1
|
Pan Y, Berkovska O, Marathe S, Mermelekas G, Gudoityte G, Wolide AD, Arslan T, Seashore-Ludlow B, Lehtiö J, Orre LM. Functional-proteomics-based investigation of the cellular response to farnesyltransferase inhibition in lung cancer. iScience 2025; 28:111864. [PMID: 39995872 PMCID: PMC11848503 DOI: 10.1016/j.isci.2025.111864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/16/2024] [Accepted: 01/17/2025] [Indexed: 02/26/2025] Open
Abstract
Farnesylation is a lipid post-translational modification of proteins crucial for protein membrane anchoring and cellular signaling. Farnesyltransferase inhibitors (FTIs), such as tipifarnib, are being tested in cancer therapy. However, the full impact of FTIs on farnesylation substrates remains poorly understood, thus limiting their use in precision medicine. In this study, we performed a global proteomics analysis to investigate farnesylation and the effects of tipifarnib in lung cancer cell lines. Using metabolic labeling and mass spectrometry, we identified farnesylated proteins and mapped their subcellular localization. We also analyzed tipifarnib-dependent protein relocalization and proteome-wide changes. Key findings include the potential therapeutic value of FTIs for NRAS-mutated melanoma and GNAQ/GNA11-mutated uveal melanoma by inhibiting INPP5A farnesylation. Additionally, we identified a synergistic drug combination involving tipifarnib and a ferroptosis inducer and discovered PTP4A1 as a regulator of interferon signaling. Our data, covering 15,080 proteins, offer valuable insights for future studies of farnesylation and FTIs.
Collapse
Affiliation(s)
- Yanbo Pan
- SciLifeLab, Department of Oncology and Pathology, Karolinska Institutet, 17165 Solna, Sweden
| | - Olena Berkovska
- SciLifeLab, Department of Oncology and Pathology, Karolinska Institutet, 17165 Solna, Sweden
| | - Soumitra Marathe
- SciLifeLab, Department of Oncology and Pathology, Karolinska Institutet, 17165 Solna, Sweden
| | - Georgios Mermelekas
- SciLifeLab, Department of Oncology and Pathology, Karolinska Institutet, 17165 Solna, Sweden
| | - Greta Gudoityte
- SciLifeLab, Department of Oncology and Pathology, Karolinska Institutet, 17165 Solna, Sweden
| | - Amare D. Wolide
- SciLifeLab, Department of Oncology and Pathology, Karolinska Institutet, 17165 Solna, Sweden
| | - Taner Arslan
- SciLifeLab, Department of Oncology and Pathology, Karolinska Institutet, 17165 Solna, Sweden
| | - Brinton Seashore-Ludlow
- SciLifeLab, Department of Oncology and Pathology, Karolinska Institutet, 17165 Solna, Sweden
| | - Janne Lehtiö
- SciLifeLab, Department of Oncology and Pathology, Karolinska Institutet, 17165 Solna, Sweden
| | - Lukas M. Orre
- SciLifeLab, Department of Oncology and Pathology, Karolinska Institutet, 17165 Solna, Sweden
| |
Collapse
|
2
|
Suzuki K, Tsujiguchi H, Hara A, Takeshita Y, Goto H, Nakano Y, Yamamoto R, Takayama H, Tajima A, Yamashita T, Honda M, Nakamura H, Takamura T. Hepatokine leukocyte cell-derived chemotaxin 2 as a biomarker of insulin resistance, liver enzymes, and metabolic dysfunction-associated steatotic liver disease in the general population. J Diabetes Investig 2025; 16:298-308. [PMID: 39570764 PMCID: PMC11786172 DOI: 10.1111/jdi.14351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/20/2024] [Accepted: 10/27/2024] [Indexed: 02/02/2025] Open
Abstract
AIMS/INTRODUCTION Leukocyte cell-derived chemotaxin 2 (LECT2) is an obesity-associated hepatokine that causes skeletal muscle insulin resistance. Since LECT2 is up-regulated by the inactivation of the energy sensor AMPK in the liver, we hypothesized that LECT2 has potential as a biomarker for metabolic dysfunction-associated steatotic liver disease (MASLD). Therefore, we investigated whether circulating LECT2 levels are associated with insulin sensitivity, liver enzymes, and MASLD. MATERIALS AND METHODS This cross-sectional study included 138 Japanese individuals. Plasma LECT2 levels were measured using fasting blood samples. B-mode ultrasonography was used to assess hepatic steatosis. RESULTS The mean age and body mass index (BMI) of participants were 63.5 ± 10.2 years and 23.0 ± 3.1 kg/m2, respectively. Higher LECT2 levels positively correlated with homeostatic model assessment for insulin resistance (HOMA-IR) values and negatively correlated with the quantitative insulin sensitivity check index (QUICKI) among all participants (HOMA-IR; non-standardized β (B) = 6.38, P < 0.01: QUICKI; B = -161, P < 0.01). These correlations were stronger in the low BMI group (HOMA-IR; B = 13.85, P < 0.01: QUICKI; B = -180, P < 0.01). LECT2 levels also positively correlated with gamma-glutamyl transferase levels (B = 0.01, P = 0.01) and alanine aminotransferase levels (B = 0.33, P = 0.02). Higher LECT2 levels correlated with the prevalence of MASLD (odds ratio = 1.14, P = 0.02). CONCLUSIONS The present results suggest the potential of plasma LECT2 levels as a biomarker for insulin resistance in individuals who are not overweight and the prevalence of MASLD in the general population.
Collapse
Affiliation(s)
- Keita Suzuki
- Kanazawa University Advanced Preventive Medical Sciences Research CenterKanazawaIshikawaJapan
| | - Hiromasa Tsujiguchi
- Kanazawa University Advanced Preventive Medical Sciences Research CenterKanazawaIshikawaJapan
- Department of Public Health, Graduate School of Advanced Preventive Medical SciencesKanazawa UniversityKanazawaIshikawaJapan
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health SciencesKanazawa UniversityKanazawaIshikawaJapan
| | - Akinori Hara
- Kanazawa University Advanced Preventive Medical Sciences Research CenterKanazawaIshikawaJapan
- Department of Public Health, Graduate School of Advanced Preventive Medical SciencesKanazawa UniversityKanazawaIshikawaJapan
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health SciencesKanazawa UniversityKanazawaIshikawaJapan
| | - Yumie Takeshita
- Department of Endocrinology and MetabolismKanazawa University Graduate School of Medical SciencesKanazawaIshikawaJapan
| | - Hisanori Goto
- Department of Endocrinology and MetabolismKanazawa University Graduate School of Medical SciencesKanazawaIshikawaJapan
| | - Yujiro Nakano
- Department of Endocrinology and MetabolismKanazawa University Graduate School of Medical SciencesKanazawaIshikawaJapan
| | - Reina Yamamoto
- Department of Endocrinology and MetabolismKanazawa University Graduate School of Medical SciencesKanazawaIshikawaJapan
| | - Hiroaki Takayama
- Department of Endocrinology and MetabolismKanazawa University Graduate School of Medical SciencesKanazawaIshikawaJapan
| | - Atsushi Tajima
- Kanazawa University Advanced Preventive Medical Sciences Research CenterKanazawaIshikawaJapan
- Faculty of Medicine, Department of Bioinformatics and Genomics, Institute of Medical, Pharmaceutical and Health SciencesKanazawa UniversityKanazawaIshikawaJapan
| | - Tatsuya Yamashita
- Department of GastroenterologyKanazawa University Graduate School of Medical SciencesKanazawaIshikawaJapan
| | - Masao Honda
- Department of GastroenterologyKanazawa University Graduate School of Medical SciencesKanazawaIshikawaJapan
| | - Hiroyuki Nakamura
- Kanazawa University Advanced Preventive Medical Sciences Research CenterKanazawaIshikawaJapan
- Department of Public Health, Graduate School of Advanced Preventive Medical SciencesKanazawa UniversityKanazawaIshikawaJapan
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health SciencesKanazawa UniversityKanazawaIshikawaJapan
| | - Toshinari Takamura
- Department of Endocrinology and MetabolismKanazawa University Graduate School of Medical SciencesKanazawaIshikawaJapan
| |
Collapse
|
3
|
Davoudi P, Do DN, Rathgeber B, Colombo S, Sargolzaei M, Plastow G, Wang Z, Miar Y. Characterization of runs of homozygosity islands in American mink using whole-genome sequencing data. J Anim Breed Genet 2024; 141:507-520. [PMID: 38389405 DOI: 10.1111/jbg.12859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/27/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024]
Abstract
The genome-wide analysis of runs of homozygosity (ROH) islands can be an effective strategy for identifying shared variants within a population and uncovering important genomic regions related to complex traits. The current study performed ROH analysis to characterize the genome-wide patterns of homozygosity, identify ROH islands and annotated genes within these candidate regions using whole-genome sequencing data from 100 American mink (Neogale vison). After sequence processing, variants were called using GATK and Samtools pipelines. Subsequent to quality control, 8,373,854 bi-allelic variants identified by both pipelines remained for further analysis. A total of 34,652 ROH segments were identified in all individuals, among which shorter segments (0.3-1 Mb) were abundant throughout the genome, approximately accounting for 84.39% of all ROH. Within these segments, we identified 63 ROH islands housing 156 annotated genes. The genes located in ROH islands were associated with fur quality (EDNRA, FGF2, FOXA2 and SLC24A4), body size/weight (MYLK4, PRIM2, FABP2, EYS and PHF3), immune capacity (IL2, IL21, PTP4A1, SEMA4C, JAK2, CCNA2 and TNIP3) and reproduction (ADAD1, KHDRBS2, INSL6, PGRMC2 and HSPA4L). Furthermore, Gene Ontology and KEGG pathway enrichment analyses revealed 56 and 9 significant terms (FDR-corrected p-value < 0.05), respectively, among which cGMP-PKG signalling pathway, regulation of actin cytoskeleton, and calcium signalling pathway were highlighted due to their functional roles in growth and fur characteristics. This is the first study to present ROH islands in American mink. The candidate genes from ROH islands and functional enrichment analysis suggest possible signatures of selection in response to the mink breeding targets, such as increased body length, reproductive performance and fur quality. These findings contribute to our understanding of genetic characteristics, and provide complementary information to assist with implementation of breeding strategies for genetic improvement in American mink.
Collapse
Affiliation(s)
- Pourya Davoudi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, Nova Scotia, Canada
| | - Duy Ngoc Do
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, Nova Scotia, Canada
| | - Bruce Rathgeber
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, Nova Scotia, Canada
| | - Stefanie Colombo
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, Nova Scotia, Canada
| | - Mehdi Sargolzaei
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
- Select Sires Inc., Plain City, Ohio, USA
| | - Graham Plastow
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Zhiquan Wang
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Younes Miar
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, Nova Scotia, Canada
| |
Collapse
|
4
|
Ren J, Lv L, Tao X, Zhai X, Chen X, Yu H, Zhao X, Kong X, Yu Z, Dong D, Liu J. The role of CBL family ubiquitin ligases in cancer progression and therapeutic strategies. Front Pharmacol 2024; 15:1432545. [PMID: 39130630 PMCID: PMC11310040 DOI: 10.3389/fphar.2024.1432545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/10/2024] [Indexed: 08/13/2024] Open
Abstract
The CBL (Casitas B-lineage lymphoma) family, as a class of ubiquitin ligases, can regulate signal transduction and activate receptor tyrosine kinases through various tyrosine kinase-dependent pathways. There are three members of the family: c-CBL, CBL-b, and CBL-c. Numerous studies have demonstrated the important role of CBL in various cellular pathways, particularly those involved in the occurrence and progression of cancer, hematopoietic development, and regulation of T cell receptors. Therefore, the purpose of this review is to comprehensively summarize the function and regulatory role of CBL family proteins in different human tumors, as well as the progress of drug research targeting CBL family, so as to provide a broader clinical measurement strategy for the treatment of tumors.
Collapse
Affiliation(s)
- Jiaqi Ren
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- School of Pharmacy, Dalian Medical University, Dalian, China
| | - Linlin Lv
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xufeng Tao
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaohan Zhai
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xuyang Chen
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hao Yu
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- School of Pharmacy, Dalian Medical University, Dalian, China
| | - Xinya Zhao
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- School of Pharmacy, Dalian Medical University, Dalian, China
| | - Xin Kong
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- School of Pharmacy, Dalian Medical University, Dalian, China
| | - Zhan Yu
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Deshi Dong
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jing Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
5
|
Zhang E, Li Z, Dong L, Feng Y, Sun G, Xu X, Wang Z, Cui C, Wang W, Yang J. Exploration of Molecular Mechanisms of Immunity in the Pacific Oyster ( Crassostrea gigas) in Response to Vibrio alginolyticus Invasion. Animals (Basel) 2024; 14:1707. [PMID: 38891754 PMCID: PMC11171025 DOI: 10.3390/ani14111707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
Over the years, oysters have faced recurring mass mortality issues during the summer breeding season, with Vibrio infection emerging as a significant contributing factor. Tubules of gill filaments were confirmed to be in the hematopoietic position in Crassostrea gigas, which produce hemocytes with immune defense capabilities. Additionally, the epithelial cells of oyster gills produce immune effectors to defend against pathogens. In light of this, we performed a transcriptome analysis of gill tissues obtained from C. gigas infected with Vibrio alginolyticus for 12 h and 48 h. Through this analysis, we identified 1024 differentially expressed genes (DEGs) at 12 h post-injection and 1079 DEGs at 48 h post-injection. Enrichment analysis of these DEGs revealed a significant association with immune-related Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. To further investigate the immune response, we constructed a protein-protein interaction (PPI) network using the DEGs enriched in immune-associated KEGG pathways. This network provided insights into the interactions and relationships among these genes, shedding light on the underlying mechanisms of the innate immune defense mechanism in oyster gills. To ensure the accuracy of our findings, we validated 16 key genes using quantitative RT-PCR. Overall, this study represents the first exploration of the innate immune defense mechanism in oyster gills using a PPI network approach. The findings provide valuable insights for future research on oyster pathogen control and the development of oysters with enhanced antimicrobial resistance.
Collapse
Affiliation(s)
- Enshuo Zhang
- School of Agriculture, Ludong University, Yantai 264025, China (Z.L.); (X.X.); (C.C.)
| | - Zan Li
- School of Agriculture, Ludong University, Yantai 264025, China (Z.L.); (X.X.); (C.C.)
- Yantai Haiyu Marine Technology Co., Ltd., Yantai 264000, China
| | - Luyao Dong
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Yanwei Feng
- School of Agriculture, Ludong University, Yantai 264025, China (Z.L.); (X.X.); (C.C.)
- Yantai Haiyu Marine Technology Co., Ltd., Yantai 264000, China
| | - Guohua Sun
- School of Agriculture, Ludong University, Yantai 264025, China (Z.L.); (X.X.); (C.C.)
- Yantai Haiyu Marine Technology Co., Ltd., Yantai 264000, China
| | - Xiaohui Xu
- School of Agriculture, Ludong University, Yantai 264025, China (Z.L.); (X.X.); (C.C.)
- Yantai Haiyu Marine Technology Co., Ltd., Yantai 264000, China
| | - Zhongping Wang
- Yantai Kongtong Island Industrial Co., Ltd., Yantai 264000, China
| | - Cuiju Cui
- School of Agriculture, Ludong University, Yantai 264025, China (Z.L.); (X.X.); (C.C.)
| | - Weijun Wang
- School of Agriculture, Ludong University, Yantai 264025, China (Z.L.); (X.X.); (C.C.)
- Yantai Haiyu Marine Technology Co., Ltd., Yantai 264000, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
- Yantai Kongtong Island Industrial Co., Ltd., Yantai 264000, China
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai 264025, China (Z.L.); (X.X.); (C.C.)
- Yantai Haiyu Marine Technology Co., Ltd., Yantai 264000, China
- Yantai Kongtong Island Industrial Co., Ltd., Yantai 264000, China
| |
Collapse
|
6
|
Fei Y, Huang X, Ning F, Qian T, Cui J, Wang X, Huang X. NETs induce ferroptosis of endothelial cells in LPS-ALI through SDC-1/HS and downstream pathways. Biomed Pharmacother 2024; 175:116621. [PMID: 38677244 DOI: 10.1016/j.biopha.2024.116621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Extracellular neutrophil extracellular traps (NETs) play an important role in acute lung injury (ALI), but their mechanisms are still unclear. The aim of this study is to explore the effects of NETs on endothelial glycocalyx/HGF/cMET pathway and ferroptosis in ALI and elucidate their potential mechanisms. METHODS Plasma was collected from healthy and sepsis patients to test for differences in neutrophil elastase (NE) expression of NETs components. In addition, LPS-ALI mice and endothelial cell injury models were established, and NETs were disrupted by siPAD4 (a driver gene for NETs) and sivelestat (an inhibitor of the NETs component) in the mice and by sivelestat in the endothelial cell injury models, and the effects of NETs on the SDC-1/HS/HGF/cMET pathway were studied. To verify the relationship between NETs and ferroptosis, Fer1, a ferroptosis inhibitor, was added as a positive control to observe the effect of NETs on ferroptosis indicators. RESULTS The expression level of NE was significantly higher in the plasma of sepsis patients. In ALI mice, intervention in the generation of NETs reduced pulmonary vascular permeability, protected the integrity of SDC-1/HS and promoted the downstream HGF/cMET pathway. In addition, sivelestat also improved the survival rate of mice, decreased the serious degree of ferroptosis. In the endothelial cells, the results were consistent with those of the ALI mice. CONCLUSION The study indicates that inhibiting the production of NETs can protect the normal conduction of the SDC-1/HS/HGF/cMET signalling pathway and reduce the severity of ferroptosis.
Collapse
Affiliation(s)
- Yuxin Fei
- Department of Intensive Care Unit, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Xiao Huang
- Department of Intensive Care Unit, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Fangyu Ning
- Department of Intensive Care Unit, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | | | - Jinfeng Cui
- Department of Intensive Care Unit, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Xiaozhi Wang
- Department of Intensive Care Unit, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Xiao Huang
- Department of Intensive Care Unit, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| |
Collapse
|
7
|
Zhao J, Zhang X, Li Y, Yu J, Chen Z, Niu Y, Ran S, Wang S, Ye W, Luo Z, Li X, Hao Y, Zong J, Xia C, Xia J, Wu J. Interorgan communication with the liver: novel mechanisms and therapeutic targets. Front Immunol 2023; 14:1314123. [PMID: 38155961 PMCID: PMC10754533 DOI: 10.3389/fimmu.2023.1314123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023] Open
Abstract
The liver is a multifunctional organ that plays crucial roles in numerous physiological processes, such as production of bile and proteins for blood plasma, regulation of blood levels of amino acids, processing of hemoglobin, clearance of metabolic waste, maintenance of glucose, etc. Therefore, the liver is essential for the homeostasis of organisms. With the development of research on the liver, there is growing concern about its effect on immune cells of innate and adaptive immunity. For example, the liver regulates the proliferation, differentiation, and effector functions of immune cells through various secreted proteins (also known as "hepatokines"). As a result, the liver is identified as an important regulator of the immune system. Furthermore, many diseases resulting from immune disorders are thought to be related to the dysfunction of the liver, including systemic lupus erythematosus, multiple sclerosis, and heart failure. Thus, the liver plays a role in remote immune regulation and is intricately linked with systemic immunity. This review provides a comprehensive overview of the liver remote regulation of the body's innate and adaptive immunity regarding to main areas: immune-related molecules secreted by the liver and the liver-resident cells. Additionally, we assessed the influence of the liver on various facets of systemic immune-related diseases, offering insights into the clinical application of target therapies for liver immune regulation, as well as future developmental trends.
Collapse
Affiliation(s)
- Jiulu Zhao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jizhang Yu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhang Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuqing Niu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuan Ran
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weicong Ye
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zilong Luo
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanglin Hao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junjie Zong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengkun Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Jie Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
8
|
Liu YJ, Lu XJ, Hauton C, Yang GJ, Chen J. Editorial: Emerging talents in comparative immunology: 2022. Front Immunol 2023; 14:1318852. [PMID: 37965318 PMCID: PMC10641830 DOI: 10.3389/fimmu.2023.1318852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 11/16/2023] Open
Affiliation(s)
- Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
| | - Xin-Jiang Lu
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chris Hauton
- School of Ocean and Earth Science, National Oceanography Centre, University of Southampton, Southampton, United Kingdom
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultral Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultral Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| |
Collapse
|
9
|
Zhu MH, Liu YJ, Li CY, Tao F, Yang GJ, Chen J. The emerging roles of leukocyte cell-derived chemotaxin-2 in immune diseases: From mechanisms to therapeutic potential. Front Immunol 2023; 14:1158083. [PMID: 36969200 PMCID: PMC10034042 DOI: 10.3389/fimmu.2023.1158083] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Leukocyte cell-derived chemotaxin-2 (LECT2, also named ChM-II), initially identified as a chemokine mediating neutrophil migration, is a multifunctional secreted factor involved in diverse physiological and pathological processes. The high sequence similarity of LECT2 among different vertebrates makes it possible to explore its functions by using comparative biology. LECT2 is associated with many immune processes and immune-related diseases via its binding to cell surface receptors such as CD209a, Tie1, and Met in various cell types. In addition, the misfolding LECT2 leads to the amyloidosis of several crucial tissues (kidney, liver, and lung, etc.) by inducing the formation of insoluble fibrils. However, the mechanisms of LECT2-mediated diverse immune pathogenic conditions in various tissues remain to be fully elucidated due to the functional and signaling heterogeneity. Here, we provide a comprehensive summary of the structure, the “double-edged sword” function, and the extensive signaling pathways of LECT2 in immune diseases, as well as the potential applications of LECT2 in therapeutic interventions in preclinical or clinical trials. This review provides an integrated perspective on the current understanding of how LECT2 is associated with immune diseases, with the aim of facilitating the development of drugs or probes against LECT2 for the theranostics of immune-related diseases.
Collapse
Affiliation(s)
- Ming-Hui Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Fan Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
- *Correspondence: Jiong Chen, ; ; Guan-Jun Yang,
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
- *Correspondence: Jiong Chen, ; ; Guan-Jun Yang,
| |
Collapse
|
10
|
Ghezzi C, Chen BY, Damoiseaux R, Clark PM. Pacritinib inhibits glucose consumption in squamous cell lung cancer cells by targeting FLT3. Sci Rep 2023; 13:1442. [PMID: 36697489 PMCID: PMC9876922 DOI: 10.1038/s41598-023-28576-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Squamous cell lung cancer maintains its growth through elevated glucose consumption, but selective glucose consumption inhibitors are lacking. Here, we discovered using a high-throughput screen new compounds that block glucose consumption in three squamous cell lung cancer cell lines and identified 79 compounds that block glucose consumption in one or more of these cell lines. Based on its ability to block glucose consumption in all three cell lines, pacritinib, an inhibitor of FMS Related Receptor Tyrosine Kinase 3 (FLT3) and Janus Kinase 2 (JAK2), was further studied. Pacritinib decreased glucose consumption in squamous cell lung cancer cells in cell culture and in vivo without affecting glucose consumption in healthy tissues. Pacritinib blocked hexokinase activity, and Hexokinase 1 and 2 mRNA and protein expression. Overexpression of Hexokinase 1 blocked the ability of pacritinib to inhibit glucose consumption in squamous cell lung cancer cells. Overexpression of FLT3 but not JAK2 significantly increased glucose consumption and blocked the ability of pacritinib to inhibit glucose consumption in squamous cell lung cancer cells. Additional FLT3 inhibitors blocked glucose consumption in squamous cell lung cancer cells. Our study identifies FLT3 inhibitors as a new class of inhibitors that can block glucose consumption in squamous cell lung cancer.
Collapse
Affiliation(s)
- Chiara Ghezzi
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Box 951770, Los Angeles, CA, 90095, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Bao Ying Chen
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Box 951770, Los Angeles, CA, 90095, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Robert Damoiseaux
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Box 951770, Los Angeles, CA, 90095, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Peter M Clark
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Box 951770, Los Angeles, CA, 90095, USA.
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
11
|
Machiraju D, Hassel JC. Targeting the cMET pathway to enhance immunotherapeutic approaches for mUM patients. Front Oncol 2023; 12:1068029. [PMID: 36761417 PMCID: PMC9902905 DOI: 10.3389/fonc.2022.1068029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/28/2022] [Indexed: 01/25/2023] Open
Abstract
The liver is the most preferential initial site of metastasis for uveal melanoma (mUM), and this preference is associated with rapid mortality in mUM patients. Despite the significant clinical benefits of Immune checkpoint inhibitors (ICIs) in metastatic cutaneous melanoma patients, ICIs have shown little to no benefit in mUM patients. A potential reason for this inefficiency of ICI could be partly devoted to the involvement of the liver itself, thanks to its rich source of growth factors and immunosuppressive microenvironment. Uveal melanoma cells show increased expression of a transmembrane protein called cMET, which is known as the sole receptor for the Hepatocyte growth factor (HGF). Hyperactivation of cMET by HGF contributes to mUM development, and the liver, being the major source of HGF, may partially explain the metastasis of uveal melanoma cells to the liver. In addition, cMET/HGF signaling has also been shown to mediate resistance to ICI treatment, directly and indirectly, involving tumor and immune cell populations. Therefore, targeting the cMET/HGF interaction may enhance the efficacy of immunotherapeutic regimes for mUM patients. Hence in this minireview, we will discuss the rationale for combining cMET inhibitors/antibodies with leading immune checkpoint inhibitors for treating mUM. We will also briefly highlight the challenges and opportunities in targeting cMET in mUM.
Collapse
|