1
|
Pasut A, Lama E, Van Craenenbroeck AH, Kroon J, Carmeliet P. Endothelial cell metabolism in cardiovascular physiology and disease. Nat Rev Cardiol 2025:10.1038/s41569-025-01162-x. [PMID: 40346347 DOI: 10.1038/s41569-025-01162-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/15/2025] [Indexed: 05/11/2025]
Abstract
Endothelial cells are multifunctional cells that form the inner layer of blood vessels and have a crucial role in vasoreactivity, angiogenesis, immunomodulation, nutrient uptake and coagulation. Endothelial cells have unique metabolism and are metabolically heterogeneous. The microenvironment and metabolism of endothelial cells contribute to endothelial cell heterogeneity and metabolic specialization. Endothelial cell dysfunction is an early event in the development of several cardiovascular diseases and has been shown, at least to some extent, to be driven by metabolic changes preceding the manifestation of clinical symptoms. Diabetes mellitus, hypertension, obesity and chronic kidney disease are all risk factors for cardiovascular disease. Changes in endothelial cell metabolism induced by these cardiometabolic stressors accelerate the accumulation of dysfunctional endothelial cells in tissues and the development of cardiovascular disease. In this Review, we discuss the diversity of metabolic programmes that control endothelial cell function in the cardiovascular system and how these metabolic programmes are perturbed in different cardiovascular diseases in a disease-specific manner. Finally, we discuss the potential and challenges of targeting endothelial cell metabolism for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Alessandra Pasut
- Laboratory of Angiogenesis & Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Eleonora Lama
- Laboratory of Angiogenesis & Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Amaryllis H Van Craenenbroeck
- Division of Nephrology, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium
| | - Jeffrey Kroon
- Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischaemic Syndromes, Amsterdam, The Netherlands.
| | - Peter Carmeliet
- Laboratory of Angiogenesis & Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven, Belgium.
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
2
|
Bouwens D, Kabgani N, Bergerbit C, Kim H, Ziegler S, Ijaz S, Abdallah A, Haraszti T, Maryam S, Omidinia-Anarkoli A, De Laporte L, Hayat S, Jansen J, Kramann R. A bioprinted and scalable model of human tubulo-interstitial kidney fibrosis. Biomaterials 2025; 316:123009. [PMID: 39705928 DOI: 10.1016/j.biomaterials.2024.123009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024]
Abstract
Chronic kidney disease (CKD) affects more than 10% of the global population. As kidney function negatively correlates with the presence of interstitial fibrosis, the development of new anti-fibrotic therapies holds promise to stabilize functional decline in CKD patients. The goal of the study was to generate a scalable bioprinted 3-dimensional kidney tubulo-interstitial disease model of kidney fibrosis. We have generated novel human PDGFRβ+ pericytes, CD10+ epithelial and CD31+ endothelial cell lines and compared their transcriptomic signature to their in vivo counterpart using bulk RNA sequencing in comparison to human kidney single cell RNA-sequencing datasets. This comparison indicated that the novel cell lines still expressed kidney cell specific genes and shared many features with their native cell-state. PDGFRβ+ pericytes showed three-lineage differentiation capacity and differentiated towards myofibroblasts following TGFβ treatment. We utilized a fibrinogen/gelatin-based hydrogel as bioink and confirmed a good survival rate of all cell types within the bioink after printing. We then combined all three cells in a bioprinted model using separately printed compartments for tubule epithelium, and interstitial endothelium and pericytes. We confirmed that this 3D printed model allows to recapitulate key disease driving epithelial-mesenchymal crosstalk mechanisms of kidney fibrosis since injury of epithelial cells prior to bioprinting resulted in myofibroblast differentiation and fibrosis driven by pericytes after bioprinting. The bioprinted model was also scalable up to a 96-well format.
Collapse
Affiliation(s)
- Daphne Bouwens
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology, Hypertension), RWTH Aachen University Medical Faculty, Aachen, Germany
| | - Nazanin Kabgani
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology, Hypertension), RWTH Aachen University Medical Faculty, Aachen, Germany
| | - Cédric Bergerbit
- DWI-Leibniz Institute for Interactive Materials e.V., Aachen, Germany; AMB-Advanced Materials for Biomedicine, Institute of Applied Medical Engineering, University Hospital Aachen, Germany
| | - Hyojin Kim
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology, Hypertension), RWTH Aachen University Medical Faculty, Aachen, Germany
| | - Susanne Ziegler
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology, Hypertension), RWTH Aachen University Medical Faculty, Aachen, Germany
| | - Sadaf Ijaz
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology, Hypertension), RWTH Aachen University Medical Faculty, Aachen, Germany
| | - Ali Abdallah
- Interdisciplinary Center for Clinical Research, RWTH University Aachen, Germany
| | - Tamás Haraszti
- ITMC-Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany; DWI-Leibniz Institute for Interactive Materials e.V., Aachen, Germany
| | - Sidrah Maryam
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology, Hypertension), RWTH Aachen University Medical Faculty, Aachen, Germany
| | - Abdolrahman Omidinia-Anarkoli
- DWI-Leibniz Institute for Interactive Materials e.V., Aachen, Germany; AMB-Advanced Materials for Biomedicine, Institute of Applied Medical Engineering, University Hospital Aachen, Germany
| | - Laura De Laporte
- ITMC-Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany; DWI-Leibniz Institute for Interactive Materials e.V., Aachen, Germany; AMB-Advanced Materials for Biomedicine, Institute of Applied Medical Engineering, University Hospital Aachen, Germany
| | - Sikander Hayat
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology, Hypertension), RWTH Aachen University Medical Faculty, Aachen, Germany
| | - Jitske Jansen
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology, Hypertension), RWTH Aachen University Medical Faculty, Aachen, Germany
| | - Rafael Kramann
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology, Hypertension), RWTH Aachen University Medical Faculty, Aachen, Germany; Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
3
|
Torregrossa M, Davies L, Hans-Günther M, Simon JC, Franz S, Rinkevich Y. Effects of embryonic origin, tissue cues and pathological signals on fibroblast diversity in humans. Nat Cell Biol 2025; 27:720-735. [PMID: 40263573 DOI: 10.1038/s41556-025-01638-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/18/2025] [Indexed: 04/24/2025]
Abstract
Fibroblasts, once perceived as a uniform cell type, are now recognized as a mosaic of distinct populations with specialized roles in tissue homeostasis and pathology. Here we provide a global overview of the expanding compendium of fibroblast cell types and states, their diverse lineage origins and multifaceted functions across various human organs. By integrating insights from developmental biology, lineage tracing and single-cell technologies, we highlight the complex nature of fibroblasts. We delve into their origination from embryonic mesenchyme and tissue-resident populations, elucidating lineage-specific behaviours in response to physiological cues. Furthermore, we highlight the pivotal role of fibroblasts in orchestrating tissue repair, connective tissue remodelling and immune modulation across diverse pathologies. This knowledge is essential to develop novel fibroblast-targeted therapies to restore steady-state fibroblast function and advance regenerative medicine strategies across multiple diseases.
Collapse
Affiliation(s)
- Marta Torregrossa
- Department of Dermatology, Venereology and Allergology, Leipzig University Medical Faculty, Leipzig, Germany
| | - Lindsay Davies
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Machens Hans-Günther
- Department for Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Jan C Simon
- Department of Dermatology, Venereology and Allergology, Leipzig University Medical Faculty, Leipzig, Germany
| | - Sandra Franz
- Department of Dermatology, Venereology and Allergology, Leipzig University Medical Faculty, Leipzig, Germany.
| | - Yuval Rinkevich
- Chinese Institutes for Medical Research, Beijing, China.
- Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Ghazal R, Wang M, Liu D, Tschumperlin DJ, Pereira NL. Cardiac Fibrosis in the Multi-Omics Era: Implications for Heart Failure. Circ Res 2025; 136:773-802. [PMID: 40146800 PMCID: PMC11949229 DOI: 10.1161/circresaha.124.325402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Cardiac fibrosis, a hallmark of heart failure and various cardiomyopathies, represents a complex pathological process that has long challenged therapeutic intervention. High-throughput omics technologies have begun revolutionizing our understanding of the molecular mechanisms driving cardiac fibrosis and are providing unprecedented insights into its heterogeneity and progression. This review provides a comprehensive analysis of how techniques-encompassing genomics, epigenomics, transcriptomics, proteomics, and metabolomics-are providing insight into our understanding of cardiac fibrosis. Genomic studies have identified novel genetic variants and regulatory networks associated with fibrosis susceptibility and progression, and single-cell transcriptomics has unveiled distinct cardiac fibroblast subpopulations with unique molecular signatures. Epigenomic profiling has revealed dynamic chromatin modifications controlling fibroblast activation states, and proteomic analyses have identified novel biomarkers and potential therapeutic targets. Metabolomic studies have uncovered important alterations in cardiac energetics and substrate utilization during fibrotic remodeling. The integration of these multi-omic data sets has led to the identification of previously unrecognized pathogenic mechanisms and potential therapeutic targets, including cell-type-specific interventions and metabolic modulators. We discuss how these advances are driving the development of precision medicine approaches for cardiac fibrosis while highlighting current challenges and future directions in translating multi-omic insights into effective therapeutic strategies. This review provides a systems-level perspective on cardiac fibrosis that may inform the development of more effective, personalized therapeutic approaches for heart failure and related cardiovascular diseases.
Collapse
Affiliation(s)
- Rachad Ghazal
- Departments of Cardiovascular Diseases (R.G., N.L.P.), Mayo Clinic, Rochester, MN
| | - Min Wang
- Molecular Pharmacology and Experimental Therapeutics (M.W., D.L., N.L.P.), Mayo Clinic, Rochester, MN
| | - Duan Liu
- Molecular Pharmacology and Experimental Therapeutics (M.W., D.L., N.L.P.), Mayo Clinic, Rochester, MN
| | | | - Naveen L. Pereira
- Departments of Cardiovascular Diseases (R.G., N.L.P.), Mayo Clinic, Rochester, MN
- Molecular Pharmacology and Experimental Therapeutics (M.W., D.L., N.L.P.), Mayo Clinic, Rochester, MN
| |
Collapse
|
5
|
Boquet-Pujadas A, Zeng J, Tian YE, Yang Z, Shen L, Zalesky A, Davatzikos C, Wen J. MUTATE: a human genetic atlas of multiorgan artificial intelligence endophenotypes using genome-wide association summary statistics. Brief Bioinform 2025; 26:bbaf125. [PMID: 40135505 PMCID: PMC11938998 DOI: 10.1093/bib/bbaf125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/09/2025] [Accepted: 03/03/2025] [Indexed: 03/27/2025] Open
Abstract
Artificial intelligence (AI) has been increasingly integrated into imaging genetics to provide intermediate phenotypes (i.e. endophenotypes) that bridge the genetics and clinical manifestations of human disease. However, the genetic architecture of these AI endophenotypes remains largely unexplored in the context of human multiorgan system diseases. Using publicly available genome-wide association study summary statistics from the UK Biobank (UKBB), FinnGen, and the Psychiatric Genomics Consortium, we comprehensively depicted the genetic architecture of 2024 multiorgan AI endophenotypes (MAEs). We comparatively assessed the single-nucleotide polymorphism-based heritability, polygenicity, and natural selection signatures of 2024 MAEs using methods commonly used in the field. Genetic correlation and Mendelian randomization analyses reveal both within-organ relationships and cross-organ interconnections. Bi-directional causal relationships were established between chronic human diseases and MAEs across multiple organ systems, including Alzheimer's disease for the brain, diabetes for the metabolic system, asthma for the pulmonary system, and hypertension for the cardiovascular system. Finally, we derived polygenic risk scores for the 2024 MAEs for individuals not used to calculate MAEs and returned these to the UKBB. Our findings underscore the promise of the MAEs as new instruments to ameliorate overall human health. All results are encapsulated into the MUlTiorgan AI endophenoTypE genetic atlas and are publicly available at https://labs-laboratory.com/mutate.
Collapse
Affiliation(s)
- Aleix Boquet-Pujadas
- Laboratory of AI and Biomedical Science (LABS), Columbia University, 530 W 166th St, New York, NY 10032, United States
| | - Jian Zeng
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Ye Ella Tian
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Alan Gilbert Building, Level 3/161 Barry St, Carlton VIC 3053, Australia
| | - Zhijian Yang
- GE Healthcare, 1040 12th Ave NW, Issaquah, WA 98027, United States
| | - Li Shen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, 423 N Service Dr, Philadelphia, PA 19104, United States
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Alan Gilbert Building, Level 3/161 Barry St, Carlton VIC 3053, Australia
| | - Christos Davatzikos
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk Richards Building, 7th Floor Philadelphia, PA 19104, United States
| | | | - Junhao Wen
- Laboratory of AI and Biomedical Science (LABS), Columbia University, 530 W 166th St, New York, NY 10032, United States
- New York Genome Center (NYGC), 101 6th Ave, New York, NY 10013, United States
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Ave, New York, NY 10027, United States
- Data Science Institute (DSI), Columbia University, Mudd Building, W 120th St, New York, NY 10027, United States
- Center for Innovation in Imaging Biomarkers and Integrated Diagnostics (CIMBID), Department of Radiology, Columbia University, 530 W 166th St, New York, NY 10032, United States
- Zuckerman Institute, Columbia University, New York, NY, United States
| |
Collapse
|
6
|
Kumari K, Verma K, Sahu M, Dwivedi J, Paliwal S, Sharma S. Emerging role of mesenchymal cells in cardiac and cerebrovascular diseases: Physiology, pathology, and therapeutic implications. Vascul Pharmacol 2025:107473. [PMID: 39993517 DOI: 10.1016/j.vph.2025.107473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/11/2025] [Accepted: 02/20/2025] [Indexed: 02/26/2025]
Abstract
In recent years, the therapeutic utility of mesenchymal stem cells (MSCs) has received substantial attention from investigators, owing to their pleiotropic properties. The emerging insights from the developments in tissue engineering provide perspectives for the repair of damaged tissue and the replacement of failing organs. Perivascular cells including MSC-like pericytes, vascular smooth muscles, and other cells located around blood vessels, have been acknowledged to contribute to in situ angiogenesis and repair process. MSCs offer a wide array of therapeutic applications in different pathological states. However, in the current article, we have highlighted the recent updates on MSCs and their key applications in cardiac and cerebrovascular diseases, evident in different preclinical and clinical studies. We believe the present article would assist the investigators in understanding the recent advances of MSCs and exploring their therapeutic potential in varied ailments, especially cardiac and cerebrovascular diseases.
Collapse
Affiliation(s)
- Kajal Kumari
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Kanika Verma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; Department of Internal Medicine, Division of Cardiology, LSU Health Sciences Center - Shreveport, LA, USA
| | - Meenal Sahu
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; Department of Bioscience & Biotechnology, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Sarvesh Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India.
| |
Collapse
|
7
|
Yamada Y, Sadahiro T, Nakano K, Honda S, Abe Y, Akiyama T, Fujita R, Nakamura M, Maeda T, Kuze Y, Onishi M, Seki M, Suzuki Y, Takeuchi C, Iwasaki YW, Murano K, Sakata-Yanagimoto M, Chiba S, Kato H, Sakamoto H, Hiramatsu Y, Ieda M. Cardiac Reprogramming and Gata4 Overexpression Reduce Fibrosis and Improve Diastolic Dysfunction in Heart Failure With Preserved Ejection Fraction. Circulation 2025; 151:379-395. [PMID: 39673349 DOI: 10.1161/circulationaha.123.067504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/24/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND Heart failure with preserved ejection fraction (HFpEF) is a major health concern. Pathological stimuli and interactions between cardiac fibroblasts (CFs) and other cell types may lead to cardiac fibrosis and diastolic dysfunction, which are hallmarks of HFpEF. Interstitial and perivascular cardiac fibrosis correlates with poor prognosis in HFpEF; however, mechanisms of fibrosis remain poorly elucidated, and targeted therapies are lacking. Cardiac reprogramming is a promising therapeutic approach for myocardial infarction that facilitates cardiac regeneration and antifibrosis action through Mef2c/Gata4/Tbx5/Hand2 (MGTH) overexpression in resident CFs. However, the efficacy of this approach on HFpEF is yet to be established. METHODS Herein, we examined the effects of cardiac reprogramming in HFpEF using Tcf21iCre/Tomato/MGTH2A transgenic mice, which expressed both MGTH and reporter expression in CFs for cardiac reprogramming and lineage tracing upon tamoxifen administration. To establish HFpEF model mice, we used a combination of a high-fat diet and nitric oxide synthase inhibition. Bulk RNA-sequencing, single-cell RNA-sequencing, and spatial transcriptomics were conducted to determine fibrotic mechanisms and the efficacy of cardiac reprogramming in HFpEF. We generated new tamoxifen-inducible transgenic mice overexpressing each reprogramming factor in CFs to investigate the effect of single factors. Last, we analyzed the effect of reprogramming factors in human CFs. RESULTS Cardiac reprogramming with MGTH overexpression improved diastolic dysfunction, cardiac hypertrophy, fibrosis, inflammation, and capillary loss in HFpEF. Cardiac reprogramming converted approximately 1% of resident CFs into induced cardiomyocytes. Bulk RNA-seq indicated that MGTH overexpression upregulated genes related to heart contraction and suppressed the fetal gene program (Nppa and Nppb) and proinflammatory and fibrotic signatures. Single-cell RNA-sequencing and spatial transcriptomics revealed that multiple CF clusters upregulated fibrotic genes to induce diffuse interstitial fibrosis, whereas distinct CF clusters generated focal perivascular fibrosis in HFpEF. MGTH overexpression reversed these profibrotic changes. Among 4 reprogramming factors, only Gata4 overexpression in CFs reduced fibrosis and improved diastolic dysfunction in HFpEF by suppressing CF activation without generating new induced cardiomyocytes. Gata4 overexpression also suppressed profibrotic signatures in human CFs. CONCLUSIONS Overexpressing Gata4 in CFs may be a promising therapeutic approach for HFpEF by suppressing fibrosis and improving diastolic dysfunction.
Collapse
Affiliation(s)
- Yu Yamada
- Department of Cardiology (Y.Y., K.N., S.H., Y.A., T.A., R.F.), University of Tsukuba, Japan
| | - Taketaro Sadahiro
- Department of Cardiology, Keio University School of Medicine (T.S., M.N., T.M., M.I.), Tokyo, Japan
| | - Koji Nakano
- Department of Cardiology (Y.Y., K.N., S.H., Y.A., T.A., R.F.), University of Tsukuba, Japan
| | - Seiichiro Honda
- Department of Cardiology (Y.Y., K.N., S.H., Y.A., T.A., R.F.), University of Tsukuba, Japan
| | - Yuto Abe
- Department of Cardiology (Y.Y., K.N., S.H., Y.A., T.A., R.F.), University of Tsukuba, Japan
| | - Tatsuya Akiyama
- Department of Cardiology (Y.Y., K.N., S.H., Y.A., T.A., R.F.), University of Tsukuba, Japan
- Department of Respiratory Medicine (T.A.), University of Tsukuba, Japan
| | - Ryo Fujita
- Department of Cardiology (Y.Y., K.N., S.H., Y.A., T.A., R.F.), University of Tsukuba, Japan
- Institute of Medicine, Division of Regenerative Medicine, Transborder Medical Research Center (R.F.), University of Tsukuba, Japan
| | - Masashi Nakamura
- Department of Cardiology, Keio University School of Medicine (T.S., M.N., T.M., M.I.), Tokyo, Japan
| | - Takashi Maeda
- Department of Cardiology, Keio University School of Medicine (T.S., M.N., T.M., M.I.), Tokyo, Japan
| | - Yuta Kuze
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan (Y.K., M.O., M.S., Y.S.)
| | - Masaya Onishi
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan (Y.K., M.O., M.S., Y.S.)
| | - Masahide Seki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan (Y.K., M.O., M.S., Y.S.)
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan (Y.K., M.O., M.S., Y.S.)
| | | | - Yuka W Iwasaki
- Laboratory for Functional Non-coding Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan (Y.W.I.)
| | - Kensaku Murano
- Department of Molecular Biology (C.T., K.M.), Tokyo, Japan
| | | | - Shigeru Chiba
- Department of Hematology (M.S.-Y., S.C.), University of Tsukuba, Japan
| | - Hideyuki Kato
- Department of Cardiovascular Surgery (H.K., H.S., Y.H.), University of Tsukuba, Japan
| | - Hiroaki Sakamoto
- Department of Cardiovascular Surgery (H.K., H.S., Y.H.), University of Tsukuba, Japan
| | - Yuji Hiramatsu
- Department of Cardiovascular Surgery (H.K., H.S., Y.H.), University of Tsukuba, Japan
| | - Masaki Ieda
- Department of Cardiology, Keio University School of Medicine (T.S., M.N., T.M., M.I.), Tokyo, Japan
| |
Collapse
|
8
|
Kreutz L, Gaab A, Dona M, Pinto AR, Tallquist MD, Groneberg D, Friebe A. Analysis of cellular NO-GC expression in the murine heart and lineage determination in angiotensin II-induced fibrosis. iScience 2025; 28:111615. [PMID: 39829679 PMCID: PMC11742323 DOI: 10.1016/j.isci.2024.111615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/22/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025] Open
Abstract
NO-sensitive guanylyl cyclase (NO-GC) is involved in the (patho)physiology of the mammalian heart. However, little is known about the individual cardiac cell types that express NO-GC and the role of the enzyme in cardiac fibrosis. Here, we describe the cellular expression of NO-GC in healthy and fibrotic murine myocardium; these data were compared with scRNA-seq data. In healthy myocardium, NO-GC is strongly expressed in pericytes and smooth muscle cells but not in endothelial cells or cardiomyocytes. Angiotensin II induced cardiac hypertrophy and fibrosis; fibrotic lesions contained cells positive for NO-GC identified as activated fibroblasts. Lineage tracing indicates that NO-GC-expressing activated fibroblasts originate from PDGFRβ- and Tcf21-positive fibroblast precursors. Our data indicate NO-GC expression in cardiac pericytes and SMC in naive myocardium and in activated fibroblast in fibrotic heart tissue. NO-mediated signaling may modulate fibrotic responses underlying the action of NO-GC stimulators used in the therapy of heart failure.
Collapse
Affiliation(s)
- Lennart Kreutz
- Physiologisches Institut, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Annika Gaab
- Physiologisches Institut, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Malathi Dona
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | | | - Michelle D. Tallquist
- Center for Cardiovascular Research, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Dieter Groneberg
- Translational Center for Regenerative Therapies (TLC-RT), Fraunhofer Institute for Silicate Research (ISC), 97082 Würzburg, Germany
| | - Andreas Friebe
- Physiologisches Institut, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| |
Collapse
|
9
|
Coren L, Zaffryar-Eilot S, Odeh A, Kaganovsky A, Hasson P. Fibroblast diversification is an embryonic process dependent on muscle contraction. Cell Rep 2024; 43:115034. [PMID: 39636726 DOI: 10.1016/j.celrep.2024.115034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/18/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Fibroblasts, the most common cell type found in connective tissues, play major roles in development, homeostasis, regeneration, and disease. Although specific fibroblast subpopulations have been associated with different biological processes, the mechanisms and unique activities underlying their diversity have not been thoroughly examined. Here, we set out to dissect the variation in skeletal-muscle-resident fibroblasts (mrFibroblasts) during development. Our results demonstrate that mrFibroblasts diversify following the transition from embryonic to fetal myogenesis prior to birth. We find that mrFibroblasts segregate into two major subpopulations occupying distinct niches, with interstitial fibroblasts residing between the muscle fibers and delineating fibroblasts sheathing the muscle. We further show that these subpopulations entail distinct cellular dynamics and transcriptomes. Notably, we find that mrFibroblast subpopulations exert distinct regulatory roles on myoblast proliferation and differentiation. Finally, we demonstrate that this diversification depends on muscle contraction. Altogether, these findings establish that mrFibroblasts diversify in a spatiotemporal embryonic process into distinct cell types, entailing different characteristics and roles.
Collapse
Affiliation(s)
- Lavi Coren
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Shelly Zaffryar-Eilot
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Anas Odeh
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Anna Kaganovsky
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Peleg Hasson
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel.
| |
Collapse
|
10
|
Tuleta I, Hanna A, Humeres C, Aguilan JT, Sidoli S, Zhu F, Frangogiannis NG. Fibroblast-specific TGF-β signaling mediates cardiac dysfunction, fibrosis, and hypertrophy in obese diabetic mice. Cardiovasc Res 2024; 120:2047-2063. [PMID: 39373248 DOI: 10.1093/cvr/cvae210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 06/10/2024] [Accepted: 08/07/2024] [Indexed: 10/08/2024] Open
Abstract
AIMS Transforming growth factor (TGF)-β is up-regulated in the diabetic myocardium and may mediate fibroblast activation. We aimed at examining the role of TGF-β-induced fibroblast activation in the pathogenesis of diabetic cardiomyopathy. METHODS AND RESULTS We generated lean and obese db/db mice with fibroblast-specific loss of TbR2, the Type 2 receptor-mediating signaling through all three TGF-β isoforms, and mice with fibroblast-specific Smad3 disruption. Systolic and diastolic function, myocardial fibrosis, and hypertrophy were assessed. Transcriptomic studies and in vitro experiments were used to dissect mechanisms of fibroblast activation. Fibroblast-specific TbR2 loss attenuated systolic and diastolic dysfunction in db/db mice. The protective effects of fibroblast TbR2 loss in db/db mice were associated with attenuated fibrosis and reduced cardiomyocyte hypertrophy, suggesting that in addition to their role in fibrous tissue deposition, TGF-β-stimulated fibroblasts may also exert paracrine actions on cardiomyocytes. Fibroblast-specific Smad3 loss phenocopied the protective effects of fibroblast TbR2 loss in db/db mice. Db/db fibroblasts had increased expression of genes associated with oxidative response (such as Fmo2, encoding flavin-containing monooxygenase 2), matricellular genes (such as Thbs4 and Fbln2), and Lox (encoding lysyl oxidase). Ingenuity pathway analysis (IPA) predicted that neurohumoral mediators, cytokines, and growth factors (such as AGT, TGFB1, and TNF) may serve as important upstream regulators of the transcriptomic profile of diabetic mouse fibroblasts. IPA of scRNA-seq data identified TGFB1, p53, MYC, PDGF-BB, EGFR, and WNT3A/CTNNB1 as important upstream regulators underlying fibroblast activation in db/db hearts. Comparison of the transcriptome of fibroblasts from db/db mice with fibroblast-specific Smad3 loss and db/db Smad3 fl/fl controls identified Thbs4 [encoding thrombospondin-4 (TSP-4), a marker of activated fibroblasts] as a candidate diabetes-induced fibrogenic mediator. However, in vitro experiments showed no significant activating effects of matricellular or intracellular TSP-4 on cardiac fibroblasts. CONCLUSION Fibroblast-specific TGF-β/Smad3 signaling mediates ventricular fibrosis, hypertrophy, and dysfunction in Type 2 diabetes.
Collapse
MESH Headings
- Animals
- Fibrosis
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Signal Transduction
- Transforming Growth Factor beta/metabolism
- Diabetic Cardiomyopathies/metabolism
- Diabetic Cardiomyopathies/pathology
- Diabetic Cardiomyopathies/physiopathology
- Diabetic Cardiomyopathies/genetics
- Diabetic Cardiomyopathies/etiology
- Obesity/metabolism
- Obesity/physiopathology
- Obesity/genetics
- Obesity/pathology
- Cells, Cultured
- Ventricular Function, Left
- Mice, Inbred C57BL
- Smad3 Protein/metabolism
- Smad3 Protein/genetics
- Disease Models, Animal
- Ventricular Remodeling
- Male
- Myocardium/metabolism
- Myocardium/pathology
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Dysfunction, Left/genetics
- Ventricular Dysfunction, Left/pathology
- Cardiomegaly/metabolism
- Cardiomegaly/pathology
- Cardiomegaly/physiopathology
- Cardiomegaly/genetics
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Mice
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/physiopathology
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/genetics
- Mice, Knockout
- Paracrine Communication
Collapse
Affiliation(s)
- Izabela Tuleta
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
| | - Anis Hanna
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
| | - Claudio Humeres
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
| | - Jennifer T Aguilan
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
| | - Fenglan Zhu
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
| | - Nikolaos G Frangogiannis
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
| |
Collapse
|
11
|
Zhang D, Wen Q, Zhang R, Kou K, Lin M, Zhang S, Yang J, Shi H, Yang Y, Tan X, Yin S, Ou X. From Cell to Gene: Deciphering the Mechanism of Heart Failure With Single-Cell Sequencing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308900. [PMID: 39159065 PMCID: PMC11497092 DOI: 10.1002/advs.202308900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 07/24/2024] [Indexed: 08/21/2024]
Abstract
Heart failure (HF) is a prevalent cardiovascular disease with significant morbidity and mortality rates worldwide. Due to the intricate structure of the heart, diverse cell types, and the complex pathogenesis of HF, further in-depth investigation into the underlying mechanisms is required. The elucidation of the heterogeneity of cardiomyocytes and the intercellular communication network is particularly important. Traditional high-throughput sequencing methods provide an average measure of gene expression, failing to capture the "heterogeneity" between cells and impacting the accuracy of gene function knowledge. In contrast, single-cell sequencing techniques allow for the amplification of the entire genome or transcriptome at the individual cell level, facilitating the examination of gene structure and expression with unparalleled precision. This approach offers valuable insights into disease mechanisms, enabling the identification of changes in cellular components and gene expressions during hypertrophy associated with HF. Moreover, it reveals distinct cell populations and their unique roles in the HF microenvironment, providing a comprehensive understanding of the cellular landscape that underpins HF pathogenesis. This review focuses on the insights provided by single-cell sequencing techniques into the mechanisms underlying HF and discusses the challenges encountered in current cardiovascular research.
Collapse
Affiliation(s)
- Dan Zhang
- Key Laboratory of Medical Electrophysiology of Ministry of EducationInstitute of Cardiovascular MedicineDepartment of Cardiology of the Affiliated HospitalSouthwest Medical UniversityLuzhouSichuan646000China
- Department of Rehabilitation MedicineSouthwest Medical UniversityLuzhouSichuan646000China
| | - Qiang Wen
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology1277 Jiefang RdWuhanHubei430022China
| | - Rui Zhang
- Key Laboratory of Medical Electrophysiology of Ministry of EducationInstitute of Cardiovascular MedicineDepartment of Cardiology of the Affiliated HospitalSouthwest Medical UniversityLuzhouSichuan646000China
| | - Kun Kou
- Key Laboratory of Medical Electrophysiology of Ministry of EducationInstitute of Cardiovascular MedicineDepartment of Cardiology of the Affiliated HospitalSouthwest Medical UniversityLuzhouSichuan646000China
| | - Miao Lin
- Key Laboratory of Medical Electrophysiology of Ministry of EducationInstitute of Cardiovascular MedicineDepartment of Cardiology of the Affiliated HospitalSouthwest Medical UniversityLuzhouSichuan646000China
| | - Shiyu Zhang
- Key Laboratory of Medical Electrophysiology of Ministry of EducationInstitute of Cardiovascular MedicineDepartment of Cardiology of the Affiliated HospitalSouthwest Medical UniversityLuzhouSichuan646000China
| | - Jun Yang
- Key Laboratory of Medical Electrophysiology of Ministry of EducationInstitute of Cardiovascular MedicineDepartment of Cardiology of the Affiliated HospitalSouthwest Medical UniversityLuzhouSichuan646000China
| | - Hangchuan Shi
- Department of Clinical & Translational ResearchUniversity of Rochester Medical Center265 Crittenden BlvdRochesterNY14642USA
- Department of Pathology and Laboratory MedicineUniversity of Rochester Medical Center601 Elmwood AveRochesterNY14642USA
| | - Yan Yang
- Key Laboratory of Medical Electrophysiology of Ministry of EducationInstitute of Cardiovascular MedicineDepartment of Cardiology of the Affiliated HospitalSouthwest Medical UniversityLuzhouSichuan646000China
| | - Xiaoqiu Tan
- Key Laboratory of Medical Electrophysiology of Ministry of EducationInstitute of Cardiovascular MedicineDepartment of Cardiology of the Affiliated HospitalSouthwest Medical UniversityLuzhouSichuan646000China
- Department of PhysiologySchool of Basic Medical SciencesSouthwest Medical UniversityLuzhouSichuan646000China
| | - Shigang Yin
- Luzhou Key Laboratory of Nervous system disease and Brain FunctionSouthwest Medical UniversityLuzhouSichuan646000China
| | - Xianhong Ou
- Key Laboratory of Medical Electrophysiology of Ministry of EducationInstitute of Cardiovascular MedicineDepartment of Cardiology of the Affiliated HospitalSouthwest Medical UniversityLuzhouSichuan646000China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal ResourcesGuangxi Normal UniversityGuilinGuangxi541004China
| |
Collapse
|
12
|
Dergilev K, Gureenkov A, Parfyonova Y. Autophagy as a Guardian of Vascular Niche Homeostasis. Int J Mol Sci 2024; 25:10097. [PMID: 39337582 PMCID: PMC11432168 DOI: 10.3390/ijms251810097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
The increasing burden of vascular dysfunction on healthcare systems worldwide results in higher morbidity and mortality rates across pathologies, including cardiovascular diseases. Vasculopathy is suggested to be caused by the dysregulation of vascular niches, a microenvironment of vascular structures comprising anatomical structures, extracellular matrix components, and various cell populations. These elements work together to ensure accurate control of the vascular network. In recent years, autophagy has been recognized as a crucial regulator of the vascular microenvironment responsible for maintaining basic cell functions such as proliferation, differentiation, replicative senescence, and apoptosis. Experimental studies indicate that autophagy activation can be enhanced or inhibited in various pathologies associated with vascular dysfunction, suggesting that autophagy plays both beneficial and detrimental roles. Here, we review and assess the principles of autophagy organization and regulation in non-tumor vascular niches. Our analysis focuses on significant figures in the vascular microenvironment, highlighting the role of autophagy and summarizing evidence that supports the systemic or multiorgan nature of the autophagy effects. Finally, we discuss the critical organizational and functional aspects of the vasculogenic niche, specifically in relation to autophagy. The resulting dysregulation of the vascular microenvironment contributes to the development of vascular dysfunction.
Collapse
Affiliation(s)
- Konstantin Dergilev
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
| | - Alexandre Gureenkov
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
| | - Yelena Parfyonova
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
13
|
Hoeft K, Koch L, Ziegler S, Zhang L, Luetke S, Tanzer MC, Mohanta D, Schumacher D, Schreibing F, Long Q, Kim H, Klinkhammer BM, Schikarski C, Maryam S, Baens M, Hermann J, Krieg S, Peisker F, De Laporte L, Schaefer GJ, Menzel S, Jankowski J, Humphreys BD, Wahida A, Schneider RK, Versele M, Boor P, Mann M, Sengle G, Hayat S, Kramann R. ADAMTS12 promotes fibrosis by restructuring extracellular matrix to enable activation of injury-responsive fibroblasts. J Clin Invest 2024; 134:e170246. [PMID: 39286973 PMCID: PMC11405035 DOI: 10.1172/jci170246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/10/2024] [Indexed: 09/19/2024] Open
Abstract
Fibrosis represents the uncontrolled replacement of parenchymal tissue with extracellular matrix (ECM) produced by myofibroblasts. While genetic fate-tracing and single-cell RNA-Seq technologies have helped elucidate fibroblast heterogeneity and ontogeny beyond fibroblast to myofibroblast differentiation, newly identified fibroblast populations remain ill defined, with respect to both the molecular cues driving their differentiation and their subsequent role in fibrosis. Using an unbiased approach, we identified the metalloprotease ADAMTS12 as a fibroblast-specific gene that is strongly upregulated during active fibrogenesis in humans and mice. Functional in vivo KO studies in mice confirmed that Adamts12 was critical during fibrogenesis in both heart and kidney. Mechanistically, using a combination of spatial transcriptomics and expression of catalytically active or inactive ADAMTS12, we demonstrated that the active protease of ADAMTS12 shaped ECM composition and cleaved hemicentin 1 (HMCN1) to enable the activation and migration of a distinct injury-responsive fibroblast subset defined by aberrant high JAK/STAT signaling.
Collapse
Affiliation(s)
- Konrad Hoeft
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology and Hypertension), RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Lars Koch
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology and Hypertension), RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Susanne Ziegler
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology and Hypertension), RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Ling Zhang
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology and Hypertension), RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Steffen Luetke
- Department of Pediatrics and Adolescent Medicine
- Center for Biochemistry, Medical Faculty, and
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Cologne Center for Musculoskeletal Biomechanics (CCMB), Cologne, Germany
| | - Maria C. Tanzer
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
- Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Debashish Mohanta
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology and Hypertension), RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - David Schumacher
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology and Hypertension), RWTH Aachen University, Medical Faculty, Aachen, Germany
- Department of Anesthesiology, RWTH Aachen University, Aachen, Germany
| | - Felix Schreibing
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology and Hypertension), RWTH Aachen University, Medical Faculty, Aachen, Germany
- Sequantrix GmbH, Aachen, Germany
| | - Qingqing Long
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology and Hypertension), RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Hyojin Kim
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology and Hypertension), RWTH Aachen University, Medical Faculty, Aachen, Germany
| | | | - Carla Schikarski
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology and Hypertension), RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Sidrah Maryam
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology and Hypertension), RWTH Aachen University, Medical Faculty, Aachen, Germany
| | | | - Juliane Hermann
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Sarah Krieg
- Institute of Biochemistry and Molecular Biology, and
| | - Fabian Peisker
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology and Hypertension), RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Laura De Laporte
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany
- Institute of Applied Medical Engineering, Department of Advanced Materials for Medicine, University Hospital RWTH Aachen, Aachen, Germany
- DWI-Leibniz Institute of Interactive Materials, Aachen, Germany
| | - Gideon J.L. Schaefer
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology and Hypertension), RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Sylvia Menzel
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology and Hypertension), RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Benjamin D. Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Adam Wahida
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
| | - Rebekka K. Schneider
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
- Department of Cell Biology, Institute for Biomedical Technologies, RWTH Aachen University, Aachen, Germany
| | | | - Peter Boor
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology and Hypertension), RWTH Aachen University, Medical Faculty, Aachen, Germany
- Institute of Pathology, RWTH Aachen University, Aachen, Germany
| | - Matthias Mann
- Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Gerhard Sengle
- Department of Pediatrics and Adolescent Medicine
- Center for Biochemistry, Medical Faculty, and
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Cologne Center for Musculoskeletal Biomechanics (CCMB), Cologne, Germany
| | - Sikander Hayat
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology and Hypertension), RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Rafael Kramann
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology and Hypertension), RWTH Aachen University, Medical Faculty, Aachen, Germany
| |
Collapse
|
14
|
Wirth L, Erny E, Krane M, Lahm H, Hein L, Gilsbach R, Lother A. Gene expression networks in endothelial cells from failing human hearts. Am J Physiol Heart Circ Physiol 2024; 327:H573-H581. [PMID: 39028282 DOI: 10.1152/ajpheart.00425.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
Chronic heart failure is associated with adverse remodeling of the heart that is typically characterized by cardiomyocyte hypertrophy. This requires the formation of new capillaries to maintain oxygen supply. Insufficient angiogenesis promotes the transition from compensated hypertrophy into heart failure. The aim of this study was to identify angiogenesis-related gene networks and corresponding regulatory hubs in endothelial cells from failing human hearts. We isolated left ventricular endothelial cells from patients with advanced heart failure undergoing left ventricular assist device surgery (n = 15) and healthy organ donors (n = 2) and performed RNA sequencing. Subgroup analysis revealed no impact of comorbidities on gene expression. In a weighted gene coexpression network analysis, we found 26 gene clusters, of which 9 clusters showed a significant positive or negative correlation with the presence of heart failure. We identified the transcription factors CASZ1 (castor zinc finger 1), ZNF523 (zinc finger protein 523), and NFE2L1 (nuclear factor erythroid 2-related factor 1) as hub genes of a cluster related to angiogenesis. Knockdown of CASZ1, ZNF523, or NFE2L1 in human umbilical vein endothelial cells led to a downregulation of genes from the respective cluster, including CD34 and platelet-derived growth factor-β, confirming their regulatory function. In conclusion, we assessed gene networks in endothelial cells and identified transcription factors CASZ1, ZNF532, and NFE2L1 as potential regulators of angiogenesis in failing human hearts. Our study provides insights into the transcriptional regulation of angiogenesis beyond the classical vascular endothelial growth factor signaling pathway.NEW & NOTEWORTHY Gene coexpression network analysis defined 26 gene clusters expressed in endothelial cells from failing human hearts. Transcription factors CASZ1, ZNF523, and NFE2L1 were identified as hub genes of a cluster related to angiogenesis. Knockdown of CASZ1, ZNF523, or NFE2L1 in human umbilical vein endothelial cells led to a downregulation of genes from the respective cluster, confirming their regulatory function. This provides insights into the transcriptional regulation of angiogenesis in heart failure beyond classical signaling pathways.
Collapse
Affiliation(s)
- Luisa Wirth
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Elias Erny
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Markus Krane
- Department of Cardiovascular Surgery, Institute Insure, German Heart Center Munich, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Division of Cardiac Surgery, Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, United States
- German Center for Cardiovascular Research (DZHK) - Partner Site Munich Heart Alliance, Munich, Germany
| | - Harald Lahm
- Department of Cardiovascular Surgery, Institute Insure, German Heart Center Munich, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Lutz Hein
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Ralf Gilsbach
- Institute of Experimental Cardiology, Heidelberg University Hospital, Heidelberg, Germany
- German Center of Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Mannheim, Germany
| | - Achim Lother
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Interdisciplinary Medical Intensive Care, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
15
|
Frangogiannis NG. The fate and role of the pericytes in myocardial diseases. Eur J Clin Invest 2024; 54:e14204. [PMID: 38586936 DOI: 10.1111/eci.14204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
The adult mammalian heart contains a large population of pericytes that play important roles in homeostasis and disease. In the normal heart, pericytes regulate microvascular permeability and flow. Myocardial diseases are associated with marked alterations in pericyte phenotype and function. This review manuscript discusses the role of pericytes in cardiac homeostasis and disease. Following myocardial infarction (MI), cardiac pericytes participate in all phases of cardiac repair. During the inflammatory phase, pericytes may secrete cytokines and chemokines and may regulate leukocyte trafficking, through formation of intercellular gaps that serve as exit points for inflammatory cells. Moreover, pericyte contraction induces microvascular constriction, contributing to the pathogenesis of 'no-reflow' in ischemia and reperfusion. During the proliferative phase, pericytes are activated by growth factors, such as transforming growth factor (TGF)-β and contribute to fibrosis, predominantly through secretion of fibrogenic mediators. A fraction of pericytes acquires fibroblast identity but contributes only to a small percentage of infarct fibroblasts and myofibroblasts. As the scar matures, pericytes form a coat around infarct neovessels, promoting stabilization of the vasculature. Pericytes may also be involved in the pathogenesis of chronic heart failure, by regulating inflammation, fibrosis, angiogenesis and myocardial perfusion. Pericytes are also important targets of viral infections (such as SARS-CoV2) and may be implicated in the pathogenesis of cardiac complications of COVID19. Considering their role in myocardial inflammation, fibrosis and angiogenesis, pericytes may be promising therapeutic targets in myocardial disease.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- Department of Medicine (Cardiology), The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
16
|
Gendy N, Brown L, Staunton MK, Garg K, Hernandez Garcilazo N, Qian L, Yamamoto Y, Ugwuowo U, Obeid W, Al-Qusairi L, Bostom A, Mansour SG. The Role of Angiopoietins in Cardiovascular Outcomes of Kidney Transplant Recipients: An Ancillary Study from the FAVORIT. Am J Nephrol 2024; 55:597-606. [PMID: 38735283 PMCID: PMC11444892 DOI: 10.1159/000538878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/05/2024] [Indexed: 05/14/2024]
Abstract
INTRODUCTION Kidney transplant recipients (KTRs) have increased risk of cardiovascular disease (CVD) mortality. We investigated vascular biomarkers, angiopoietin-1, and angiopoietin-2 (angpt-1, -2), in CVD development in KTRs. METHODS This ancillary study from the FAVORIT evaluates the associations of baseline plasma angpt-1, -2 levels in CVD development (primary outcome) and graft failure (GF) and death (secondary outcomes) in 2000 deceased donor KTRs. We used Cox regression to analyze the association of biomarker quartiles with outcomes. We adjusted for demographic; CVD- and transplant-related variables; medications; urine albumin-to-creatinine ratio; and randomization status. We calculated areas under the curves (AUCs) to predict CVD or death, and GF or death by incorporating biomarkers alongside clinical variables. RESULTS Participants' median age was 52 IQR [45, 59] years: with 37% women and 73% identifying as white. Median time from transplantation was 3.99 IQR [1.58, 7.93] years and to CVD development was 2.54 IQR [1.11-3.80] years. Quartiles of angpt-1 were not associated with outcomes. Whereas higher levels of angpt-2 (quartile 4) were associated with about 2 times the risk of CVD, GF, and death (aHR 1.85 [1.25-2.73], p < 0.01; 2.24 [1.36-3.70)], p < 0.01; 2.30 [1.48-3.58], p < 0.01, respectively) as compared to quartile 1. Adding angiopoietins to preexisting clinical variables improved prediction of CVD or death (AUC improved from 0.70 to 0.72, p = 0.005) and GF or death (AUC improved from 0.68 to 0.70, p = 0.005). Angpt-2 may partially explain the increased risk of future CVD in KTRs. Further research is needed to assess the utility of using angiopoietins in the clinical care of KTRs. CONCLUSION Angpt-2 may be a useful prognostic tool for future CVD in KTRs. Combining angiopoietins with clinical markers may tailor follow-up to mitigate CVD risk.
Collapse
Affiliation(s)
- Natalie Gendy
- Clinical and Translational Research Accelerator, New Haven, Connecticut, USA,
- Schulich School of Medicine, Western University, London, Ontario, Canada,
| | - Liam Brown
- Clinical and Translational Research Accelerator, New Haven, Connecticut, USA
| | - Mary Kate Staunton
- Clinical and Translational Research Accelerator, New Haven, Connecticut, USA
| | - Kanika Garg
- Clinical and Translational Research Accelerator, New Haven, Connecticut, USA
| | | | - Long Qian
- Section of Nephrology, Yale New Haven Hospital, New Haven, Connecticut, USA
| | - Yu Yamamoto
- Clinical and Translational Research Accelerator, New Haven, Connecticut, USA
| | - Ugochukwu Ugwuowo
- Clinical and Translational Research Accelerator, New Haven, Connecticut, USA
| | - Wassim Obeid
- Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Andrew Bostom
- Department of Family Medicine, Brown University, Providence, Rhode Island, USA
| | - Sherry G Mansour
- Clinical and Translational Research Accelerator, New Haven, Connecticut, USA
- Section of Nephrology, Yale New Haven Hospital, New Haven, Connecticut, USA
| |
Collapse
|
17
|
Sheng Y, Wang YY, Chang Y, Ye D, Wu L, Kang H, Zhang X, Chen X, Li B, Zhu D, Zhang N, Zhao H, Chen A, Chen H, Jia P, Song J. Deciphering mechanisms of cardiomyocytes and non-cardiomyocyte transformation in myocardial remodeling of permanent atrial fibrillation. J Adv Res 2024; 61:101-117. [PMID: 37722560 PMCID: PMC11258668 DOI: 10.1016/j.jare.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023] Open
Abstract
INTRODUCTION Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia, and it significantly increases the risk of cardiovascular complications and morbidity, even with appropriate treatment. Tissue remodeling has been a significant topic, while its systematic transcriptional signature remains unclear in AF. OBJECTIVES Our study aims to systematically investigate the molecular characteristics of AF at the cellular-level. METHODS We conducted single-nuclei RNA-sequencig (snRNA-seq) analysis using nuclei isolated from the left atrial appendage (LAA) of AF patients and sinus rhythm. Pathological staining was performed to validate the key findings of snRNA-seq. RESULTS A total of 30 cell subtypes were identified among 80, 592 nuclei. Within the LAA of AF, we observed a specific subtype of dedifferentiated cardiomyocytes (CMs) characterized by reduced expression of cardiac contractile proteins (TTN and TRDN) and heightened expression of extracellular-matrix related genes (COL1A2 and FBN1). Transcription factor prediction analysis revealed that gene expression patterns in dedifferentiated CMs were primarily regulated by CEBPG and GISLI. Additionally, we identified a distinct subtype of endothelial progenitor cells (EPCs) demonstrating elevated expression of PROM1 and KDR, a population decreased within the LAA of AF. Epicardial adipocytes disclosed a reduced release of the anti-inflammatory and anti-fibrotic factor PRG4, and an augmented secretion of VEGF signals targeting CMs. Additionally, we noted accumulation of M2-like macrophages and CD8+ T cells with high pro-inflammatory score in LAA of AF. Furthermore, the analysis of intercellular communication revealed specific pathways related to AF, such as inflammation, extracellular matrix, and vascular remodeling signals. CONCLUSIONS This study has discovered the presence of dedifferentiated CMs, a decrease in endothelial progenitor cells, a shift in the secretion profile of adipocytes, and an amplified inflammatory response in AF. These findings could offer crucial insights for future research on AF and serve as valuable references for investigating novel therapeutic approaches for AF.
Collapse
Affiliation(s)
- Yixuan Sheng
- Department of Cardiovascular Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, China
| | - Yin-Ying Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Yuan Chang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, China
| | - Dongting Ye
- Department of Cardiovascular Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Liying Wu
- Department of Cardiovascular Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Hongen Kang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiong Zhang
- Department of Cardiovascular Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiao Chen
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, China
| | - Bin Li
- Department of Cardiovascular Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Daliang Zhu
- Department of Cardiovascular Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Ningning Zhang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Haisen Zhao
- Department of Cardiovascular Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Aijun Chen
- Department of Cardiovascular Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Haisheng Chen
- Department of Cardiovascular Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
| | - Peilin Jia
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China.
| | - Jiangping Song
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518057, China; Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, China.
| |
Collapse
|
18
|
Patrick R, Janbandhu V, Tallapragada V, Tan SSM, McKinna EE, Contreras O, Ghazanfar S, Humphreys DT, Murray NJ, Tran YTH, Hume RD, Chong JJH, Harvey RP. Integration mapping of cardiac fibroblast single-cell transcriptomes elucidates cellular principles of fibrosis in diverse pathologies. SCIENCE ADVANCES 2024; 10:eadk8501. [PMID: 38905342 PMCID: PMC11192082 DOI: 10.1126/sciadv.adk8501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/14/2024] [Indexed: 06/23/2024]
Abstract
Single-cell technology has allowed researchers to probe tissue complexity and dynamics at unprecedented depth in health and disease. However, the generation of high-dimensionality single-cell atlases and virtual three-dimensional tissues requires integrated reference maps that harmonize disparate experimental designs, analytical pipelines, and taxonomies. Here, we present a comprehensive single-cell transcriptome integration map of cardiac fibrosis, which underpins pathophysiology in most cardiovascular diseases. Our findings reveal similarity between cardiac fibroblast (CF) identities and dynamics in ischemic versus pressure overload models of cardiomyopathy. We also describe timelines for commitment of activated CFs to proliferation and myofibrogenesis, profibrotic and antifibrotic polarization of myofibroblasts and matrifibrocytes, and CF conservation across mouse and human healthy and diseased hearts. These insights have the potential to inform knowledge-based therapies.
Collapse
Affiliation(s)
- Ralph Patrick
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
- School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Vaibhao Janbandhu
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
- School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia
| | | | - Shannon S. M. Tan
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Emily E. McKinna
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
- Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
| | - Osvaldo Contreras
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
- School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Shila Ghazanfar
- School of Mathematics and Statistics, The University of Sydney, Camperdown, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
- Sydney Precision Data Science Centre, The University of Sydney, Camperdown, NSW 2006, Australia
| | - David T. Humphreys
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
- School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Nicholas J. Murray
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
- School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Yen T. H. Tran
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Robert D. Hume
- Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
- School of Medical Science, The University of Sydney, Camperdown, NSW 2006, Australia
- Centre for Heart Failure and Diseases of the Aorta, The Baird Institute, Sydney, NSW 2042, Australia
| | - James J. H. Chong
- Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
- Department of Cardiology, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Richard P. Harvey
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
- School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia
- School of Biotechnology and Biomolecular Science, UNSW Sydney, Kensington, NSW 2052, Australia
| |
Collapse
|
19
|
Palmer JA, Rosenthal N, Teichmann SA, Litvinukova M. Revisiting Cardiac Biology in the Era of Single Cell and Spatial Omics. Circ Res 2024; 134:1681-1702. [PMID: 38843288 PMCID: PMC11149945 DOI: 10.1161/circresaha.124.323672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 06/09/2024]
Abstract
Throughout our lifetime, each beat of the heart requires the coordinated action of multiple cardiac cell types. Understanding cardiac cell biology, its intricate microenvironments, and the mechanisms that govern their function in health and disease are crucial to designing novel therapeutical and behavioral interventions. Recent advances in single-cell and spatial omics technologies have significantly propelled this understanding, offering novel insights into the cellular diversity and function and the complex interactions of cardiac tissue. This review provides a comprehensive overview of the cellular landscape of the heart, bridging the gap between suspension-based and emerging in situ approaches, focusing on the experimental and computational challenges, comparative analyses of mouse and human cardiac systems, and the rising contextualization of cardiac cells within their niches. As we explore the heart at this unprecedented resolution, integrating insights from both mouse and human studies will pave the way for novel diagnostic tools and therapeutic interventions, ultimately improving outcomes for patients with cardiovascular diseases.
Collapse
Affiliation(s)
- Jack A. Palmer
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom (J.A.P., S.A.T.)
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus (J.A.P., S.A.T.), University of Cambridge, United Kingdom
| | - Nadia Rosenthal
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME (N.R.)
- National Heart and Lung Institute, Imperial College London, United Kingdom (N.R.)
| | - Sarah A. Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom (J.A.P., S.A.T.)
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus (J.A.P., S.A.T.), University of Cambridge, United Kingdom
- Theory of Condensed Matter Group, Department of Physics, Cavendish Laboratory (S.A.T.), University of Cambridge, United Kingdom
| | - Monika Litvinukova
- University Hospital Würzburg, Germany (M.L.)
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Germany (M.L.)
- Helmholtz Pioneer Campus, Helmholtz Munich, Germany (M.L.)
| |
Collapse
|
20
|
Cadosch N, Gil-Cruz C, Perez-Shibayama C, Ludewig B. Cardiac Fibroblastic Niches in Homeostasis and Inflammation. Circ Res 2024; 134:1703-1717. [PMID: 38843287 PMCID: PMC11149942 DOI: 10.1161/circresaha.124.323892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 06/09/2024]
Abstract
Fibroblasts are essential for building and maintaining the structural integrity of all organs. Moreover, fibroblasts can acquire an inflammatory phenotype to accommodate immune cells in specific niches and to provide migration, differentiation, and growth factors. In the heart, balancing of fibroblast activity is critical for cardiac homeostasis and optimal organ function during inflammation. Fibroblasts sustain cardiac homeostasis by generating local niche environments that support housekeeping functions and by actively engaging in intercellular cross talk. During inflammatory perturbations, cardiac fibroblasts rapidly switch to an inflammatory state and actively communicate with infiltrating immune cells to orchestrate immune cell migration and activity. Here, we summarize the current knowledge on the molecular landscape of cardiac fibroblasts, focusing on their dual role in promoting tissue homeostasis and modulating immune cell-cardiomyocyte interaction. In addition, we discuss potential future avenues for manipulating cardiac fibroblast activity during myocardial inflammation.
Collapse
Affiliation(s)
- Nadine Cadosch
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland (N.C., C.G.-C., C.P.-S., B.L.)
| | - Cristina Gil-Cruz
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland (N.C., C.G.-C., C.P.-S., B.L.)
- University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland (C.G.-C., B.L.), University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Christian Perez-Shibayama
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland (N.C., C.G.-C., C.P.-S., B.L.)
| | - Burkhard Ludewig
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland (N.C., C.G.-C., C.P.-S., B.L.)
- University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland (C.G.-C., B.L.), University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Center for Translational and Experimental Cardiology (B.L.), University Hospital Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
21
|
Lu S, Jolly AJ, Dubner AM, Strand KA, Mutryn MF, Hinthorn T, Noble T, Nemenoff RA, Moulton KS, Majesky MW, Weiser-Evans MC. KLF4 in smooth muscle cell-derived progenitor cells is essential for angiotensin II-induced cardiac inflammation and fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597485. [PMID: 38895472 PMCID: PMC11185732 DOI: 10.1101/2024.06.04.597485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Cardiac fibrosis is defined by the excessive accumulation of extracellular matrix (ECM) material resulting in cardiac tissue scarring and dysfunction. While it is commonly accepted that myofibroblasts are the major contributors to ECM deposition in cardiac fibrosis, their origin remains debated. By combining lineage tracing and RNA sequencing, our group made the paradigm-shifting discovery that a subpopulation of resident vascular stem cells residing within the aortic, carotid artery, and femoral aartery adventitia (termed AdvSca1-SM cells) originate from mature vascular smooth muscle cells (SMCs) through an in situ reprogramming process. SMC-to-AdvSca1-SM reprogramming and AdvSca1-SM cell maintenance is dependent on induction and activity of the transcription factor, KLF4. However, the molecular mechanism whereby KLF4 regulates AdvSca1-SM phenotype remains unclear. In the current study, leveraging a highly specific AdvSca1-SM cell reporter system, single-cell RNA-sequencing (scRNA-seq), and spatial transcriptomic approaches, we demonstrate the profibrotic differentiation trajectory of coronary artery-associated AdvSca1-SM cells in the setting of Angiotensin II (AngII)-induced cardiac fibrosis. Differentiation was characterized by loss of stemness-related genes, including Klf4 , but gain of expression of a profibrotic phenotype. Importantly, these changes were recapitulated in human cardiac hypertrophic tissue, supporting the translational significance of profibrotic transition of AdvSca1-SM-like cells in human cardiomyopathy. Surprisingly and paradoxically, AdvSca1-SM-specific genetic knockout of Klf4 prior to AngII treatment protected against cardiac inflammation and fibrosis, indicating that Klf4 is essential for the profibrotic response of AdvSca1-SM cells. Overall, our data reveal the contribution of AdvSca1-SM cells to myofibroblasts in the setting of AngII-induced cardiac fibrosis. KLF4 not only maintains the stemness of AdvSca1-SM cells, but also orchestrates their response to profibrotic stimuli, and may serve as a therapeutic target in cardiac fibrosis.
Collapse
|
22
|
Dong X, Qu L, Xiong J, Wang B, Sha X, Wu B, Sun Y, Pan X, Sun J, Pan LL. Shizukaol C alleviates trimethylamine oxide-induced inflammation through activating Keap1-Nrf2-GSTpi pathway in vascular smooth muscle cell. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155403. [PMID: 38564920 DOI: 10.1016/j.phymed.2024.155403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/11/2024] [Accepted: 01/31/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Cardiovascular disease is one of the main causes of global mortality, and there is an urgent need for effective treatment strategies. Gut microbiota-dependent metabolite trimethylamine-N-oxide (TMAO) promotes the development of cardiovascular diseases, and shizukaol C, a natural sesquiterpene isolated from Chloranthus multistachys with various biological activities, might exhibit beneficial role in preventing TMAO-induced vascular inflammation. PURPOSE The purpose of this study was to investigate the anti-inflammatory effects and the underlying mechanisms of shizukaol C on TMAO-induced vascular inflammation. METHODS The effect and underlying mechanism of shizukaol C on TMAO-induced adhesion molecules expression, bone marrow-derived macrophages (BMDM) adhesion to VSMC were evaluated by western blot, cell adhesion assay, co-immunoprecipitation, immunofluorescence assay, and quantitative Real-Time PCR, respectively. To verify the role of shizukaol C in vivo, TMAO-induced vascular inflammation model were established using guidewire-induced injury on mice carotid artery. Changes in the intima area and the expression of GSTpi, VCAM-1, CD68 were examined using haematoxylin-eosin staining, and immunofluorescence assay. RESULTS Our data demonstrated that shizukaol C significantly suppressed TMAO-induced adhesion molecule expression and the bone marrow-derived macrophages (BMDM) adhesion in vascular smooth muscle cells (VSMC). Mechanically, shizukaol C inhibited TMAO-induced c-Jun N-terminal kinase (JNK)-nuclear factor-kappa B (NF-κB)/p65 activation, and the JNK inhibition was dependent on the shizukaol C-mediated glutathione-S-transferase pi (GSTpi) expression. By further molecular docking and protein-binding analysis, we demonstrated that shizukaol C directly binds to Keap1 to induce Nrf2 nuclear translocation and upregulated GSTpi expression. Consistently, our in vivo experiment showed that shizukaol C elevated the expression level of GSTpi in carotid arteries and alleviates TMAO-induced vascular inflammation. CONCLUSION Shizukaol C exerts anti-inflammatory effects in TMAO-treated VSMC by targeting Keap1 and activating Nrf2-GSTpi signaling and resultantly inhibits the downstream JNK-NF-κB/p65 activation and VSMC adhesion, and alleviates TMAO-induced vascular inflammation in vivo, suggesting that shizukaol C may be a potential drug for treating TMAO-induced vascular diseases.
Collapse
Affiliation(s)
- Xiaoliang Dong
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Lu Qu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Juan Xiong
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, PR China
| | - Bingxin Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Xiaowei Sha
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Bo Wu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Yudong Sun
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Xiaohua Pan
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Jia Sun
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, PR China.
| | - Li-Long Pan
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, PR China.
| |
Collapse
|
23
|
Aguado-Alvaro LP, Garitano N, Pelacho B. Fibroblast Diversity and Epigenetic Regulation in Cardiac Fibrosis. Int J Mol Sci 2024; 25:6004. [PMID: 38892192 PMCID: PMC11172550 DOI: 10.3390/ijms25116004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Cardiac fibrosis, a process characterized by excessive extracellular matrix (ECM) deposition, is a common pathological consequence of many cardiovascular diseases (CVDs) normally resulting in organ failure and death. Cardiac fibroblasts (CFs) play an essential role in deleterious cardiac remodeling and dysfunction. In response to injury, quiescent CFs become activated and adopt a collagen-secreting phenotype highly contributing to cardiac fibrosis. In recent years, studies have been focused on the exploration of molecular and cellular mechanisms implicated in the activation process of CFs, which allow the development of novel therapeutic approaches for the treatment of cardiac fibrosis. Transcriptomic analyses using single-cell RNA sequencing (RNA-seq) have helped to elucidate the high cellular diversity and complex intercellular communication networks that CFs establish in the mammalian heart. Furthermore, a significant body of work supports the critical role of epigenetic regulation on the expression of genes involved in the pathogenesis of cardiac fibrosis. The study of epigenetic mechanisms, including DNA methylation, histone modification, and chromatin remodeling, has provided more insights into CF activation and fibrotic processes. Targeting epigenetic regulators, especially DNA methyltransferases (DNMT), histone acetylases (HAT), or histone deacetylases (HDAC), has emerged as a promising approach for the development of novel anti-fibrotic therapies. This review focuses on recent transcriptomic advances regarding CF diversity and molecular and epigenetic mechanisms that modulate the activation process of CFs and their possible clinical applications for the treatment of cardiac fibrosis.
Collapse
Affiliation(s)
- Laura Pilar Aguado-Alvaro
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain; (L.P.A.-A.); (N.G.)
- Program of Cardiovascular Disease, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Nerea Garitano
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain; (L.P.A.-A.); (N.G.)
- Program of Cardiovascular Disease, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Beatriz Pelacho
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain; (L.P.A.-A.); (N.G.)
- Program of Cardiovascular Disease, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| |
Collapse
|
24
|
Torimoto K, Elliott K, Nakayama Y, Yanagisawa H, Eguchi S. Cardiac and perivascular myofibroblasts, matrifibrocytes, and immune fibrocytes in hypertension; commonalities and differences with other cardiovascular diseases. Cardiovasc Res 2024; 120:567-580. [PMID: 38395029 PMCID: PMC11485269 DOI: 10.1093/cvr/cvae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/02/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Hypertension is a major cause of cardiovascular diseases such as myocardial infarction and stroke. Cardiovascular fibrosis occurs with hypertension and contributes to vascular resistance, aortic stiffness, and cardiac hypertrophy. However, the molecular mechanisms leading to fibroblast activation in hypertension remain largely unknown. There are two types of fibrosis: replacement fibrosis and reactive fibrosis. Replacement fibrosis occurs in response to the loss of viable tissue to form a scar. Reactive fibrosis occurs in response to an increase in mechanical and neurohormonal stress. Although both types of fibrosis are considered adaptive processes, they become maladaptive when the tissue loss is too large, or the stress persists. Myofibroblasts represent a subpopulation of activated fibroblasts that have gained contractile function to promote wound healing. Therefore, myofibroblasts are a critical cell type that promotes replacement fibrosis. Although myofibroblasts were recognized as the fibroblasts participating in reactive fibrosis, recent experimental evidence indicated there are distinct fibroblast populations in cardiovascular reactive fibrosis. Accordingly, we will discuss the updated definition of fibroblast subpopulations, the regulatory mechanisms, and their potential roles in cardiovascular pathophysiology utilizing new knowledge from various lineage tracing and single-cell RNA sequencing studies. Among the fibroblast subpopulations, we will highlight the novel roles of matrifibrocytes and immune fibrocytes in cardiovascular fibrosis including experimental models of hypertension, pressure overload, myocardial infarction, atherosclerosis, aortic aneurysm, and nephrosclerosis. Exploration into the molecular mechanisms involved in the differentiation and activation of those fibroblast subpopulations may lead to novel treatments for end-organ damage associated with hypertension and other cardiovascular diseases.
Collapse
Affiliation(s)
- Keiichi Torimoto
- Department of Cardiovascular Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Katherine Elliott
- Department of Cardiovascular Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Yuki Nakayama
- Department of Cardiovascular Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Hiromi Yanagisawa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
- Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Satoru Eguchi
- Department of Cardiovascular Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| |
Collapse
|
25
|
Goltseva YD, Dergilev KV, Boldyreva MA, Parfyonova EV, Beloglazova IB. TGFβ1 Regulates Cellular Composition of In Vitro Cardiac Perivascular Niche Based on Cardiospheres. Bull Exp Biol Med 2024; 177:115-123. [PMID: 38963596 DOI: 10.1007/s10517-024-06142-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Indexed: 07/05/2024]
Abstract
The cardiac perivascular niche is a cellular microenvironment of a blood vessel. The principles of niche regulation are still poorly understood. We studied the effect of TGFβ1 on cells forming the cardiac perivascular niche using 3D cell culture (cardiospheres). Cardiospheres contained progenitor (c-Kit), endothelial (CD31), and mural (αSMA) cells, basement membrane proteins (laminin) and extracellular matrix proteins (collagen I, fibronectin). TGFβ1 treatment decreased the length of CD31+ microvasculature, VE cadherin protein level, and proportion of NG2+ cells, and increased proportion of αSMA+ cells and transgelin/SM22α protein level. We supposed that this effect is related to the stabilizing function of TGFβ1 on vascular cells: decreased endothelial cell proliferation, as shown for HUVEC, and activation of mural cell differentiation.
Collapse
Affiliation(s)
- Yu D Goltseva
- National Medical Research Centre of Cardiology named after academician E. I. Chazov, Moscow, Russia.
| | - K V Dergilev
- National Medical Research Centre of Cardiology named after academician E. I. Chazov, Moscow, Russia
| | - M A Boldyreva
- National Medical Research Centre of Cardiology named after academician E. I. Chazov, Moscow, Russia
| | - E V Parfyonova
- National Medical Research Centre of Cardiology named after academician E. I. Chazov, Moscow, Russia
| | - I B Beloglazova
- National Medical Research Centre of Cardiology named after academician E. I. Chazov, Moscow, Russia
| |
Collapse
|
26
|
Trogisch FA, Abouissa A, Keles M, Birke A, Fuhrmann M, Dittrich GM, Weinzierl N, Wink E, Cordero J, Elsherbiny A, Martin-Garrido A, Grein S, Hemanna S, Hofmann E, Nicin L, Bibli SI, Airik R, Kispert A, Kist R, Quanchao S, Kürschner SW, Winkler M, Gretz N, Mogler C, Korff T, Koch PS, Dimmeler S, Dobreva G, Heineke J. Endothelial cells drive organ fibrosis in mice by inducing expression of the transcription factor SOX9. Sci Transl Med 2024; 16:eabq4581. [PMID: 38416842 DOI: 10.1126/scitranslmed.abq4581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 01/24/2024] [Indexed: 03/01/2024]
Abstract
Fibrosis is a hallmark of chronic disease. Although fibroblasts are involved, it is unclear to what extent endothelial cells also might contribute. We detected increased expression of the transcription factor Sox9 in endothelial cells in several different mouse fibrosis models. These models included systolic heart failure induced by pressure overload, diastolic heart failure induced by high-fat diet and nitric oxide synthase inhibition, pulmonary fibrosis induced by bleomycin treatment, and liver fibrosis due to a choline-deficient diet. We also observed up-regulation of endothelial SOX9 in cardiac tissue from patients with heart failure. To test whether SOX9 induction was sufficient to cause disease, we generated mice with endothelial cell-specific overexpression of Sox9, which promoted fibrosis in multiple organs and resulted in signs of heart failure. Endothelial Sox9 deletion prevented fibrosis and organ dysfunction in the two mouse models of heart failure as well as in the lung and liver fibrosis mouse models. Bulk and single-cell RNA sequencing of mouse endothelial cells across multiple vascular beds revealed that SOX9 induced extracellular matrix, growth factor, and inflammatory gene expression, leading to matrix deposition by endothelial cells. Moreover, mouse endothelial cells activated neighboring fibroblasts that then migrated and deposited matrix in response to SOX9, a process partly mediated by the secreted growth factor CCN2, a direct SOX9 target; endothelial cell-specific Sox9 deletion reversed these changes. These findings suggest a role for endothelial SOX9 as a fibrosis-promoting factor in different mouse organs during disease and imply that endothelial cells are an important regulator of fibrosis.
Collapse
Affiliation(s)
- Felix A Trogisch
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 68167 Mannheim, Germany
- CFPM (Core Facility Platform Mannheim), Cardiac Imaging Center, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Aya Abouissa
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 68167 Mannheim, Germany
- CFPM (Core Facility Platform Mannheim), Cardiac Imaging Center, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Merve Keles
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 68167 Mannheim, Germany
- CFPM (Core Facility Platform Mannheim), Cardiac Imaging Center, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Anne Birke
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Manuela Fuhrmann
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Gesine M Dittrich
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 68167 Mannheim, Germany
| | - Nina Weinzierl
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Elvira Wink
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Julio Cordero
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 68167 Mannheim, Germany
- ECAS, Department of Cardiovascular Genomics and Epigenomics, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Adel Elsherbiny
- ECAS, Department of Cardiovascular Genomics and Epigenomics, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Abel Martin-Garrido
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Steve Grein
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 68167 Mannheim, Germany
| | - Shruthi Hemanna
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 68167 Mannheim, Germany
| | - Ellen Hofmann
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Luka Nicin
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
- Cardiopulmonary Institute, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
- DZHK, partner site Frankfurt Rhine-Main, Frankfurt, 60590 Frankfurt am Main, Germany
| | - Sofia-Iris Bibli
- Cardiopulmonary Institute, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
- DZHK, partner site Frankfurt Rhine-Main, Frankfurt, 60590 Frankfurt am Main, Germany
- Institute of Vascular Signaling, Centre for Molecular Medicine, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Rannar Airik
- Institute of Molecular Biology, Hannover Medical School, 30625 Hannover, Germany
| | - Andreas Kispert
- Institute of Molecular Biology, Hannover Medical School, 30625 Hannover, Germany
| | - Ralf Kist
- School of Dental Sciences, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4BW, UK
| | - Sun Quanchao
- Medical Research Center, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Sina W Kürschner
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, 68167 Mannheim, Germany
- ECAS, Adjunct Faculty, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Manuel Winkler
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, 68167 Mannheim, Germany
- ECAS, Adjunct Faculty, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Norbert Gretz
- Medical Research Center, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Carolin Mogler
- Institute of Pathology, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Thomas Korff
- ECAS, Adjunct Faculty, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
- Department of Cardiovascular Physiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Philipp-Sebastian Koch
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, 68167 Mannheim, Germany
- ECAS, Adjunct Faculty, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
- Cardiopulmonary Institute, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
- DZHK, partner site Frankfurt Rhine-Main, Frankfurt, 60590 Frankfurt am Main, Germany
| | - Gergana Dobreva
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 68167 Mannheim, Germany
- ECAS, Department of Cardiovascular Genomics and Epigenomics, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Joerg Heineke
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 68167 Mannheim, Germany
- CFPM (Core Facility Platform Mannheim), Cardiac Imaging Center, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| |
Collapse
|
27
|
Song S, Zhang X, Huang Z, Zhao Y, Lu S, Zeng L, Cai F, Wang T, Pei Z, Weng X, Luo W, Lu H, Wei Z, Wu J, Yu P, Shen L, Zhang X, Sun A, Ge J. TEA domain transcription factor 1(TEAD1) induces cardiac fibroblasts cells remodeling through BRD4/Wnt4 pathway. Signal Transduct Target Ther 2024; 9:45. [PMID: 38374140 PMCID: PMC10876703 DOI: 10.1038/s41392-023-01732-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 02/21/2024] Open
Abstract
Cardiac fibroblasts (CFs) are the primary cells tasked with depositing and remodeling collagen and significantly associated with heart failure (HF). TEAD1 has been shown to be essential for heart development and homeostasis. However, fibroblast endogenous TEAD1 in cardiac remodeling remains incompletely understood. Transcriptomic analyses revealed consistently upregulated cardiac TEAD1 expression in mice 4 weeks after transverse aortic constriction (TAC) and Ang-II infusion. Further investigation revealed that CFs were the primary cell type expressing elevated TEAD1 levels in response to pressure overload. Conditional TEAD1 knockout was achieved by crossing TEAD1-floxed mice with CFs- and myofibroblasts-specific Cre mice. Echocardiographic and histological analyses demonstrated that CFs- and myofibroblasts-specific TEAD1 deficiency and treatment with TEAD1 inhibitor, VT103, ameliorated TAC-induced cardiac remodeling. Mechanistically, RNA-seq and ChIP-seq analysis identified Wnt4 as a novel TEAD1 target. TEAD1 has been shown to promote the fibroblast-to-myofibroblast transition through the Wnt signalling pathway, and genetic Wnt4 knockdown inhibited the pro-transformation phenotype in CFs with TEAD1 overexpression. Furthermore, co-immunoprecipitation combined with mass spectrometry, chromatin immunoprecipitation, and luciferase assays demonstrated interaction between TEAD1 and BET protein BRD4, leading to the binding and activation of the Wnt4 promoter. In conclusion, TEAD1 is an essential regulator of the pro-fibrotic CFs phenotype associated with pathological cardiac remodeling via the BRD4/Wnt4 signalling pathway.
Collapse
Affiliation(s)
- Shuai Song
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Xiaokai Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Zihang Huang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Yongchao Zhao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Shuyang Lu
- Department of cardiac surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Linqi Zeng
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Fengze Cai
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Tongyao Wang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Zhiqiang Pei
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Xinyu Weng
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Wei Luo
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Zilun Wei
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Jian Wu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Peng Yu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Li Shen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Xiaochun Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Aijun Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China.
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China.
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, China.
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
- Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China.
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China.
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, China.
- Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
28
|
Avolio E, Campagnolo P, Katare R, Madeddu P. The role of cardiac pericytes in health and disease: therapeutic targets for myocardial infarction. Nat Rev Cardiol 2024; 21:106-118. [PMID: 37542118 DOI: 10.1038/s41569-023-00913-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/10/2023] [Indexed: 08/06/2023]
Abstract
Millions of cardiomyocytes die immediately after myocardial infarction, regardless of whether the culprit coronary artery undergoes prompt revascularization. Residual ischaemia in the peri-infarct border zone causes further cardiomyocyte damage, resulting in a progressive decline in contractile function. To date, no treatment has succeeded in increasing the vascularization of the infarcted heart. In the past decade, new approaches that can target the heart's highly plastic perivascular niche have been proposed. The perivascular environment is populated by mesenchymal progenitor cells, fibroblasts, myofibroblasts and pericytes, which can together mount a healing response to the ischaemic damage. In the infarcted heart, pericytes have crucial roles in angiogenesis, scar formation and stabilization, and control of the inflammatory response. Persistent ischaemia and accrual of age-related risk factors can lead to pericyte depletion and dysfunction. In this Review, we describe the phenotypic changes that characterize the response of cardiac pericytes to ischaemia and the potential of pericyte-based therapy for restoring the perivascular niche after myocardial infarction. Pericyte-related therapies that can salvage the area at risk of an ischaemic injury include exogenously administered pericytes, pericyte-derived exosomes, pericyte-engineered biomaterials, and pharmacological approaches that can stimulate the differentiation of constitutively resident pericytes towards an arteriogenic phenotype. Promising preclinical results from in vitro and in vivo studies indicate that pericytes have crucial roles in the treatment of coronary artery disease and the prevention of post-ischaemic heart failure.
Collapse
Affiliation(s)
- Elisa Avolio
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, UK.
| | - Paola Campagnolo
- School of Biosciences, Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK
| | - Rajesh Katare
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Paolo Madeddu
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
29
|
Chen Y, Li Z, Ji G, Wang S, Mo C, Ding B. Lung regeneration: diverse cell types and the therapeutic potential. MedComm (Beijing) 2024; 5:e494. [PMID: 38405059 PMCID: PMC10885188 DOI: 10.1002/mco2.494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Lung tissue has a certain regenerative ability and triggers repair procedures after injury. Under controllable conditions, lung tissue can restore normal structure and function. Disruptions in this process can lead to respiratory system failure and even death, causing substantial medical burden. The main types of respiratory diseases are chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and acute respiratory distress syndrome (ARDS). Multiple cells, such as lung epithelial cells, endothelial cells, fibroblasts, and immune cells, are involved in regulating the repair process after lung injury. Although the mechanism that regulates the process of lung repair has not been fully elucidated, clinical trials targeting different cells and signaling pathways have achieved some therapeutic effects in different respiratory diseases. In this review, we provide an overview of the cell type involved in the process of lung regeneration and repair, research models, and summarize molecular mechanisms involved in the regulation of lung regeneration and fibrosis. Moreover, we discuss the current clinical trials of stem cell therapy and pharmacological strategies for COPD, IPF, and ARDS treatment. This review provides a reference for further research on the molecular and cellular mechanisms of lung regeneration, drug development, and clinical trials.
Collapse
Affiliation(s)
- Yutian Chen
- The Department of Endovascular SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Zhen Li
- The Department of Endovascular SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Gaili Ji
- Department of GynecologyThe Third Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Shaochi Wang
- Department of Translational MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Bi‐Sen Ding
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
30
|
Smolgovsky S, Theall B, Wagner N, Alcaide P. Fibroblasts and immune cells: at the crossroad of organ inflammation and fibrosis. Am J Physiol Heart Circ Physiol 2024; 326:H303-H316. [PMID: 38038714 PMCID: PMC11219060 DOI: 10.1152/ajpheart.00545.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
The immune and fibrotic responses have evolved to work in tandem to respond to pathogen clearance and promote tissue repair. However, excessive immune and fibrotic responses lead to chronic inflammation and fibrosis, respectively, both of which are key pathological drivers of organ pathophysiology. Fibroblasts and immune cells are central to these responses, and evidence of these two cell types communicating through soluble mediators or adopting functions from each other through direct contact is constantly emerging. Here, we review complex junctions of fibroblast-immune cell cross talk, such as immune cell modulation of fibroblast physiology and fibroblast acquisition of immune cell-like functions, as well as how these systems of communication contribute to organ pathophysiology. We review the concept of antigen presentation by fibroblasts among different organs with different regenerative capacities, and then focus on the inflammation-fibrosis axis in the heart in the complex syndrome of heart failure. We discuss the need to develop anti-inflammatory and antifibrotic therapies, so far unsuccessful to date, that target novel mechanisms that sit at the crossroads of the fibrotic and immune responses.
Collapse
Affiliation(s)
- Sasha Smolgovsky
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, United States
- Immunology Graduate Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States
| | - Brandon Theall
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, United States
- Immunology Graduate Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States
| | - Noah Wagner
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, United States
| | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, United States
- Immunology Graduate Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States
| |
Collapse
|
31
|
Cooke JP, Lai L. Transflammation in tissue regeneration and response to injury: How cell-autonomous inflammatory signaling mediates cell plasticity. Adv Drug Deliv Rev 2023; 203:115118. [PMID: 37884127 PMCID: PMC10842620 DOI: 10.1016/j.addr.2023.115118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 08/01/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Inflammation is a first responder against injury and infection and is also critical for the regeneration and repair of tissue after injury. The role of professional immune cells in tissue healing is well characterized. Professional immune cells respond to pathogens with humoral and cytotoxic responses; remove cellular debris through efferocytosis; secrete angiogenic cytokines and growth factors to repair the microvasculature and parenchyma. However, non-immune cells are also capable of responding to damage or pathogens. Non-immune somatic cells express pattern recognition receptors (PRRs) to detect pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). The PRRs activation leads to the release of inflammatory cytokines required for tissue defense and repair. Notably, the activation of PRRs also triggers epigenetic changes that promote DNA accessibility and cellular plasticity. Thus, non-immune cells directly respond to the local inflammatory cues and can undergo phenotypic modifications or even cell lineage transitions to facilitate tissue regeneration. This review will focus on the novel role of cell-autonomous inflammatory signaling in mediating cell plasticity, a process which is termed transflammation. We will discuss the regulation of this process by changes in the functions and expression levels of epigenetic modifiers, as well as metabolic and ROS/RNS-mediated epigenetic modulation of DNA accessibility during cell fate transition. We will highlight the recent technological developments in detecting cell plasticity and potential therapeutic applications of transflammation in tissue regeneration.
Collapse
Affiliation(s)
- John P Cooke
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Li Lai
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States.
| |
Collapse
|
32
|
Wang HF, Du XJ, Zhang YY, Xiao H. New perspective on the mechanisms of cardiac fibrosis. Sci Bull (Beijing) 2023; 68:2704-2708. [PMID: 37884427 DOI: 10.1016/j.scib.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Affiliation(s)
- Hai-Fan Wang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing 100191, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China; Search Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing 100191, China; Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xiao-Jun Du
- Baker Heart and Diabetes Institute, Melbourne 8008, Australia; School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, and Cardiometabolic Innovation Center (Ministry of Education), Xi'an 710061, China
| | - You-Yi Zhang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing 100191, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China; Search Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing 100191, China
| | - Han Xiao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing 100191, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China; Search Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing 100191, China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi 832003, China.
| |
Collapse
|
33
|
Pohl L, Schiessl IM. Endothelial cell plasticity in kidney fibrosis and disease. Acta Physiol (Oxf) 2023; 239:e14038. [PMID: 37661749 DOI: 10.1111/apha.14038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/29/2023] [Accepted: 08/11/2023] [Indexed: 09/05/2023]
Abstract
Renal endothelial cells demonstrate an impressive remodeling potential during angiogenic sprouting, vessel repair or while transitioning into mesenchymal cells. These different processes may play important roles in both renal disease progression or regeneration while underlying signaling pathways of different endothelial cell plasticity routes partly overlap. Angiogenesis contributes to wound healing after kidney injury and pharmaceutical modulation of angiogenesis may home a great therapeutic potential. Yet, it is not clear whether any differentiated endothelial cell can proliferate or whether regenerative processes are largely controlled by resident or circulating endothelial progenitor cells. In the glomerular compartment for example, a distinct endothelial progenitor cell population may remodel the glomerular endothelium after injury. Endothelial-to-mesenchymal transition (EndoMT) in the kidney is vastly documented and often associated with endothelial dysfunction, fibrosis, and kidney disease progression. Especially the role of EndoMT in renal fibrosis is controversial. Studies on EndoMT in vivo determined possible conclusions on the pathophysiological role of EndoMT in the kidney, but whether endothelial cells really contribute to kidney fibrosis and if not what other cellular and functional outcomes derive from EndoMT in kidney disease is unclear. Sequencing data, however, suggest no participation of endothelial cells in extracellular matrix deposition. Thus, more in-depth classification of cellular markers and the fate of EndoMT cells in the kidney is needed. In this review, we describe different signaling pathways of endothelial plasticity, outline methodological approaches and evidence for functional and structural implications of angiogenesis and EndoMT in the kidney, and eventually discuss controversial aspects in the literature.
Collapse
Affiliation(s)
- Layla Pohl
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
34
|
Alex L, Tuleta I, Hernandez SC, Hanna A, Venugopal H, Astorkia M, Humeres C, Kubota A, Su K, Zheng D, Frangogiannis NG. Cardiac Pericytes Acquire a Fibrogenic Phenotype and Contribute to Vascular Maturation After Myocardial Infarction. Circulation 2023; 148:882-898. [PMID: 37350296 PMCID: PMC10527624 DOI: 10.1161/circulationaha.123.064155] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/26/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND Pericytes have been implicated in tissue repair, remodeling, and fibrosis. Although the mammalian heart contains abundant pericytes, their fate and involvement in myocardial disease remains unknown. METHODS We used NG2Dsred;PDGFRαEGFP pericyte:fibroblast dual reporter mice and inducible NG2CreER mice to study the fate and phenotypic modulation of pericytes in myocardial infarction. The transcriptomic profile of pericyte-derived cells was studied using polymerase chain reaction arrays and single-cell RNA sequencing. The role of transforming growth factor-β (TGF-β) signaling in regulation of pericyte phenotype was investigated in vivo using pericyte-specific TGF-β receptor 2 knockout mice and in vitro using cultured human placental pericytes. RESULTS In normal hearts, neuron/glial antigen 2 (NG2) and platelet-derived growth factor receptor α (PDGFRα) identified distinct nonoverlapping populations of pericytes and fibroblasts, respectively. After infarction, a population of cells expressing both pericyte and fibroblast markers emerged. Lineage tracing demonstrated that in the infarcted region, a subpopulation of pericytes exhibited transient expression of fibroblast markers. Pericyte-derived cells accounted for ~4% of PDGFRα+ infarct fibroblasts during the proliferative phase of repair. Pericyte-derived fibroblasts were overactive, expressing higher levels of extracellular matrix genes, integrins, matricellular proteins, and growth factors, when compared with fibroblasts from other cellular sources. Another subset of pericytes contributed to infarct angiogenesis by forming a mural cell coat, stabilizing infarct neovessels. Single-cell RNA sequencing showed that NG2 lineage cells diversify after infarction and exhibit increased expression of matrix genes, and a cluster with high expression of fibroblast identity markers emerges. Trajectory analysis suggested that diversification of infarct pericytes may be driven by proliferating cells. In vitro and in vivo studies identified TGF-β as a potentially causative mediator in fibrogenic activation of infarct pericytes. However, pericyte-specific TGF-β receptor 2 disruption had no significant effects on infarct myofibroblast infiltration and collagen deposition. Pericyte-specific TGF-β signaling was involved in vascular maturation, mediating formation of a mural cell coat investing infarct neovessels and protecting from dilative remodeling. CONCLUSIONS In the healing infarct, cardiac pericytes upregulate expression of fibrosis-associated genes, exhibiting matrix-synthetic and matrix-remodeling profiles. A fraction of infarct pericytes exhibits expression of fibroblast identity markers. Pericyte-specific TGF-β signaling plays a central role in maturation of the infarct vasculature and protects from adverse dilative remodeling, but it does not modulate fibrotic remodeling.
Collapse
Affiliation(s)
- Linda Alex
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY, USA
| | - Izabela Tuleta
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY, USA
| | - Silvia C Hernandez
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY, USA
| | - Anis Hanna
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY, USA
| | - Harikrishnan Venugopal
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY, USA
| | - Maider Astorkia
- Department of Genetics, Albert Einstein College of Medicine, Bronx NY, USA
| | - Claudio Humeres
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY, USA
| | - Akihiko Kubota
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY, USA
| | - Kai Su
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx NY, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx NY, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx NY, USA
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY, USA
| |
Collapse
|
35
|
Asare Y, Stoppe C, Bernhagen J. Tracing the failing heart: dual genetic fate mapping for target identification. Signal Transduct Target Ther 2023; 8:287. [PMID: 37537182 PMCID: PMC10400625 DOI: 10.1038/s41392-023-01564-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/07/2023] [Accepted: 07/10/2023] [Indexed: 08/05/2023] Open
Affiliation(s)
- Yaw Asare
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilian-University (LMU), 81377, Munich, Germany
| | - Christian Stoppe
- Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, 97080, Würzburg, Germany
- Department of Cardiac Anesthesiology and Intensive Care Medicine, German Heart Center Charité Berlin, 13353, Berlin, Germany
| | - Jürgen Bernhagen
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilian-University (LMU), 81377, Munich, Germany.
- Munich Cluster for Systems Neurology, 81377, Munich, Germany.
- Munich Heart Alliance, 80802, Munich, Germany.
| |
Collapse
|
36
|
Pan Y, Yang J, Dai J, Xu X, Zhou X, Mao W. TFRC in cardiomyocytes promotes macrophage infiltration and activation during the process of heart failure through regulating Ccl2 expression mediated by hypoxia inducible factor-1α. Immun Inflamm Dis 2023; 11:e835. [PMID: 37647427 PMCID: PMC10461419 DOI: 10.1002/iid3.835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/10/2023] [Accepted: 03/20/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Cardiac hypertrophy is an initiating link to Heart failure (HF) which still seriously endangers human health. Transferrin receptor (TFRC), which promotes iron uptake through the transferrin cycle, is essential for cardiac function. However, whether TFRC is involved in the process of pathological cardiac hypertrophy is not clear. METHODS Transverse aortic constriction (TAC) mouse model and mice primary cardiomyocytes treated with isoproterenol (ISO) or phenylephrine (PHE) were used to mimic cardiac hypertrophy in vivo and in vitro. Single cell RNA sequence data from heart tissues of TAC-model mice was obtained from the Gene Expression Omnibus (GEO) database, and was analyzed with R package Seurat. TFRC expression and macrophage infiltration in the heart tissue were tested by immunofluorescent staining. Macrophage polarization was detected by Flow Cytometry. TFRC expressions were detected by qRT-PCR, Western blot, and ELISA. RESULTS TFRC expression is increased in the pathological cardiac hypertrophy of mice model and positively associated with macrophage infiltration. Furthermore, TFRC in cardiomyocytes recruits and activates macrophages by secreting C-C motif ligand 2 (Ccl2) in the mice heart tissue with TAC surgery or in the primary cardiomyocytes stimulated with ISO or PHE to induce myocardial hypertrophy in vitro. Moreover, we find that TFRC promotes Ccl2 expression in cardiomyocytes via regulating signal transducer and activator of transcription 3 (STAT3). In addition, we find that increased TFRC expression in the HF tissue is regulated by hypoxia-inducible factor-1α (HIF-1α). CONCLUSION This in-depth study shows that TFRC in cardiomyocytes promotes HF development through inducing macrophage infiltration and activation via the STAT3-Ccl2 signaling, and TFRC expression in cardiomyocytes is regulated by HIF-1α during HF. This study first uncovers the role of TFRC in cardiomyocytes on macrophage infiltration and activation during HF.
Collapse
Affiliation(s)
- Yanyun Pan
- Department of CardiologyThe First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouZhejiang ProvinceP. R. China
| | - Jinxiu Yang
- Department of Cardiology, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiang ProvinceP. R. China
| | - Jin Dai
- Department of CardiologyThe First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouZhejiang ProvinceP. R. China
| | - Xiaoming Xu
- Department of CardiologyThe First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouZhejiang ProvinceP. R. China
| | - Xinbin Zhou
- Department of CardiologyThe First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouZhejiang ProvinceP. R. China
| | - Wei Mao
- Department of CardiologyThe First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouZhejiang ProvinceP. R. China
| |
Collapse
|
37
|
Abstract
Pericytes are specialized cells located in close proximity to endothelial cells within the microvasculature. They play a crucial role in regulating blood flow, stabilizing vessel walls, and maintaining the integrity of the blood-brain barrier. The loss of pericytes has been associated with the development and progression of various diseases, such as diabetes, Alzheimer's disease, sepsis, stroke, and traumatic brain injury. This review examines the detection of pericyte loss in different diseases, explores the methods employed to assess pericyte coverage, and elucidates the potential mechanisms contributing to pericyte loss in these pathological conditions. Additionally, current therapeutic strategies targeting pericytes are discussed, along with potential future interventions aimed at preserving pericyte function and promoting disease mitigation.
Collapse
Affiliation(s)
| | - Hongkuan Fan
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| |
Collapse
|
38
|
Lother A, Kohl P. The heterocellular heart: identities, interactions, and implications for cardiology. Basic Res Cardiol 2023; 118:30. [PMID: 37495826 PMCID: PMC10371928 DOI: 10.1007/s00395-023-01000-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
The heterocellular nature of the heart has been receiving increasing attention in recent years. In addition to cardiomyocytes as the prototypical cell type of the heart, non-myocytes such as endothelial cells, fibroblasts, or immune cells are coming more into focus. The rise of single-cell sequencing technologies enables identification of ever more subtle differences and has reignited the question of what defines a cell's identity. Here we provide an overview of the major cardiac cell types, describe their roles in homeostasis, and outline recent findings on non-canonical functions that may be of relevance for cardiology. We highlight modes of biochemical and biophysical interactions between different cardiac cell types and discuss the potential implications of the heterocellular nature of the heart for basic research and therapeutic interventions.
Collapse
Affiliation(s)
- Achim Lother
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstr. 25, 79104, Freiburg, Germany.
- Interdisciplinary Medical Intensive Care, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany.
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, Faculty of Medicine, University Heart Center, University of Freiburg, Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
39
|
Alkhodari M, Xiong Z, Khandoker AH, Hadjileontiadis LJ, Leeson P, Lapidaire W. The role of artificial intelligence in hypertensive disorders of pregnancy: towards personalized healthcare. Expert Rev Cardiovasc Ther 2023; 21:531-543. [PMID: 37300317 DOI: 10.1080/14779072.2023.2223978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Guidelines advise ongoing follow-up of patients after hypertensive disorders of pregnancy (HDP) to assess cardiovascular risk and manage future patient-specific pregnancy conditions. However, there are limited tools available to monitor patients, with those available tending to be simple risk assessments that lack personalization. A promising approach could be the emerging artificial intelligence (AI)-based techniques, developed from big patient datasets to provide personalized recommendations for preventive advice. AREAS COVERED In this narrative review, we discuss the impact of integrating AI and big data analysis for personalized cardiovascular care, focusing on the management of HDP. EXPERT OPINION The pathophysiological response of women to pregnancy varies, and deeper insight into each response can be gained through a deeper analysis of the medical history of pregnant women based on clinical records and imaging data. Further research is required to be able to implement AI for clinical cases using multi-modality and multi-organ assessment, and this could expand both knowledge on pregnancy-related disorders and personalized treatment planning.
Collapse
Affiliation(s)
- Mohanad Alkhodari
- Cardiovascular Clinical Research Facility, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Healthcare Engineering Innovation Center (HEIC), Department of Biomedical Engineering, Khalifa University of Science and Tehcnology, Abu Dhabi, UAE
| | - Zhaohan Xiong
- Cardiovascular Clinical Research Facility, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Ahsan H Khandoker
- Healthcare Engineering Innovation Center (HEIC), Department of Biomedical Engineering, Khalifa University of Science and Tehcnology, Abu Dhabi, UAE
| | - Leontios J Hadjileontiadis
- Healthcare Engineering Innovation Center (HEIC), Department of Biomedical Engineering, Khalifa University of Science and Tehcnology, Abu Dhabi, UAE
- Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Paul Leeson
- Cardiovascular Clinical Research Facility, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Winok Lapidaire
- Cardiovascular Clinical Research Facility, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
40
|
Langa P, Shafaattalab S, Goldspink PH, Wolska BM, Fernandes AA, Tibbits GF, Solaro RJ. A perspective on Notch signalling in progression and arrhythmogenesis in familial hypertrophic and dilated cardiomyopathies. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220176. [PMID: 37122209 PMCID: PMC10150215 DOI: 10.1098/rstb.2022.0176] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/13/2022] [Indexed: 05/02/2023] Open
Abstract
In this perspective, we discussed emerging data indicating a role for Notch signalling in inherited disorders of the heart failure with focus on hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) linked to variants of genes encoding mutant proteins of the sarcomere. We recently reported an upregulation of elements in the Notch signalling cascade in cardiomyocytes derived from human inducible pluripotent stem cells expressing a TNNT2 variant encoding cardiac troponin T (cTnT-I79N+/-), which induces hypertrophy, remodelling, abnormalities in excitation-contraction coupling and electrical instabilities (Shafaattalab S et al. 2021 Front. Cell Dev. Biol. 9, 787581. (doi:10.3389/fcell.2021.787581)). Our search of the literature revealed the novelty of this finding and stimulated us to discuss potential connections between the Notch signalling pathway and familial cardiomyopathies. Our considerations focused on the potential role of these interactions in arrhythmias, microvascular ischaemia, and fibrosis. This finding underscored a need to consider the role of Notch signalling in familial cardiomyopathies which are trigged by sarcomere mutations engaging mechano-signalling pathways for which there is evidence of a role for Notch signalling with crosstalk with Hippo signalling. Our discussion included a role for both cardiac myocytes and non-cardiac myocytes in progression of HCM and DCM. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Collapse
Affiliation(s)
- Paulina Langa
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, Chicago, IL, 60612, USA
| | - Sanam Shafaattalab
- Molecular Biology and Biochemistry; BC Children’s Hospital Research Institute, Vancouver, BC, V5Z 4H4; Simon Fraser University Burnaby, British Columbia, V5A 4H4, Canada
| | - Paul H. Goldspink
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, Chicago, IL, 60612, USA
| | - Beata M. Wolska
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, Chicago, IL, 60612, USA
- Department of Medicine, Division of Cardiology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Aurelia A. Fernandes
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, Chicago, IL, 60612, USA
| | - Glen F. Tibbits
- Molecular Biology and Biochemistry; BC Children’s Hospital Research Institute, Vancouver, BC, V5Z 4H4; Simon Fraser University Burnaby, British Columbia, V5A 4H4, Canada
| | - R. John Solaro
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, Chicago, IL, 60612, USA
| |
Collapse
|
41
|
Miranda AMA, Janbandhu V, Maatz H, Kanemaru K, Cranley J, Teichmann SA, Hübner N, Schneider MD, Harvey RP, Noseda M. Single-cell transcriptomics for the assessment of cardiac disease. Nat Rev Cardiol 2023; 20:289-308. [PMID: 36539452 DOI: 10.1038/s41569-022-00805-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/03/2022] [Indexed: 12/24/2022]
Abstract
Cardiovascular disease is the leading cause of death globally. An advanced understanding of cardiovascular disease mechanisms is required to improve therapeutic strategies and patient risk stratification. State-of-the-art, large-scale, single-cell and single-nucleus transcriptomics facilitate the exploration of the cardiac cellular landscape at an unprecedented level, beyond its descriptive features, and can further our understanding of the mechanisms of disease and guide functional studies. In this Review, we provide an overview of the technical challenges in the experimental design of single-cell and single-nucleus transcriptomics studies, as well as a discussion of the type of inferences that can be made from the data derived from these studies. Furthermore, we describe novel findings derived from transcriptomics studies for each major cardiac cell type in both health and disease, and from development to adulthood. This Review also provides a guide to interpreting the exhaustive list of newly identified cardiac cell types and states, and highlights the consensus and discordances in annotation, indicating an urgent need for standardization. We describe advanced applications such as integration of single-cell data with spatial transcriptomics to map genes and cells on tissue and define cellular microenvironments that regulate homeostasis and disease progression. Finally, we discuss current and future translational and clinical implications of novel transcriptomics approaches, and provide an outlook of how these technologies will change the way we diagnose and treat heart disease.
Collapse
Affiliation(s)
| | - Vaibhao Janbandhu
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Henrike Maatz
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Kazumasa Kanemaru
- Cellular Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - James Cranley
- Cellular Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Sarah A Teichmann
- Cellular Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Deptartment of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Norbert Hübner
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Charite-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | | | - Richard P Harvey
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Michela Noseda
- National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
42
|
Parab S, Setten E, Astanina E, Bussolino F, Doronzo G. The tissue-specific transcriptional landscape underlines the involvement of endothelial cells in health and disease. Pharmacol Ther 2023; 246:108418. [PMID: 37088448 DOI: 10.1016/j.pharmthera.2023.108418] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 03/23/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
Endothelial cells (ECs) that line vascular and lymphatic vessels are being increasingly recognized as important to organ function in health and disease. ECs participate not only in the trafficking of gases, metabolites, and cells between the bloodstream and tissues but also in the angiocrine-based induction of heterogeneous parenchymal cells, which are unique to their specific tissue functions. The molecular mechanisms regulating EC heterogeneity between and within different tissues are modeled during embryogenesis and become fully established in adults. Any changes in adult tissue homeostasis induced by aging, stress conditions, and various noxae may reshape EC heterogeneity and induce specific transcriptional features that condition a functional phenotype. Heterogeneity is sustained via specific genetic programs organized through the combinatory effects of a discrete number of transcription factors (TFs) that, at the single tissue-level, constitute dynamic networks that are post-transcriptionally and epigenetically regulated. This review is focused on outlining the TF-based networks involved in EC specialization and physiological and pathological stressors thought to modify their architecture.
Collapse
Affiliation(s)
- Sushant Parab
- Department of Oncology, University of Torino, IT, Italy; Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Torino, IT, Italy
| | - Elisa Setten
- Department of Oncology, University of Torino, IT, Italy; Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Torino, IT, Italy
| | - Elena Astanina
- Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Torino, IT, Italy
| | - Federico Bussolino
- Department of Oncology, University of Torino, IT, Italy; Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Torino, IT, Italy.
| | - Gabriella Doronzo
- Department of Oncology, University of Torino, IT, Italy; Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Torino, IT, Italy
| |
Collapse
|
43
|
Schreibing F, Anslinger TM, Kramann R. Fibrosis in Pathology of Heart and Kidney: From Deep RNA-Sequencing to Novel Molecular Targets. Circ Res 2023; 132:1013-1033. [PMID: 37053278 DOI: 10.1161/circresaha.122.321761] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Diseases of the heart and the kidney, including heart failure and chronic kidney disease, can dramatically impair life expectancy and the quality of life of patients. The heart and kidney form a functional axis; therefore, functional impairment of 1 organ will inevitably affect the function of the other. Fibrosis represents the common final pathway of diseases of both organs, regardless of the disease entity. Thus, inhibition of fibrosis represents a promising therapeutic approach to treat diseases of both organs and to resolve functional impairment. However, despite the growing knowledge in this field, the exact pathomechanisms that drive fibrosis remain elusive. RNA-sequencing approaches, particularly single-cell RNA-sequencing, have revolutionized the investigation of pathomechanisms at a molecular level and facilitated the discovery of disease-associated cell types and mechanisms. In this review, we give a brief overview over the evolution of RNA-sequencing techniques, summarize most recent insights into the pathogenesis of heart and kidney fibrosis, and discuss how transcriptomic data can be used, to identify new drug targets and to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Felix Schreibing
- Institute of Experimental Medicine and Systems Biology (F.S., T.M.A., R.K.), RWTH Aachen University, Medical Faculty, Aachen, Germany
- Division of Nephrology and Clinical Immunology (F.S., T.M.A., R.K.), RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Teresa M Anslinger
- Institute of Experimental Medicine and Systems Biology (F.S., T.M.A., R.K.), RWTH Aachen University, Medical Faculty, Aachen, Germany
- Division of Nephrology and Clinical Immunology (F.S., T.M.A., R.K.), RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Rafael Kramann
- Institute of Experimental Medicine and Systems Biology (F.S., T.M.A., R.K.), RWTH Aachen University, Medical Faculty, Aachen, Germany
- Division of Nephrology and Clinical Immunology (F.S., T.M.A., R.K.), RWTH Aachen University, Medical Faculty, Aachen, Germany
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands (R.K.)
| |
Collapse
|
44
|
Voges HK, Foster SR, Reynolds L, Parker BL, Devilée L, Quaife-Ryan GA, Fortuna PRJ, Mathieson E, Fitzsimmons R, Lor M, Batho C, Reid J, Pocock M, Friedman CE, Mizikovsky D, Francois M, Palpant NJ, Needham EJ, Peralta M, Monte-Nieto GD, Jones LK, Smyth IM, Mehdiabadi NR, Bolk F, Janbandhu V, Yao E, Harvey RP, Chong JJH, Elliott DA, Stanley EG, Wiszniak S, Schwarz Q, James DE, Mills RJ, Porrello ER, Hudson JE. Vascular cells improve functionality of human cardiac organoids. Cell Rep 2023:112322. [PMID: 37105170 DOI: 10.1016/j.celrep.2023.112322] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/13/2023] [Accepted: 03/15/2023] [Indexed: 04/29/2023] Open
Abstract
Crosstalk between cardiac cells is critical for heart performance. Here we show that vascular cells within human cardiac organoids (hCOs) enhance their maturation, force of contraction, and utility in disease modeling. Herein we optimize our protocol to generate vascular populations in addition to epicardial, fibroblast, and cardiomyocyte cells that self-organize into in-vivo-like structures in hCOs. We identify mechanisms of communication between endothelial cells, pericytes, fibroblasts, and cardiomyocytes that ultimately contribute to cardiac organoid maturation. In particular, (1) endothelial-derived LAMA5 regulates expression of mature sarcomeric proteins and contractility, and (2) paracrine platelet-derived growth factor receptor β (PDGFRβ) signaling from vascular cells upregulates matrix deposition to augment hCO contractile force. Finally, we demonstrate that vascular cells determine the magnitude of diastolic dysfunction caused by inflammatory factors and identify a paracrine role of endothelin driving dysfunction. Together this study highlights the importance and role of vascular cells in organoid models.
Collapse
Affiliation(s)
- Holly K Voges
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Department of Paediatrics, School of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Simon R Foster
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Liam Reynolds
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Benjamin L Parker
- Charles Perkins Centre, School of Life and Environmental Science, The University of Sydney, Sydney, NSW 2006, Australia; Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Lynn Devilée
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Gregory A Quaife-Ryan
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | - Ellen Mathieson
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | | | - Mary Lor
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Christopher Batho
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Janice Reid
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mark Pocock
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Clayton E Friedman
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, QLD, Australia
| | - Dalia Mizikovsky
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, QLD, Australia
| | - Mathias Francois
- The Centenary Institute, David Richmond Program for Cardiovascular Research: Gene Regulation and Editing, Sydney Medical School, University of Sydney, Sydney, NSW 2050, Australia
| | - Nathan J Palpant
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, QLD, Australia
| | - Elise J Needham
- Charles Perkins Centre, School of Life and Environmental Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Marina Peralta
- Australian Regenerative Medicine Institute. Monash University, Clayton, VIC 3800, Australia
| | | | - Lynelle K Jones
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedical Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Ian M Smyth
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedical Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Neda R Mehdiabadi
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Francesca Bolk
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Vaibhao Janbandhu
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Ernestene Yao
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
| | - Richard P Harvey
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia; School of Biotechnology and Biomolecular Science, UNSW Sydney, Sydney, NSW 2052, Australia
| | - James J H Chong
- Centre for Heart Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia; Department of Cardiology, Westmead Hospital, Westmead, NSW 2145, Australia
| | - David A Elliott
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Department of Paediatrics, School of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Edouard G Stanley
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Department of Paediatrics, School of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Sophie Wiszniak
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5001, Australia
| | - Quenten Schwarz
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5001, Australia
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Science, The University of Sydney, Sydney, NSW 2006, Australia; Sydney Medical School, The University of Sydney, Sydney, 2010 NSW, Australia
| | - Richard J Mills
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Department of Paediatrics, School of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Enzo R Porrello
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia; Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, The Royal Children's Hospital, Melbourne, VIC 3052, Australia.
| | - James E Hudson
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
45
|
Xing Z, Chen J, Yu T, Li X, Dong W, Peng C, Li D. Aconitum carmichaelii Debx. Attenuates Heart Failure through Inhibiting Inflammation and Abnormal Vascular Remodeling. Int J Mol Sci 2023; 24:ijms24065838. [PMID: 36982912 PMCID: PMC10059042 DOI: 10.3390/ijms24065838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Heart failure (HF) is the most common complication following myocardial infarction, closely associated with ventricular remodeling. Aconitum carmichaelii Debx., a traditional Chinese herb, possesses therapeutic effects on HF and related cardiac diseases. However, its effects and mechanisms on HF-associated cardiac diseases are still unclear. In the present study, a water extraction of toasted Aconitum carmichaelii Debx. (WETA) was verified using UPLC-Q/TOF-MS. The heart function of HF rats was assessed by echocardiography and strain analysis, and myocardial injury was measured by serum levels of CK-MB, cTnT, and cTnI. The pathological changes of cardiac tissues were evaluated by 2,3,5-triphenyltetrazolium chloride (TTC) staining, hematoxylin and eosin (H&E) staining, and Masson's trichrome staining. Additionally, the levels of inflammation-related genes and proteins and components related to vascular remodeling were detected by RT-qPCR, Western blot, and immunofluorescence. WETA significantly inhibited the changes in echocardiographic parameters and the increase in heart weight, cardiac infarction size, the myonecrosis, edema, and infiltration of inflammatory cells, collagen deposition in heart tissues, and also mitigated the elevated serum levels of CK-MB, cTnT, and cTnI in ISO-induced rats. Additionally, WETA suppressed the expressions of inflammatory genes, including IL-1β, IL-6, and TNF-α and vascular injury-related genes, such as VCAM1, ICAM1, ANP, BNP, and MHC in heart tissues of ISO-induced HF rats, which were further confirmed by Western blotting and immunofluorescence. In summary, the myocardial protective effect of WETA was conferred through inhibiting inflammatory responses and abnormal vascular remodeling in ISO-treated rats.
Collapse
Affiliation(s)
- Ziwei Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Junren Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tingting Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei Dong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
46
|
Schumacher D, Kramann R. Multiomic Spatial Mapping of Myocardial Infarction and Implications for Personalized Therapy. Arterioscler Thromb Vasc Biol 2023; 43:192-202. [PMID: 36579644 DOI: 10.1161/atvbaha.122.318333] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ischemic heart disease including myocardial infarction is still the leading cause of death worldwide. Although the survival early after myocardial infarction has been significantly improved by the introduction of percutaneous coronary intervention, long-term morbidity and mortality remain high. The elevated long-term mortality is mainly driven by cardiac remodeling processes triggering ischemic heart failure and electric instability. Despite the new developments in pharmaco-therapy of heart failure, we still lack targeted therapies for cardiac remodeling and fibrosis. Single-cell and genomic technologies allow us to map the human heart at unprecedented resolution and allow to gain insights into cellular and molecular heterogeneity. However, these technologies rely on digested tissue and isolated cells or nuclei and thus lack spatial information. Spatial information is critical to understand tissue homeostasis and disease and can be utilized to identify disease-driving cell populations and mechanisms including cellular cross-talk. Here, we discuss recent advances in single-cell and spatial genomic technologies that give insights into cellular and molecular mechanisms of cardiac remodeling after injury and can be utilized to identify novel therapeutic targets and pave the way toward new therapies in heart failure.
Collapse
Affiliation(s)
- David Schumacher
- Institute of Experimental Medicine and Systems Biology (D.S., R.K.), RWTH Aachen University, Germany.,Department of Anesthesiology, University Hospital (D.S.), RWTH Aachen University, Germany
| | - Rafael Kramann
- Institute of Experimental Medicine and Systems Biology (D.S., R.K.), RWTH Aachen University, Germany.,Department of Nephrology and Clinical Immunology (R.K.), RWTH Aachen University, Germany.,Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, the Netherlands (R.K.)
| |
Collapse
|
47
|
Cooke JP, Lai L. Role of angiogenic transdifferentiation in vascular recovery. Front Cardiovasc Med 2023; 10:1155835. [PMID: 37200975 PMCID: PMC10187761 DOI: 10.3389/fcvm.2023.1155835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/10/2023] [Indexed: 05/20/2023] Open
Abstract
Tissue repair requires the orchestration of multiple processes involving a multiplicity of cellular effectors, signaling pathways, and cell-cell communication. The regeneration of the vasculature is a critical process for tissue repair and involves angiogenesis, adult vasculogenesis, and often arteriogenesis, which processes enable recovery of perfusion to deliver oxygen and nutrients to the repair or rebuild of the tissue. Endothelial cells play a major role in angiogenesis, whereas circulating angiogenic cells (primarily of hematopoietic origin) participate in adult vasculogenesis, and monocytes/macrophages have a defining role in the vascular remodeling that is necessary for arteriogenesis. Tissue fibroblasts participate in tissue repair by proliferating and generating the extracellular matrix as the structural scaffold for tissue regeneration. Heretofore, fibroblasts were not generally believed to be involved in vascular regeneration. However, we provide new data indicating that fibroblasts may undergo angiogenic transdifferentiation, to directly expand the microvasculature. Transdifferentiation of fibroblasts to endothelial cells is initiated by inflammatory signaling which increases DNA accessibility and cellular plasticity. In the environment of under-perfused tissue, the activated fibroblasts with increased DNA accessibility can now respond to angiogenic cytokines, which provide the transcriptional direction to induce fibroblasts to become endothelial cells. Periphery artery disease (PAD) involves the dysregulation of vascular repair and inflammation. Understanding the relationship between inflammation, transdifferentiation, and vascular regeneration may lead to a new therapeutic approach to PAD.
Collapse
|
48
|
Micheletti R, Alexanian M. Transcriptional plasticity of fibroblasts in heart disease. Biochem Soc Trans 2022; 50:1247-1255. [PMID: 36281993 PMCID: PMC9704531 DOI: 10.1042/bst20210864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 08/27/2023]
Abstract
Cardiac fibroblasts play an essential role in maintaining the structural framework of the heart. Upon stress, fibroblasts undergo a cell state transition to activated fibroblasts (also referred to as myofibroblasts), a highly synthetic cell type that proliferates, migrates, and secrets both extracellular matrix as well as signaling factors that can modulate cellular crosstalk [J. Clin. Invest. 132, e148554]. Activated fibroblasts are critical regulators of cardiac wound healing after injury, but their excessive and persistent activation promote tissue fibrosis, a hallmark feature of the pathological remodeling of the heart. While much of the previous work in cardiac fibroblast biology has focused on the role of canonical signaling pathways or components of the extracellular matrix, recent efforts have been focused on deciphering the gene regulatory principles governing fibroblast activation. A better understanding of the molecular mechanisms that trigger and sustain the fibrotic process in heart disease has the potential to accelerate the development of therapies that specifically target the cardiac activated fibroblasts, which are at the moment unavailable. This concise review focuses on the mechanisms underlying the chromatin and transcriptional regulation of cardiac fibroblast activation. We discuss recent work from our group and others in this space, highlighting the application of single-cell genomics in the characterization of fibroblast function and diversity, and provide an overview on the prospects of targeting cardiac fibroblasts in heart disease and the associated challenges.
Collapse
Affiliation(s)
- Rudi Micheletti
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA, U.S.A
| | - Michael Alexanian
- Gladstone Institutes, San Francisco, CA, U.S.A
- Department of Pediatrics, University of California, San Francisco, CA, U.S.A
| |
Collapse
|
49
|
Kuwabara JT, Hara A, Bhutada S, Gojanovich GS, Chen J, Hokutan K, Shettigar V, Lee AY, DeAngelo LP, Heckl JR, Jahansooz JR, Tacdol DK, Ziolo MT, Apte SS, Tallquist MD. Consequences of PDGFRα + fibroblast reduction in adult murine hearts. eLife 2022; 11:e69854. [PMID: 36149056 PMCID: PMC9576271 DOI: 10.7554/elife.69854] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/22/2022] [Indexed: 12/01/2022] Open
Abstract
Fibroblasts produce the majority of collagen in the heart and are thought to regulate extracellular matrix (ECM) turnover. Although fibrosis accompanies many cardiac pathologies and is generally deleterious, the role of fibroblasts in maintaining the basal ECM network and in fibrosis in vivo is poorly understood. We genetically ablated fibroblasts in mice to evaluate the impact on homeostasis of adult ECM and cardiac function after injury. Fibroblast-ablated mice demonstrated a substantive reduction in cardiac fibroblasts, but fibrillar collagen and the ECM proteome were not overtly altered when evaluated by quantitative mass spectrometry and N-terminomics. However, the distribution and quantity of collagen VI, microfibrillar collagen that forms an open network with the basement membrane, was reduced. In fibroblast-ablated mice, cardiac function was better preserved following angiotensin II/phenylephrine (AngII/PE)-induced fibrosis and myocardial infarction (MI). Analysis of cardiomyocyte function demonstrated altered sarcomere shortening and slowed calcium decline in both uninjured and AngII/PE-infused fibroblast-ablated mice. After MI, the residual resident fibroblasts responded to injury, albeit with reduced proliferation and numbers immediately after injury. These results indicate that the adult mouse heart tolerates a significant degree of fibroblast loss with a potentially beneficial impact on cardiac function after injury. The cardioprotective effect of controlled fibroblast reduction may have therapeutic value in heart disease.
Collapse
Affiliation(s)
- Jill T Kuwabara
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at ManoaHonoluluUnited States
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at ManoaHonoluluUnited States
| | - Akitoshi Hara
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at ManoaHonoluluUnited States
| | - Sumit Bhutada
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research InstituteClevelandUnited States
| | - Greg S Gojanovich
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at ManoaHonoluluUnited States
| | - Jasmine Chen
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at ManoaHonoluluUnited States
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at ManoaHonoluluUnited States
| | - Kanani Hokutan
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at ManoaHonoluluUnited States
| | - Vikram Shettigar
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical CenterColumbusUnited States
| | - Anson Y Lee
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at ManoaHonoluluUnited States
| | - Lydia P DeAngelo
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at ManoaHonoluluUnited States
| | - Jack R Heckl
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at ManoaHonoluluUnited States
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at ManoaHonoluluUnited States
| | - Julia R Jahansooz
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at ManoaHonoluluUnited States
| | - Dillon K Tacdol
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at ManoaHonoluluUnited States
| | - Mark T Ziolo
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical CenterColumbusUnited States
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research InstituteClevelandUnited States
| | - Michelle D Tallquist
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at ManoaHonoluluUnited States
| |
Collapse
|
50
|
Comparative Evaluation of Inducible Cre Mouse Models for Fibroblast Targeting in the Healthy and Infarcted Myocardium. Biomedicines 2022; 10:biomedicines10102350. [PMID: 36289614 PMCID: PMC9598630 DOI: 10.3390/biomedicines10102350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022] Open
Abstract
Several Cre recombinase transgenic mouse models have been generated for cardiac fibroblast (CF) tracking and heart regulation. However, there is still no consensus on the ideal mouse model to optimally identify and/or regulate these cells. Here, a comparative evaluation of the efficiency and specificity of the indirect reporter Cre-loxP system was carried out in three of the most commonly used fibroblast reporter transgenic mice (Pdgfra-CreERT2, Col1a1-CreERT2 and PostnMCM) under healthy and ischemic conditions, to determine their suitability in in vivo studies of cardiac fibrosis. We demonstrate optimal Cre recombinase activity in CF (but also, although moderate, in endothelial cells (ECs)) derived from healthy and infarcted hearts in the PDGFRa-creERT2 mouse strain. In contrast, no positive reporter signal was found in CF derived from the Col1a1-CreERT2 mice. Finally, in the PostnMCM line, fluorescent reporter expression was specifically detected in activated CF but not in EC, which leads us to conclude that it may be the most reliable model for future studies on cardiovascular disease. Importantly, no lethality or cardiac fibrosis were induced after tamoxifen administration at the established doses, either in healthy or infarcted mice of the three fibroblast reporter lineages. This study lays the groundwork for future efficient in vivo CF tracking and functional analyses.
Collapse
|