1
|
Karadzov Orlic N, Joksić I. Preeclampsia pathogenesis and prediction - where are we now: the focus on the role of galectins and miRNAs. Hypertens Pregnancy 2025; 44:2470626. [PMID: 40012493 DOI: 10.1080/10641955.2025.2470626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 02/17/2025] [Indexed: 02/28/2025]
Abstract
Preeclampsia is a complex, progressive multisystem hypertensive disorder during pregnancy that significantly contributes to increased maternal and perinatal morbidity and mortality. Two screening algorithms are in clinical use for detecting preeclampsia: first-trimester screening, which has been developed and validated for predicting early-onset preeclampsia but is less effective for late-onset disease; and the sFlt-1:PlGF biomarker ratio (soluble tyrosine kinase and placental growth factor) used in suspected cases of preeclampsia. This ratio has a high negative predictive value, allowing for the reliable exclusion of the disease. Both of these screening tests have not met expectations. This review attempts to summarize the current knowledge on the pathogenesis and prediction of preeclampsia and to draw attention to novel biomarkers with a focus on microRNAs and galectins. Although these molecules belong to two distinct biological classes, they functionally converge in regulating placental and immune pathways. Ample evidence supports their involvement in the molecular mechanisms underlying preeclampsia. Based on current knowledge, galectin-13, C19MC members, and miRNA-210 are associated with the trophoblast/placenta and conditions of placental ischemia or hypoxia. Their levels differ significantly in pregnant women at risk of preeclampsia as early as the late first and early second trimester, making them potential markers for predicting preeclampsia.
Collapse
Affiliation(s)
- Natasa Karadzov Orlic
- School of Medicine, University of Belgrade, Belgrade, Serbia
- High-Risk Pregnancy Unit, Obstetrics/Gynecology Clinic "Narodni Front", Belgrade, Serbia
| | - Ivana Joksić
- Genetic Laboratory Department, Obstetrics and Gynaecology Clinic "Narodni Front", Belgrade, Serbia
| |
Collapse
|
2
|
Wang D, Cearlock A, Lane K, Xu C, Jan I, McCartney S, Glass I, McCoy R, Yang M. Chromosomal instability in human trophoblast stem cells and placentas. Nat Commun 2025; 16:3918. [PMID: 40280964 PMCID: PMC12032275 DOI: 10.1038/s41467-025-59245-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
The human placenta, a unique tumor-like organ, is thought to exhibit rare aneuploidy associated with adverse pregnancy outcomes. Discrepancies in reported aneuploidy prevalence in placentas stem from limitations in modeling and detection methods. Here, we use isogenic trophoblast stem cells (TSCs) derived from both naïve and primed human pluripotent stem cells (hPSCs) to reveal the spontaneous occurrence of aneuploidy, suggesting chromosomal instability (CIN) as an inherent feature of the trophoblast lineage. We identify potential pathways contributing to the occurrence and tolerance of CIN, such as autophagy, which may support the survival of aneuploid cells. Despite extensive chromosomal abnormalities, TSCs maintain their proliferative and differentiation capacities. These findings are further validated in placentas, where we observe a high prevalence of heterogeneous aneuploidy across trophoblasts, particularly in invasive extravillous trophoblasts. Our study challenges the traditional view of aneuploidy in the placenta and provides insights into the implications of CIN in placental function.
Collapse
Affiliation(s)
- Danyang Wang
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, USA
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Andrew Cearlock
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, USA
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Katherine Lane
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, USA
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Chongchong Xu
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, USA
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Ian Jan
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Stephen McCartney
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, USA
| | - Ian Glass
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Rajiv McCoy
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Min Yang
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, USA.
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
| |
Collapse
|
3
|
Liu Z, Tan Y, Flynn WF, Sun L, Pratumkaew P, Alcoforado Diniz J, Oliveira NAJ, McDonough JA, Skarnes WC, Robson P. HAND1, partially mediated through ape-specific LTR binding, is essential for human extra-embryonic mesenchyme derivation from iPSCs. Cell Rep 2025; 44:115568. [PMID: 40220298 PMCID: PMC12082684 DOI: 10.1016/j.celrep.2025.115568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/23/2024] [Accepted: 03/25/2025] [Indexed: 04/14/2025] Open
Abstract
The specification of extra-embryonic mesenchyme (ExMC) is a prime example of developmental divergence between mouse and human. Derived from definitive mesoderm during mouse gastrulation, the human ExMC first appears at peri-implantation prior to gastrulation and therefore its human cellular origin, still unknown, must differ. In a human pluripotent stem cell model, we report that ExMC shares progenitor cells with trophoblast, suggesting a trophectoderm origin. This ability to form ExMC appears to extend to human trophoblast stem cell lines. We define HAND1 as an essential regulator of ExMC specification, with null cells remaining in the trophoblast lineage. Bound by HAND1, ape-specific, endogenous retrovirus-derived LTR2B contributes to unique features of ExMC. Additionally, ExMC supports the maintenance of pluripotent stem cells, possibly reflecting a role in maintaining epiblast pluripotency through peri-implantation development. Our data emphasize the nascent evolutionary innovation in human early development and provide a cellular system to study this.
Collapse
Affiliation(s)
- Zukai Liu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Yuliana Tan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - William F Flynn
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Lili Sun
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Ponthip Pratumkaew
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | | | | | | | - William C Skarnes
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Paul Robson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA; Institute for Systems Genomics, University of Connecticut, Farmington, CT 06030, USA.
| |
Collapse
|
4
|
Mouillet JF, Ouyang Y, Sadovsky E, Kothnadan VK, Sorenson HL, Badeau LJ, Sarkar SN, Chu T, Sorkin A, Sadovsky Y. The Chromosome 19 miRNA Cluster Guards Trophoblasts Against Overacting Innate Immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.03.647038. [PMID: 40236003 PMCID: PMC11996509 DOI: 10.1101/2025.04.03.647038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
To maintain pregnancy health, the human placenta delicately balances protection of the developing fetus from invading pathogens with suppression of excessive inflammation that could lead to fetal and neonatal autoimmune disorders. Previous research, including our own, has shown that small RNA products of the Chromosome 19 MicroRNA Cluster (C19MC) promote viral resistance in non-trophoblastic cells. However, the role of C19MC products in placental trophoblasts remained unclear. Here, we analyzed chromatin accessibility in the C19MC enhancer and identified a previously unknown regulatory domain. Deletion of this domain silenced the expression of C19MC microRNA and Alu elements in trophoblasts. This silencing unexpectedly led to marked activation of cellular innate immune response and strikingly increased Toll-like receptor 3 (TLR3)-mediated sensitivity to poly(I:C), a viral RNA mimic. Our data suggest that C19MC non-coding RNAs interfere with endosomal TLR3 activation in trophoblasts, highlighting a previously unrecognized mechanism for hindrance of excessive innate immune activation.
Collapse
|
5
|
Colomer-Boronat A, Knol L, Peris G, Sanchez L, Peluso S, Tristan-Ramos P, Gazquez-Gutierrez A, Chin P, Gordon K, Barturen G, Hill R, Sanchez-Luque F, Garcia-Perez J, Ivens A, Macias S, Heras S. DGCR8 haploinsufficiency leads to primate-specific RNA dysregulation and pluripotency defects. Nucleic Acids Res 2025; 53:gkaf197. [PMID: 40138719 PMCID: PMC11941479 DOI: 10.1093/nar/gkaf197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 03/03/2025] [Indexed: 03/29/2025] Open
Abstract
The 22q11.2 deletion syndrome (22qDS) is a human disorder where the majority of clinical manifestations originate during embryonic development. 22qDS is caused by a microdeletion in one chromosome 22, including DGCR8, an essential gene for microRNA (miRNA) production. However, the impact of DGCR8 hemizygosity on human development is still unclear. In this study, we generated two human pluripotent cell models containing a single functional DGCR8 allele to elucidate its role in early development. DGCR8+/- human embryonic stem cells (hESCs) showed increased apoptosis as well as self-renewal and differentiation defects in both the naïve and primed states. The expression of primate-specific miRNAs was largely affected, due to impaired miRNA processing and chromatin accessibility. DGCR8+/- hESCs also displayed a pronounced reduction in human endogenous retrovirus class H (HERVH) expression, a primate-specific retroelement essential for pluripotency maintenance. The reintroduction of miRNAs belonging to the primate-specific C19MC cluster as well as the miR-371-3 cluster rescued the defects of DGCR8+/- cells. Mechanistically, downregulation of HERVH by depletion of primate-specific miRNAs was mediated by KLF4. Altogether, we show that DGCR8 is haploinsufficient in humans and that miRNAs and transposable elements may have co-evolved in primates as part of an essential regulatory network to maintain stem cell identity.
Collapse
Affiliation(s)
- Ana Colomer-Boronat
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
- GENYO – Centre for Genomics and Oncological Research – Pfizer, University of Granada, Andalusian Regional Government, PTS, 18016 Granada, Spain
| | - Lisanne I Knol
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Guillermo Peris
- GENYO – Centre for Genomics and Oncological Research – Pfizer, University of Granada, Andalusian Regional Government, PTS, 18016 Granada, Spain
- Department of Computer Languages and Systems, Universitat Jaume I, 12071 Castellon de la Plana, Spain
| | - Laura Sanchez
- GENYO – Centre for Genomics and Oncological Research – Pfizer, University of Granada, Andalusian Regional Government, PTS, 18016 Granada, Spain
| | - Silvia Peluso
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Pablo Tristan-Ramos
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
- GENYO – Centre for Genomics and Oncological Research – Pfizer, University of Granada, Andalusian Regional Government, PTS, 18016 Granada, Spain
| | - Ana Gazquez-Gutierrez
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
- GENYO – Centre for Genomics and Oncological Research – Pfizer, University of Granada, Andalusian Regional Government, PTS, 18016 Granada, Spain
| | - Priscilla Chin
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Katrina Gordon
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Guillermo Barturen
- GENYO – Centre for Genomics and Oncological Research – Pfizer, University of Granada, Andalusian Regional Government, PTS, 18016 Granada, Spain
- Department of Genetics, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - Robert E Hill
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Francisco J Sanchez-Luque
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), Spanish National Research Council (CSIC), PTS Granada, 18016 Granada, Spain
| | - Jose Luis Garcia-Perez
- GENYO – Centre for Genomics and Oncological Research – Pfizer, University of Granada, Andalusian Regional Government, PTS, 18016 Granada, Spain
| | - Alasdair Ivens
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Sara Macias
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Sara R Heras
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
- GENYO – Centre for Genomics and Oncological Research – Pfizer, University of Granada, Andalusian Regional Government, PTS, 18016 Granada, Spain
| |
Collapse
|
6
|
Dimova T, Alexandrova M, Vangelov I, You Y, Mor G. The modeling of human implantation and early placentation: achievements and perspectives. Hum Reprod Update 2025; 31:133-163. [PMID: 39673726 DOI: 10.1093/humupd/dmae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 10/29/2024] [Indexed: 12/16/2024] Open
Abstract
BACKGROUND Successful implantation is a critical step for embryo survival. The major losses in natural and assisted human reproduction appeared to occur during the peri-implantation period. Because of ethical constraints, the fascinating maternal-fetal crosstalk during human implantation is difficult to study and thus, the possibility for clinical intervention is still limited. OBJECTIVE AND RATIONALE This review highlights some features of human implantation as a unique, ineffective and difficult-to-model process and summarizes the pros and cons of the most used in vivo, ex vivo and in vitro models. We point out the variety of cell line-derived models and how these data are corroborated by well-defined primary cells of the same nature. Important aspects related to the handling, standardization, validation, and modus operandi of the advanced 3D in vitro models are widely discussed. Special attention is paid to blastocyst-like models recapitulating the hybrid phenotype and HLA profile of extravillous trophoblasts, which are a unique yet poorly understood population with a major role in the successful implantation and immune mother-embryo recognition. Despite raising new ethical dilemmas, extended embryo cultures and synthetic embryo models are also in the scope of our review. SEARCH METHODS We searched the electronic database PubMed from inception until March 2024 by using a multi-stage search strategy of MeSH terms and keywords. In addition, we conducted a forward and backward reference search of authors mentioned in selected articles. OUTCOMES Primates and rodents are valuable in vivo models for human implantation research. However, the deep interstitial, glandular, and endovascular invasion accompanied by a range of human-specific factors responsible for the survival of the fetus determines the uniqueness of the human implantation and limits the cross-species extrapolation of the data. The ex vivo models are short-term cultures, not relevant to the period of implantation, and difficult to standardize. Moreover, the access to tissues from elective terminations of pregnancy raises ethical and legal concerns. Easy-to-culture cancer cell lines have many limitations such as being prone to spontaneous transformation and lacking decent tissue characteristics. The replacement of the original human explants, primary cells or cancer cell lines with cultures of immortalized cell lines with preserved stem cell characteristics appears to be superior for in vitro modeling of human implantation and early placentation. Remarkable advances in our understanding of the peri-implantation stages have also been made by advanced three dimensional (3D) models i.e. spheroids, organoids, and assembloids, as placental and endometrial surrogates. Much work remains to be done for the optimization and standardization of these integrated and complex models. The inclusion of immune components in these models would be an asset to delineate mechanisms of immune tolerance. Stem cell-based embryo-like models and surplus IVF embryos for research bring intriguing possibilities and are thought to be the trend for the next decade for in vitro modeling of human implantation and early embryogenesis. Along with this research, new ethical dilemmas such as the moral status of the human embryo and the potential exploitation of women consenting to donate their spare embryos have emerged. The careful appraisal and development of national legal and ethical frameworks are crucial for better regulation of studies using human embryos and embryoids to reach the potential benefits for human reproduction. WIDER IMPLICATIONS We believe that our data provide a systematization of the available information on the modeling of human implantation and early placentation and will facilitate further research in this field. A strict classification of the advanced 3D models with their pros, cons, applicability, and availability would help improve the research quality to provide reliable outputs.
Collapse
Affiliation(s)
- Tanya Dimova
- Institute of Biology and Immunology of Reproduction "Acad. Kiril Bratanov", Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Marina Alexandrova
- Institute of Biology and Immunology of Reproduction "Acad. Kiril Bratanov", Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Ivaylo Vangelov
- Institute of Biology and Immunology of Reproduction "Acad. Kiril Bratanov", Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Yuan You
- C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, USA
| | - Gil Mor
- C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, USA
| |
Collapse
|
7
|
Aye ILMH. Emerging models of human and non-human primate placental development - Centre for Trophoblast Research 17th annual meeting 2024. Biol Open 2024; 13:bio061774. [PMID: 39607020 PMCID: PMC11625883 DOI: 10.1242/bio.061774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 11/10/2024] [Indexed: 11/29/2024] Open
Abstract
The 17th annual meeting of the Centre for Trophoblast Research (CTR) took place at the University of Cambridge, UK, on 1-2 July 2024. This year's meeting provided an opportunity to reflect on the significant advancements made recently in modelling the human placenta in vitro. The meeting featured 12 invited speakers and attracted 260 participants from 25 countries. Many of the speakers were leading figures who have developed methods to derive human trophoblast stem cells or organoids from first trimester and term placentas, and from pluripotent stem cells. Accompanying the invited presentations were flash talks selected from the abstract submissions and poster presentations. The meeting concluded with a stimulating panel discussion to evaluate the current human trophoblast models. This Meeting Review aims to capture the spirit of the event and highlight the key themes and take-home messages that emerged.
Collapse
Affiliation(s)
- Irving L. M. H. Aye
- Department of Obstetrics and Gynaecology, University of Cambridge, NIHR Cambridge Comprehensive Biomedical Research Centre, Cambridge, CB2 0SW, United Kingdom
- Centre for Trophoblast Research (CTR), Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EL, United Kingdom
- Wellcome – Medical Research Council Stem Cell Cambridge Stem Cell Institute (CSCI), University of Cambridge, Cambridge, CB2 0AW, United Kingdom
| |
Collapse
|
8
|
Toh H, Okae H, Shirane K, Sato T, Hamada H, Kikutake C, Saito D, Arima T, Sasaki H, Suyama M. Epigenetic dynamics of partially methylated domains in human placenta and trophoblast stem cells. BMC Genomics 2024; 25:1050. [PMID: 39506688 PMCID: PMC11542204 DOI: 10.1186/s12864-024-10986-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND The placenta is essential for nutrient exchange and hormone production between the mother and the developing fetus and serves as an invaluable model for epigenetic research. Most epigenetic studies of the human placenta have used whole placentas from term pregnancies and have identified the presence of partially methylated domains (PMDs). However, the origin of these domains, which are typically absent in most somatic cells, remains unclear in the placental context. RESULTS Using whole-genome bisulfite sequencing and analysis of histone H3 modifications, we generated epigenetic profiles of human cytotrophoblasts during the first trimester and at term, as well as human trophoblast stem cells. Our study focused specifically on PMDs. We found that genomic regions likely to form PMDs are resistant to global DNA demethylation during trophectoderm reprogramming, and that PMDs arise through a slow methylation process within condensed chromatin near the nuclear lamina. In addition, we found significant differences in histone H3 modifications between PMDs in cytotrophoblasts and trophoblast stem cells. CONCLUSIONS Our findings suggest that spatiotemporal genomic features shape megabase-scale DNA methylation patterns, including PMDs, in the human placenta and highlight distinct differences in PMDs between human cytotrophoblasts and trophoblast stem cells. These findings advance our understanding of placental biology and provide a basis for further research into human development and related diseases.
Collapse
Affiliation(s)
- Hidehiro Toh
- Advanced Genomics Center, National Institute of Genetics, Shizuoka, Japan.
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| | - Hiroaki Okae
- Department of Trophoblast Research, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Kenjiro Shirane
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tetsuya Sato
- Biomedical Research Center, Faculty of Medicine, Saitama Medical University, Saitama, Japan
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812- 8582, Japan
| | - Hirotaka Hamada
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Chie Kikutake
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812- 8582, Japan
| | - Daisuke Saito
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812- 8582, Japan
| | - Takahiro Arima
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| | - Mikita Suyama
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812- 8582, Japan.
| |
Collapse
|
9
|
Russell SJ, Zhao C, Biondic S, Menezes K, Hagemann-Jensen M, Librach CL, Petropoulos S. An atlas of small non-coding RNAs in human preimplantation development. Nat Commun 2024; 15:8634. [PMID: 39367016 PMCID: PMC11452719 DOI: 10.1038/s41467-024-52943-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 09/26/2024] [Indexed: 10/06/2024] Open
Abstract
Understanding the molecular circuitries that govern early embryogenesis is important, yet our knowledge of these in human preimplantation development remains limited. Small non-coding RNAs (sncRNAs) can regulate gene expression and thus impact blastocyst formation, however, the expression of specific biotypes and their dynamics during preimplantation development remains unknown. Here we identify the abundance of and kinetics of piRNA, rRNA, snoRNA, tRNA, and miRNA from embryonic day (E)3-7 and isolate specific miRNAs and snoRNAs of particular importance in blastocyst formation and pluripotency. These sncRNAs correspond to specific genomic hotspots: an enrichment of the chromosome 19 miRNA cluster (C19MC) in the trophectoderm (TE), and the chromosome 14 miRNA cluster (C14MC) and MEG8-related snoRNAs in the inner cell mass (ICM), which may serve as 'master regulators' of potency and lineage. Additionally, we observe a developmental transition with 21 isomiRs and in tRNA fragment (tRF) codon usage and identify two novel miRNAs. Our analysis provides a comprehensive measure of sncRNA biotypes and their corresponding dynamics throughout human preimplantation development, providing an extensive resource. Better understanding the sncRNA regulatory programmes in human embryogenesis will inform strategies to improve embryo development and outcomes of assisted reproductive technologies. We anticipate broad usage of our data as a resource for studies aimed at understanding embryogenesis, optimising stem cell-based models, assisted reproductive technology, and stem cell biology.
Collapse
MESH Headings
- Humans
- RNA, Small Untranslated/genetics
- RNA, Small Untranslated/metabolism
- Embryonic Development/genetics
- Blastocyst/metabolism
- Gene Expression Regulation, Developmental
- MicroRNAs/genetics
- MicroRNAs/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Female
- RNA, Small Interfering/metabolism
- RNA, Small Interfering/genetics
- Chromosomes, Human, Pair 19/genetics
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
Collapse
Affiliation(s)
| | - Cheng Zhao
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Savana Biondic
- Faculty of Medicine, Molecular Biology Program, Université de Montréal, Montréal, QC, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Axe Immunopathologie, Montréal, Canada
| | | | | | - Clifford L Librach
- CReATe Fertility Centre, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Sophie Petropoulos
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.
- Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden.
- Faculty of Medicine, Molecular Biology Program, Université de Montréal, Montréal, QC, Canada.
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Axe Immunopathologie, Montréal, Canada.
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77, Stockholm, Sweden.
- Faculty of Medicine, Département de Médecine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
10
|
Balestrini PA, Abdelbaki A, McCarthy A, Devito L, Senner CE, Chen AE, Munusamy P, Blakeley P, Elder K, Snell P, Christie L, Serhal P, Odia RA, Sangrithi M, Niakan KK, Fogarty NME. Transcription factor-based transdifferentiation of human embryonic to trophoblast stem cells. Development 2024; 151:dev202778. [PMID: 39250534 PMCID: PMC11556314 DOI: 10.1242/dev.202778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024]
Abstract
During the first week of development, human embryos form a blastocyst composed of an inner cell mass and trophectoderm (TE) cells, the latter of which are progenitors of placental trophoblast. Here, we investigated the expression of transcripts in the human TE from early to late blastocyst stages. We identified enrichment of the transcription factors GATA2, GATA3, TFAP2C and KLF5 and characterised their protein expression dynamics across TE development. By inducible overexpression and mRNA transfection, we determined that these factors, together with MYC, are sufficient to establish induced trophoblast stem cells (iTSCs) from primed human embryonic stem cells. These iTSCs self-renew and recapitulate morphological characteristics, gene expression profiles, and directed differentiation potential, similar to existing human TSCs. Systematic omission of each, or combinations of factors, revealed the crucial importance of GATA2 and GATA3 for iTSC transdifferentiation. Altogether, these findings provide insights into the transcription factor network that may be operational in the human TE and broaden the methods for establishing cellular models of early human placental progenitor cells, which may be useful in the future to model placental-associated diseases.
Collapse
Affiliation(s)
- Paula A. Balestrini
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London SE1 9RT, UK
| | - Ahmed Abdelbaki
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- The Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
- Department of Zoology, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Afshan McCarthy
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Liani Devito
- Human Embryo and Stem Cell Unit, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Claire E. Senner
- The Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Alice E. Chen
- Trestle Biotherapeutics, Centre for Novel Therapeutics, 9310 Athena Circle, La Jolla, CA 92037, USA
| | - Prabhakaran Munusamy
- KK Women's and Children's Hospital, Division of Obstetrics and Gynecology, 100 Bukit Timah Road, Singapore229899, Singapore
| | - Paul Blakeley
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kay Elder
- Bourn Hall Clinic, Bourn, Cambridge CB23 2TN, UK
| | - Phil Snell
- Bourn Hall Clinic, Bourn, Cambridge CB23 2TN, UK
| | | | - Paul Serhal
- The Centre for Reproductive & Genetic Health, 230–232 Great Portland Street, London W1W 5QS, UK
| | - Rabi A. Odia
- The Centre for Reproductive & Genetic Health, 230–232 Great Portland Street, London W1W 5QS, UK
| | - Mahesh Sangrithi
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London SE1 9RT, UK
- KK Women's and Children's Hospital, Division of Obstetrics and Gynecology, 100 Bukit Timah Road, Singapore229899, Singapore
- Duke-NUS Graduate Medical School, Cancer Stem Cell Biology/OBGYN ACP, 8 College Road, Singapore 169857, Singapore
| | - Kathy K. Niakan
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- The Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Norah M. E. Fogarty
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London SE1 9RT, UK
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
11
|
Wang J, Zhou X, Han T, Zhang H. Epigenetic signatures of trophoblast lineage and their biological functions. Cells Dev 2024; 179:203934. [PMID: 38942294 DOI: 10.1016/j.cdev.2024.203934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/13/2024] [Accepted: 06/13/2024] [Indexed: 06/30/2024]
Abstract
Trophoblasts play a crucial role in embryo implantation and in interacting with the maternal uterus. The trophoblast lineage develops into a substantial part of the placenta, a temporary extra-embryonic organ, capable of undergoing distinctive epigenetic events during development. The critical role of trophoblast-specific epigenetic signatures in regulating placental development has become known, significantly advancing our understanding of trophoblast identity and lineage development. Scientific efforts are revealing how trophoblast-specific epigenetic signatures mediate stage-specific gene regulatory programming during the development of the trophoblast lineage. These epigenetic signatures have a significant impact on blastocyst formation, placental development, as well as the growth and survival of embryos and fetuses. In evolution, DNA hypomethylation in the trophoblast lineage is conserved, and there is a significant disparity in the control of epigenetic dynamics and the landscape of genomic imprinting. Scientists have used murine and human multipotent trophoblast cells as in vitro models to recapitulate the essential epigenetic processes of placental development. Here, we review the epigenetic signatures of the trophoblast lineage and their biological functions to enhance our understanding of placental evolution, development, and function.
Collapse
Affiliation(s)
- Jianqi Wang
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaobo Zhou
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Reproductive Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Tingli Han
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, 400016, China; The Center for Reproductive Medicine, Obstetrics and Gynecology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Hua Zhang
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, 400016, China.
| |
Collapse
|
12
|
Lemke KA, Sarkar CA, Azarin SM. Rapid retinoic acid-induced trophoblast cell model from human induced pluripotent stem cells. Sci Rep 2024; 14:18204. [PMID: 39107470 PMCID: PMC11303561 DOI: 10.1038/s41598-024-68952-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
A limited number of accessible and representative models of human trophoblast cells currently exist for the study of placentation. Current stem cell models involve either a transition through a naïve stem cell state or precise dynamic control of multiple growth factors and small-molecule cues. Here, we demonstrated that a simple five-day treatment of human induced pluripotent stem cells with two small molecules, retinoic acid (RA) and Wnt agonist CHIR 99021 (CHIR), resulted in rapid, synergistic upregulation of CDX2. Transcriptomic analysis of RA + CHIR-treated cells showed high similarity to primary trophectoderm cells. Multipotency was verified via further differentiation towards cells with syncytiotrophoblast or extravillous trophoblast features. RA + CHIR-treated cells were also assessed for the established criteria defining a trophoblast cell model, and they possess all the features necessary to be considered valid. Collectively, our data demonstrate a facile, scalable method for generating functional trophoblast-like cells in vitro to better understand the placenta.
Collapse
Affiliation(s)
- Kristen A Lemke
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Casim A Sarkar
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Samira M Azarin
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
13
|
Hernández-Díaz N, Tzouganatou S, Mulik PR, Balestrini PA, Fogarty NME. Transcriptional insights from the human embryo identify laminin-511 as a suitable matrix for human trophoblast stem cell culture. Placenta 2024:S0143-4004(24)00602-7. [PMID: 39095275 DOI: 10.1016/j.placenta.2024.07.308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
The establishment of culture conditions to propagate self-renewing human trophoblast stem cells in long-term culture provides a paradigm for in vitro modelling of trophoblast. The extracellular matrix (ECM) is a critical determinant of cell identity and behaviour. Therefore, models aiming to reproduce cells in vitro should recapitulate the native cell-ECM microenvironment. Here, we mine human embryo transcriptional datasets to identify ECM components and cognate receptors expressed in the trophectoderm. Following, we identify laminin-511-E8 protein fragment as a physiologically relevant ECM capable of maintaining hTSCs in the stem cell state and retaining differentiation ability.
Collapse
Affiliation(s)
- Nathaly Hernández-Díaz
- Trophoblast and Human Embryo Lab, Centre for Gene Therapy and Regenerative Medicine, Tower Wing, Guy's Hospital, Great Maze Pond, King's College London, SE1 9RT, UK
| | - Sofia Tzouganatou
- Department of Metabolism, Digestion and Reproduction, Hammersmith Hospital School of Medicine, Imperial College London, SW7 2AZ, UK
| | - Praditi R Mulik
- Trophoblast and Human Embryo Lab, Centre for Gene Therapy and Regenerative Medicine, Tower Wing, Guy's Hospital, Great Maze Pond, King's College London, SE1 9RT, UK
| | - Paula A Balestrini
- Trophoblast and Human Embryo Lab, Centre for Gene Therapy and Regenerative Medicine, Tower Wing, Guy's Hospital, Great Maze Pond, King's College London, SE1 9RT, UK
| | - Norah M E Fogarty
- Trophoblast and Human Embryo Lab, Centre for Gene Therapy and Regenerative Medicine, Tower Wing, Guy's Hospital, Great Maze Pond, King's College London, SE1 9RT, UK.
| |
Collapse
|
14
|
Légaré C, Desgagné V, Thibeault K, White F, Clément AA, Poirier C, Luo ZC, Scott MS, Jacques PÉ, Perron P, Guérin R, Hivert MF, Bouchard L. First-Trimester Plasmatic microRNAs Are Associated with Fasting Glucose Levels in Late Second Trimester of Pregnancy. Biomedicines 2024; 12:1285. [PMID: 38927492 PMCID: PMC11201443 DOI: 10.3390/biomedicines12061285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Maternal blood glucose regulation adaptation to pregnancy aims to support fetal growth but may also lead to the development of gestational diabetes mellitus, the most common pregnancy complication. MiRNAs are small RNA molecules secreted and stable in the blood, where they could have paracrine hormone-like functions (ribo-hormone) and regulate metabolic processes including fetal growth and glucose metabolism. The objective of this study was to identify plasmatic microRNA (miRNAs) measured during the first trimester of pregnancy that were associated with glucose levels during a 75 g oral glucose tolerance test (OGTT) at ~26 weeks of pregnancy. miRNAs were quantified using next-generation sequencing in 444 pregnant women and replicated in an independent cohort of 106 pregnant women. MiRNAs associated with glucose levels were identified with the DESeq2 package. We identified 24 miRNAs associated with fasting glycemia, of which 18 were common to both cohorts (q-value < 0.1). However, no association was found between miRNAs and 1 h or 2 h post OGTT glycemia. To conclude, we identified 18 miRNAs early in pregnancy that were associated with fasting blood glucose measured 3 months later. Our findings offer new insights into the mechanisms involved in fasting glucose homeostasis regulation in pregnancy, which is critical to understanding how gestational diabetes develops.
Collapse
Affiliation(s)
- Cécilia Légaré
- RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, NY 12222, USA;
- Département des Sciences de La Santé, Université du Québec à Chicoutimi, Saguenay, QC G7H 2B1, Canada
| | - Véronique Desgagné
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (V.D.); (K.T.); (A.-A.C.); (C.P.); (M.S.S.); (R.G.)
- Clinical Department of Laboratory Medicine, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) du Saguenay–Lac-St-Jean, Hôpital Universitaire de Chicoutimi, Saguenay, QC G7H 5H6, Canada
| | - Kathrine Thibeault
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (V.D.); (K.T.); (A.-A.C.); (C.P.); (M.S.S.); (R.G.)
| | - Frédérique White
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (F.W.); (P.-É.J.)
| | - Andrée-Anne Clément
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (V.D.); (K.T.); (A.-A.C.); (C.P.); (M.S.S.); (R.G.)
| | - Cédrik Poirier
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (V.D.); (K.T.); (A.-A.C.); (C.P.); (M.S.S.); (R.G.)
| | - Zhong-Cheng Luo
- Department of Obstetrics and Gynecology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Faculty of Medicine, Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON M5S 1A1, Canada;
| | - Michelle S. Scott
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (V.D.); (K.T.); (A.-A.C.); (C.P.); (M.S.S.); (R.G.)
| | - Pierre-Étienne Jacques
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (F.W.); (P.-É.J.)
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CR-CHUS), Sherbrooke, QC J1H 5N4, Canada;
| | - Patrice Perron
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CR-CHUS), Sherbrooke, QC J1H 5N4, Canada;
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada;
| | - Renée Guérin
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (V.D.); (K.T.); (A.-A.C.); (C.P.); (M.S.S.); (R.G.)
- Clinical Department of Laboratory Medicine, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) du Saguenay–Lac-St-Jean, Hôpital Universitaire de Chicoutimi, Saguenay, QC G7H 5H6, Canada
| | - Marie-France Hivert
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada;
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, MA 02115, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Luigi Bouchard
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (V.D.); (K.T.); (A.-A.C.); (C.P.); (M.S.S.); (R.G.)
- Clinical Department of Laboratory Medicine, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) du Saguenay–Lac-St-Jean, Hôpital Universitaire de Chicoutimi, Saguenay, QC G7H 5H6, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CR-CHUS), Sherbrooke, QC J1H 5N4, Canada;
| |
Collapse
|
15
|
Azagury M, Buganim Y. Unlocking trophectoderm mysteries: In vivo and in vitro perspectives on human and mouse trophoblast fate induction. Dev Cell 2024; 59:941-960. [PMID: 38653193 DOI: 10.1016/j.devcel.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/10/2023] [Accepted: 03/18/2024] [Indexed: 04/25/2024]
Abstract
In recent years, the pursuit of inducing the trophoblast stem cell (TSC) state has gained prominence as a compelling research objective, illuminating the establishment of the trophoblast lineage and unlocking insights into early embryogenesis. In this review, we examine how advancements in diverse technologies, including in vivo time course transcriptomics, cellular reprogramming to TSC state, chemical induction of totipotent stem-cell-like state, and stem-cell-based embryo-like structures, have enriched our insights into the intricate molecular mechanisms and signaling pathways that define the mouse and human trophectoderm/TSC states. We delve into disparities between mouse and human trophectoderm/TSC fate establishment, with a special emphasis on the intriguing role of pluripotency in this context. Additionally, we re-evaluate recent findings concerning the potential of totipotent-stem-like cells and embryo-like structures to fully manifest the trophectoderm/trophoblast lineage's capabilities. Lastly, we briefly discuss the potential applications of induced TSCs in pregnancy-related disease modeling.
Collapse
Affiliation(s)
- Meir Azagury
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Yosef Buganim
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| |
Collapse
|
16
|
Morey R, Bui T, Cheung VC, Dong C, Zemke JE, Requena D, Arora H, Jackson MG, Pizzo D, Theunissen TW, Horii M. iPSC-based modeling of preeclampsia identifies epigenetic defects in extravillous trophoblast differentiation. iScience 2024; 27:109569. [PMID: 38623329 PMCID: PMC11016801 DOI: 10.1016/j.isci.2024.109569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/20/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024] Open
Abstract
Preeclampsia (PE) is a hypertensive pregnancy disorder with increased risk of maternal and fetal morbidity and mortality. Abnormal extravillous trophoblast (EVT) development and function is considered to be the underlying cause of PE, but has not been previously modeled in vitro. We previously derived induced pluripotent stem cells (iPSCs) from placentas of PE patients and characterized abnormalities in formation of syncytiotrophoblast and responses to changes in oxygen tension. In this study, we converted these primed iPSC to naïve iPSC, and then derived trophoblast stem cells (TSCs) and EVT to evaluate molecular mechanisms underlying PE. We found that primed (but not naïve) iPSC-derived PE-EVT have reduced surface HLA-G, blunted invasive capacity, and altered EVT-specific gene expression. These abnormalities correlated with promoter hypermethylation of genes associated with the epithelial-mesenchymal transition pathway, specifically in primed-iPSC derived PE-EVT. Our findings indicate that abnormal epigenetic regulation might play a role in PE pathogenesis.
Collapse
Affiliation(s)
- Robert Morey
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Center for Perinatal Discovery, University of California San Diego, La Jolla, CA 92093, USA
| | - Tony Bui
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Center for Perinatal Discovery, University of California San Diego, La Jolla, CA 92093, USA
| | - Virginia Chu Cheung
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Center for Perinatal Discovery, University of California San Diego, La Jolla, CA 92093, USA
| | - Chen Dong
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joseph E. Zemke
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniela Requena
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Center for Perinatal Discovery, University of California San Diego, La Jolla, CA 92093, USA
| | - Harneet Arora
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Center for Perinatal Discovery, University of California San Diego, La Jolla, CA 92093, USA
| | - Madeline G. Jackson
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Center for Perinatal Discovery, University of California San Diego, La Jolla, CA 92093, USA
| | - Donald Pizzo
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
| | - Thorold W. Theunissen
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mariko Horii
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Center for Perinatal Discovery, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
17
|
Shibata S, Endo S, Nagai LAE, H. Kobayashi E, Oike A, Kobayashi N, Kitamura A, Hori T, Nashimoto Y, Nakato R, Hamada H, Kaji H, Kikutake C, Suyama M, Saito M, Yaegashi N, Okae H, Arima T. Modeling embryo-endometrial interface recapitulating human embryo implantation. SCIENCE ADVANCES 2024; 10:eadi4819. [PMID: 38394208 PMCID: PMC10889356 DOI: 10.1126/sciadv.adi4819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 01/23/2024] [Indexed: 02/25/2024]
Abstract
The initiation of human pregnancy is marked by the implantation of an embryo into the uterine environment; however, the underlying mechanisms remain largely elusive. To address this knowledge gap, we developed hormone-responsive endometrial organoids (EMO), termed apical-out (AO)-EMO, which emulate the in vivo architecture of endometrial tissue. The AO-EMO comprise an exposed apical epithelium surface, dense stromal cells, and a self-formed endothelial network. When cocultured with human embryonic stem cell-derived blastoids, the three-dimensional feto-maternal assembloid system recapitulates critical implantation stages, including apposition, adhesion, and invasion. Endometrial epithelial cells were subsequently disrupted by syncytial cells, which invade and fuse with endometrial stromal cells. We validated this fusion of syncytiotrophoblasts and stromal cells using human blastocysts. Our model provides a foundation for investigating embryo implantation and feto-maternal interactions, offering valuable insights for advancing reproductive medicine.
Collapse
Affiliation(s)
- Shun Shibata
- Department of Informative Genetics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Research and Development Division, Rohto Pharmaceutical Co. Ltd., Osaka 544-8666, Japan
| | - Shun Endo
- Department of Informative Genetics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Luis A. E. Nagai
- Laboratory of Computational Genomics, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Eri H. Kobayashi
- Department of Informative Genetics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Akira Oike
- Department of Informative Genetics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Department of Trophoblast Research, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 862-0973, Japan
| | - Norio Kobayashi
- Department of Informative Genetics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Akane Kitamura
- Department of Informative Genetics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Takeshi Hori
- Department of Diagnostic and Therapeutic Systems Engineering, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | - Yuji Nashimoto
- Department of Diagnostic and Therapeutic Systems Engineering, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | - Ryuichiro Nakato
- Laboratory of Computational Genomics, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Hirotaka Hamada
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Hirokazu Kaji
- Department of Diagnostic and Therapeutic Systems Engineering, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | - Chie Kikutake
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Mikita Suyama
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Masatoshi Saito
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Nobuo Yaegashi
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Hiroaki Okae
- Department of Informative Genetics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Department of Trophoblast Research, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 862-0973, Japan
| | - Takahiro Arima
- Department of Informative Genetics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| |
Collapse
|
18
|
Barrozo ER, Seferovic MD, Hamilton MP, Moorshead DN, Jochum MD, Do T, O'Neil DS, Suter MA, Aagaard KM. Zika virus co-opts microRNA networks to persist in placental niches detected by spatial transcriptomics. Am J Obstet Gynecol 2024; 230:251.e1-251.e17. [PMID: 37598997 PMCID: PMC10840961 DOI: 10.1016/j.ajog.2023.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Zika virus congenital infection evades double-stranded RNA detection and may persist in the placenta for the duration of pregnancy without accompanying overt histopathologic inflammation. Understanding how viruses can persist and replicate in the placenta without causing overt cellular or tissue damage is fundamental to deciphering mechanisms of maternal-fetal vertical transmission. OBJECTIVE Placenta-specific microRNAs are believed to be a tenet of viral resistance at the maternal-fetal interface. We aimed to test the hypothesis that the Zika virus functionally disrupts placental microRNAs, enabling viral persistence and fetal pathogenesis. STUDY DESIGN To test this hypothesis, we used orthogonal approaches in human and murine experimental models. In primary human trophoblast cultures (n=5 donor placentae), we performed Argonaute high-throughput sequencing ultraviolet-crosslinking and immunoprecipitation to identify any significant alterations in the functional loading of microRNAs and their targets onto the RNA-induced silencing complex. Trophoblasts from same-donors were split and infected with a contemporary first-passage Zika virus strain HN16 (multiplicity of infection=1 plaque forming unit per cell) or mock infected. To functionally cross-validate microRNA-messenger RNA interactions, we compared our Argonaute high-throughput sequencing ultraviolet-crosslinking and immunoprecipitation results with an independent analysis of published bulk RNA-sequencing data from human placental disk specimens (n=3 subjects; Zika virus positive in first, second, or third trimester, CD45- cells sorted by flow cytometry) and compared it with uninfected controls (n=2 subjects). To investigate the importance of these microRNA and RNA interference networks in Zika virus pathogenesis, we used a gnotobiotic mouse model uniquely susceptible to the Zika virus. We evaluated if small-molecule enhancement of microRNA and RNA interference pathways with enoxacin influenced Zika virus pathogenesis (n=20 dams total yielding 187 fetal specimens). Lastly, placentae (n=14 total) from this mouse model were analyzed with Visium spatial transcriptomics (9743 spatial transcriptomes) to identify potential Zika virus-associated alterations in immune microenvironments. RESULTS We found that Zika virus infection of primary human trophoblast cells led to an unexpected disruption of placental microRNA regulation networks. When compared with uninfected controls, Zika virus-infected placentae had significantly altered SLC12A8, SDK1, and VLDLR RNA-induced silencing complex loading and transcript levels (-22; adjusted P value <.05; Wald-test with false discovery rate correction q<0.05). In silico microRNA target analyses revealed that 26 of 119 transcripts (22%) in the transforming growth factor-β signaling pathway were targeted by microRNAs that were found to be dysregulated following Zika virus infection in trophoblasts. In gnotobiotic mice, relative to mock controls, Zika virus-associated fetal pathogenesis included fetal growth restriction (P=.036) and viral persistence in placental tissue (P=.011). Moreover, spatial transcriptomics of murine placentae revealed that Zika virus-specific placental niches were defined by significant up-regulation of complement cascade components and coordinated changes in transforming growth factor-β gene expression. Finally, treatment of Zika virus-infected mice with enoxacin abolished placental Zika virus persistence, rescued the associated fetal growth restriction, and the Zika virus-associated transcriptional changes in placental immune microenvironments were no longer observed. CONCLUSION These results collectively suggest that (1) Zika virus infection and persistence is associated with functionally perturbed microRNA and RNA interference pathways specifically related to immune regulation in placental microenvironments and (2) enhancement of placental microRNA and RNA interference pathways in mice rescued Zika virus-associated pathogenesis, specifically persistence of viral transcripts in placental microenvironments and fetal growth restriction.
Collapse
Affiliation(s)
- Enrico R Barrozo
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX
| | - Maxim D Seferovic
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX
| | - Mark P Hamilton
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX; Hematology & Medical Oncology, Stanford School of Medicine, Stanford University, Palo Alto, CA
| | - David N Moorshead
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX; Immunology & Microbiology Graduate Program, Baylor College of Medicine, Houston, TX
| | - Michael D Jochum
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX
| | - Trang Do
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX
| | - Derek S O'Neil
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX
| | - Melissa A Suter
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX
| | - Kjersti M Aagaard
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX.
| |
Collapse
|
19
|
Yang Y, Jia W, Luo Z, Li Y, Liu H, Fu L, Li J, Jiang Y, Lai J, Li H, Saeed BJ, Zou Y, Lv Y, Wu L, Zhou T, Shan Y, Liu C, Lai Y, Liu L, Hutchins AP, Esteban MA, Mazid MA, Li W. VGLL1 cooperates with TEAD4 to control human trophectoderm lineage specification. Nat Commun 2024; 15:583. [PMID: 38233381 PMCID: PMC10794710 DOI: 10.1038/s41467-024-44780-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/05/2024] [Indexed: 01/19/2024] Open
Abstract
In contrast to rodents, the mechanisms underlying human trophectoderm and early placenta specification are understudied due to ethical barriers and the scarcity of embryos. Recent reports have shown that human pluripotent stem cells (PSCs) can differentiate into trophectoderm (TE)-like cells (TELCs) and trophoblast stem cells (TSCs), offering a valuable in vitro model to study early placenta specification. Here, we demonstrate that the VGLL1 (vestigial-like family member 1), which is highly expressed during human and non-human primate TE specification in vivo but is negligibly expressed in mouse, is a critical regulator of cell fate determination and self-renewal in human TELCs and TSCs derived from naïve PSCs. Mechanistically, VGLL1 partners with the transcription factor TEAD4 (TEA domain transcription factor 4) to regulate chromatin accessibility at target gene loci through histone acetylation and acts in cooperation with GATA3 and TFAP2C. Our work is relevant to understand primate early embryogenesis and how it differs from other mammalian species.
Collapse
Affiliation(s)
- Yueli Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenqi Jia
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (CAS), Guangzhou, China
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhiwei Luo
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (CAS), Guangzhou, China
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Yunpan Li
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (CAS), Guangzhou, China
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Hao Liu
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (CAS), Guangzhou, China
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Lixin Fu
- University of Chinese Academy of Sciences, Beijing, China
- BGI Research, Shenzhen, China
| | - Jinxiu Li
- University of Chinese Academy of Sciences, Beijing, China
- BGI Research, Shenzhen, China
| | - Yu Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Junjian Lai
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (CAS), Guangzhou, China
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
- BGI Research, Shenzhen, China
| | - Haiwei Li
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
| | - Babangida Jabir Saeed
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (CAS), Guangzhou, China
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Yi Zou
- BGI Research, Shenzhen, China
| | - Yuan Lv
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (CAS), Guangzhou, China
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
- BGI Research, Shenzhen, China
| | - Liang Wu
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (CAS), Guangzhou, China
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Ting Zhou
- Stem Cell Research Facility, Sloan Kettering Institute, New York, NY, USA
| | - Yongli Shan
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | | | - Yiwei Lai
- BGI Research, Shenzhen, China
- BGI Research, Hangzhou, China
| | - Longqi Liu
- BGI Research, Shenzhen, China
- BGI Research, Hangzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Andrew P Hutchins
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Miguel A Esteban
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China.
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (CAS), Guangzhou, China.
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China.
- BGI Research, Shenzhen, China.
- BGI Research, Hangzhou, China.
| | - Md Abdul Mazid
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (CAS), Guangzhou, China.
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China.
| | - Wenjuan Li
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (CAS), Guangzhou, China.
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China.
| |
Collapse
|
20
|
Wilkinson AL, Zorzan I, Rugg-Gunn PJ. Epigenetic regulation of early human embryo development. Cell Stem Cell 2023; 30:1569-1584. [PMID: 37858333 DOI: 10.1016/j.stem.2023.09.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023]
Abstract
Studies of mammalian development have advanced our understanding of the genetic, epigenetic, and cellular processes that orchestrate embryogenesis and have uncovered new insights into the unique aspects of human embryogenesis. Recent studies have now produced the first epigenetic maps of early human embryogenesis, stimulating new ideas about epigenetic reprogramming, cell fate control, and the potential mechanisms underpinning developmental plasticity in human embryos. In this review, we discuss these new insights into the epigenetic regulation of early human development and the importance of these processes for safeguarding development. We also highlight unanswered questions and key challenges that remain to be addressed.
Collapse
Affiliation(s)
| | - Irene Zorzan
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | - Peter J Rugg-Gunn
- Epigenetics Programme, Babraham Institute, Cambridge, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK.
| |
Collapse
|
21
|
Liu L, Guo J, Gao W, Gao M, Ma X. Research progress in the role of non-coding RNAs and embryo implantation. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:1377-1387. [PMID: 38044649 PMCID: PMC10929864 DOI: 10.11817/j.issn.1672-7347.2023.220485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Indexed: 12/05/2023]
Abstract
Non-coding RNA (ncRNA) refers to RNA that lack the ability to encode protein. Based on their distinct biological characteristics, ncRNA are mainly classified into microRNA (miRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA). NcRNA plays a crucial regulatory role in various biological processes. Pregnancy is a highly intricate physiological process that requires successful completion of multiple steps. Embryo implantation, as a key event of pregnancy, which is regulated by numerous factors, including embryo development, endometrial changes, and the maternal-embryo crosstalk. A diverse array of regulatory mechanisms ensures the accomplishment of embryo localization, adhesion, invasion, and ultimately successful implantation. MiRNA, lncRNA, and circRNA are extensively studied ncRNA molecules at present, which play an important role in the physiological and pathological processes associated with embryo implantation through targeting and regulating the expression of multiple cytokine and genes. With advancements in molecular biology technology, it is anticipated that ncRNA will contribute to the prediction and enhancement of clinical pregnancy outcomes from a molecular perspective.
Collapse
Affiliation(s)
- Lin Liu
- Reproductive Center, First Hospital, Lanzhou University, Lanzhou 730000.
| | - Jiayi Guo
- Department of Ultrasound Diagnosis, Tongji Medical College, Southern Medical University, Guangzhou 510280
| | - Wenxin Gao
- Reproductive Center, First Hospital, Lanzhou University, Lanzhou 730000
| | - Mengmeng Gao
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoling Ma
- Reproductive Center, First Hospital, Lanzhou University, Lanzhou 730000.
| |
Collapse
|
22
|
Biondic S, Petropoulos S. Evidence for Functional Roles of MicroRNAs in Lineage Specification During Mouse and Human Preimplantation Development. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2023; 96:481-494. [PMID: 38161584 PMCID: PMC10751869 DOI: 10.59249/fosi4358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Proper formation of the blastocyst, including the specification of the first embryonic cellular lineages, is required to ensure healthy embryo development and can significantly impact the success of assisted reproductive technologies (ARTs). However, the regulatory role of microRNAs in early development, particularly in the context of preimplantation lineage specification, remains largely unknown. Taking a cross-species approach, this review aims to summarize the expression dynamics and functional significance of microRNAs in the differentiation and maintenance of lineage identity in both the mouse and the human. Findings are consolidated from studies conducted using in vitro embryonic stem cell models representing the epiblast, trophectoderm, and primitive endoderm lineages (modeled by naïve embryonic stem cells, trophoblast stem cells, and extraembryonic endoderm stem cells, respectively) to provide insight on what may be occurring in the embryo. Additionally, studies directly conducted in both mouse and human embryos are discussed, emphasizing similarities to the stem cell models and the gaps in our understanding, which will hopefully lead to further investigation of these areas. By unraveling the intricate mechanisms by which microRNAs regulate the specification and maintenance of cellular lineages in the blastocyst, we can leverage this knowledge to further optimize stem cell-based models such as the blastoids, enhance embryo competence, and develop methods of non-invasive embryo selection, which can potentially increase the success rates of assisted reproductive technologies and improve the experiences of those receiving fertility treatments.
Collapse
Affiliation(s)
- Savana Biondic
- Centre de Recherche du Centre Hospitalier de
l’Université de Montréal, Axe Immunopathologie, Montréal, Canada
- Faculty of Medicine, Molecular Biology Program,
Université de Montréal, Montréal, Canada
| | - Sophie Petropoulos
- Centre de Recherche du Centre Hospitalier de
l’Université de Montréal, Axe Immunopathologie, Montréal, Canada
- Faculty of Medicine, Molecular Biology Program,
Université de Montréal, Montréal, Canada
- Division of Obstetrics and Gynecology, Department of
Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm,
Sweden
| |
Collapse
|
23
|
Suzuki D, Lan KC, Takashima Y. Using human pluripotent stem cells to dissect trophoblast development. Curr Opin Genet Dev 2023; 83:102126. [PMID: 37812907 DOI: 10.1016/j.gde.2023.102126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 10/11/2023]
Abstract
In 2021, we showed that naive human pluripotent stem cells (PSCs) can differentiate into trophoblasts via trophectoderm (TE)-like cells. Since TE is a pre-implantation stage of trophoblasts constituting blastocysts, naive human PSCs are an invaluable tool for understanding the entire process of trophoblast development. It has been reported for many years that primed human PSCs can also differentiate into the trophoblast lineage. The in vitro differentiation of naive and primed human PSCs hints at the possibility that human pre- and even post-implantation epiblasts retain the differentiation potential into the trophoblast lineages in vivo. Here, we review the in vitro specification of trophoblasts from human PSCs. Moreover, we discuss the different trophoblast differentiation pathways from naive and primed PSCs.
Collapse
Affiliation(s)
- Daisuke Suzuki
- Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kuan-Chun Lan
- Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yasuhiro Takashima
- Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
24
|
Liu X, Wang G, Huang H, Lv X, Si Y, Bai L, Wang G, Li Q, Yang W. Exploring maternal-fetal interface with in vitro placental and trophoblastic models. Front Cell Dev Biol 2023; 11:1279227. [PMID: 38033854 PMCID: PMC10682727 DOI: 10.3389/fcell.2023.1279227] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
The placenta, being a temporary organ, plays a crucial role in facilitating the exchange of nutrients and gases between the mother and the fetus during pregnancy. Any abnormalities in the development of this vital organ not only lead to various pregnancy-related disorders that can result in fetal injury or death, but also have long-term effects on maternal health. In vitro models have been employed to study the physiological features and molecular regulatory mechanisms of placental development, aiming to gain a detailed understanding of the pathogenesis of pregnancy-related diseases. Among these models, trophoblast stem cell culture and organoids show great promise. In this review, we provide a comprehensive overview of the current mature trophoblast stem cell models and emerging organoid models, while also discussing other models in a systematic manner. We believe that this knowledge will be valuable in guiding further exploration of the complex maternal-fetal interface.
Collapse
Affiliation(s)
- Xinlu Liu
- School of Biosciences and Biotechnology, Weifang Medical University, Weifang, Shandong, China
| | - Gang Wang
- Department of Emergency, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Haiqin Huang
- School of Biosciences and Biotechnology, Weifang Medical University, Weifang, Shandong, China
| | - Xin Lv
- School of Biosciences and Biotechnology, Weifang Medical University, Weifang, Shandong, China
| | - Yanru Si
- School of Biosciences and Biotechnology, Weifang Medical University, Weifang, Shandong, China
| | - Lixia Bai
- School of Biosciences and Biotechnology, Weifang Medical University, Weifang, Shandong, China
| | - Guohui Wang
- School of Biosciences and Biotechnology, Weifang Medical University, Weifang, Shandong, China
| | - Qinghua Li
- School of Public Health, Weifang Medical University, Weifang, Shandong, China
| | - Weiwei Yang
- School of Biosciences and Biotechnology, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
25
|
Ishiuchi T, Sakamoto M. Molecular mechanisms underlying totipotency. Life Sci Alliance 2023; 6:e202302225. [PMID: 37666667 PMCID: PMC10480501 DOI: 10.26508/lsa.202302225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023] Open
Abstract
Numerous efforts to understand pluripotency in mammals, using pluripotent stem cells in culture, have enabled the generation of artificially induced pluripotent stem cells, which serve as a valuable source for regenerative medicine and the creation of disease models. In contrast to these tremendous successes in the pluripotency field in the past few decades, our understanding of totipotency, which is highlighted by its broader plasticity than pluripotency, is still limited. This is largely attributable to the scarcity of available materials and the lack of in vitro models. However, recent technological advances have unveiled molecular features that characterize totipotent cells. Single-cell or low-input sequencing technologies allow the dissection of pre- and post-fertilization developmental processes at the molecular level with high resolution. In this review, we describe some of the key findings in understanding totipotency and discuss how totipotency is acquired at the beginning of life.
Collapse
Affiliation(s)
- Takashi Ishiuchi
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, Japan
| | - Mizuki Sakamoto
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
26
|
Cheung VC, Bui T, Soncin F, Bai T, Kessler JA, Parast MM, Horii M. Current Strategies of Modeling Human Trophoblast Using Human Pluripotent Stem Cells in vitro. Curr Protoc 2023; 3:e875. [PMID: 37787612 PMCID: PMC10558083 DOI: 10.1002/cpz1.875] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
We previously established a trophoblast differentiation protocol from primed human pluripotent stem cells (PSC). To induce this lineage, we use a combination of Bone Morphogenetic Protein-4 (BMP4) and the WNT inhibitor IWP2. This protocol has enabled us to obtain a pure population of trophectoderm (TE)-like cells that could subsequently be terminally differentiated into syncytiotrophoblasts (STB) and extravillous trophoblasts (EVT). However, the resulting TE-like cells could only be terminally differentiated to a variable mixture of STB and EVT, with a bias toward the STB lineage. Recently, methods have been developed for derivation and culture of self-renewing human trophoblast stem cells (TSC) from human embryos and early gestation placental tissues. These primary TSCs were further able to differentiate into either STB or EVT with high efficiency using the lineage specific differentiation protocols. Based partly on these protocols, we have developed methods for establishing self-renewing TSC-like cells from PSC, and for efficient lineage-specific terminal differentiation. Here, we describe in detail the protocols to derive and maintain PSC-TSC, from both embryonic stem cells (ESC) and patient-derived induced pluripotent stem cells (iPSC), and their subsequent terminal differentiation to STB and EVT. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Trophoblast Differentiation into TE-like Cells Basic Protocol 2: Conversion of PSC-Derived TE-like Cells to TSC Basic Protocol 3: Passaging PSC-Derived TSC in iCTB Complete Medium Basic Protocol 4: STB Differentiation from PSC-derived TSC Basic Protocol 5: EVT Differentiation from PSC-derived TSC Support Protocol 1: Geltrex-coated tissue culture plate preparation Support Protocol 2: Collagen IV-coated tissue culture plate preparation Support Protocol 3: Fibronectin-coated tissue culture plate preparation.
Collapse
Affiliation(s)
- Virginia Chu Cheung
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Tony Bui
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Francesca Soncin
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Tao Bai
- Department of Neurology, Northwestern University, Chicago, IL 60611, USA
| | - John A. Kessler
- Department of Neurology, Northwestern University, Chicago, IL 60611, USA
| | - Mana M Parast
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Mariko Horii
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
27
|
Shum IO, Merkert S, Malysheva S, Jahn K, Lachmann N, Verboom M, Frieling H, Hallensleben M, Martin U. An Improved Protocol for Targeted Differentiation of Primed Human Induced Pluripotent Stem Cells into HLA-G-Expressing Trophoblasts to Enable the Modeling of Placenta-Related Disorders. Cells 2023; 12:2070. [PMID: 37626882 PMCID: PMC10453333 DOI: 10.3390/cells12162070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/27/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Abnormalities at any stage of trophoblast development may result in pregnancy-related complications. Many of these adverse outcomes are discovered later in pregnancy, but the underlying pathomechanisms are constituted during the first trimester. Acquiring developmentally relevant material to elucidate the disease mechanisms is difficult. Human pluripotent stem cell (hPSC) technology can provide a renewable source of relevant cells. BMP4, A83-01, and PD173074 (BAP) treatment drives trophoblast commitment of hPSCs toward syncytiotrophoblast (STB), but lacks extravillous trophoblast (EVT) cells. EVTs mediate key functions during placentation, remodeling of uterine spiral arteries, and maintenance of immunological tolerance. We optimized the protocol for a more efficient generation of HLA-Gpos EVT-like trophoblasts from primed hiPSCs. Increasing the concentrations of A83-01 and PD173074, while decreasing bulk cell density resulted in an increase in HLA-G of up to 71%. Gene expression profiling supports the advancements of our treatment regarding the generation of trophoblast cells. The reported differentiation protocol will allow for an on-demand access to human trophoblast cells enriched for HLA-Gpos EVT-like cells, allowing for the elucidation of placenta-related disorders and investigating the immunological tolerance toward the fetus, overcoming the difficulties in obtaining primary EVTs without the need for a complex differentiation pathway via naïve pluripotent or trophoblast stem cells.
Collapse
Affiliation(s)
- Ian O. Shum
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, 30625 Hannover, Germany
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Sylvia Merkert
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, 30625 Hannover, Germany
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany
| | - Svitlana Malysheva
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, 30625 Hannover, Germany
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Kirsten Jahn
- Laboratory of Molecular Neurosciences, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, 30625 Hannover, Germany
| | - Nico Lachmann
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany
| | - Murielle Verboom
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, 30625 Hannover, Germany
| | - Helge Frieling
- Laboratory of Molecular Neurosciences, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, 30625 Hannover, Germany
| | - Michael Hallensleben
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, 30625 Hannover, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, 30625 Hannover, Germany
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
28
|
Naama M, Buganim Y. Human trophoblast stem cell-state acquisition from pluripotent stem cells and somatic cells. Curr Opin Genet Dev 2023; 81:102084. [PMID: 37451165 DOI: 10.1016/j.gde.2023.102084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/10/2023] [Accepted: 06/11/2023] [Indexed: 07/18/2023]
Abstract
For an extended period of time, research on human embryo implantation and early placentation was hindered by ethical limitation and lack of appropriate in vitro models. Recently, an explosion of new research has significantly expanded our knowledge of early human trophoblast development and facilitated the derivation and culture of self-renewing human trophoblast stem cells (hTSCs). Multiple approaches have been undertaken in efforts to derive and understand hTSCs, including from blastocysts, early trophoblast tissue, and, more recently, from human pluripotent stem cells (hPSCs) and somatic cells. In this concise review, we summarize recent advances in derivation of hTSCs, with a focus on derivation from naive and primed hPSCs, as well as via reprogramming of somatic cells into induced hTSCs. Each of these methods harbors distinct advantages and setbacks, which are discussed. Finally, we briefly explore the possibility of the existence of trophectoderm-like hTSCs corresponding to earlier, preimplantation trophoblast cells.
Collapse
Affiliation(s)
- Moriyah Naama
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Yosef Buganim
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| |
Collapse
|
29
|
Maraghechi P, Aponte MTS, Ecker A, Lázár B, Tóth R, Szabadi NT, Gócza E. Pluripotency-Associated microRNAs in Early Vertebrate Embryos and Stem Cells. Genes (Basel) 2023; 14:1434. [PMID: 37510338 PMCID: PMC10379376 DOI: 10.3390/genes14071434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
MicroRNAs (miRNAs), small non-coding RNA molecules, regulate a wide range of critical biological processes, such as proliferation, cell cycle progression, differentiation, survival, and apoptosis, in many cell types. The regulatory functions of miRNAs in embryogenesis and stem cell properties have been extensively investigated since the early years of miRNA discovery. In this review, we will compare and discuss the impact of stem-cell-specific miRNA clusters on the maintenance and regulation of early embryonic development, pluripotency, and self-renewal of embryonic stem cells, particularly in vertebrates.
Collapse
Affiliation(s)
- Pouneh Maraghechi
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
| | - Maria Teresa Salinas Aponte
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
| | - András Ecker
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
| | - Bence Lázár
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
- National Centre for Biodiversity and Gene Conservation, Institute for Farm Animal Gene Conservation (NBGK-HGI), Isaszegi str. 200, 2100 Gödöllő, Hungary
| | - Roland Tóth
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
| | - Nikolett Tokodyné Szabadi
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
| | - Elen Gócza
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
| |
Collapse
|
30
|
Luo L, Yao L, Xie Y, Chen E, Ding Y, Ge L. miR-526b-5p/c-Myc/Foxp1 participates in recurrent spontaneous abortion by regulating the proliferation, migration, and invasion of trophoblasts. J Assist Reprod Genet 2023; 40:1559-1572. [PMID: 37052757 PMCID: PMC10352202 DOI: 10.1007/s10815-023-02793-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023] Open
Abstract
PURPOSE As a member of the C19MC family, miR-526b-5p is mainly expressed in the placental tissue and is a well-known tumor suppressor microRNA. However, its effect on the function of trophoblasts and its role in the development of recurrent spontaneous abortion (RSA) remains unclear. METHODS Transcriptome sequencing, quantitative real-time polymerase chain reaction (RT-qPCR), Western blot, 5-ethynyl-2'-deoxyuridine (Edu) proliferation analysis, cell counting kit-8 (CCK8) assay, Transwell assays, and wound healing were used to detect the proliferation, migration, and invasion capacity of trophoblasts. Target genes of miR-526b-5p were obtained by the dual luciferase reporter system. The promoter-reporter system and ChIP-qPCR were used to prove that c-Myc positively regulated the expression of Foxp1 RESULTS: The miR-526b-5p levels were significantly higher in patients with RSA than in controls. High expression of miR-526b-5p inhibited the proliferation, migration, and invasion of trophoblast cell line. By contrast, low expression of miR-526b-5p promoted the proliferation and migration of trophoblast cell line. Target genes of miR-526b-5p were c-Myc and Foxp1. c-Myc positively regulated the expression of Foxp1 by binding to the Foxp1 promoter location -146/-135. Finally, miR-526b-5p impeded the proliferation, migration, and invasion of trophoblasts by negatively regulating c-Myc by rescue experiments. CONCLUSION Thus, miR-526b-5p affected the proliferation, migration, and invasion of trophoblasts by targeting c-Myc and Foxp1. Low expression of c-Myc further deactivated the positive transcriptional regulation of c-Myc on Foxp1, which may be the mechanism of RSA. This study provides potential therapeutic targets and clues for the diagnosis and treatment of RSA.
Collapse
Affiliation(s)
- Li Luo
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, No. 1 Yixueyuan Rd, Chongqing, 400016, China
- , Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, No. 120, Longshan Rd, Chongqing, 401147, China
| | - Lu Yao
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, No. 1 Yixueyuan Rd, Chongqing, 400016, China
- , Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, No. 120, Longshan Rd, Chongqing, 401147, China
| | - Youlong Xie
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, No. 1 Yixueyuan Rd, Chongqing, 400016, China
| | - Enxiang Chen
- Department of Genetics, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yubin Ding
- , Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, No. 120, Longshan Rd, Chongqing, 401147, China
| | - Luxing Ge
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, No. 1 Yixueyuan Rd, Chongqing, 400016, China.
| |
Collapse
|
31
|
Naama M, Rahamim M, Zayat V, Sebban S, Radwan A, Orzech D, Lasry R, Ifrah A, Jaber M, Sabag O, Yassen H, Khatib A, Epsztejn-Litman S, Novoselsky-Persky M, Makedonski K, Deri N, Goldman-Wohl D, Cedar H, Yagel S, Eiges R, Buganim Y. Pluripotency-independent induction of human trophoblast stem cells from fibroblasts. Nat Commun 2023; 14:3359. [PMID: 37291192 PMCID: PMC10250329 DOI: 10.1038/s41467-023-39104-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/30/2023] [Indexed: 06/10/2023] Open
Abstract
Human trophoblast stem cells (hTSCs) can be derived from embryonic stem cells (hESCs) or be induced from somatic cells by OCT4, SOX2, KLF4 and MYC (OSKM). Here we explore whether the hTSC state can be induced independently of pluripotency, and what are the mechanisms underlying its acquisition. We identify GATA3, OCT4, KLF4 and MYC (GOKM) as a combination of factors that can generate functional hiTSCs from fibroblasts. Transcriptomic analysis of stable GOKM- and OSKM-hiTSCs reveals 94 hTSC-specific genes that are aberrant specifically in OSKM-derived hiTSCs. Through time-course-RNA-seq analysis, H3K4me2 deposition and chromatin accessibility, we demonstrate that GOKM exert greater chromatin opening activity than OSKM. While GOKM primarily target hTSC-specific loci, OSKM mainly induce the hTSC state via targeting hESC and hTSC shared loci. Finally, we show that GOKM efficiently generate hiTSCs from fibroblasts that harbor knockout for pluripotency genes, further emphasizing that pluripotency is dispensable for hTSC state acquisition.
Collapse
Affiliation(s)
- Moriyah Naama
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel
| | - Moran Rahamim
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel
| | - Valery Zayat
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Shulamit Sebban
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel
| | - Ahmed Radwan
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel
| | - Dana Orzech
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel
| | - Rachel Lasry
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel
| | - Annael Ifrah
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel
| | - Mohammad Jaber
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel
| | - Ofra Sabag
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel
| | - Hazar Yassen
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel
| | - Areej Khatib
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel
| | - Silvina Epsztejn-Litman
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center, 91031, Jerusalem, Israel
- The Hebrew University School of Medicine, 91120, Jerusalem, Israel
| | - Michal Novoselsky-Persky
- The Magda and Richard Hoffman Laboratory of Human Placental Research, Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Kirill Makedonski
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel
| | - Noy Deri
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel
| | - Debra Goldman-Wohl
- The Magda and Richard Hoffman Laboratory of Human Placental Research, Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Howard Cedar
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel
| | - Simcha Yagel
- The Magda and Richard Hoffman Laboratory of Human Placental Research, Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Rachel Eiges
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center, 91031, Jerusalem, Israel
- The Hebrew University School of Medicine, 91120, Jerusalem, Israel
| | - Yosef Buganim
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel.
| |
Collapse
|
32
|
Zorzan I, Betto RM, Rossignoli G, Arboit M, Drusin A, Corridori C, Martini P, Martello G. Chemical conversion of human conventional PSCs to TSCs following transient naive gene activation. EMBO Rep 2023; 24:e55235. [PMID: 36847616 PMCID: PMC10074076 DOI: 10.15252/embr.202255235] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 03/01/2023] Open
Abstract
In human embryos, naive pluripotent cells of the inner cell mass (ICM) generate epiblast, primitive endoderm and trophectoderm (TE) lineages, whence trophoblast cells derive. In vitro, naive pluripotent stem cells (PSCs) retain this potential and efficiently generate trophoblast stem cells (TSCs), while conventional PSCs form TSCs at low efficiency. Transient histone deacetylase and MEK inhibition combined with LIF stimulation is used to chemically reset conventional to naive PSCs. Here, we report that chemical resetting induces the expression of both naive and TSC markers and of placental imprinted genes. A modified chemical resetting protocol allows for the fast and efficient conversion of conventional PSCs into TSCs, entailing shutdown of pluripotency genes and full activation of the trophoblast master regulators, without induction of amnion markers. Chemical resetting generates a plastic intermediate state, characterised by co-expression of naive and TSC markers, after which cells steer towards one of the two fates in response to the signalling environment. The efficiency and rapidity of our system will be useful to study cell fate transitions and to generate models of placental disorders.
Collapse
Affiliation(s)
- Irene Zorzan
- Department of Molecular Medicine, Medical School, University of Padua, Padua, Italy
| | | | | | - Mattia Arboit
- Department of Biology, University of Padua, Padua, Italy
| | - Andrea Drusin
- Department of Biology, University of Padua, Padua, Italy
| | | | - Paolo Martini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | |
Collapse
|
33
|
Karvas RM, David L, Theunissen TW. Accessing the human trophoblast stem cell state from pluripotent and somatic cells. Cell Mol Life Sci 2022; 79:604. [PMID: 36434136 PMCID: PMC9702929 DOI: 10.1007/s00018-022-04549-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/26/2022]
Abstract
Trophoblasts are specialized epithelial cells that perform critical functions during blastocyst implantation and mediate maternal-fetal communication during pregnancy. However, our understanding of human trophoblast biology remains limited since access to first-trimester placental tissue is scarce, especially between the first and fourth weeks of development. Moreover, animal models inadequately recapitulate unique aspects of human placental physiology. In the mouse system, the isolation of self-renewing trophoblast stem cells has provided a valuable in vitro model system of placental development, but the derivation of analogous human trophoblast stem cells (hTSCs) has remained elusive until recently. Building on a landmark study reporting the isolation of bona fide hTSCs from blastocysts and first-trimester placental tissues in 2018, several groups have developed methods to derive hTSCs from pluripotent and somatic cell sources. Here we review the biological and molecular properties that define authentic hTSCs, the trophoblast potential of distinct pluripotent states, and methods for inducing hTSCs in somatic cells by direct reprogramming. The generation of hTSCs from pluripotent and somatic cells presents exciting opportunities to elucidate the molecular mechanisms of human placental development and the etiology of pregnancy-related diseases.
Collapse
Affiliation(s)
- Rowan M Karvas
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Laurent David
- Nantes Université, CHU Nantes, INSERM, CR2TI, UMR 1064, 44000, Nantes, France.
- Nantes Université, CHU Nantes, INSERM, CNRS, Biocore, US 016, UAR 3556, 44000, Nantes, France.
| | - Thorold W Theunissen
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
34
|
Coordinated regulation of microRNA genes in C19MC by SETDB1. Biochem Biophys Res Commun 2022; 637:17-22. [DOI: 10.1016/j.bbrc.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
|
35
|
Partial Disturbance of Microprocessor Function in Human Stem Cells Carrying a Heterozygous Mutation in the DGCR8 Gene. Genes (Basel) 2022; 13:genes13111925. [DOI: 10.3390/genes13111925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 11/04/2022] Open
Abstract
Maturation of microRNAs (miRNAs) begins by the “Microprocessor” complex, containing the Drosha endonuclease and its partner protein, "DiGeorge Syndrome Critical Region 8" (DGCR8). Although the main function of the two proteins is to coordinate the first step of precursor miRNAs formation, several studies revealed their miRNA-independent functions in other RNA-related pathways (e.g., in snoRNA decay) or, for the DGCR8, the role in tissue development. To investigate the specific roles of DGCR8 in various cellular pathways, we previously established a human embryonic stem-cell (hESC) line carrying a monoallelic DGCR8 mutation by using the CRISPR-Cas9 system. In this study, we genetically characterized single-cell originated progenies of the cell line and showed that DGCR8 heterozygous mutation results in only a modest effect on the mRNA level but a significant decrease at the protein level. Self-renewal and trilineage differentiation capacity of these hESCs were not affected by the mutation. However, partial disturbance of the Microprocessor function could be revealed in pri-miRNA processing along the human chromosome 19 miRNA cluster in several clones. With all these studies, we can demonstrate that the mutant hESC line is a good model to study not only miRNA-related but also other “noncanonical” functions of the DGCR8 protein.
Collapse
|
36
|
Hayder H, Shan Y, Chen Y, O’Brien JA, Peng C. Role of microRNAs in trophoblast invasion and spiral artery remodeling: Implications for preeclampsia. Front Cell Dev Biol 2022; 10:995462. [PMID: 36263015 PMCID: PMC9575991 DOI: 10.3389/fcell.2022.995462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
It is now well-established that microRNAs (miRNAs) are important regulators of gene expression. The role of miRNAs in placental development and trophoblast function is constantly expanding. Trophoblast invasion and their ability to remodel uterine spiral arteries are essential for proper placental development and successful pregnancy outcome. Many miRNAs are reported to be dysregulated in pregnancy complications, especially preeclampsia and they exert various regulatory effects on trophoblasts. In this review, we provide a brief overview of miRNA biogenesis and their mechanism of action, as well as of trophoblasts differentiation, invasion and spiral artery remodeling. We then discuss the role of miRNAs in trophoblasts invasion and spiral artery remodeling, focusing on miRNAs that have been thoroughly investigated, especially using multiple model systems. We also discuss the potential role of miRNAs in the pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- Heyam Hayder
- Department of Biology, York University, Toronto, ON, Canada
| | - Yanan Shan
- Department of Biology, York University, Toronto, ON, Canada
| | - Yan Chen
- Department of Biology, York University, Toronto, ON, Canada
| | | | - Chun Peng
- Department of Biology, York University, Toronto, ON, Canada
- Centre for Research on Biomolecular Interactions, York University, Toronto, ON, Canada
- *Correspondence: Chun Peng,
| |
Collapse
|
37
|
Kobayashi EH, Shibata S, Oike A, Kobayashi N, Hamada H, Okae H, Arima T. Genomic imprinting in human placentation. Reprod Med Biol 2022; 21:e12490. [PMID: 36465588 PMCID: PMC9713850 DOI: 10.1002/rmb2.12490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/25/2022] [Accepted: 11/10/2022] [Indexed: 12/02/2022] Open
Abstract
Background Genomic imprinting (GI) is a mammalian-specific epigenetic phenomenon that has been implicated in the evolution of the placenta in mammals. Methods Embryo transfer procedures and trophoblast stem (TS) cells were used to re-examine mouse placenta-specific GI genes. For the analysis of human GI genes, cytotrophoblast cells isolated from human placental tissues were used. Using human TS cells, the biological roles of human GI genes were examined. Main findings (1) Many previously identified mouse GI genes were likely to be falsely identified due to contaminating maternal cells. (2) Human placenta-specific GI genes were comprehensively determined, highlighting incomplete erasure of germline DNA methylation in the human placenta. (3) Human TS cells retained normal GI patterns. (4) Complete hydatidiform mole-derived TS cells were characterized by aberrant GI and enhanced trophoblastic proliferation. The maternally expressed imprinted gene p57KIP2 may be responsible for the enhanced proliferation. (5) The primate-specific microRNA cluster on chromosome 19, which is a placenta-specific GI gene, is essential for self-renewal and differentiation of human TS cells. Conclusion Genomic imprinting plays diverse and important roles in human placentation. Experimental analyses using TS cells suggest that the GI maintenance is necessary for normal placental development in humans.
Collapse
Affiliation(s)
- Eri H. Kobayashi
- Department of Informative GeneticsTohoku University School of MedicineSendaiJapan
| | - Shun Shibata
- Department of Informative GeneticsTohoku University School of MedicineSendaiJapan
| | - Akira Oike
- Department of Informative GeneticsTohoku University School of MedicineSendaiJapan
| | - Norio Kobayashi
- Department of Informative GeneticsTohoku University School of MedicineSendaiJapan
| | - Hirotaka Hamada
- Department of Informative GeneticsTohoku University School of MedicineSendaiJapan
| | - Hiroaki Okae
- Department of Informative GeneticsTohoku University School of MedicineSendaiJapan
| | - Takahiro Arima
- Department of Informative GeneticsTohoku University School of MedicineSendaiJapan
| |
Collapse
|