1
|
Yang K, Cai L, Zhao Y, Cheng H, Zhou R. Optimization of genome editing by CRISPR ribonucleoprotein for high efficiency of germline transmission of Sox9 in zebrafish. N Biotechnol 2025; 86:47-54. [PMID: 39848539 DOI: 10.1016/j.nbt.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
Primordial germ cells (PGCs) are the first germline stem cells to emerge during early embryonic development and are essential for the propagation and survival of species. Genome editing creates mutagenesis possibilities in vivo, but the generation of precise mutations in PGCs is still challenging. Here, we report an optimized approach for highly efficient genome editing via introducing biallelic variations in early embryos in zebrafish. We adopted an extended, GC-rich, and chemically modified sgRNA along with microinjection of the CRISPR ribonucleoprotein (RNP) complex into the yolk sac at the 1-cell stage. We found that genome editing of Sox9a generated a high proportion of heterozygotes with edited alleles in the F1 generation, indicating biallelic editing. Deep sequencing and mapping the edited cells from early embryos to future tissues revealed that the edited founder has a dominantly edited allele, sox9a M1, accounting for over 99 % of alleles in the testis. Specifically, all offspring of the founder inherited the edited allele, suggesting nearly complete editing of the alleles in early germline cells. Overall, the optimization delineates biallelic editing of sox9a in early embryos and transmission of edited alleles to offspring, thus presenting a method to create a desired genetic mutation line of Sox9a avoiding lengthy traditional crossbreeding.
Collapse
Affiliation(s)
- Kangning Yang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Le Cai
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Yu Zhao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Hanhua Cheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China.
| | - Rongjia Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
2
|
Zheng S, Liu Y, Xia X, Xiao J, Ma H, Yuan X, Zhang Y, Chen Z, Peng G, Li W, Fei J, Liu Y. Sequence Context-Agnostic TadA-Derived Cytosine Base Editors for Genome-Wide Editing in Zebrafish. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411478. [PMID: 39960330 PMCID: PMC11984895 DOI: 10.1002/advs.202411478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/07/2025] [Indexed: 04/12/2025]
Abstract
Single-nucleotide variants (SNVs) represent a significant form of genetic variation linked to various diseases. CRISPR-mediated base editing has emerged as a powerful method for modeling diseases caused by SNVs, particularly in zebrafish, which serve as an excellent platform for investigating disease mechanisms and conducting drug screenings. However, existing cytosine base editors (CBEs) for zebrafish often have broad editing windows and strong sequence preferences, limiting their effectiveness. In this study, zebrafish (z) TadA-derived cytosine base editors, termed zTadA-CBEs, are developed by introducing key mutations into the TadA8e enzyme. These novel editors demonstrate improved efficiency and precision in cytosine base editing. Specifically, zTadA-BE4max and zTadA-BEmv offer complementary editing windows, while zTadA-SpRY-BE4max allows for PAM-flexible editing. Using zTadA-CBEs, a precise disease model for Axenfeld-Rieger syndrome is established, and created two new models for Hermansky-Pudlak syndrome. Additionally, a novel albinism model carrying two pathogenic SNVs in the F0 generation is developed. By employing specifically designed sgRNA, the fmsts± missense mutation is corrected back to the wild-type nucleotide (C > T), successfully restoring macrophage levels to normal. These findings underscore the potential of zTadA-CBEs to enhance genome editing techniques and their applications in developing therapies for SNV-related disorders.
Collapse
Affiliation(s)
- Shaohui Zheng
- Key Laboratory of BrainCognition and Education SciencesMinistry of EducationSouth China Normal UniversityGuangzhou510631China
- Institute for Brain Research and Rehabilitationand Guangdong Key Laboratory of Mental Health and Cognitive ScienceSouth China Normal UniversityGuangzhou510631China
| | - Yang Liu
- Key Laboratory of BrainCognition and Education SciencesMinistry of EducationSouth China Normal UniversityGuangzhou510631China
- Institute for Brain Research and Rehabilitationand Guangdong Key Laboratory of Mental Health and Cognitive ScienceSouth China Normal UniversityGuangzhou510631China
| | - Xinxin Xia
- Key Laboratory of BrainCognition and Education SciencesMinistry of EducationSouth China Normal UniversityGuangzhou510631China
- Institute for Brain Research and Rehabilitationand Guangdong Key Laboratory of Mental Health and Cognitive ScienceSouth China Normal UniversityGuangzhou510631China
| | - Jiawang Xiao
- Key Laboratory of BrainCognition and Education SciencesMinistry of EducationSouth China Normal UniversityGuangzhou510631China
- Institute for Brain Research and Rehabilitationand Guangdong Key Laboratory of Mental Health and Cognitive ScienceSouth China Normal UniversityGuangzhou510631China
| | - Hui Ma
- Department of PathologyGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouGuangdong510080China
| | - Xuanyao Yuan
- Key Laboratory of BrainCognition and Education SciencesMinistry of EducationSouth China Normal UniversityGuangzhou510631China
- Institute for Brain Research and Rehabilitationand Guangdong Key Laboratory of Mental Health and Cognitive ScienceSouth China Normal UniversityGuangzhou510631China
| | - Yan Zhang
- Key Laboratory of BrainCognition and Education SciencesMinistry of EducationSouth China Normal UniversityGuangzhou510631China
- Institute for Brain Research and Rehabilitationand Guangdong Key Laboratory of Mental Health and Cognitive ScienceSouth China Normal UniversityGuangzhou510631China
| | - Zixi Chen
- Key Laboratory of BrainCognition and Education SciencesMinistry of EducationSouth China Normal UniversityGuangzhou510631China
- Institute for Brain Research and Rehabilitationand Guangdong Key Laboratory of Mental Health and Cognitive ScienceSouth China Normal UniversityGuangzhou510631China
| | - Guangcong Peng
- Key Laboratory of BrainCognition and Education SciencesMinistry of EducationSouth China Normal UniversityGuangzhou510631China
- Institute for Brain Research and Rehabilitationand Guangdong Key Laboratory of Mental Health and Cognitive ScienceSouth China Normal UniversityGuangzhou510631China
| | - Wenyuan Li
- China Zebrafish Resource Center (CZRC)Institute of HydrobiologyChinese Academy of SciencesWuhan430072China
| | - Ji‐Feng Fei
- Department of PathologyGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouGuangdong510080China
- The Innovation Centre of Ministry of Education for Development and DiseasesSchool of MedicineSouth China University of TechnologyGuangzhou510006China
- School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Yanmei Liu
- Key Laboratory of BrainCognition and Education SciencesMinistry of EducationSouth China Normal UniversityGuangzhou510631China
- Institute for Brain Research and Rehabilitationand Guangdong Key Laboratory of Mental Health and Cognitive ScienceSouth China Normal UniversityGuangzhou510631China
| |
Collapse
|
3
|
Zi H, Peng X, Du J, Li J. Protocol for generating a pericyte reporter zebrafish line Ki(pdgfrb-P2A-GAL4-VP16) using a CRISPR-Cas9-mediated knockin technique. STAR Protoc 2025; 6:103490. [PMID: 39673702 PMCID: PMC11699729 DOI: 10.1016/j.xpro.2024.103490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/29/2024] [Accepted: 11/08/2024] [Indexed: 12/16/2024] Open
Abstract
Pericytes, the mural cells that envelop small blood vessels, play crucial roles in the formation of the blood-brain barrier (BBB). Here, we present a protocol for generating a pericyte reporter zebrafish line Ki(pdgfrb-P2A-GAL4-VP16) using a CRISPR-Cas9-mediated knockin technique. We describe steps for identifying efficient single guide RNA (sgRNA), constructing donor plasmid, and generating and maintaining the knockin line. We then detail procedures for in vivo imaging of brain pericytes. This protocol is adaptable for creating other knockin lines for specific cell labeling. For complete details on the use and execution of this protocol, please refer to Zi et al.1.
Collapse
Affiliation(s)
- Huaxing Zi
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China; University of Chinese Academy of Sciences, 19A Yu-Quan Road, Beijing 100049, China; Dongguan Innovation Institute, Guangdong Medical University, 1 Xin-Cheng Road, Dongguan, Guangdong 523808, China
| | - Xiaolan Peng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Jiulin Du
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China; University of Chinese Academy of Sciences, 19A Yu-Quan Road, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, 319 Yue-Yang Road, Shanghai 200031, China.
| | - Jia Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China.
| |
Collapse
|
4
|
Moreno-Sánchez I, Hernández-Huertas L, Nahón-Cano D, Martínez-García PM, Treichel AJ, Gómez-Marin C, Tomás-Gallardo L, da Silva Pescador G, Kushawah G, Egidy R, Perera A, Díaz-Moscoso A, Cano-Ruiz A, Walker JA, Muñoz MJ, Holden K, Galcerán J, Nieto MÁ, Bazzini AA, Moreno-Mateos MA. Enhanced RNA-targeting CRISPR-Cas technology in zebrafish. Nat Commun 2025; 16:2591. [PMID: 40091120 PMCID: PMC11911407 DOI: 10.1038/s41467-025-57792-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 02/28/2025] [Indexed: 03/19/2025] Open
Abstract
CRISPR-Cas13 RNA-targeting systems are widely used in basic and applied sciences. However, its application has recently generated controversy due to collateral activity in mammalian cells and mouse models. Moreover, its competence could be improved in vivo. Here, we optimized transient formulations as ribonucleoprotein complexes or mRNA-gRNA combinations to enhance the CRISPR-RfxCas13d system in zebrafish. We i) use chemically modified gRNAs to allow more penetrant loss-of-function phenotypes, ii) improve nuclear RNA targeting, and iii) compare different computational models and determine the most accurate to predict gRNA activity in vivo. Furthermore, we demonstrate that transient CRISPR-RfxCas13d can effectively deplete endogenous mRNAs in zebrafish embryos without inducing collateral effects, except when targeting extremely abundant and ectopic RNAs. Finally, we implement alternative RNA-targeting CRISPR-Cas systems such as CRISPR-Cas7-11 and CRISPR-DjCas13d. Altogether, these findings contribute to CRISPR-Cas technology optimization for RNA targeting in zebrafish through transient approaches and assist in the progression of in vivo applications.
Collapse
Grants
- F31 HD110268 NICHD NIH HHS
- R01 GM136849 NIGMS NIH HHS
- R21 OD034161 NIH HHS
- This work was supported by Ramon y Cajal (RyC-2017-23041), PID2021-127535NB-I00, CNS2022-135564 and CEX2020-001088-M grants funded by MICIU/AEI/ 10.13039/501100011033 by “ERDF A way of making Europe” (“ERDF/EU”), and by ESF Investing in your future from Ministerio de Ciencia, Innovación y Universidades and European Union (M.A.M.-M.). This work has also been co-financed by the Spanish Ministry of Science and Innovation with funds from the European Union NextGenerationEU (PRTR-C17.I1) and the Regional Ministry of University, Research and Innovation of the Autonomous Community of Andalusia within the framework of the Biotechnology Plan applied to Health. The Moreno-Mateos lab was also funded by European Regional Development Fund (FEDER 80% of the total funding) by the Ministry of Economy, Knowledge, Business and University, of the Government of Andalusia, within the framework of the FEDER Andalusia 2014-2020 operational program within the objective "Promotion and generation of frontier knowledge and knowledge oriented to the challenges of society, development of emerging technologies (grant UPO-1380590)” and by the Fondo Europeo de Desarrollo Regional (FEDER) and Consejería de Transformación Económica, Industria, Conocimiento y Universidades de la Junta de Andalucía, within the operative program FEDER Andalucía 2014-2020 (01 - Refuerzo de la investigación, el desarrollo tecnológico y la innovación, grant P20_00866). M.A.M.-M. was the recipient of the Genome Engineer Innovation 2019 Grant from Synthego. The CABD is an institution funded by University Pablo de Olavide, Consejo Superior de Investigaciones Científicas (CSIC), and Junta de Andalucía.
Collapse
Affiliation(s)
- Ismael Moreno-Sánchez
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Seville, Spain
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Seville, Spain
- Instituto de Neurociencias (CSIC-UMH), Alicante, Spain
| | - Luis Hernández-Huertas
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Seville, Spain
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Seville, Spain
| | - Daniel Nahón-Cano
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Seville, Spain
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Seville, Spain
| | - Pedro Manuel Martínez-García
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Seville, Spain
| | | | - Carlos Gómez-Marin
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Seville, Spain
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Seville, Spain
| | - Laura Tomás-Gallardo
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Seville, Spain
- Proteomics and Biochemistry Platform, Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Seville, Spain
| | | | - Gopal Kushawah
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Rhonda Egidy
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Anoja Perera
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Alejandro Díaz-Moscoso
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Seville, Spain
- Proteomics and Biochemistry Platform, Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Seville, Spain
- Instituto de Investigaciones Químicas (IIQ-CICIC), CSIC-US, Seville, Spain
| | - Alejandra Cano-Ruiz
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Seville, Spain
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Seville, Spain
| | | | - Manuel J Muñoz
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Seville, Spain
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Seville, Spain
| | | | - Joan Galcerán
- Instituto de Neurociencias (CSIC-UMH), Alicante, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - M Ángela Nieto
- Instituto de Neurociencias (CSIC-UMH), Alicante, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Ariel A Bazzini
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Miguel A Moreno-Mateos
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Seville, Spain.
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Seville, Spain.
| |
Collapse
|
5
|
Ocampo RF, Bravo JPK, Dangerfield TL, Nocedal I, Jirde SA, Alexander LM, Thomas NC, Das A, Nielson S, Johnson KA, Brown CT, Butterfield CN, Goltsman DSA, Taylor DW. DNA targeting by compact Cas9d and its resurrected ancestor. Nat Commun 2025; 16:457. [PMID: 39774105 PMCID: PMC11706934 DOI: 10.1038/s41467-024-55573-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Type II CRISPR endonucleases are widely used programmable genome editing tools. Recently, CRISPR-Cas systems with highly compact nucleases have been discovered, including Cas9d (a type II-D nuclease). Here, we report the cryo-EM structures of a Cas9d nuclease (747 amino acids in length) in multiple functional states, revealing a stepwise process of DNA targeting involving a conformational switch in a REC2 domain insertion. Our structures provide insights into the intricately folded guide RNA which acts as a structural scaffold to anchor small, flexible protein domains for DNA recognition. The sgRNA can be truncated by up to ~25% yet still retain activity in vivo. Using ancestral sequence reconstruction, we generated compact nucleases capable of efficient genome editing in mammalian cells. Collectively, our results provide mechanistic insights into the evolution and DNA targeting of diverse type II CRISPR-Cas systems, providing a blueprint for future re-engineering of minimal RNA-guided DNA endonucleases.
Collapse
Affiliation(s)
- Rodrigo Fregoso Ocampo
- Interdisciplinary Life Sciences Graduate Programs, University of Texas at Austin, Austin, TX, 78712, USA
| | - Jack P K Bravo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
- Institute for Science and Technology Austria (ISTA), Klosterneuberg, Austria
| | - Tyler L Dangerfield
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - Isabel Nocedal
- Metagenomi, Inc., 5959 Horton St, Floor 7, Emeryville, CA, 94608, USA
| | - Samatar A Jirde
- Metagenomi, Inc., 5959 Horton St, Floor 7, Emeryville, CA, 94608, USA
| | - Lisa M Alexander
- Metagenomi, Inc., 5959 Horton St, Floor 7, Emeryville, CA, 94608, USA
| | - Nicole C Thomas
- Metagenomi, Inc., 5959 Horton St, Floor 7, Emeryville, CA, 94608, USA
| | - Anjali Das
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - Sarah Nielson
- Interdisciplinary Life Sciences Graduate Programs, University of Texas at Austin, Austin, TX, 78712, USA
| | - Kenneth A Johnson
- Interdisciplinary Life Sciences Graduate Programs, University of Texas at Austin, Austin, TX, 78712, USA
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
| | | | | | | | - David W Taylor
- Interdisciplinary Life Sciences Graduate Programs, University of Texas at Austin, Austin, TX, 78712, USA.
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA.
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, 78712, USA.
- LIVESTRONG Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
6
|
Zhong Z, Hu X, Zhang R, Liu X, Chen W, Zhang S, Sun J, Zhong TP. Improving precision base editing of the zebrafish genome by Rad51DBD-incorporated single-base editors. J Genet Genomics 2025; 52:105-115. [PMID: 39428086 DOI: 10.1016/j.jgg.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024]
Abstract
Single-base editors, including cytosine base editors (CBEs) and adenine base editors (ABEs), facilitate accurate C⋅G to T⋅A and A⋅T to G⋅C, respectively, holding promise for the precise modeling and treatment of human hereditary disorders. Efficient base editing and expanded base conversion range have been achieved in human cells through base editors fusing with Rad51 DNA binding domain (Rad51DBD), such as hyA3A-BE4max. Here, we show that hyA3A-BE4max catalyzes C-to-T substitution in the zebrafish genome and extends editing positions (C12-C16) proximal to the protospacer adjacent motif. We develop a codon-optimized counterpart zhyA3A-CBE5, which exhibits substantially high C-to-T conversion with 1.59- to 3.50-fold improvement compared with the original hyA3A-BE4max. With these tools, disease-relevant hereditary mutations can be more efficaciously generated in zebrafish. We introduce human genetic mutation rpl11Q42∗ and abcc6aR1463C by zhyA3A-CBE5 in zebrafish, mirroring Diamond-Blackfan anemia and Pseudoxanthoma Elasticum, respectively. Our study expands the base editing platform targeting the zebrafish genomic landscape and the application of single-base editors for disease modeling and gene function study.
Collapse
Affiliation(s)
- Zhilin Zhong
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xueli Hu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Renjie Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xu Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Wenqi Chen
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Shubin Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jianjian Sun
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, Guangdong 510100, China.
| | - Tao P Zhong
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
7
|
Azeez SS, Hamad RS, Hamad BK, Shekha MS, Bergsten P. Advances in CRISPR-Cas technology and its applications: revolutionising precision medicine. Front Genome Ed 2024; 6:1509924. [PMID: 39726634 PMCID: PMC11669675 DOI: 10.3389/fgeed.2024.1509924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024] Open
Abstract
CRISPR-Cas (Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR-associated proteins) has undergone marked advancements since its discovery as an adaptive immune system in bacteria and archaea, emerged as a potent gene-editing tool after the successful engineering of its synthetic guide RNA (sgRNA) toward the targeting of specific DNA sequences with high accuracy. Besides its DNA editing ability, further-developed Cas variants can also edit the epigenome, rendering the CRISPR-Cas system a versatile tool for genome and epigenome manipulation and a pioneering force in precision medicine. This review explores the latest advancements in CRISPR-Cas technology and its therapeutic and biomedical applications, highlighting its transformative impact on precision medicine. Moreover, the current status of CRISPR therapeutics in clinical trials is discussed. Finally, we address the persisting challenges and prospects of CRISPR-Cas technology.
Collapse
Affiliation(s)
- Sarkar Sardar Azeez
- Department of Medical Laboratory Technology, Soran Technical College, Erbil Polytechnic University, Erbil, Kurdistan Region, Iraq
| | - Rahin Shareef Hamad
- Nursing Department, Soran Technical College, Erbil Polytechnic University, Erbil, Kurdistan Region, Iraq
| | - Bahra Kakamin Hamad
- Department of Medical Laboratory Technology, Erbil Health and Medical Technical College, Erbil Polytechnic University, Erbil, Kurdistan Region, Iraq
| | - Mudhir Sabir Shekha
- Department of Biology, College of Science, Salahaddin University, Erbil, Kurdistan Region, Iraq
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Peter Bergsten
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
8
|
Zhang Y, Liu Y, Qin W, Zheng S, Xiao J, Xia X, Yuan X, Zeng J, Shi Y, Zhang Y, Ma H, Varshney GK, Fei JF, Liu Y. Cytosine base editors with increased PAM and deaminase motif flexibility for gene editing in zebrafish. Nat Commun 2024; 15:9526. [PMID: 39496611 PMCID: PMC11535530 DOI: 10.1038/s41467-024-53735-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 10/21/2024] [Indexed: 11/06/2024] Open
Abstract
Cytosine base editing is a powerful tool for making precise single nucleotide changes in cells and model organisms like zebrafish, which are valuable for studying human diseases. However, current base editors struggle to edit cytosines in certain DNA contexts, particularly those with GC and CC pairs, limiting their use in modelling disease-related mutations. Here we show the development of zevoCDA1, an optimized cytosine base editor for zebrafish that improves editing efficiency across various DNA contexts and reduces restrictions imposed by the protospacer adjacent motif. We also create zevoCDA1-198, a more precise editor with a narrower editing window of five nucleotides, minimizing off-target effects. Using these advanced tools, we successfully generate zebrafish models of diseases that were previously challenging to create due to sequence limitations. This work enhances the ability to introduce human pathogenic mutations in zebrafish, broadening the scope for genomic research with improved precision and efficiency.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China
- Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Yang Liu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China
- Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Wei Qin
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Shaohui Zheng
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China
- Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Jiawang Xiao
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China
- Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Xinxin Xia
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China
- Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Xuanyao Yuan
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China
- Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Jingjing Zeng
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China
- Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Yu Shi
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China
- Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Yan Zhang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China
- Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Hui Ma
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Gaurav K Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
| | - Ji-Feng Fei
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China.
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China.
| | - Yanmei Liu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China.
- Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China.
| |
Collapse
|
9
|
Bzhilyanskaya V, Ma L, Liu S, Fox LR, Whittaker MN, Meis RJ, Choi U, Lawson A, Ma M, Theobald N, Burkett S, Sweeney CL, Lazzarotto CR, Tsai SQ, Lack JB, Wu X, Dahl GA, Malech HL, Kleinstiver BP, De Ravin SS. High-fidelity PAMless base editing of hematopoietic stem cells to treat chronic granulomatous disease. Sci Transl Med 2024; 16:eadj6779. [PMID: 39413163 PMCID: PMC11753194 DOI: 10.1126/scitranslmed.adj6779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 06/12/2024] [Accepted: 09/06/2024] [Indexed: 10/18/2024]
Abstract
X-linked chronic granulomatous disease (X-CGD) is an inborn error of immunity (IEI) resulting from genetic mutations in the cytochrome b-245 beta chain (CYBB) gene. The applicability of base editors (BEs) to correct mutations that cause X-CGD is constrained by the requirement of Cas enzymes to recognize specific protospacer adjacent motifs (PAMs). Our recently engineered PAMless Cas enzyme, SpRY, can overcome the PAM limitation. However, the efficiency, specificity, and applicability of SpRY-based BEs to correct mutations in human hematopoietic stem and progenitor cells (HSPCs) have not been thoroughly examined. Here, we demonstrated that the adenine BE ABE8e-SpRY can access a range of target sites in HSPCs to correct mutations causative of X-CGD. For the prototypical X-CGD mutation CYBB c.676C>T, ABE8e-SpRY achieved up to 70% correction, reaching efficiencies greater than three-and-one-half times higher than previous CRISPR nuclease and donor template approaches. We profiled potential off-target DNA edits, transcriptome-wide RNA edits, and chromosomal perturbations in base-edited HSPCs, which together revealed minimal off-target or bystander edits. Edited alleles persisted after transplantation of the base-edited HSPCs into immunodeficient mice. Together, these investigational new drug-enabling studies demonstrated efficient and precise correction of an X-CGD mutation with PAMless BEs, supporting a first-in-human clinical trial (NCT06325709) and providing a potential blueprint for treatment of other IEI mutations.
Collapse
Affiliation(s)
- Vera Bzhilyanskaya
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Linyuan Ma
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA
| | - Siyuan Liu
- Molecular Cytogenetic Core Facility, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Lauren R. Fox
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Madelynn N. Whittaker
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Ronald J. Meis
- CELLSCRIPT, Madison, WI, 53713, USA
- Wisconsin Institute for Immune and Cell Therapy (WIICT), Madison, WI, 53713, USA
| | - Uimook Choi
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Amanda Lawson
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michelle Ma
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Narda Theobald
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sandra Burkett
- Molecular Cytogenetic Core Facility, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Colin L. Sweeney
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Cicera R. Lazzarotto
- Department of Hematology, St. Jude Children‘s Research Hospital, Memphis, TN, 38105, USA
| | - Shengdar Q. Tsai
- Department of Hematology, St. Jude Children‘s Research Hospital, Memphis, TN, 38105, USA
| | - Justin B. Lack
- Bioinformatics (NCBR)/Integrated Data Sciences Section (IDSS), Research Technology Branch/DIR/NIAID, Frederick, MD, 21702, USA
| | - Xiaolin Wu
- Molecular Cytogenetic Core Facility, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Gary A. Dahl
- CELLSCRIPT, Madison, WI, 53713, USA
- Wisconsin Institute for Immune and Cell Therapy (WIICT), Madison, WI, 53713, USA
| | - Harry L. Malech
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Benjamin P. Kleinstiver
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA
| | - Suk See De Ravin
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
10
|
Cai Z, Xie W, Bao Z. Broadening the targetable space: engineering and discovery of PAM-flexible Cas proteins. Trends Microbiol 2024; 32:728-731. [PMID: 38816311 DOI: 10.1016/j.tim.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 06/01/2024]
Abstract
The application of CRISPR-Cas systems has been hindered by their requirement for long protospacer-adjacent motifs (PAMs). Recent engineering and discovery of PAM-flexible Cas proteins have substantially broadened the targetable DNA sequence space, thereby facilitating genome editing and improving derivative technologies such as gene regulation, seamless cloning, and large-scale genetic screens.
Collapse
Affiliation(s)
- Zhenkun Cai
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, Zhejiang, China; Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Weiyu Xie
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, Zhejiang, China; Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Zehua Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, Zhejiang, China; Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
11
|
Loret C, Pauset A, Faye PA, Prouzet-Mauleon V, Pyromali I, Nizou A, Miressi F, Sturtz F, Favreau F, Turcq B, Lia AS. CRISPR Base Editing to Create Potential Charcot-Marie-Tooth Disease Models with High Editing Efficiency: Human Induced Pluripotent Stem Cell Harboring SH3TC2 Variants. Biomedicines 2024; 12:1550. [PMID: 39062123 PMCID: PMC11274897 DOI: 10.3390/biomedicines12071550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) represent a powerful tool to investigate neuropathological disorders in which the cells of interest are inaccessible, such as in the Charcot-Marie-Tooth disease (CMT), the most common inherited peripheral neuropathy. Developing appropriate cellular models becomes crucial in order to both study the disease's pathophysiology and test new therapeutic approaches. The generation of hiPS cellular models for disorders caused by a single nucleotide variation has been significantly improved following the development of CRISPR-based editing tools. In this study, we efficiently and quickly generated, by CRISPR editing, the two first hiPSCs cellular models carrying alterations involved in CMT4C, also called AR-CMTde-SH3TC2. This subtype of CMT is associated with alterations in the SH3TC2 gene and represents the most prevalent form of autosomal recessive demyelinating CMT. We aimed to develop models for two different SH3TC2 nonsense variants, c.211C>T, p.Gln71* and the most common AR-CMTde-SH3TC2 alteration, c.2860C>T, p.Arg954*. First, in order to determine the best CRISPR strategy to adopt on hiPSCs, we first tested a variety of sgRNAs combined with a selection of recent base editors using the conveniently cultivable and transfectable HEK-293T cell line. The chosen CRISPR base-editing strategy was then applied to hiPSCs derived from healthy individuals to generate isogenic CMT disease models with up to 93% editing efficiency. For point mutation generation, we first recommend to test your strategies on alternative cell line such as HEK-293T before hiPSCs to evaluate a variety of sgRNA-BE combinations, thus boosting the chance of achieving edited cellular clones with the hard-to-culture and to transfect hiPSCs.
Collapse
Affiliation(s)
- Camille Loret
- University of Limoges, NeurIT UR 20218, GEIST Institute, F-87000 Limoges, France; (P.-A.F.); (I.P.); (A.N.); (F.M.); (F.S.); (F.F.); (A.-S.L.)
| | - Amandine Pauset
- University of Bordeaux, CRISP'edit, TBMCore UAR CNRS 3427, US Inserm 005, F-33000 Bordeaux, France (V.P.-M.); (B.T.)
- University of Bordeaux, Modeling Transformation and Resistance in Leukemia, BRIC Inserm U1312, F-33000 Bordeaux, France
| | - Pierre-Antoine Faye
- University of Limoges, NeurIT UR 20218, GEIST Institute, F-87000 Limoges, France; (P.-A.F.); (I.P.); (A.N.); (F.M.); (F.S.); (F.F.); (A.-S.L.)
- CHU Limoges, Department of Biochemistry and Molecular Genetics, F-87000 Limoges, France
| | - Valérie Prouzet-Mauleon
- University of Bordeaux, CRISP'edit, TBMCore UAR CNRS 3427, US Inserm 005, F-33000 Bordeaux, France (V.P.-M.); (B.T.)
- University of Bordeaux, Modeling Transformation and Resistance in Leukemia, BRIC Inserm U1312, F-33000 Bordeaux, France
| | - Ioanna Pyromali
- University of Limoges, NeurIT UR 20218, GEIST Institute, F-87000 Limoges, France; (P.-A.F.); (I.P.); (A.N.); (F.M.); (F.S.); (F.F.); (A.-S.L.)
| | - Angélique Nizou
- University of Limoges, NeurIT UR 20218, GEIST Institute, F-87000 Limoges, France; (P.-A.F.); (I.P.); (A.N.); (F.M.); (F.S.); (F.F.); (A.-S.L.)
| | - Federica Miressi
- University of Limoges, NeurIT UR 20218, GEIST Institute, F-87000 Limoges, France; (P.-A.F.); (I.P.); (A.N.); (F.M.); (F.S.); (F.F.); (A.-S.L.)
| | - Franck Sturtz
- University of Limoges, NeurIT UR 20218, GEIST Institute, F-87000 Limoges, France; (P.-A.F.); (I.P.); (A.N.); (F.M.); (F.S.); (F.F.); (A.-S.L.)
- CHU Limoges, Department of Biochemistry and Molecular Genetics, F-87000 Limoges, France
| | - Frédéric Favreau
- University of Limoges, NeurIT UR 20218, GEIST Institute, F-87000 Limoges, France; (P.-A.F.); (I.P.); (A.N.); (F.M.); (F.S.); (F.F.); (A.-S.L.)
- CHU Limoges, Department of Biochemistry and Molecular Genetics, F-87000 Limoges, France
| | - Béatrice Turcq
- University of Bordeaux, CRISP'edit, TBMCore UAR CNRS 3427, US Inserm 005, F-33000 Bordeaux, France (V.P.-M.); (B.T.)
- University of Bordeaux, Modeling Transformation and Resistance in Leukemia, BRIC Inserm U1312, F-33000 Bordeaux, France
| | - Anne-Sophie Lia
- University of Limoges, NeurIT UR 20218, GEIST Institute, F-87000 Limoges, France; (P.-A.F.); (I.P.); (A.N.); (F.M.); (F.S.); (F.F.); (A.-S.L.)
- CHU Limoges, Department of Biochemistry and Molecular Genetics, F-87000 Limoges, France
- CHU Limoges, Department of Bioinformatics, F-87000 Limoges, France
| |
Collapse
|
12
|
Yao Y, Zhou Z, Wang X, Liu Z, Zhai Y, Chi X, Du J, Luo L, Zhao Z, Wang X, Xue C, Rao S. SpRY-mediated screens facilitate functional dissection of non-coding sequences at single-base resolution. CELL GENOMICS 2024; 4:100583. [PMID: 38889719 PMCID: PMC11293580 DOI: 10.1016/j.xgen.2024.100583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/28/2024] [Accepted: 05/16/2024] [Indexed: 06/20/2024]
Abstract
CRISPR mutagenesis screens conducted with SpCas9 and other nucleases have identified certain cis-regulatory elements and genetic variants but at a limited resolution due to the absence of protospacer adjacent motif (PAM) sequences. Here, leveraging the broad targeting scope of the near-PAMless SpRY variant, we have demonstrated that saturated SpRY mutagenesis and base editing screens can faithfully identify functional regulatory elements and essential genetic variants for target gene expression at single-base resolution. We further extended this methodology to investigate a genome-wide association study (GWAS) locus at 10q22.1 associated with a red blood cell trait, where we identified potential enhancers regulating HK1 gene expression, despite not all of these enhancers exhibiting typical chromatin signatures. More importantly, our saturated base editing screens pinpoint multiple causal variants within this locus that would otherwise be missed by Bayesian statistical fine-mapping. Our approach is generally applicable to functional interrogation of all non-coding genomic elements while complementing other high-coverage CRISPR screens.
Collapse
Affiliation(s)
- Yao Yao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China.
| | - Zhiwei Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Xiaoling Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Zhirui Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Yixin Zhai
- Department of Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xiaolin Chi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Jingyi Du
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Liheng Luo
- Center for Bioinformatics, National Infrastructures for Translational Medicine, Institute of Clinical Medicine & Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Zhigang Zhao
- Department of Medical Oncology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China
| | - Xiaoyue Wang
- Center for Bioinformatics, National Infrastructures for Translational Medicine, Institute of Clinical Medicine & Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Chaoyou Xue
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Shuquan Rao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China.
| |
Collapse
|
13
|
Qin W, Liang F, Lin SJ, Petree C, Huang K, Zhang Y, Li L, Varshney P, Mourrain P, Liu Y, Varshney GK. ABE-ultramax for high-efficiency biallelic adenine base editing in zebrafish. Nat Commun 2024; 15:5613. [PMID: 38965236 PMCID: PMC11224239 DOI: 10.1038/s41467-024-49943-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/20/2024] [Indexed: 07/06/2024] Open
Abstract
Advancements in CRISPR technology, particularly the development of base editors, revolutionize genetic variant research. When combined with model organisms like zebrafish, base editors significantly accelerate and refine in vivo analysis of genetic variations. However, base editors are restricted by protospacer adjacent motif (PAM) sequences and specific editing windows, hindering their applicability to a broad spectrum of genetic variants. Additionally, base editors can introduce unintended mutations and often exhibit reduced efficiency in living organisms compared to cultured cell lines. Here, we engineer a suite of adenine base editors (ABEs) called ABE-Ultramax (Umax), demonstrating high editing efficiency and low rates of insertions and deletions (indels) in zebrafish. The ABE-Umax suite of editors includes ABEs with shifted, narrowed, or broadened editing windows, reduced bystander mutation frequency, and highly flexible PAM sequence requirements. These advancements have the potential to address previous challenges in disease modeling and advance gene therapy applications.
Collapse
Affiliation(s)
- Wei Qin
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Fang Liang
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, Guangdong, 510631, China
| | - Sheng-Jia Lin
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Cassidy Petree
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Kevin Huang
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Yu Zhang
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Lin Li
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, 510631, Guangzhou, China
- Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631, Guangzhou, China
| | - Pratishtha Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Philippe Mourrain
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Yanmei Liu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, 510631, Guangzhou, China.
- Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631, Guangzhou, China.
| | - Gaurav K Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
| |
Collapse
|
14
|
Sun T, Liu Q, Chen X, Hu F, Wang K. Hi-TOM 2.0: an improved platform for high-throughput mutation detection. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1532-1534. [PMID: 38523238 DOI: 10.1007/s11427-024-2555-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/05/2024] [Indexed: 03/26/2024]
Affiliation(s)
- Tingting Sun
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Qing Liu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China.
| | - Xi Chen
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Fengyue Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Kejian Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China.
- Hainan Seed Industry Laboratory, Sanya, 572025, China.
| |
Collapse
|
15
|
Su Z, Wang X, Chen X, Ding L, Zeng X, Xu J, Peng C. Novel CRISPR/SpRY system for rapid detection of CRISPR/Cas-mediated gene editing in rice. Anal Chim Acta 2024; 1303:342519. [PMID: 38609262 DOI: 10.1016/j.aca.2024.342519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024]
Abstract
The gene editing technology represented by clustered rule-interspersed short palindromic repeats (CRISPR)/Cas9 has developed as a common tool in the field of biotechnology. Many gene-edited products in plant varieties have recently been commercialized. However, the rapid on-site visual detection of gene-edited products without instrumentation remains challenging. This study aimed to develop a novel and efficient method, termed the CRISPR/SpRY detection platform, for the rapid screening of CRISPR/Cas9-induced mutants based on CRISPR/SpRY-mediated in vitro cleavage using rice (Oryza sativa L.) samples genetically edited at the TGW locus as an example. We designed the workflow of the CRISPR/SpRY detection platform and conducted a feasibility assessment. Subsequently, we optimized the reaction system of CRISPR/SpRY, and developed a one-pot CRISPR/SpRY assay by integrating recombinase polymerase amplification (RPA). The sensitivity of the method was further verified using recombinant plasmids. The proposed method successfully identified various types of mutations, including insertions, deletions (indels), and nucleotide substitutions, with excellent sensitivity. Finally, the applicability of this method was validated using different rice samples. The entire process was completed in less than an hour, with a limit of detection as low as 1%. Compared with previous methods, our approach is simple to operate, instrumentation-free, cost-effective, and time-efficient. The primary significance lies in the liberation of our developed system from the limitations imposed using protospacer adjacent motif sequences. This expands the scope and versatility of the CRISPR-based detection platform, making it a promising and groundbreaking platform for detecting mutations induced by gene editing.
Collapse
Affiliation(s)
- Zhixun Su
- College of Food Science and Technology, Ningbo University, Ningbo, 315800, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiaofu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiaoyun Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Lin Ding
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiaoqun Zeng
- College of Food Science and Technology, Ningbo University, Ningbo, 315800, China
| | - Junfeng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Cheng Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
16
|
Dorner L, Stratmann B, Bader L, Podobnik M, Irion U. Efficient genome editing using modified Cas9 proteins in zebrafish. Biol Open 2024; 13:bio060401. [PMID: 38545958 PMCID: PMC10997048 DOI: 10.1242/bio.060401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 04/07/2024] Open
Abstract
The zebrafish (Danio rerio) is an important model organism for basic as well as applied bio-medical research. One main advantage is its genetic tractability, which was greatly enhanced by the introduction of the CRISPR/Cas method a decade ago. The generation of loss-of-function alleles via the production of small insertions or deletions in the coding sequences of genes with CRISPR/Cas systems is now routinely achieved with high efficiency. The method is based on the error prone repair of precisely targeted DNA double strand breaks by non-homologous end joining (NHEJ) in the cell nucleus. However, editing the genome with base pair precision, by homology-directed repair (HDR), is by far less efficient and therefore often requires large-scale screening of potential carriers by labour intensive genotyping. Here we confirm that the Cas9 protein variant SpRY, with relaxed PAM requirement, can be used to target some sites in the zebrafish genome. In addition, we demonstrate that the incorporation of an artificial nuclear localisation signal (aNLS) into the Cas9 protein variants not only enhances the efficiency of gene knockout but also the frequency of HDR, thereby facilitating the efficient modification of single base pairs in the genome. Our protocols provide a guide for a cost-effective generation of versatile and potent Cas9 protein variants and efficient gene editing in zebrafish.
Collapse
Affiliation(s)
- Laura Dorner
- Max Planck Institute for Biology, RG Colour Pattern Evolution, Tuebingen, Max-Planck-Ring 5, 72076 Tuebingen, Germany
| | - Benedikt Stratmann
- Max Planck Institute for Biology, RG Colour Pattern Evolution, Tuebingen, Max-Planck-Ring 5, 72076 Tuebingen, Germany
| | - Laura Bader
- Max Planck Institute for Biology, RG Colour Pattern Evolution, Tuebingen, Max-Planck-Ring 5, 72076 Tuebingen, Germany
| | - Marco Podobnik
- Max Planck Institute for Biology, RG Colour Pattern Evolution, Tuebingen, Max-Planck-Ring 5, 72076 Tuebingen, Germany
| | - Uwe Irion
- Max Planck Institute for Biology, RG Colour Pattern Evolution, Tuebingen, Max-Planck-Ring 5, 72076 Tuebingen, Germany
| |
Collapse
|
17
|
Calbry J, Goudounet G, Charlot F, Guyon-Debast A, Perroud PF, Nogué F. The SpRY Cas9 variant release the PAM sequence constraint for genome editing in the model plant Physcomitrium patens. Transgenic Res 2024; 33:67-74. [PMID: 38573428 PMCID: PMC11021247 DOI: 10.1007/s11248-024-00381-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
Genome editing via CRISPR/Cas has enabled targeted genetic modifications in various species, including plants. The requirement for specific protospacer-adjacent motifs (PAMs) near the target gene, as seen with Cas nucleases like SpCas9, limits its application. PAMless SpCas9 variants, designed with a relaxed PAM requirement, have widened targeting options. However, these so-call PAMless SpCas9 still show variation of editing efficiency depending on the PAM and their efficiency lags behind the native SpCas9. Here we assess the potential of a PAMless SpCas9 variant for genome editing in the model plant Physcomitrium patens. For this purpose, we developed a SpRYCas9i variant, where expression was optimized, and tested its editing efficiency using the APT as a reporter gene. We show that the near PAMless SpRYCas9i effectively recognizes specific PAMs in P. patens that are not or poorly recognized by the native SpCas9. Pattern of mutations found using the SpRYCas9i are similar to the ones found with the SpCas9 and we could not detect off-target activity for the sgRNAs tested in this study. These findings contribute to advancing versatile genome editing techniques in plants.
Collapse
Affiliation(s)
- Julie Calbry
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
| | - Guillaume Goudounet
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
| | - Florence Charlot
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
| | - Anouchka Guyon-Debast
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
| | - Pierre-François Perroud
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
| | - Fabien Nogué
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France.
| |
Collapse
|
18
|
Zhang XS, Wei L, Zhang W, Zhang FX, Li L, Li L, Wen Y, Zhang JH, Liu S, Yuan D, Liu Y, Ren C, Li S. ERK-activated CK-2 triggers blastema formation during appendage regeneration. SCIENCE ADVANCES 2024; 10:eadk8331. [PMID: 38507478 PMCID: PMC10954200 DOI: 10.1126/sciadv.adk8331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/14/2024] [Indexed: 03/22/2024]
Abstract
Appendage regeneration relies on the formation of blastema, a heterogeneous cellular structure formed at the injury site. However, little is known about the early injury-activated signaling pathways that trigger blastema formation during appendage regeneration. Here, we provide compelling evidence that the extracellular signal-regulated kinase (ERK)-activated casein kinase 2 (CK-2), which has not been previously implicated in appendage regeneration, triggers blastema formation during leg regeneration in the American cockroach, Periplaneta americana. After amputation, CK-2 undergoes rapid activation through ERK-induced phosphorylation within blastema cells. RNAi knockdown of CK-2 severely impairs blastema formation by repressing cell proliferation through down-regulating mitosis-related genes. Evolutionarily, the regenerative role of CK-2 is conserved in zebrafish caudal fin regeneration via promoting blastema cell proliferation. Together, we find and demonstrate that the ERK-activated CK-2 triggers blastema formation in both cockroach and zebrafish, helping explore initiation factors during appendage regeneration.
Collapse
Affiliation(s)
- Xiao-Shuai Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Lin Wei
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Wei Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Fei-Xue Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Lin Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Liang Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yejie Wen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jia-Hui Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Suning Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Dongwei Yuan
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Yanmei Liu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Chonghua Ren
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| |
Collapse
|
19
|
Kozaeva E, Nielsen ZS, Nieto-Domínguez M, Nikel P. The pAblo·pCasso self-curing vector toolset for unconstrained cytidine and adenine base-editing in Gram-negative bacteria. Nucleic Acids Res 2024; 52:e19. [PMID: 38180826 PMCID: PMC10899774 DOI: 10.1093/nar/gkad1236] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 12/11/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024] Open
Abstract
A synthetic biology toolkit, exploiting clustered regularly interspaced short palindromic repeats (CRISPR) and modified CRISPR-associated protein (Cas) base-editors, was developed for genome engineering in Gram-negative bacteria. Both a cytidine base-editor (CBE) and an adenine base-editor (ABE) have been optimized for precise single-nucleotide modification of plasmid and genome targets. CBE comprises a cytidine deaminase conjugated to a Cas9 nickase from Streptococcus pyogenes (SpnCas9), resulting in C→T (or G→A) substitutions. Conversely, ABE consists of an adenine deaminase fused to SpnCas9 for A→G (or T→C) editing. Several nucleotide substitutions were achieved using these plasmid-borne base-editing systems and a novel protospacer adjacent motif (PAM)-relaxed SpnCas9 (SpRY) variant. Base-editing was validated in Pseudomonas putida and other Gram-negative bacteria by inserting premature STOP codons into target genes, thereby inactivating both fluorescent proteins and metabolic (antibiotic-resistance) functions. The functional knockouts obtained by engineering STOP codons via CBE were reverted to the wild-type genotype using ABE. Additionally, a series of induction-responsive vectors was developed to facilitate the curing of the base-editing platform in a single cultivation step, simplifying complex strain engineering programs without relying on homologous recombination and yielding plasmid-free, modified bacterial cells.
Collapse
Affiliation(s)
- Ekaterina Kozaeva
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Zacharias S Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Manuel Nieto-Domínguez
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
20
|
Weber R, Vasella F, Klimko A, Silginer M, Lamfers M, Neidert MC, Regli L, Schwank G, Weller M. Targeting the IDH1 R132H mutation in gliomas by CRISPR/Cas precision base editing. Neurooncol Adv 2024; 6:vdae182. [PMID: 39605316 PMCID: PMC11600340 DOI: 10.1093/noajnl/vdae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024] Open
Abstract
Background Gliomas, the most frequent malignant primary brain tumors, lack curative treatments. Understanding glioma-specific molecular alterations is crucial to develop novel therapies. Among them, the biological consequences of the isocitrate dehydrogenase 1 gene mutation (IDH1 R132H) remain inconclusive despite its early occurrence and widespread expression. Methods We thus employed CRISPR/Cas adenine base editors, which allow precise base pair alterations with minimal undesirable effects, to correct the IDH1 R132H mutation. Results Successful correction of the IDH1 R132H mutation in primary patient-derived cell models led to reduced IDH1 R132H protein levels and decreased production of 2-hydroxyglutarate, but increased proliferation. A dual adeno-associated virus split intein system was used to successfully deliver the base editor in vitro and in vivo. Conclusions Taken together, our study provides a strategy for a precise genetic intervention to target the IDH1 R132H mutation, enabling the development of accurate models to study its impact on glioma biology and serving as a framework for an in vivo gene therapy.
Collapse
Affiliation(s)
- Remi Weber
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Centre, University Hospital and University of Zurich, Zurich, Switzerland
| | - Flavio Vasella
- Department of Neurosurgery, Clinical Neuroscience Centre, University Hospital and University of Zurich, Zurich, Switzerland
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Centre, University Hospital and University of Zurich, Zurich, Switzerland
| | - Artsiom Klimko
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Centre, University Hospital and University of Zurich, Zurich, Switzerland
| | - Manuela Silginer
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Centre, University Hospital and University of Zurich, Zurich, Switzerland
| | - Martine Lamfers
- Department of Neurosurgery, Brain Tumor Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marian Christoph Neidert
- Department of Neurosurgery, Clinical Neuroscience Centre, University Hospital and University of Zurich, Zurich, Switzerland
- Department of Neurosurgery, Cantonal Hospital St.Gallen, St.Gallen, Switzerland
| | - Luca Regli
- Department of Neurosurgery, Clinical Neuroscience Centre, University Hospital and University of Zurich, Zurich, Switzerland
| | - Gerald Schwank
- Laboratory of Translational Genome Editing, Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Michael Weller
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, Clinical Neuroscience Centre, University Hospital and University of Zurich, Zurich, Switzerland
| |
Collapse
|
21
|
Hossain N, Igawa T, Suzuki M, Tazawa I, Nakao Y, Hayashi T, Suzuki N, Ogino H. Phenotype-genotype relationships in Xenopus sox9 crispants provide insights into campomelic dysplasia and vertebrate jaw evolution. Dev Growth Differ 2023; 65:481-497. [PMID: 37505799 DOI: 10.1111/dgd.12884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Since CRISPR-based genome editing technology works effectively in the diploid frog Xenopus tropicalis, a growing number of studies have successfully modeled human genetic diseases in this species. However, most of their targets were limited to non-syndromic diseases that exhibit abnormalities in a small fraction of tissues or organs in the body. This is likely because of the complexity of interpreting the phenotypic variations resulting from somatic mosaic mutations generated in the founder animals (crispants). In this study, we attempted to model the syndromic disease campomelic dysplasia (CD) by generating sox9 crispants in X. tropicalis. The resulting crispants failed to form neural crest cells at neurula stages and exhibited various combinations of jaw, gill, ear, heart, and gut defects at tadpole stages, recapitulating part of the syndromic phenotype of CD patients. Genotyping of the crispants with a variety of allelic series of mutations suggested that the heart and gut defects depend primarily on frame-shift mutations expected to be null, whereas the jaw, gill, and ear defects could be induced not only by such mutations but also by in-frame deletion mutations expected to delete part of the jawed vertebrate-specific domain from the encoded Sox9 protein. These results demonstrate that Xenopus crispants are useful for investigating the phenotype-genotype relationships behind syndromic diseases and examining the tissue-specific role of each functional domain within a single protein, providing novel insights into vertebrate jaw evolution.
Collapse
Affiliation(s)
- Nusrat Hossain
- Amphibian Research Center, Hiroshima University, Hiroshima, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Takeshi Igawa
- Amphibian Research Center, Hiroshima University, Hiroshima, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Makoto Suzuki
- Amphibian Research Center, Hiroshima University, Hiroshima, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Ichiro Tazawa
- Amphibian Research Center, Hiroshima University, Hiroshima, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Yuta Nakao
- Amphibian Research Center, Hiroshima University, Hiroshima, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Toshinori Hayashi
- Amphibian Research Center, Hiroshima University, Hiroshima, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Nanoka Suzuki
- Amphibian Research Center, Hiroshima University, Hiroshima, Japan
| | - Hajime Ogino
- Amphibian Research Center, Hiroshima University, Hiroshima, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
22
|
He T, Sun H, Xu B, Qu H, Cai X, Zhou H, Liu Y, Lin Z, Zhang X. Novel bi-allelic variants of CHMP1A contribute to pontocerebellar hypoplasia type 8: additional clinical and genetic evidence. Front Neurol 2023; 14:1228218. [PMID: 37789895 PMCID: PMC10544971 DOI: 10.3389/fneur.2023.1228218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/29/2023] [Indexed: 10/05/2023] Open
Abstract
Pontocerebellar hypoplasia type 8(PCH8) is a rare neurodegenerative disorder, reportedly caused by pathogenic variants of the CHMP1A in autosomal recessive inheritance, and CHMP1A variants have also been implicated in other diseases, and yet none of the prenatal fetal features were reported in PCH8. In this study, we investigated the phenotype and genotype in a human subject with global developmental delay, including clinical data from the prenatal stage through early childhood. Prenatally, the mother had polyhydramnios, and the bilateral ventricles of the fetus were slightly widened. Postnatally, the infant was observed to have severely delayed psychomotor development and was incapable of visual tracking before 2 years old and could not fix on small objects. The young child had hypotonia, increased knee tendon reflex, as well as skeletal malformations, and dental crowding; she also had severe and recurrent pulmonary infections. Magnetic resonance imaging of the brain revealed a severe reduction of the cerebellum (vermis and hemispheres) and a thin corpus callosum. Through whole exome sequencing and whole genomics sequencing, we identified two novel compound heterozygous variations in CHMP1A [c.53 T > C(p.Leu18Pro)(NM_002768.5) and exon 1 deletion region (NC_000016.10:g.89656392_89674382del)]. cDNA analysis showed that the exon1 deletion region led to the impaired expression, and functional verification with zebrafish embryos using base edition indicated variant c.53 T > C (p.Leu18Pro), causing dysplasia of the cerebellum and pons. These results provide further evidence that CHMP1A variants in a recessive inheritance pattern contribute to the clinical characteristics of PCH8 and further expand our knowledge of the phenotype and genotype spectrum of PCH8.
Collapse
Affiliation(s)
- Tiantian He
- Department of Medical Genetics, Prenatal Diagnosis Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Huaqin Sun
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- SCU-CUHK Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Bocheng Xu
- Department of Medical Genetics, Prenatal Diagnosis Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Haibo Qu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiaotang Cai
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- Department of Rehabilitation, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hui Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- Department of Rehabilitation, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yanyan Liu
- Department of Medical Genetics, Prenatal Diagnosis Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Ziyuan Lin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- SCU-CUHK Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xuemei Zhang
- Department of Medical Genetics, Prenatal Diagnosis Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
23
|
Rosello M, Serafini M, Concordet JP, Del Bene F. Precise mutagenesis in zebrafish using cytosine base editors. Nat Protoc 2023; 18:2794-2813. [PMID: 37495752 DOI: 10.1038/s41596-023-00854-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 05/11/2023] [Indexed: 07/28/2023]
Abstract
Base editing is a powerful CRISPR-based technology for introducing precise substitutions into the genome. This technology greatly advances mutagenesis possibilities in vivo, particularly in zebrafish, for which the generation of precise point mutations is still challenging. Zebrafish have emerged as an important model for genetic studies and in vivo disease modeling. With the development of different base editor variants that recognize protospacer-adjacent motifs (PAMs) other than the classical 5'-NGG-3' PAM, it is now possible to design and test several guide RNAs to find the most efficient way to precisely introduce the desired substitution. Here, we describe the experimental design strategies and protocols for cytosine base editing in zebrafish, from guide RNA design and selection of base editor variants to generation of the zebrafish mutant line carrying the substitution of interest. By using co-selection by introducing a loss-of-function mutation in genes necessary for the formation of pigments, injected embryos with highly efficient base editing can be directly analyzed to determine the phenotypic impact of the targeted substitution. The generation of mutant embryos after base editor injections in zebrafish can be completed within 2 weeks.
Collapse
Affiliation(s)
- Marion Rosello
- Sorbonne Université, INSERM U968, CNRS UMR 7210, Institut de la Vision, Paris, France.
| | - Malo Serafini
- Sorbonne Université, INSERM U968, CNRS UMR 7210, Institut de la Vision, Paris, France
| | - Jean-Paul Concordet
- Museúm National d'Histoire Naturelle, INSERM U1154, CNRS UMR 7196, Paris, France
| | - Filippo Del Bene
- Sorbonne Université, INSERM U968, CNRS UMR 7210, Institut de la Vision, Paris, France.
| |
Collapse
|
24
|
Li K, Dong Z, Pan M. Common strategies in silkworm disease resistance breeding research. PEST MANAGEMENT SCIENCE 2023; 79:2287-2298. [PMID: 36935349 DOI: 10.1002/ps.7454] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/09/2023] [Accepted: 03/20/2023] [Indexed: 06/02/2023]
Abstract
The silkworm, which is considered a model invertebrate organism, was the first insect used for silk production in human history and has been utilized extensively throughout its domestication. However, sericulture has been plagued by various pathogens that have caused significant economic losses. To enhance the resistance of a host to its pathogens,numerous strategies have been developed. For instance, gene-editing techniques have been applied to a wide range of organisms, effectively solving a variety of experimental problems. This review focuses on several common silkworm pests and their pathogenic mechanisms, with a particular emphasis on breeding for disease resistance to control multiple types of silkworm diseases. The review also compares the advantages and disadvantages of transgenic technology and gene-editing systems. Finally, the paper provides a brief summary of current strategies used in breeding silkworm disease resistance, along with a discussion of the establishment of existing technologies and their future application prospects. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kejie Li
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- The First Affiliated Hospital of Chongqing Medical and pharmaceutical College, Chongqing, China
| | - Zhanqi Dong
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Minhui Pan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| |
Collapse
|
25
|
Richardson C, Kelsh RN, J. Richardson R. New advances in CRISPR/Cas-mediated precise gene-editing techniques. Dis Model Mech 2023; 16:dmm049874. [PMID: 36847161 PMCID: PMC10003097 DOI: 10.1242/dmm.049874] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Over the past decade, CRISPR/Cas-based gene editing has become a powerful tool for generating mutations in a variety of model organisms, from Escherichia coli to zebrafish, rodents and large mammals. CRISPR/Cas-based gene editing effectively generates insertions or deletions (indels), which allow for rapid gene disruption. However, a large proportion of human genetic diseases are caused by single-base-pair substitutions, which result in more subtle alterations to protein function, and which require more complex and precise editing to recreate in model systems. Precise genome editing (PGE) methods, however, typically have efficiencies of less than a tenth of those that generate less-specific indels, and so there has been a great deal of effort to improve PGE efficiency. Such optimisations include optimal guide RNA and mutation-bearing donor DNA template design, modulation of DNA repair pathways that underpin how edits result from Cas-induced cuts, and the development of Cas9 fusion proteins that introduce edits via alternative mechanisms. In this Review, we provide an overview of the recent progress in optimising PGE methods and their potential for generating models of human genetic disease.
Collapse
Affiliation(s)
- Chris Richardson
- School of Physiology, Pharmacology and Neuroscience, Faculty of Biomedical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Robert N. Kelsh
- Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
| | - Rebecca J. Richardson
- School of Physiology, Pharmacology and Neuroscience, Faculty of Biomedical Sciences, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
26
|
Yi ZN, Chen XK, Ma ACH. Modeling leukemia with zebrafish (Danio rerio): Towards precision medicine. Exp Cell Res 2022; 421:113401. [PMID: 36306826 DOI: 10.1016/j.yexcr.2022.113401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/06/2022] [Accepted: 10/20/2022] [Indexed: 12/29/2022]
Abstract
Leukemia is a type of blood cancer characterized by high genetic heterogeneity and fatality. While chemotherapy remains the primary form of treatment for leukemia, its effectiveness was profoundly diminished by the genetic heterogeneity and cytogenetic abnormalities of leukemic cells. Therefore, there is an unmet need to develop precision medicine for leukemia with distinct genetic backgrounds. Zebrafish (Danio rerio), a freshwater fish with exceptional feasibility in genome editing, is a powerful tool for rapid human cancer modeling. In the past decades, zebrafish have been adopted in modeling human leukemia, exploring the molecular mechanisms of underlying genetic abnormalities, and discovering novel therapeutic agents. Although many recurrent mutations of leukemia have been modeled in zebrafish for pathological study and drug discovery, its great potential in leukemia modeling was not yet fully exploited, particularly in precision medicine. In this review, we evaluated the current zebrafish models of leukemia/pre-leukemia and genetic techniques and discussed the potential of zebrafish models with novel techniques, which may contribute to the development of zebrafish as a disease model for precision medicine in treating leukemia.
Collapse
Affiliation(s)
- Zhen-Ni Yi
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xiang-Ke Chen
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Alvin Chun-Hang Ma
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
27
|
CRISPR-Cas9 Technology for the Creation of Biological Avatars Capable of Modeling and Treating Pathologies: From Discovery to the Latest Improvements. Cells 2022; 11:cells11223615. [PMID: 36429042 PMCID: PMC9688409 DOI: 10.3390/cells11223615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
This is a spectacular moment for genetics to evolve in genome editing, which encompasses the precise alteration of the cellular DNA sequences within various species. One of the most fascinating genome-editing technologies currently available is Clustered Regularly Interspaced Palindromic Repeats (CRISPR) and its associated protein 9 (CRISPR-Cas9), which have integrated deeply into the research field within a short period due to its effectiveness. It became a standard tool utilized in a broad spectrum of biological and therapeutic applications. Furthermore, reliable disease models are required to improve the quality of healthcare. CRISPR-Cas9 has the potential to diversify our knowledge in genetics by generating cellular models, which can mimic various human diseases to better understand the disease consequences and develop new treatments. Precision in genome editing offered by CRISPR-Cas9 is now paving the way for gene therapy to expand in clinical trials to treat several genetic diseases in a wide range of species. This review article will discuss genome-editing tools: CRISPR-Cas9, Zinc Finger Nucleases (ZFNs), and Transcription Activator-Like Effector Nucleases (TALENs). It will also encompass the importance of CRISPR-Cas9 technology in generating cellular disease models for novel therapeutics, its applications in gene therapy, and challenges with novel strategies to enhance its specificity.
Collapse
|
28
|
Varshney P, Varshney GK. Expanded precision genome-editing toolbox for human disease modeling in zebrafish. Lab Anim (NY) 2022; 51:287-289. [DOI: 10.1038/s41684-022-01076-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|