1
|
Lai SY, Zhu XJ, Sun WD, Bi SZ, Zhang CY, Liu A, Li JH. Nicotinamide N-Methyltransferase (NNMT) and Liver Cancer: From Metabolic Networks to Therapeutic Targets. Biomolecules 2025; 15:719. [PMID: 40427612 PMCID: PMC12109476 DOI: 10.3390/biom15050719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 05/04/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
Hepatocellular carcinoma (HCC), the predominant form of primary liver cancer, remains a global health challenge with limited therapeutic options and high mortality rates. Despite advances in understanding its molecular pathogenesis, the role of metabolic reprogramming in HCC progression and therapy resistance demands further exploration. Nicotinamide N-methyltransferase (NNMT), a metabolic enzyme central to NAD+ and methionine cycles, has emerged as a critical regulator of tumorigenesis across cancers. However, its tissue-specific mechanisms in HCC-particularly in the context of viral hepatitis and methionine cycle dependency-remain understudied. This review systematically synthesizes current evidence on NNMT's dual role in HCC: (1) driving NAD+ depletion and homocysteine (Hcy) accumulation via metabolic dysregulation, (2) promoting malignant phenotypes (proliferation, invasion, metastasis, and drug resistance), and (3) serving as a prognostic biomarker and therapeutic target. We highlight how NNMT intersects with epigenetic modifications, immune evasion, and metabolic vulnerabilities unique to HCC. Additionally, we critically evaluate NNMT inhibitors, RNA-based therapies, and non-pharmacological strategies (e.g., exercise) as novel interventions. By bridging gaps between NNMT's molecular mechanisms and clinical relevance, this review provides a roadmap for advancing NNMT-targeted therapies and underscores the urgency of addressing challenges in biomarker validation, inhibitor specificity, and translational efficacy. Our work positions NNMT not only as a metabolic linchpin in HCC but also as a promising candidate for precision oncology.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jiang-Hua Li
- Physical Education College, Jiangxi Normal University, Nanchang 330022, China; (S.-Y.L.); (X.-J.Z.); (W.-D.S.); (S.-Z.B.); (C.-Y.Z.); (A.L.)
| |
Collapse
|
2
|
Liu Y, Dantas E, Ferrer M, Miao T, Qadiri M, Liu Y, Comjean A, Davidson EE, Perrier T, Ahmed T, Hu Y, Goncalves MD, Janowitz T, Perrimon N. Hepatic gluconeogenesis and PDK3 upregulation drive cancer cachexia in flies and mice. Nat Metab 2025; 7:823-841. [PMID: 40275022 PMCID: PMC12021660 DOI: 10.1038/s42255-025-01265-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 03/06/2025] [Indexed: 04/26/2025]
Abstract
Cachexia, a severe wasting syndrome characterized by tumour-induced metabolic dysregulation, is a leading cause of death in people with cancer, yet its underlying mechanisms remain poorly understood. Here we show that a longitudinal full-body single-nuclei-resolution transcriptome analysis in a Drosophila model of cancer cachexia captures interorgan dysregulations. Our study reveals that the tumour-secreted interleukin-like cytokine Upd3 induces fat-body expression of Pepck1 and Pdk, key regulators of gluconeogenesis, disrupting glucose metabolism and contributing to cachexia. Similarly, in mouse cancer cachexia models, we observe IL-6-JAK-STAT-signalling-mediated induction of Pck1 and Pdk3 expression in the liver. Increased expression of these genes in fly, mouse, and human correlates with poor prognosis, and hepatic expression of Pdk3 emerges as a previously unknown mechanism contributing to metabolic dysfunction in cancer cachexia. This study highlights the conserved nature of tumour-induced metabolic disruptions and identifies potential therapeutic targets to mitigate cachexia in people with cancer.
Collapse
Affiliation(s)
- Ying Liu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| | - Ezequiel Dantas
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Miriam Ferrer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Ting Miao
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Mujeeb Qadiri
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Yifang Liu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Aram Comjean
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Emma E Davidson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
- Ohio State University College of Medicine, Columbus, OH, USA
| | - Tiffany Perrier
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Tanvir Ahmed
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Marcus D Goncalves
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Tobias Janowitz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
- Northwell Health Cancer Institute, Northwell Health, New Hyde Park, New York, NY, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
3
|
Sun WD, Zhu XJ, Li JJ, Mei YZ, Li WS, Li JH. Nicotinamide N-methyltransferase (NNMT): A key enzyme in cancer metabolism and therapeutic target. Int Immunopharmacol 2024; 142:113208. [PMID: 39312861 DOI: 10.1016/j.intimp.2024.113208] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 09/25/2024]
Abstract
Emerging research has positioned Nicotinamide N-methyltransferase (NNMT) as a key player in oncology, with its heightened expression frequently observed across diverse cancers. This increased presence is tightly linked to tumor initiation, proliferation, and metastasis. The enzymatic function of NNMT is centered on the methylation of nicotinamide (NAM), utilizing S-adenosylmethionine (SAM) as the methyl donor, which results in the generation of S-adenosyl-L-homocysteine (SAH) and methyl nicotinamide (MNAM). This metabolic process reduces the availability of NAM, necessary for Nicotinamide adenine dinucleotide (NAD+) synthesis, and generates SAH, precursor to homocysteine (Hcy). These alterations are theorized to foster the resilience, expansion, and invasiveness of cancer cells. Furthermore, NNMT is implicated in enhancing cancer malignancy by affecting multiple signaling pathways, such as phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT), cancer-associated fibroblasts (CAFs) and 5-Methyladenosine (5-MA), epithelial-mesenchymal transition (EMT), and epigenetic mechanisms. Upregulation of NNMT metabolism plays a key role in the formation and maintenance of the tumour microenvironment. While the use of small molecule inhibitors and RNA interference (RNAi) to target NNMT has shown therapeutic promise, the full extent of NNMT's influence on cancer is not yet fully understood, and clinical evidence is limited. This article systematically describes the relationship between the functional metabolism of NNMT enzymes and the cancer and tumour microenvironments, describing the mechanisms by which NNMT contributes to cancer initiation, proliferation, and metastasis, as well as targeted therapies. Additionally, we discuss the future opportunities and challenges of NNMT in targeted anti-cancer treatments.
Collapse
Affiliation(s)
- Wei-Dong Sun
- Key Lab of Aquatic Training Monitoring and Intervention of General Administration of Sport of China, Physical Education College, Jiangxi Normal University, Nanchang 330022, Jiangxi Province, China
| | - Xiao-Juan Zhu
- Key Lab of Aquatic Training Monitoring and Intervention of General Administration of Sport of China, Physical Education College, Jiangxi Normal University, Nanchang 330022, Jiangxi Province, China
| | - Jing-Jing Li
- Key Lab of Aquatic Training Monitoring and Intervention of General Administration of Sport of China, Physical Education College, Jiangxi Normal University, Nanchang 330022, Jiangxi Province, China
| | - Ya-Zhong Mei
- Key Lab of Aquatic Training Monitoring and Intervention of General Administration of Sport of China, Physical Education College, Jiangxi Normal University, Nanchang 330022, Jiangxi Province, China
| | - Wen-Song Li
- Key Lab of Aquatic Training Monitoring and Intervention of General Administration of Sport of China, Physical Education College, Jiangxi Normal University, Nanchang 330022, Jiangxi Province, China
| | - Jiang-Hua Li
- Key Lab of Aquatic Training Monitoring and Intervention of General Administration of Sport of China, Physical Education College, Jiangxi Normal University, Nanchang 330022, Jiangxi Province, China.
| |
Collapse
|
4
|
Park J, Shin EJ, Kim TH, Yang JH, Ki SH, Kang KW, Kim KM. Exploring NNMT: from metabolic pathways to therapeutic targets. Arch Pharm Res 2024; 47:893-913. [PMID: 39604638 DOI: 10.1007/s12272-024-01519-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
Cellular metabolism-related epigenetic modulation plays a pivotal role in the maintenance of cellular homeostasis. Nicotinamide N-methyltransferase (NNMT) serves as a crucial link between cellular metabolism and epigenetics by catalyzing nicotinamide methylation using the universal methyl donor S-adenosyl-L-methionine. This direct connection bridges the methylation-mediated one-carbon metabolism with nicotinamide adenine dinucleotide levels. Numerous studies have revealed tissue-specific differences in NNMT expression and activity, indicating that its varied physiological and pathological roles depend on its distribution. In this review, we provide an overview of the NNMT involvement in various pathological conditions, including cancer, liver disease, obesity, diabetes, brain disease, pulmonary disease, cardiovascular disease, and kidney disease. By synthesizing this information, our article aims to enhance our understanding of the cellular mechanisms underlying NNMT biology related to diverse diseases and lay the molecular groundwork for developing therapeutic strategies for pharmacological interventions.
Collapse
Affiliation(s)
- Jeongwoo Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, 61452, Republic of Korea
- Institute of Well-Aging Medicare & Chosun University G-LAMP Project Group, Chosun University, Gwangju, 61452, Republic of Korea
| | - Eun Jin Shin
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, 61452, Republic of Korea
- Institute of Well-Aging Medicare & Chosun University G-LAMP Project Group, Chosun University, Gwangju, 61452, Republic of Korea
- Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju, 61452, Republic of Korea
| | - Tae Hyun Kim
- Drug Information Research Institute, Muscle Physiome Research Center, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, South Korea
| | - Ji Hye Yang
- College of Korean Medicine, Dongshin University, Naju, Jeollanam-Do, 58245, Republic of Korea
| | - Sung Hwan Ki
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyu Min Kim
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, 61452, Republic of Korea.
- Institute of Well-Aging Medicare & Chosun University G-LAMP Project Group, Chosun University, Gwangju, 61452, Republic of Korea.
- Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
5
|
Ueno M, Sugiyama H, Li F, Nishimura T, Arakawa H, Chen X, Cheng X, Takeuchi S, Takeshita Y, Takamura T, Miyagi S, Toyama T, Soga T, Masuo Y, Kato Y, Nakamura H, Tsujiguchi H, Hara A, Tajima A, Noguchi-Shinohara M, Ono K, Kurayoshi K, Kobayashi M, Tadokoro Y, Kasahara A, Shoulkamy MI, Maeda K, Ogoshi T, Hirao A. A Supramolecular Biosensor for Rapid and High-Throughput Quantification of a Disease-Associated Niacin Metabolite. Anal Chem 2024; 96:14499-14507. [PMID: 39183562 DOI: 10.1021/acs.analchem.4c02653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Metabolic abnormalities play a pivotal role in various pathological conditions, necessitating the quantification of specific metabolites for diagnosis. While mass spectrometry remains the primary method for metabolite measurement, its limited throughput underscores the need for biosensors capable of rapid detection. Previously, we reported that pillar[6]arene with 12 carboxylate groups (P6AC) forms host-guest complexes with 1-methylnicotinamide (1-MNA), which is produced in vivo by nicotinamide N-methyltransferase (NNMT). P6AC acts as a biosensor by measuring the fluorescence quenching caused by photoinduced electron transfer upon 1-MNA binding. However, the low sensitivity of P6AC makes it impractical for detecting 1-MNA in unpurified biological samples. In this study, we found that P6A with 12 sulfonate groups (P6AS) is a specific and potent supramolecular host for 1-MNA interactions even in biological samples. The 1-MNA binding affinity of P6AS in water was found to be (5.68 ± 1.02) × 106 M-1, which is approximately 700-fold higher than that of P6AC. Moreover, the 1-MNA detection limit of P6AS was determined to be 2.84 × 10-7 M, which is substantially lower than that of P6AC. Direct addition of P6AS to culture medium was sufficient to quantify 1-MNA produced by cancer cells. Furthermore, this sensor was able to specifically detect 1-MNA even in unpurified human urine. P6AS therefore enables rapid and high-throughput quantification of 1-MNA, and further improvement of our strategy will contribute to the establishment of high-throughput screening of NNMT inhibitors, diagnosis of liver diseases, and imaging of human cancer cells in vivo.
Collapse
Affiliation(s)
- Masaya Ueno
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroki Sugiyama
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Feng Li
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Tatsuya Nishimura
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroshi Arakawa
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Xi Chen
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Xiaoxiao Cheng
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Shinji Takeuchi
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Division of Medical Oncology Cancer Research Institute, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan
| | - Yumie Takeshita
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Toshinari Takamura
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Sakae Miyagi
- Innovative Clinical Research Center, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan
| | - Tadashi Toyama
- Innovative Clinical Research Center, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui 910-1193, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, 246-2 Kakuganji-mizukami, Tsuruoka, Yamagata 997-0052, Japan
| | - Yusuke Masuo
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Yukio Kato
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroyuki Nakamura
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan
| | - Hiromasa Tsujiguchi
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan
| | - Akinori Hara
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan
| | - Atsushi Tajima
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Moeko Noguchi-Shinohara
- Department of Neurology, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Kenjiro Ono
- Department of Neurology, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Kenta Kurayoshi
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Masahiko Kobayashi
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Yuko Tadokoro
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Atsuko Kasahara
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Mahmoud I Shoulkamy
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Zoology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Katsuhiro Maeda
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Tomoki Ogoshi
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Atsushi Hirao
- Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
6
|
Maeshima Y, Kataoka TR, Vandenbon A, Hirata M, Takeuchi Y, Suzuki Y, Fukui Y, Kawashima M, Takada M, Ibi Y, Haga H, Morita S, Toi M, Kawaoka S, Kawaguchi K. Intra-patient spatial comparison of non-metastatic and metastatic lymph nodes reveals the reduction of CD169 + macrophages by metastatic breast cancers. EBioMedicine 2024; 107:105271. [PMID: 39173531 PMCID: PMC11382037 DOI: 10.1016/j.ebiom.2024.105271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/06/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Breast cancer cells suppress the host immune system to efficiently invade the lymph nodes; however, the underlying mechanism remains incompletely understood. Here, we aimed to comprehensively characterise the effects of breast cancers on immune cells in the lymph nodes. METHODS We collected non-metastatic and metastatic lymph node samples from 6 patients with breast cancer with lymph node metastasis. We performed bulk transcriptomics, spatial transcriptomics, and imaging mass cytometry to analyse the obtained lymph nodes. Furthermore, we conducted histological analyses against a larger patient cohort (474 slices from 58 patients). FINDINGS The comparison between paired lymph nodes with and without metastasis from the same patients demonstrated that the number of CD169+ lymph node sinus macrophages, an initiator of anti-cancer immunity, was reduced in metastatic lymph nodes (36.7 ± 21.1 vs 7.3 ± 7.0 cells/mm2, p = 0.0087), whereas the numbers of other major immune cell types were unaltered. We also detected that the infiltration of CD169+ macrophages into metastasised cancer tissues differed by section location within tumours, suggesting that CD169+ macrophages were gradually decreased after anti-cancer reactions. Furthermore, CD169+ macrophage elimination was prevalent in major breast cancer subtypes and correlated with breast cancer staging (p = 0.022). INTERPRETATION We concluded that lymph nodes with breast cancer metastases have fewer CD169+ macrophages, which may be detrimental to the activity of anti-cancer immunity. FUNDING JSPS KAKENHI (16H06279, 20H03451, 20H04842, 22H04925, 19K16770, and 21K15530, 24K02236), JSPS Fellows (JP22KJ1822), AMED (JP21ck0106698), JST FOREST (JPMJFR2062), Caravel, Co., Ltd, Japan Foundation for Applied Enzymology, and Sumitomo Pharma Co., Ltd. under SKIPS.
Collapse
Affiliation(s)
- Yurina Maeshima
- Department of Breast Surgery, Kyoto University Hospital, Graduate School of Medicine, Shogoin Sakyo-ku, Kyoto 606-8507, Japan; Inter-Organ Communication Research Team, Institute for Frontier Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Tatsuki R Kataoka
- Department of Pathology, Iwate Medical University, Yahaba-cho, Shiwa-gun, Iwate Prefecture 028-3694, Japan
| | - Alexis Vandenbon
- Laboratory of Tissue Homeostasis, Institute for Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan; Institute for Liberal Arts and Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Masahiro Hirata
- Department of Diagnostic Pathology, Kyoto University, Shogoin Sakyo-ku, Kyoto 606-8507, Japan
| | - Yasuhide Takeuchi
- Department of Diagnostic Pathology, Kyoto University, Shogoin Sakyo-ku, Kyoto 606-8507, Japan
| | - Yutaka Suzuki
- Graduate School of Frontier Science, The University of Tokyo, Chiba 277-8562, Japan
| | - Yukiko Fukui
- Department of Breast Surgery, Kyoto University Hospital, Graduate School of Medicine, Shogoin Sakyo-ku, Kyoto 606-8507, Japan
| | - Masahiro Kawashima
- Department of Breast Surgery, Kyoto University Hospital, Graduate School of Medicine, Shogoin Sakyo-ku, Kyoto 606-8507, Japan
| | - Masahiro Takada
- Department of Breast Surgery, Kyoto University Hospital, Graduate School of Medicine, Shogoin Sakyo-ku, Kyoto 606-8507, Japan
| | - Yumiko Ibi
- Department of Biomedical Statistics and Bioinformatics, Kyoto University Graduate School of Medicine, Shogoin Sakyo-ku, Kyoto 606-8507, Japan
| | - Hironori Haga
- Department of Diagnostic Pathology, Kyoto University, Shogoin Sakyo-ku, Kyoto 606-8507, Japan
| | - Satoshi Morita
- Department of Biomedical Statistics and Bioinformatics, Kyoto University Graduate School of Medicine, Shogoin Sakyo-ku, Kyoto 606-8507, Japan
| | - Masakazu Toi
- Department of Breast Surgery, Kyoto University Hospital, Graduate School of Medicine, Shogoin Sakyo-ku, Kyoto 606-8507, Japan; Tokyo Metropolitan Cancer and Infectious Disease Center, Komagome Hospital, Honkomagome, Bunkyo-ku, Tokyo 113-8677, Japan
| | - Shinpei Kawaoka
- Inter-Organ Communication Research Team, Institute for Frontier Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan; Department of Integrative Bioanalytics, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan.
| | - Kosuke Kawaguchi
- Department of Breast Surgery, Kyoto University Hospital, Graduate School of Medicine, Shogoin Sakyo-ku, Kyoto 606-8507, Japan; Department of Breast Surgery, Breast Center, Mie University, Mie 514-0102, Japan.
| |
Collapse
|
7
|
Fan Y, Li S, Yang X, Bai S, Tang M, Zhang X, Lu C, Ji C, Du G, Qin Y. Multi-omics approach characterizes the role of Bisphenol F in disrupting hepatic lipid metabolism. ENVIRONMENT INTERNATIONAL 2024; 187:108690. [PMID: 38685157 DOI: 10.1016/j.envint.2024.108690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/20/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Bisphenol F (BPF), a substitute for bisphenol A (BPA), is ubiquitous existed in various environmental media. Exposure to BPF may promote non-alcoholic fatty liver disease (NAFLD), while the potential mechanism is still unknown. In current study, we used in vitro and in vivo model to evaluate its hepatotoxicity and molecular mechanism. Using multi-omics approach, we found that BPF exposure led to changes in hepatic transcriptome, metabolome and chromatin accessible regions that were enriched for binding sites of transcription factors in bZIP family. These alterations were enriched with pathways integral to the endoplasmic reticulum stress and NAFLD. These findings suggested that BPF exposure might reprogram the chromatin accessibility and enhancer landscape in the liver, with downstream effects on genes associated with endoplasmic reticulum stress and lipid metabolism, which relied on bZIP family transcription factors. Overall, our study describes comprehensive molecular alterations in hepatocytes after BPF exposure and provides new insights into the understanding of the hepatoxicity of BPF.
Collapse
Affiliation(s)
- Yun Fan
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Microbiology and Infection, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shiqi Li
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiancheng Yang
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shengjun Bai
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Min Tang
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xueer Zhang
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chuncheng Lu
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chenbo Ji
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing Medical University, Nanjing, China
| | - Guizhen Du
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Yufeng Qin
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Microbiology and Infection, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
8
|
Nakamura Y, Saldajeno DP, Kawaguchi K, Kawaoka S. Progressive, multi-organ, and multi-layered nature of cancer cachexia. Cancer Sci 2024; 115:715-722. [PMID: 38254286 PMCID: PMC10921013 DOI: 10.1111/cas.16078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Cancer cachexia is a complex, multifaceted condition that negatively impacts the health, treatment efficacy, and economic status of cancer patients. The management of cancer cachexia is an essential clinical need. Cancer cachexia is currently defined mainly according to the severity of weight loss and sarcopenia (i.e., macrosymptoms). However, such macrosymptoms may be insufficient to give clinicians clues on how to manage this condition as these symptoms appear at the late stage of cancer. We need to understand earlier events during the progression of cancer cachexia so as not to miss a clinical opportunity to control this complex syndrome. Recent research indicates that cancer-induced changes in the host are much wider than previously recognized, including disruption of liver function and the immune system. Furthermore, such changes are observed before the occurrence of visible distant metastases (i.e., in early, localized cancers). In light of these findings, we propose to expand the definition of cancer cachexia to include all cancer-induced changes to host physiology, including changes caused by early, localized cancers. This new definition of cancer cachexia can provide a new perspective on this topic, which can stimulate the research and development of novel cancer cachexia therapies.
Collapse
Affiliation(s)
- Yuki Nakamura
- Inter‐Organ Communication Research TeamInstitute for Life and Medical SciencesKyotoJapan
- Department of Breast SurgeryKyoto University Graduate School of MedicineKyotoJapan
| | - Don Pietro Saldajeno
- Inter‐Organ Communication Research TeamInstitute for Life and Medical SciencesKyotoJapan
- Mathematical Informatics Laboratory, Division of Information ScienceNara Institute of Science and TechnologyIkomaNaraJapan
| | - Kosuke Kawaguchi
- Department of Breast SurgeryKyoto University Graduate School of MedicineKyotoJapan
| | - Shinpei Kawaoka
- Inter‐Organ Communication Research TeamInstitute for Life and Medical SciencesKyotoJapan
- Department of Integrative Bioanalytics, Institute of Development, Aging and Cancer (IDAC)Tohoku UniversitySendaiJapan
| |
Collapse
|
9
|
Kojima Y, Mishiro-Sato E, Fujishita T, Satoh K, Kajino-Sakamoto R, Oze I, Nozawa K, Narita Y, Ogata T, Matsuo K, Muro K, Taketo MM, Soga T, Aoki M. Decreased liver B vitamin-related enzymes as a metabolic hallmark of cancer cachexia. Nat Commun 2023; 14:6246. [PMID: 37803016 PMCID: PMC10558488 DOI: 10.1038/s41467-023-41952-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/20/2023] [Indexed: 10/08/2023] Open
Abstract
Cancer cachexia is a complex metabolic disorder accounting for ~20% of cancer-related deaths, yet its metabolic landscape remains unexplored. Here, we report a decrease in B vitamin-related liver enzymes as a hallmark of systemic metabolic changes occurring in cancer cachexia. Metabolomics of multiple mouse models highlights cachexia-associated reductions of niacin, vitamin B6, and a glycine-related subset of one-carbon (C1) metabolites in the liver. Integration of proteomics and metabolomics reveals that liver enzymes related to niacin, vitamin B6, and glycine-related C1 enzymes dependent on B vitamins decrease linearly with their associated metabolites, likely reflecting stoichiometric cofactor-enzyme interactions. The decrease of B vitamin-related enzymes is also found to depend on protein abundance and cofactor subtype. These metabolic/proteomic changes and decreased protein malonylation, another cachexia feature identified by protein post-translational modification analysis, are reflected in blood samples from mouse models and gastric cancer patients with cachexia, underscoring the clinical relevance of our findings.
Collapse
Affiliation(s)
- Yasushi Kojima
- Division of Pathophysiology, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan.
| | - Emi Mishiro-Sato
- Division of Pathophysiology, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| | - Teruaki Fujishita
- Division of Pathophysiology, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| | - Kiyotoshi Satoh
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
| | - Rie Kajino-Sakamoto
- Division of Pathophysiology, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| | - Isao Oze
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| | - Kazuki Nozawa
- Department of Clinical Oncology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| | - Yukiya Narita
- Department of Clinical Oncology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| | - Takatsugu Ogata
- Department of Clinical Oncology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| | - Kei Muro
- Department of Clinical Oncology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| | - Makoto Mark Taketo
- Colon Cancer Project, Kyoto University Hospital-iACT, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
| | - Masahiro Aoki
- Division of Pathophysiology, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan.
- Department of Cancer Physiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.
| |
Collapse
|
10
|
Deng F, Qin G, Chen Y, Zhang X, Zhu M, Hou M, Yao Q, Gu W, Wang C, Yang H, Jia X, Wu C, Peng H, Du H, Tang S. Multi-omics reveals 2-bromo-4,6-dinitroaniline (BDNA)-induced hepatotoxicity and the role of the gut-liver axis in rats. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131760. [PMID: 37285786 DOI: 10.1016/j.jhazmat.2023.131760] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/09/2023]
Abstract
2-Bromo-4, 6-dinitroaniline (BDNA) is a widespread azo-dye-related hazardous pollutant. However, its reported adverse effects are limited to mutagenicity, genotoxicity, endocrine disruption, and reproductive toxicity. We systematically assessed the hepatotoxicity of BDNA exposure via pathological and biochemical examinations and explored the underlying mechanisms via integrative multi-omics analyses of the transcriptome, metabolome, and microbiome in rats. After 28 days of oral administration, compared with the control group, 100 mg/kg BDNA significantly triggered hepatotoxicity, upregulated toxicity indicators (e.g., HSI, ALT, and ARG1), and induced systemic inflammation (e.g., G-CSF, MIP-2, RANTES, and VEGF), dyslipidemia (e.g., TC and TG), and bile acid (BA) synthesis (e.g., CA, GCA, and GDCA). Transcriptomic and metabolomic analyses revealed broad perturbations in gene transcripts and metabolites involved in the representative pathways of liver inflammation (e.g., Hmox1, Spi1, L-methionine, valproic acid, and choline), steatosis (e.g., Nr0b2, Cyp1a1, Cyp1a2, Dusp1, Plin3, arachidonic acid, linoleic acid, and palmitic acid), and cholestasis (e.g., FXR/Nr1h4, Cdkn1a, Cyp7a1, and bilirubin). Microbiome analysis revealed reduced relative abundances of beneficial gut microbial taxa (e.g., Ruminococcaceae and Akkermansia muciniphila), which further contributed to the inflammatory response, lipid accumulation, and BA synthesis in the enterohepatic circulation. The observed effect concentrations here were comparable to the highly contaminated wastewaters, showcasing BDNA's hepatotoxic effects at environmentally relevant concentrations. These results shed light on the biomolecular mechanism and important role of the gut-liver axis underpinning BDNA-induced cholestatic liver disorders in vivo.
Collapse
Affiliation(s)
- Fuchang Deng
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Guangqiu Qin
- Department of Preventive Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yuanyuan Chen
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xu Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Mu Zhu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Min Hou
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Qiao Yao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Wen Gu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Chao Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Hui Yang
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Xudong Jia
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Chongming Wu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S3H6, Canada
| | - Huamao Du
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| |
Collapse
|
11
|
DeBalsi KL, Newman JH, Sommerville LJ, Phillips JA, Hamid R, Cogan J, Fessel JP, Evans AM, Network UD, Kennedy AD. A Case Study of Dysfunctional Nicotinamide Metabolism in a 20-Year-Old Male. Metabolites 2023; 13:399. [PMID: 36984839 PMCID: PMC10055858 DOI: 10.3390/metabo13030399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 03/04/2023] [Indexed: 03/10/2023] Open
Abstract
We present a case study of a 20-year-old male with an unknown neurodegenerative disease who was referred to the Undiagnosed Diseases Network Vanderbilt Medical Center site. A previous metabolic panel showed that the patient had a critical deficiency in nicotinamide intermediates that are generated during the biosynthesis of NAD(H). We followed up on these findings by evaluating the patient's ability to metabolize nicotinamide. We performed a global metabolic profiling analysis of plasma samples that were collected: (1) under normal fed conditions (baseline), (2) after the patient had fasted, and (3) after he was challenged with a 500 mg nasogastric tube bolus of nicotinamide following the fast. Our findings showed that the patient's nicotinamide N-methyltransferase (NNMT), a key enzyme in NAD(H) biosynthesis and methionine metabolism, was not functional under normal fed or fasting conditions but was restored in response to the nicotinamide challenge. Altered levels of metabolites situated downstream of NNMT and in neighboring biochemical pathways provided further evidence of a baseline defect in NNMT activity. To date, this is the only report of a critical defect in NNMT activity manifesting in adulthood and leading to neurodegenerative disease. Altogether, this study serves as an important reference in the rare disease literature and also demonstrates the utility of metabolomics as a diagnostic tool for uncharacterized metabolic diseases.
Collapse
Affiliation(s)
| | - John H. Newman
- Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | | | | | - Rizwan Hamid
- Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Joy Cogan
- Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Joshua P. Fessel
- National Institutes of Health, National Center for Advancing Translational Sciences, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
12
|
Vandenbon A, Mizuno R, Konishi R, Onishi M, Masuda K, Kobayashi Y, Kawamoto H, Suzuki A, He C, Nakamura Y, Kawaguchi K, Toi M, Shimizu M, Tanaka Y, Suzuki Y, Kawaoka S. Murine breast cancers disorganize the liver transcriptome in a zonated manner. Commun Biol 2023; 6:97. [PMID: 36694005 PMCID: PMC9873924 DOI: 10.1038/s42003-023-04479-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/12/2023] [Indexed: 01/25/2023] Open
Abstract
The spatially organized gene expression program within the liver specifies hepatocyte functions according to their relative distances to the bloodstream (i.e., zonation), contributing to liver homeostasis. Despite the knowledge that solid cancers remotely disrupt liver homeostasis, it remains unexplored whether solid cancers affect liver zonation. Here, using spatial transcriptomics, we thoroughly investigate the abundance and zonation of hepatic genes in cancer-bearing mice. We find that breast cancers affect liver zonation in various distinct manners depending on biological pathways. Aspartate metabolism and triglyceride catabolic processes retain relatively intact zonation patterns, but the zonation of xenobiotic catabolic process genes exhibits a strong disruption. The acute phase response is induced in zonated manners. Furthermore, we demonstrate that breast cancers activate innate immune cells in particular neutrophils in distinct zonated manners, rather than in a uniform fashion within the liver. Collectively, breast cancers disorganize hepatic transcriptomes in zonated manners, thereby disrupting zonated functions of the liver.
Collapse
Affiliation(s)
- Alexis Vandenbon
- Laboratory of Tissue Homeostasis, Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan.
- Institute for Liberal Arts and Sciences, Kyoto University, Kyoto, 606-8507, Japan.
| | - Rin Mizuno
- Inter-Organ Communication Research Team, Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Riyo Konishi
- Inter-Organ Communication Research Team, Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Masaya Onishi
- Graduate School of Frontier Science, The University of Tokyo, Chiba, 277-8562, Japan
| | - Kyoko Masuda
- Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Yuka Kobayashi
- Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Hiroshi Kawamoto
- Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Ayako Suzuki
- Graduate School of Frontier Science, The University of Tokyo, Chiba, 277-8562, Japan
| | - Chenfeng He
- Inter-Organ Communication Research Team, Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
- Department of Breast Surgery, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Yuki Nakamura
- Inter-Organ Communication Research Team, Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
- Department of Breast Surgery, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Kosuke Kawaguchi
- Department of Breast Surgery, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Masakazu Toi
- Department of Breast Surgery, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Masahito Shimizu
- Department of Gastroenterology/Internal Medicine, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Yasuhito Tanaka
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Yutaka Suzuki
- Graduate School of Frontier Science, The University of Tokyo, Chiba, 277-8562, Japan.
| | - Shinpei Kawaoka
- Inter-Organ Communication Research Team, Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan.
- Department of Integrative Bioanalytics, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, 980-8575, Japan.
| |
Collapse
|
13
|
He C, Konishi R, Harata A, Nakamura Y, Mizuno R, Yoda M, Toi M, Kawaguchi K, Kawaoka S. Serum amyloid alpha 1-2 are not required for liver inflammation in the 4T1 murine breast cancer model. Front Immunol 2023; 14:1097788. [PMID: 36817472 PMCID: PMC9935569 DOI: 10.3389/fimmu.2023.1097788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Cancers induce the production of acute phase proteins such as serum amyloid alpha (SAA) in the liver and cause inflammation in various host organs. Despite the well-known coincidence of acute phase response and inflammation, the direct roles of SAA proteins in inflammation in the cancer context remains incompletely characterized, particularly in vivo. Here, we investigate the in vivo significance of SAA proteins in liver inflammation in the 4T1 murine breast cancer model. 4T1 cancers elevate the expression of SAA1 and SAA2, the two major murine acute phase proteins in the liver. The elevation of Saa1-2 correlates with the up-regulation of immune cell-related genes including neutrophil markers. To examine this correlation in detail, we generate mice that lack Saa1-2 and investigate immune-cell phenotypes. RNA-seq experiments reveal that deletion of Saa1-2 does not strongly affect 4T1-induced activation of immune cell-related genes in the liver. Flow cytometry experiments demonstrate the dispensable roles of SAA1-2 in cancer-dependent neutrophil infiltration to the liver. Consistently, 4T1-induced gene expression changes in bone marrow do not require Saa1-2. This study clarifies the negligible contribution of SAA1-2 proteins in liver inflammation in the 4T1 breast cancer model.
Collapse
Affiliation(s)
- Chenfeng He
- Inter-Organ Communication Research Team, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Department of Breast Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Riyo Konishi
- Inter-Organ Communication Research Team, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Ayano Harata
- Inter-Organ Communication Research Team, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Department of Integrative Bioanalytics, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Yuki Nakamura
- Inter-Organ Communication Research Team, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Department of Breast Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Rin Mizuno
- Inter-Organ Communication Research Team, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Mayuko Yoda
- Department of Integrative Bioanalytics, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Masakazu Toi
- Department of Breast Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kosuke Kawaguchi
- Department of Breast Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shinpei Kawaoka
- Inter-Organ Communication Research Team, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Department of Integrative Bioanalytics, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| |
Collapse
|
14
|
Henneberg AL, Opitz CA. Making liver cancer cells go ARGh! EMBO J 2022; 41:e112415. [PMID: 36222348 PMCID: PMC9627661 DOI: 10.15252/embj.2022112415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022] Open
Abstract
A recent study by Missiaen et al (2022) uncovers hepatocellular carcinoma (HCC) cells to downregulate urea cycle enzymes and rely on the uptake of exogenous arginine and GCN2 kinase-dependent cell-cycle arrest for survival. These results offer new avenues for combinatorial targeting of liver cancer.
Collapse
Affiliation(s)
- Alessa L Henneberg
- Metabolic Crosstalk in CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Faculty of BioscienceHeidelberg UniversityHeidelbergGermany
| | - Christiane A Opitz
- Metabolic Crosstalk in CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Neurology Clinic and National Center for Tumor DiseasesHeidelberg University HospitalHeidelbergGermany
| |
Collapse
|
15
|
Cao L, Wu W, Deng X, Peng Y, Chen Y, Guo H, Wang L, Li X, Zhang Z, Shao Z. Systematic pan-cancer analysis of the nicotinamide n-methyltransferase in human cancer. Front Genet 2022; 13:1000515. [DOI: 10.3389/fgene.2022.1000515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
In several tumors, Nicotinamide N-Methyltransferase (NNMT) was identified as a bridge between methylation metabolism and tumorigenesis and was associated with a poor prognosis. This research aims is to study the prognostic value of NNMT in cancer, its relationship with DNA methylation, and the immune microenvironment. On the basis of the Cancer Genome Atlas and the Cancer Cell Line Encyclopedia, Genotype Tissue-Expression, cBioPortal, Cellminer, Gene Expression Profiling Interactive Analysis, Human Protein Atlas and Clinical Proteomic Tumor Analysis Consortium, we used a series of bioinformatics strategies to investigate the potential carcinogenicity of NNMT, including the relationship between NNMT expression and prognosis, tumor mutational burden, microsatellite instability, and sensitivity analysis of anticancer drugs. The GeneMANIA, STRING, and BioGRID databases were examined for protein-protein interactions, and Gene Ontology and the Kyoto Encyclopedia of Genes were used to infer the signal pathway. The results indicated that NNMT was significantly expressed in several tumor tissues compared to the matching non-tumor tissues. Increased NNMT expression was linked to reduced OS, DSS, and DFI. In addition, there was a link between NNMT expression and TMB and MSI in 18 cancer types, and between NNMT expression and DNA methylation in 23 cancer types. Further study of NNMT gene alteration data revealed that deletion was the most prevalent form of NNMT mutation, and that there was a significant negative association between NNMT expression and mismatch repair genes. In addition, there was a strong positive connection between NNMT and immune infiltration in 28 types of tumors, and the immune cells that infiltrated the tumors displayed a characteristic NNMT pattern. According to the enrichment study, cell migration, cell motility, and cell adhesion were highly enriched in biological processes, and NNMT may be associated with the PI3K-Akt signaling pathway. By downregulating gene methylation or impacting the immunological microenvironment widely, NNMT may drive carcinogenesis and cause a poor prognosis. Our research showed that NNMT could be used as a biomarker of tumor immune infiltration and poor prognosis, thus providing a unique strategy for cancer therapy.
Collapse
|