1
|
Wu X, Wan X, Yu H, Liu H. Recent advances in CRISPR-Cas system for Saccharomyces cerevisiae engineering. Biotechnol Adv 2025; 81:108557. [PMID: 40081781 DOI: 10.1016/j.biotechadv.2025.108557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/24/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
Yeast Saccharomyces cerevisiae (S. cerevisiae) is a crucial industrial platform for producing a wide range of chemicals, fuels, pharmaceuticals, and nutraceutical ingredients. It is also commonly used as a model organism for fundamental research. In recent years, the CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins) system has become the preferred technology for genetic manipulation in S. cerevisiae owing to its high efficiency, precision, and user-friendliness. This system, along with its extensive toolbox, has significantly accelerated the construction of pathways, enzyme optimization, and metabolic engineering in S. cerevisiae. Furthermore, it has allowed researchers to accelerate phenotypic evolution and gain deeper insights into fundamental biological questions, such as genotype-phenotype relationships. In this review, we summarize the latest advancements in the CRISPR-Cas toolbox for S. cerevisiae and highlight its applications in yeast cell factory construction and optimization, enzyme and phenotypic evolution, genome-scale functional interrogation, gene drives, and the advancement of biotechnologies. Finally, we discuss the challenges and potential for further optimization and applications of the CRISPR-Cas system in S. cerevisiae.
Collapse
Affiliation(s)
- Xinxin Wu
- Frontiers Science Center of Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaowen Wan
- State Key Laboratory of Biotherapy and Cancer Centre/Collaborative Innovation Centre for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongbin Yu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Huayi Liu
- Frontiers Science Center of Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; State Key Laboratory of Biotherapy and Cancer Centre/Collaborative Innovation Centre for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Hematology, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Gutierrez-Rus LI, Vos E, Pantoja-Uceda D, Hoffka G, Gutierrez-Cardenas J, Ortega-Muñoz M, Risso VA, Jimenez MA, Kamerlin SCL, Sanchez-Ruiz JM. Enzyme Enhancement Through Computational Stability Design Targeting NMR-Determined Catalytic Hotspots. J Am Chem Soc 2025; 147:14978-14996. [PMID: 40106785 DOI: 10.1021/jacs.4c09428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Enzymes are the quintessential green catalysts, but realizing their full potential for biotechnology typically requires improvement of their biomolecular properties. Catalysis enhancement, however, is often accompanied by impaired stability. Here, we show how the interplay between activity and stability in enzyme optimization can be efficiently addressed by coupling two recently proposed methodologies for guiding directed evolution. We first identify catalytic hotspots from chemical shift perturbations induced by transition-state-analogue binding and then use computational/phylogenetic design (FuncLib) to predict stabilizing combinations of mutations at sets of such hotspots. We test this approach on a previously designed de novo Kemp eliminase, which is already highly optimized in terms of both activity and stability. Most tested variants displayed substantially increased denaturation temperatures and purification yields. Notably, our most efficient engineered variant shows a ∼3-fold enhancement in activity (kcat ∼ 1700 s-1, kcat/KM ∼ 4.3 × 105 M-1 s-1) from an already heavily optimized starting variant, resulting in the most proficient proton-abstraction Kemp eliminase designed to date, with a catalytic efficiency on a par with naturally occurring enzymes. Molecular simulations pinpoint the origin of this catalytic enhancement as being due to the progressive elimination of a catalytically inefficient substrate conformation that is present in the original design. Remarkably, interaction network analysis identifies a significant fraction of catalytic hotspots, thus providing a computational tool which we show to be useful even for natural-enzyme engineering. Overall, our work showcases the power of dynamically guided enzyme engineering as a design principle for obtaining novel biocatalysts with tailored physicochemical properties, toward even anthropogenic reactions.
Collapse
Affiliation(s)
- Luis I Gutierrez-Rus
- Departamento de Química Física, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, Granada 18071, Spain
| | - Eva Vos
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - David Pantoja-Uceda
- Departamento de Química Física Biológica, Instituto de Química Física Blas Cabrera (IQF-CSIC), Madrid 28006, Spain
| | - Gyula Hoffka
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen 4032, Hungary
- Department of Chemistry, Lund University, Lund 22100, Sweden
| | - Jose Gutierrez-Cardenas
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, Georgia 30144, United States
| | - Mariano Ortega-Muñoz
- Departamento de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, Granada 18071, Spain
| | - Valeria A Risso
- Departamento de Química Física, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, Granada 18071, Spain
| | - Maria Angeles Jimenez
- Departamento de Química Física Biológica, Instituto de Química Física Blas Cabrera (IQF-CSIC), Madrid 28006, Spain
| | - Shina C L Kamerlin
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Department of Chemistry, Lund University, Lund 22100, Sweden
| | - Jose M Sanchez-Ruiz
- Departamento de Química Física, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, Granada 18071, Spain
| |
Collapse
|
3
|
Tan T, Yu J, Long J, Li X, Li ZJ, Zhang Y, Yu M, Tan T. Rational Design and Engineering of 3- O-Sulfotransferase 1 Based on Enzyme Affinity for Improved Enzymatic Heparin Preparation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:11373-11385. [PMID: 40267027 DOI: 10.1021/acs.jafc.4c07514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Heparin, a naturally occurring glycosaminoglycan, is renowned for its potent anticoagulant properties, which are critical for various medical applications. A significant determinant of its anticoagulant activity is the degree of 3-O-sulfation. Gaining insight into the substrate binding characteristics of 3-O-sulfotransferase-1 (3-OST-1) could enhance our understanding of the sulfotransferase family and facilitate the enzymatic preparation of heparin. This study aimed to identify mutants of 3-OST-1 with improved catalytic activities through a rational design. The enzyme activities of the mutants W72R and H144R were recorded at 26.40 and 17.21 U/L, respectively, representing increases of 1.7 and 1.1 times compared to the wild-type (WT) 3-OST-1. Notably, the enzyme activity of the double mutant W72R/H144R reached 34.41 U/L, which is 2.2 times greater than that of the WT. The heparin modified by the 3-OST-1 mutants exhibited superior anticoagulant properties compared with those modified by the WT, with W72R/H144R demonstrating the highest anticoagulant potency. Furthermore, enzyme kinetic assays and molecular dynamics simulations illustrated that the enhanced catalytic activity of the mutant enzyme resulted from an increased affinity for the substrate.
Collapse
Affiliation(s)
- Tiansu Tan
- State Key Laboratory of Green Biomanufacturing, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- Beijing Key Laboratory of Green Chemicals Biomanufacturing, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- Beijing Synthetic Bio-manufacturing Technology Innovation Center, Beijing 100029, People's Republic of China
| | - Jing Yu
- State Key Laboratory of Green Biomanufacturing, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- Beijing Key Laboratory of Green Chemicals Biomanufacturing, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- Beijing Synthetic Bio-manufacturing Technology Innovation Center, Beijing 100029, People's Republic of China
| | - Jianyu Long
- State Key Laboratory of Green Biomanufacturing, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- Beijing Key Laboratory of Green Chemicals Biomanufacturing, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- Beijing Synthetic Bio-manufacturing Technology Innovation Center, Beijing 100029, People's Republic of China
| | - Xiaojing Li
- State Key Laboratory of Green Biomanufacturing, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- Beijing Key Laboratory of Green Chemicals Biomanufacturing, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- Beijing Synthetic Bio-manufacturing Technology Innovation Center, Beijing 100029, People's Republic of China
| | - Zheng-Jun Li
- State Key Laboratory of Green Biomanufacturing, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- Beijing Key Laboratory of Green Chemicals Biomanufacturing, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- Beijing Synthetic Bio-manufacturing Technology Innovation Center, Beijing 100029, People's Republic of China
| | - Yang Zhang
- State Key Laboratory of Green Biomanufacturing, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- Beijing Key Laboratory of Green Chemicals Biomanufacturing, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- Beijing Synthetic Bio-manufacturing Technology Innovation Center, Beijing 100029, People's Republic of China
| | - Mingjia Yu
- State Key Laboratory of Green Biomanufacturing, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- Beijing Key Laboratory of Green Chemicals Biomanufacturing, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- Beijing Synthetic Bio-manufacturing Technology Innovation Center, Beijing 100029, People's Republic of China
| | - Tianwei Tan
- State Key Laboratory of Green Biomanufacturing, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- Beijing Key Laboratory of Green Chemicals Biomanufacturing, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- Beijing Synthetic Bio-manufacturing Technology Innovation Center, Beijing 100029, People's Republic of China
| |
Collapse
|
4
|
Mekureyaw MF, Junker AL, Bai L, Zhang Y, Wei Z, Guo Z. Laccase based per- and polyfluoroalkyl substances degradation: Status and future perspectives. WATER RESEARCH 2025; 271:122888. [PMID: 39637694 DOI: 10.1016/j.watres.2024.122888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/07/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) with stable carbon-fluorine bonds are used in a wide range of industrial and commercial applications. Due to their extreme environmental persistence, PFAS have the potential to bioaccumulate, cause adverse effects, and present challenges regarding remediation. Recently, microbial and enzymatic reactions for sustainable degradation of PFAS have gained attention from researchers, although biological decomposition of PFAS remains challenging. Surprisingly, laccases, the multi-copper oxidases produced by various organisms, showed potential for PFAS degradation. Mediators play key roles in initiating laccase induced PFAS degradation and defluorination reactions. The laccase-catalyzed PFAS degradation reactions are relatively slower than normal biocatalytic reactions and the low activity of native laccases constrains their capacity to complete defluorination. With their low redox potential and narrow substrate scope, an innovative remediation strategy must be taken to accelerate this reaction. In this review we have summarized the status, challenges, and future perspectives of enzymatic PFAS degradation. The knowledge of laccase-based defluorination and the molecular basis of the reaction mechanisms overviewed in this study could inform future applications of laccases for sustainable PFAS remediation.
Collapse
Affiliation(s)
- Mengistu F Mekureyaw
- Section of Industrial Biotechnology, Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, Aarhus C, 8000, Denmark
| | - Allyson Leigh Junker
- Centre for Water Technology (WATEC), Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Alle 3, Aarhus C, 8000, Denmark
| | - Lu Bai
- Centre for Water Technology (WATEC), Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Alle 3, Aarhus C, 8000, Denmark
| | - Yan Zhang
- Section of Industrial Biotechnology, Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, Aarhus C, 8000, Denmark
| | - Zongsu Wei
- Centre for Water Technology (WATEC), Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Alle 3, Aarhus C, 8000, Denmark.
| | - Zheng Guo
- Section of Industrial Biotechnology, Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, Aarhus C, 8000, Denmark.
| |
Collapse
|
5
|
Wang X, Wang Z, Zhang X, Zhang Y, Zhang W, Zhang Y, Zhang X, Xiao Y, Zhang Y, Fang W. Bioinformatics-assisted mining and design of novel pullulanase suitable for starch cold hydrolysis. J Biotechnol 2025; 398:106-116. [PMID: 39681264 DOI: 10.1016/j.jbiotec.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/14/2024] [Accepted: 12/11/2024] [Indexed: 12/18/2024]
Abstract
Cold-active pullulanases with good catalytic performance possess promising applications in cold hydrolysis of starch. Adopting bioinformatics-assisted mining strategies, 7 candidate cold-active pullulanases were initially screened out from IMG/MER database. Among the candidates, PulBs exhibited good thermostability and the highest specific activity of 147.4 U/mg. The half-life of PulBs was about 200 h at 35 °C. Employing PulBs as the initial enzyme, the active-site design of FuncLib was implemented to enhance the activity. The design PulBs-20 exhibited an enhanced specific activity of 209.9 U/mg, which was 1.4 times that of PulBs. Furthermore, the thermostability of PulBs-20 was augmented, with a half-life of 250 h at 35 °C. When applied in the cold hydrolysis of starch, PulBs-20 can effectively enhance the hydrolysis effect of raw starch. Supplemented with the raw starch-hydrolyzing α-amylase AmyZ1 and PulBs-20, the hydrolysis rate of raw corn starch increased to 53.5 %, which was 1.3 times that of using AmyZ1 alone. Due to its high hydrolysis activity and good thermostability, PulBs-20 can serve as an efficient accessory enzyme in starch cold hydrolysis.
Collapse
Affiliation(s)
- Xin Wang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China
| | - Zixing Wang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China
| | - Xueting Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China
| | - Yanli Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China
| | - Wenxia Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China
| | - Yu Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China
| | - Xuecheng Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China
| | - Yazhong Xiao
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China
| | - Yinliang Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China.
| | - Wei Fang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China.
| |
Collapse
|
6
|
Gandadireja AP, Vos PD, Siira SJ, Filipovska A, Rackham O. Hyperactive Nickase Activity Improves Adenine Base Editing. ACS Synth Biol 2024; 13:3128-3136. [PMID: 39298405 DOI: 10.1021/acssynbio.4c00407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Base editing technologies enable programmable single-nucleotide changes in target DNA without double-stranded DNA breaks. Adenine base editors (ABEs) allow precise conversion of adenine (A) to guanine (G). However, limited availability of optimized deaminases as well as their variable efficiencies across different target sequences can limit the ability of ABEs to achieve effective adenine editing. Here, we explored the use of a TurboCas9 nickase in an ABE to improve its genome editing activity. The resulting TurboABE exhibits amplified editing efficiency on a variety of adenine target sites without increasing off-target editing in DNA and RNA. An interesting feature of TurboABE is its ability to significantly improve the editing frequency at bases with normally inefficient editing rates in the editing window of each target DNA. Development of improved ABEs provides new possibilities for precise genetic modification of genes in living cells.
Collapse
Affiliation(s)
- Andrianto P Gandadireja
- Curtin Medical School, Curtin University, Bentley, Western Australia 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia 6102, Australia
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
| | - Pascal D Vos
- Curtin Medical School, Curtin University, Bentley, Western Australia 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia 6102, Australia
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
| | - Stefan J Siira
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- The Kids Research Institute Australia, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, Western Australia 6009, Australia
- Centre for Child Health Research, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Aleksandra Filipovska
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- The Kids Research Institute Australia, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, Western Australia 6009, Australia
- Centre for Child Health Research, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Oliver Rackham
- Curtin Medical School, Curtin University, Bentley, Western Australia 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia 6102, Australia
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- The Kids Research Institute Australia, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, Western Australia 6009, Australia
| |
Collapse
|
7
|
Hibshman GN, Bravo JPK, Hooper MM, Dangerfield TL, Zhang H, Finkelstein IJ, Johnson KA, Taylor DW. Unraveling the mechanisms of PAMless DNA interrogation by SpRY-Cas9. Nat Commun 2024; 15:3663. [PMID: 38688943 PMCID: PMC11061278 DOI: 10.1038/s41467-024-47830-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
CRISPR-Cas9 is a powerful tool for genome editing, but the strict requirement for an NGG protospacer-adjacent motif (PAM) sequence immediately next to the DNA target limits the number of editable genes. Recently developed Cas9 variants have been engineered with relaxed PAM requirements, including SpG-Cas9 (SpG) and the nearly PAM-less SpRY-Cas9 (SpRY). However, the molecular mechanisms of how SpRY recognizes all potential PAM sequences remains unclear. Here, we combine structural and biochemical approaches to determine how SpRY interrogates DNA and recognizes target sites. Divergent PAM sequences can be accommodated through conformational flexibility within the PAM-interacting region, which facilitates tight binding to off-target DNA sequences. Nuclease activation occurs ~1000-fold slower than for Streptococcus pyogenes Cas9, enabling us to directly visualize multiple on-pathway intermediate states. Experiments with SpG position it as an intermediate enzyme between Cas9 and SpRY. Our findings shed light on the molecular mechanisms of PAMless genome editing.
Collapse
Affiliation(s)
- Grace N Hibshman
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
- Interdisciplinary Life Sciences Graduate Programs, Austin, TX, 78712, USA
| | - Jack P K Bravo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA.
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria.
| | - Matthew M Hooper
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
- Interdisciplinary Life Sciences Graduate Programs, Austin, TX, 78712, USA
| | - Tyler L Dangerfield
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - Hongshan Zhang
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Ilya J Finkelstein
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Kenneth A Johnson
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
- Interdisciplinary Life Sciences Graduate Programs, Austin, TX, 78712, USA
| | - David W Taylor
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA.
- Interdisciplinary Life Sciences Graduate Programs, Austin, TX, 78712, USA.
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, 78712, USA.
- LIVESTRONG Cancer Institutes, Dell Medical School, Austin, TX, 78712, USA.
| |
Collapse
|
8
|
Vos PD, Gandadireja AP, Rossetti G, Siira SJ, Mantegna JL, Filipovska A, Rackham O. Mutational rescue of the activity of high-fidelity Cas9 enzymes. CELL REPORTS METHODS 2024; 4:100756. [PMID: 38608689 PMCID: PMC11046035 DOI: 10.1016/j.crmeth.2024.100756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/02/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024]
Abstract
Programmable DNA endonucleases derived from bacterial genetic defense systems, exemplified by CRISPR-Cas9, have made it significantly easier to perform genomic modifications in living cells. However, unprogrammed, off-target modifications can have serious consequences, as they often disrupt the function or regulation of non-targeted genes and compromise the safety of therapeutic gene editing applications. High-fidelity mutants of Cas9 have been established to enable more accurate gene editing, but these are typically less efficient. Here, we merge the strengths of high-fidelity Cas9 and hyperactive Cas9 variants to provide an enzyme, which we dub HyperDriveCas9, that yields the desirable properties of both parents. HyperDriveCas9 functions efficiently in mammalian cells and introduces insertion and deletion mutations into targeted genomic regions while maintaining a favorable off-target profile. HyperDriveCas9 is a precise and efficient tool for gene editing applications in science and medicine.
Collapse
Affiliation(s)
- Pascal D Vos
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia; Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia; Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA 6009, Australia; ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - Andrianto P Gandadireja
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia; Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia; Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA 6009, Australia; ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - Giulia Rossetti
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA 6009, Australia; ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA 6009, Australia; Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009, Australia; Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, WA 6009, Australia
| | - Stefan J Siira
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia; ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA 6009, Australia; Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009, Australia; Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, WA 6009, Australia
| | - Jessica L Mantegna
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia; Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia; Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA 6009, Australia; ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - Aleksandra Filipovska
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA 6009, Australia; Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009, Australia; Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, WA 6009, Australia
| | - Oliver Rackham
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia; Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia; Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA 6009, Australia; ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA 6009, Australia; Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, WA 6009, Australia.
| |
Collapse
|
9
|
Sun R, Zheng P, Chen P, Wu D, Zheng J, Liu X, Hu Y. Enhancing the Catalytic Efficiency of D-lactonohydrolase through the Synergy of Tunnel Engineering, Evolutionary Analysis, and Force-Field Calculations. Chemistry 2024; 30:e202304164. [PMID: 38217521 DOI: 10.1002/chem.202304164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/15/2024]
Abstract
Computational design advances enzyme evolution and their use in biocatalysis in a faster and more efficient manner. In this study, a synergistic approach integrating tunnel engineering, evolutionary analysis, and force-field calculations has been employed to enhance the catalytic activity of D-lactonohydrolase (D-Lac), which is a pivotal enzyme involved in the resolution of racemic pantolactone during the production of vitamin B5. The best mutant, N96S/A271E/F274Y/F308G (M3), was obtained and its catalytic efficiency (kcat/KM) was nearly 23-fold higher than that of the wild-type. The M3 whole-cell converted 20 % of DL-pantolactone into D-pantoic acid (D-PA, >99 % e.e.) with a conversion rate of 47 % and space-time yield of 107.1 g L-1 h-1, demonstrating its great potential for industrial-scale D-pantothenic acid production. Molecular dynamics (MD) simulations revealed that the reduction in the steric hindrance within the substrate tunnel and conformational reconstruction of the distal loop resulted in a more favourable"catalytic" conformation, making it easier for the substrate and enzyme to enter their pre-reaction state. This study illustrates the potential of the distal residue on the pivotal loop at the entrance of the D-Lac substrate tunnel as a novel modification hotspot capable of reshaping energy patterns and consequently influencing the enzymatic activity.
Collapse
Affiliation(s)
- Ruobin Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Pu Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Pengcheng Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Dan Wu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Jiangmei Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Xueyu Liu
- Hangzhou Xinfu Technology Co., Ltd., Hangzhou, 311301, P. R. China
| | - Yunxiang Hu
- Hangzhou Xinfu Technology Co., Ltd., Hangzhou, 311301, P. R. China
| |
Collapse
|
10
|
Kovalev MA, Davletshin AI, Karpov DS. Engineering Cas9: next generation of genomic editors. Appl Microbiol Biotechnol 2024; 108:209. [PMID: 38353732 PMCID: PMC10866799 DOI: 10.1007/s00253-024-13056-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
The Cas9 endonuclease of the CRISPR/Cas type IIA system from Streptococcus pyogenes is the heart of genome editing technology that can be used to treat human genetic and viral diseases. Despite its large size and other drawbacks, S. pyogenes Cas9 remains the most widely used genome editor. A vast amount of research is aimed at improving Cas9 as a promising genetic therapy. Strategies include directed evolution of the Cas9 protein, rational design, and domain swapping. The first generation of Cas9 editors comes directly from the wild-type protein. The next generation is obtained by combining mutations from the first-generation variants, adding new mutations to them, or refining mutations. This review summarizes and discusses recent advances and ways in the creation of next-generation genomic editors derived from S. pyogenes Cas9. KEY POINTS: • The next-generation Cas9-based editors are more active than in the first one. • PAM-relaxed variants of Cas9 are improved by increased specificity and activity. • Less mutagenic and immunogenic variants of Cas9 are created.
Collapse
Affiliation(s)
- Maxim A Kovalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991, Moscow, Russia
- Department of Biology, Lomonosov Moscow State University, 119234, Moscow, Russia
| | - Artem I Davletshin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991, Moscow, Russia
| | - Dmitry S Karpov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991, Moscow, Russia.
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991, Moscow, Russia.
| |
Collapse
|
11
|
Karpov DS, Sosnovtseva AO, Pylina SV, Bastrich AN, Petrova DA, Kovalev MA, Shuvalova AI, Eremkina AK, Mokrysheva NG. Challenges of CRISPR/Cas-Based Cell Therapy for Type 1 Diabetes: How Not to Engineer a "Trojan Horse". Int J Mol Sci 2023; 24:17320. [PMID: 38139149 PMCID: PMC10743607 DOI: 10.3390/ijms242417320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Type 1 diabetes mellitus (T1D) is an autoimmune disease caused by the destruction of insulin-producing β-cells in the pancreas by cytotoxic T-cells. To date, there are no drugs that can prevent the development of T1D. Insulin replacement therapy is the standard care for patients with T1D. This treatment is life-saving, but is expensive, can lead to acute and long-term complications, and results in reduced overall life expectancy. This has stimulated the research and development of alternative treatments for T1D. In this review, we consider potential therapies for T1D using cellular regenerative medicine approaches with a focus on CRISPR/Cas-engineered cellular products. However, CRISPR/Cas as a genome editing tool has several drawbacks that should be considered for safe and efficient cell engineering. In addition, cellular engineering approaches themselves pose a hidden threat. The purpose of this review is to critically discuss novel strategies for the treatment of T1D using genome editing technology. A well-designed approach to β-cell derivation using CRISPR/Cas-based genome editing technology will significantly reduce the risk of incorrectly engineered cell products that could behave as a "Trojan horse".
Collapse
Affiliation(s)
- Dmitry S. Karpov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (D.S.K.); (A.O.S.); (M.A.K.); (A.I.S.)
| | - Anastasiia O. Sosnovtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (D.S.K.); (A.O.S.); (M.A.K.); (A.I.S.)
| | - Svetlana V. Pylina
- Endocrinology Research Centre, 115478 Moscow, Russia; (S.V.P.); (A.N.B.); (D.A.P.); (A.K.E.)
| | - Asya N. Bastrich
- Endocrinology Research Centre, 115478 Moscow, Russia; (S.V.P.); (A.N.B.); (D.A.P.); (A.K.E.)
| | - Darya A. Petrova
- Endocrinology Research Centre, 115478 Moscow, Russia; (S.V.P.); (A.N.B.); (D.A.P.); (A.K.E.)
| | - Maxim A. Kovalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (D.S.K.); (A.O.S.); (M.A.K.); (A.I.S.)
| | - Anastasija I. Shuvalova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (D.S.K.); (A.O.S.); (M.A.K.); (A.I.S.)
| | - Anna K. Eremkina
- Endocrinology Research Centre, 115478 Moscow, Russia; (S.V.P.); (A.N.B.); (D.A.P.); (A.K.E.)
| | - Natalia G. Mokrysheva
- Endocrinology Research Centre, 115478 Moscow, Russia; (S.V.P.); (A.N.B.); (D.A.P.); (A.K.E.)
| |
Collapse
|
12
|
Han Y, Cao L, Li G, Zhou F, Bai L, Su J. Harnessing Nucleic Acids Nanotechnology for Bone/Cartilage Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301996. [PMID: 37116115 DOI: 10.1002/smll.202301996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/29/2023] [Indexed: 06/19/2023]
Abstract
The effective regeneration of weight-bearing bone defects and critical-sized cartilage defects remains a significant clinical challenge. Traditional treatments such as autologous and allograft bone grafting have not been successful in achieving the desired outcomes, necessitating the need for innovative therapeutic approaches. Nucleic acids have attracted significant attention due to their ability to be designed to form discrete structures and programmed to perform specific functions at the nanoscale. The advantages of nucleic acid nanotechnology offer numerous opportunities for in-cell and in vivo applications, and hold great promise for advancing the field of biomaterials. In this review, the current abilities of nucleic acid nanotechnology to be applied in bone and cartilage regeneration are summarized and insights into the challenges and future directions for the development of this technology are provided.
Collapse
Affiliation(s)
- Yafei Han
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Liehu Cao
- Department of Orthopedics, Shanghai Luodian Hospital, Shanghai, 201908, China
| | - Guangfeng Li
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, 201941, China
| | - Fengjin Zhou
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Long Bai
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
13
|
Weinstein JY, Martí-Gómez C, Lipsh-Sokolik R, Hoch SY, Liebermann D, Nevo R, Weissman H, Petrovich-Kopitman E, Margulies D, Ivankov D, McCandlish DM, Fleishman SJ. Designed active-site library reveals thousands of functional GFP variants. Nat Commun 2023; 14:2890. [PMID: 37210560 PMCID: PMC10199939 DOI: 10.1038/s41467-023-38099-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/13/2023] [Indexed: 05/22/2023] Open
Abstract
Mutations in a protein active site can lead to dramatic and useful changes in protein activity. The active site, however, is sensitive to mutations due to a high density of molecular interactions, substantially reducing the likelihood of obtaining functional multipoint mutants. We introduce an atomistic and machine-learning-based approach, called high-throughput Functional Libraries (htFuncLib), that designs a sequence space in which mutations form low-energy combinations that mitigate the risk of incompatible interactions. We apply htFuncLib to the GFP chromophore-binding pocket, and, using fluorescence readout, recover >16,000 unique designs encoding as many as eight active-site mutations. Many designs exhibit substantial and useful diversity in functional thermostability (up to 96 °C), fluorescence lifetime, and quantum yield. By eliminating incompatible active-site mutations, htFuncLib generates a large diversity of functional sequences. We envision that htFuncLib will be used in one-shot optimization of activity in enzymes, binders, and other proteins.
Collapse
Affiliation(s)
| | - Carlos Martí-Gómez
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Rosalie Lipsh-Sokolik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Shlomo Yakir Hoch
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Demian Liebermann
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Reinat Nevo
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Haim Weissman
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | | | - David Margulies
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Dmitry Ivankov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - David M McCandlish
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Sarel J Fleishman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
14
|
Vos PD, Filipovska A, Rackham O. Frankenstein Cas9: engineering improved gene editing systems. Biochem Soc Trans 2022; 50:1505-1516. [PMID: 36305591 DOI: 10.1042/bst20220873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 01/05/2024]
Abstract
The discovery of CRISPR-Cas9 and its widespread use has revolutionised and propelled research in biological sciences. Although the ability to target Cas9's nuclease activity to specific sites via an easily designed guide RNA (gRNA) has made it an adaptable gene editing system, it has many characteristics that could be improved for use in biotechnology. Cas9 exhibits significant off-target activity and low on-target nuclease activity in certain contexts. Scientists have undertaken ambitious protein engineering campaigns to bypass these limitations, producing several promising variants of Cas9. Cas9 variants with improved and alternative activities provide exciting new tools to expand the scope and fidelity of future CRISPR applications.
Collapse
Affiliation(s)
- Pascal D Vos
- Curtin Medical School, Curtin University, Bentley, Western Australia 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia 6102, Australia
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, Western Australia 6009, Australia
| | - Oliver Rackham
- Curtin Medical School, Curtin University, Bentley, Western Australia 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia 6102, Australia
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, Western Australia 6009, Australia
| |
Collapse
|