantages over traditional approaches in the coverage of chemicals, sample volume demand, and time and financial cost. The protocol was applied in a prospective nested gestational diabetes mellitus (GDM) study including 120 cases and 240 matched healthy controls. Thirty-three CECs were detected in >70% of the samples, with a combined concentration of 17.0-484.7 ng/mL. Bayesian kernel machine regression analysis showed that exposure to the CEC mixture was significantly associated with a higher GDM risk. For example, when increasing all CECs in the mixture from 50th percentile to 75th percentile, the estimated probit of GDM incidence had an increase of 92% (95% CI: 56%, 127%). Meanwhile, perfluorohexanesulfonic acid, 1,3-diphenylguanidine, and dibutyl fumarate were identified as the key CECs driving the joint effect. This work demonstrates great potential of our target exposome protocol for environmental risk factor identification in large-scale epidemiology or biomonitoring studies.
Collapse
Affiliation(s)
- Wei Huang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, Guangdong, China
| | - Xiong-Fei Pan
- Section of Epidemiology and Population Health & Department of Gynecology and Obstetrics, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children & National Medical Products Administration Key Laboratory for Technical Research on Drug Products In Vitro and In Vivo Correlation, West China Second University Hospital, Sichuan University; Shuangliu Institute of Women's and Children's Health, Shuangliu Maternal and Child Health Hospital, Chengdu, Sichuan 610041, China
| | - Shuqin Tang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, Guangdong, China
| | - Fengjiang Sun
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, Guangdong, China
| | - Ping Wu
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jiaying Yuan
- Department of Science and Education, Shuangliu Maternal and Child Health Hospital, Chengdu, Sichuan 610200, China
| | - Wenwen Sun
- Shanghai AB Sciex Analytical Instrument Trading Co., Ltd, Shanghai 200335, China
| | - An Pan
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Da Chen
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, Guangdong, China
| |
Collapse
|
26
|
Zhao S, Yang X, Xu Q, Li H, Su Y, Xu Q, X Li Q, Xia Y, Shen R. Association of maternal metals exposure, metabolites and birth outcomes in newborns: A prospective cohort study. ENVIRONMENT INTERNATIONAL 2023; 179:108183. [PMID: 37690219 DOI: 10.1016/j.envint.2023.108183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/21/2023] [Accepted: 09/01/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Maternal exposure to metals may pose a risk to the health of newborns, however, the underlying mechanisms remain ambiguous. Herein, we aimed to investigate the influence of metals exposure on birth outcomes and reveal the importance of metabolites in the exposure-outcomes association by using metabolomics methods. METHODS In our study, 292 mother-pairs were included who were recruited from the affiliated hospitals of Nanjing Medical University between 2006 and 2011. We measured fifteen metals (mercury, lead, vanadium, arsenic, zinc, cadmium, rubidium, copper, cobalt, iron, molybdenum, strontium, thallium, magnesium and calcium) and metabolites in maternal second trimester serums by using inductively coupled plasma mass spectrometry and ultra-high performance liquid chromatography high resolution accurate mass spectrometry, respectively. A multi-step statistical analysis strategy including exposome-wide association study (ExWAS) model, variable selection models and multiple-exposure models were performed to systematically appraise the associations of individual and mixed metals exposure with birth outcomes. Furthermore, differential metabolites that associated with metals exposure and birth outcomes were identified using linear regression models. RESULTS Metal's levels in maternal serums ranged from 0.05 μg/L to 1864.76 μg/L. In the ExWAS model, maternal exposure to arsenic was negatively associated with birth weight (β = 188.83; 95% CI: -368.27, -9.39), while maternal mercury exposure showed a positive association (β = 533.65; 95%CI: 179.40, 887.90) with birth weight. Moreover, each unit increase in mercury (1 ng/mL-log transformed) was associated with a 1.82 week-increase (95%CI: 0.85, 2.79) in gestational age. These findings were subsequently validated by variable selection models and multiple exposure models. Metabolomic analysis further revealed the significant role of 3-methyladenine in the relationship between arsenic exposure and birth weight. CONCLUSION This study provides new epidemiological evidence indicating the associations of metals exposure and neonatal birth outcomes, and emphasizes the potential role of metabolite biomarkers and their importance in monitoring adverse birth outcomes.
Collapse
Affiliation(s)
- Shuangshuang Zhao
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China; State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xu Yang
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qing Xu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Hang Li
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yan Su
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Qiaoqiao Xu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, HI 96822, USA
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Rong Shen
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.
| |
Collapse
|
27
|
Gastellu T, Le Bizec B, Rivière G. Characterisation of the risk associated with chronic lifetime exposure to mixture of chemical hazards: case study of trace elements. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:951-970. [PMID: 37428801 DOI: 10.1080/19440049.2023.2231086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/12/2023]
Abstract
Risk assessment methodology, mostly commonly used, faces the complexity of the environment. Populations are exposed to multiple sources of chemicals throughout life and the chemical mixtures they are exposed change during time (lifestyle factors, regulatory decisions, etc). The risk assessment needs to consider these dynamics and the evolution of the body with age, in order to refine the exposure assessment to chemicals and to predict the health impact of these exposures. This review highlights the latest methodologies developed to improve risk assessment, especially cor heavy metals. The methodologies aim to better describe the chemical toxicokinetic and toxicodynamic as well as the exposure assessment. Human Biomonitoring (HBM) data give great opportunities to link biomarkers of exposure with an adverse effect. Physiologically-Based Toxicokinetic (PBTK) models are more and more used to simulate the evolution of biomarkers in organisms, considering the external exposures and the physiological evolutions. PBTK models may also be used to determine the routes of exposure or to predict the impacts of schemes of exposure. The major limit is the integration of several chemicals in mixture with common adverse effects and the interactions between them.
Collapse
Affiliation(s)
- Thomas Gastellu
- Oniris, INRAE, LABERCA, Nantes, France
- Risk Assessment Department, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Maisons-Alfort, France
| | | | - Gilles Rivière
- Risk Assessment Department, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Maisons-Alfort, France
| |
Collapse
|
28
|
Chang CW, Hsu JY, Su YH, Chen YC, Hsiao PZ, Liao PC. Monitoring long-term chemical exposome by characterizing the hair metabolome using a high-resolution mass spectrometry-based suspect screening approach. CHEMOSPHERE 2023; 332:138864. [PMID: 37156292 DOI: 10.1016/j.chemosphere.2023.138864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/20/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
Hair has recently emerged as a biospecimen for characterizing the long-term chemical exposome in biomonitoring investigations spanning several months, as chemical compounds circulating in the bloodstream accumulate in hair. Although there has been interest in using human hair as a biospecimen for exposome studies, it has yet to be widely adopted compared to blood and urine. Here, we applied a high-resolution mass spectrometry (HRMS)-based suspect screening strategy to characterize the long-term chemical exposome in human hair. Hair samples were collected from 70 subjects and cut into 3 cm segments, which were then mixed to prepare pooled samples. The pooled hair samples underwent a sample preparation procedure, and the hair extracts were further analyzed using an HRMS-based suspect screening approach. An in-house chemical suspect list containing 1227 chemical entries from National Report on Human Exposure to Environmental Chemicals (Report) published by the U.S. CDC and the Exposome-Explorer 3.0 database developed by the WHO was subsequently used to screen and filter the suspect features against the HRMS dataset. Overall, we matched 587 suspect features in the HRMS dataset to 246 unique chemical formulas in the suspect list, and the structures of 167 chemicals were further identified through a fragmentation analysis. Among these, chemicals such as mono-2-ethylhexyl phthalate, methyl paraben, and 1-naphthol, which have been detected in the urine or blood for exposure assessment, were also identified in human hair. This suggests that hair reflects the accumulation of environmental compounds to which an individual is exposed. Exposure to exogenous chemicals may exert adverse effects on cognitive function, and we discovered 15 chemicals in human hair that may contribute to the pathogenesis of Alzheimer's disease. This finding suggests that human hair may be a promising biospecimen for monitoring long-term exposure to multiple environmental chemicals and perturbations in endogenous chemicals in biomonitoring investigations.
Collapse
Affiliation(s)
- Chih-Wei Chang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jen-Yi Hsu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Hsiang Su
- Division of Neurology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City, 60002, Taiwan
| | - Yuan-Chih Chen
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ping-Zu Hsiao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pao-Chi Liao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
29
|
Krausová M, Braun D, Buerki-Thurnherr T, Gundacker C, Schernhammer E, Wisgrill L, Warth B. Understanding the Chemical Exposome During Fetal Development and Early Childhood: A Review. Annu Rev Pharmacol Toxicol 2023; 63:517-540. [PMID: 36202091 DOI: 10.1146/annurev-pharmtox-051922-113350] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Early human life is considered a critical window of susceptibility to external exposures. Infants are exposed to a multitude of environmental factors, collectively referred to as the exposome. The chemical exposome can be summarized as the sum of all xenobiotics that humans are exposed to throughout a lifetime. We review different exposure classes and routes that impact fetal and infant metabolism and the potential toxicological role of mixture effects. We also discuss the progress in human biomonitoring and present possiblemodels for studying maternal-fetal transfer. Data gaps on prenatal and infant exposure to xenobiotic mixtures are identified and include natural biotoxins, in addition to commonly reported synthetic toxicants, to obtain a more holistic assessment of the chemical exposome. We highlight the lack of large-scale studies covering a broad range of xenobiotics. Several recommendations to advance our understanding of the early-life chemical exposome and the subsequent impact on health outcomes are proposed.
Collapse
Affiliation(s)
- Magdaléna Krausová
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria; , ,
| | - Dominik Braun
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria; , ,
| | - Tina Buerki-Thurnherr
- Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Particles Biology Interactions, St. Gallen, Switzerland;
| | - Claudia Gundacker
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria; .,Exposome Austria, Research Infrastructure and National EIRENE Hub, Austria
| | - Eva Schernhammer
- Exposome Austria, Research Infrastructure and National EIRENE Hub, Austria.,Center for Public Health, Department of Epidemiology, Medical University of Vienna, Vienna, Austria; .,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Lukas Wisgrill
- Exposome Austria, Research Infrastructure and National EIRENE Hub, Austria.,Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria;
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria; , , .,Exposome Austria, Research Infrastructure and National EIRENE Hub, Austria
| |
Collapse
|
30
|
Flasch M, Fitz V, Rampler E, Ezekiel CN, Koellensperger G, Warth B. Integrated Exposomics/Metabolomics for Rapid Exposure and Effect Analyses. JACS AU 2022; 2:2548-2560. [PMID: 36465551 PMCID: PMC9709941 DOI: 10.1021/jacsau.2c00433] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 06/17/2023]
Abstract
The totality of environmental exposures and lifestyle factors, commonly referred to as the exposome, is poorly understood. Measuring the myriad of chemicals that humans are exposed to is immensely challenging, and identifying disrupted metabolic pathways is even more complex. Here, we present a novel technological approach for the comprehensive, rapid, and integrated analysis of the endogenous human metabolome and the chemical exposome. By combining reverse-phase and hydrophilic interaction liquid chromatography (HILIC) and fast polarity-switching, molecules with highly diverse chemical structures can be analyzed in 15 min with a single analytical run as both column's effluents are combined before analysis. Standard reference materials and authentic standards were evaluated to critically benchmark performance. Highly sensitive median limits of detection (LODs) with 0.04 μM for >140 quantitatively assessed endogenous metabolites and 0.08 ng/mL for the >100 model xenobiotics and human estrogens in solvent were obtained. In matrix, the median LOD values were higher with 0.7 ng/mL (urine) and 0.5 ng/mL (plasma) for exogenous chemicals. To prove the dual-column approach's applicability, real-life urine samples from sub-Saharan Africa (high-exposure scenario) and Europe (low-exposure scenario) were assessed in a targeted and nontargeted manner. Our liquid chromatography high-resolution mass spectrometry (LC-HRMS) approach demonstrates the feasibility of quantitatively and simultaneously assessing the endogenous metabolome and the chemical exposome for the high-throughput measurement of environmental drivers of diseases.
Collapse
Affiliation(s)
- Mira Flasch
- Faculty
of Chemistry, Department of Food Chemistry and Toxicology, University of Vienna, Währinger Straße 38-40, 1090 Vienna, Austria
- Vienna
Doctoral School of Chemistry, University
of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Veronika Fitz
- Vienna
Doctoral School of Chemistry, University
of Vienna, Währinger Straße 42, 1090 Vienna, Austria
- Faculty
of Chemistry, Department of Analytical Chemistry, University of Vienna, Währinger Straße 38-40, 1090 Vienna, Austria
| | - Evelyn Rampler
- Faculty
of Chemistry, Department of Analytical Chemistry, University of Vienna, Währinger Straße 38-40, 1090 Vienna, Austria
| | - Chibundu N. Ezekiel
- Department
of Microbiology, Babcock University, 121103 Ilishan
Remo, Ogun State, Nigeria
| | - Gunda Koellensperger
- Faculty
of Chemistry, Department of Analytical Chemistry, University of Vienna, Währinger Straße 38-40, 1090 Vienna, Austria
- Exposome
Austria, Research Infrastructure and National EIRENE Hub, 1090 Vienna, Austria
| | - Benedikt Warth
- Faculty
of Chemistry, Department of Food Chemistry and Toxicology, University of Vienna, Währinger Straße 38-40, 1090 Vienna, Austria
- Exposome
Austria, Research Infrastructure and National EIRENE Hub, 1090 Vienna, Austria
| |
Collapse
|