1
|
Islam MT, Tasnim J, Basri R, Sakib MN, Ullah W, Nahar KS, Sadique A, Sultana M, Arakawa E, Morita M, Watanabe H, Boucher YF, Huq A, Colwell RR, Alam M. Vibrio cholerae O47 associated with a cholera-like diarrheal outbreak concurrent with seasonal cholera in Bangladesh. mSphere 2025; 10:e0083124. [PMID: 40172221 PMCID: PMC12039230 DOI: 10.1128/msphere.00831-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 03/04/2025] [Indexed: 04/04/2025] Open
Abstract
The Ganges delta of the Bay of Bengal is a recognized hotspot for the emergence and spread of novel variants of Vibrio cholerae. Despite being a diverse species, very little information is available concerning environmental and human-associated aspects of V. cholerae serogroups, other than the two major epidemic-related serogroups O1 and O139. This represents a crucial gap in understanding the spectrum of diversity, ecology, and epidemiology of the species influencing the dynamics of global cholera. In this study, we describe an emerging variant of V. cholerae displaying the antigenic property of serogroup O47, associated with a cholera-like outbreak in coastal Bangladesh where cholera has been endemic for centuries. This outbreak coincides with a rise in cases of cholera caused by V. cholerae O1, as well as frequency of isolation of serogroups O47 and O1 from the environment. The V. cholerae O47 isolates proved clonal in nature, and their genome biology revealed distinct features, with respect to multidrug resistance (MDR), serogroup-specific genes, genomic island combinations, and overall phylogenetic properties. Genome comparison confirmed the absence of canonical virulence factors of V. cholerae O1 and O139, namely, cholera toxin (CTX) and toxin-co-regulated pili (TCP), and the presence of putative virulence factors including type 3 secretion system (T3SS) and an MDR pseudo-compound transposon, carrying genes for macrolide resistance and extended spectrum beta-lactamase. Results of the study suggest that V. cholerae O47 could represent an emerging Vibrio pathogen with the potential to spread virulence and antimicrobial resistance traits impacting the management of cholera-like diseases.IMPORTANCEDespite the global insurgence of human diseases caused by Vibrios in recent years, most research focuses only on the O1 serogroup of V. cholerae, leaving a significant gap concerning the environmental and human-associated aspects of other serogroups found in nature. Although other serogroups are often found associated with sporadic diarrhea cases, in 1992-1993, a massive cholera-like diarrhea epidemic was initiated by a "non-O1" serogroup, namely, O139 that temporally displaced O1 from endemic cholera in the Bay of Bengal villages of Bangladesh and India, highlighting the potential threat they might pose. This study describes yet another emerging variant of V. cholerae, displaying the antigenic property of serogroup O47, associated with a cholera-like outbreak in a coastal locality in Bangladesh. Findings of the study offer critical insights into the genome biology of V. cholerae O47 and its potential implications for understanding their ecology and epidemiology of cholera-like diseases.
Collapse
Affiliation(s)
- Mohammad Tarequl Islam
- International Centre for Diarrhoeal Disease Research, Bangladesh (iccdr,b), Dhaka, Bangladesh
| | - Jarin Tasnim
- International Centre for Diarrhoeal Disease Research, Bangladesh (iccdr,b), Dhaka, Bangladesh
| | - Rabeya Basri
- International Centre for Diarrhoeal Disease Research, Bangladesh (iccdr,b), Dhaka, Bangladesh
| | - Mohammad Nazmus Sakib
- International Centre for Diarrhoeal Disease Research, Bangladesh (iccdr,b), Dhaka, Bangladesh
| | - Wali Ullah
- International Centre for Diarrhoeal Disease Research, Bangladesh (iccdr,b), Dhaka, Bangladesh
| | - Kazi Sumaita Nahar
- International Centre for Diarrhoeal Disease Research, Bangladesh (iccdr,b), Dhaka, Bangladesh
| | - Abdus Sadique
- NSU Genome Research Institute, North South University, Dhaka, Bangladesh
| | - Marzia Sultana
- International Centre for Diarrhoeal Disease Research, Bangladesh (iccdr,b), Dhaka, Bangladesh
| | - Eiji Arakawa
- Department of Bacteriology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masatomo Morita
- Department of Bacteriology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Haruo Watanabe
- Department of Bacteriology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yann F. Boucher
- Saw Swee Hock School of Public Health, National University of Singapore, , Singapore
| | - Anwar Huq
- Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Rita R. Colwell
- Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
- Institute for Advanced Computer Studies and Department of Cell Biology and Molecular Biology, University of Maryland, College Park, Maryland, USA
| | - Munirul Alam
- International Centre for Diarrhoeal Disease Research, Bangladesh (iccdr,b), Dhaka, Bangladesh
| |
Collapse
|
2
|
Irenge LM, Ambroise J, Bearzatto B, Durant JF, Bonjean M, Wimba LK, Gala JL. Genomic evolution and rearrangement of CTX-Φ prophage elements in Vibrio cholerae during the 2018-2024 cholera outbreaks in eastern Democratic Republic of the Congo. Emerg Microbes Infect 2024; 13:2399950. [PMID: 39259213 PMCID: PMC11395875 DOI: 10.1080/22221751.2024.2399950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 09/12/2024]
Abstract
ABSTRACTBetween 2018 and 2024, we conducted systematic whole-genome sequencing and phylogenomic analysis on 263 V. cholerae O1 isolates from cholera patients across four provinces in the Democratic Republic of Congo (North-Kivu, South-Kivu, Tanganyika, and Kasai Oriental). These isolates were classified into the AFR10d and AFR10e sublineages of AFR10 lineage, originating from the third wave of the seventh El Tor cholera pandemic (7PET). Compared to the strains analysed between 2014 and 2017, both sublineages had few genetic changes in the core genome but recent isolates (2022-2024) had significant CTX prophage rearrangement. AFR10e spread across all four provinces, while AFR10d appeared to be extinct by the end of 2020. Since 2022, most V. cholerae O1 isolates exhibited significant CTX prophage rearrangements, including a tandem repeat of an environmental satellite phage RS1 downstream the ctxB toxin gene of the CTX-Φ-3 prophage on the large chromosome, as well as two or more arrayed copies of an environmental pre-CTX-Φ prophage precursor on the small chromosome. We used Illumina data for mapping and coverage estimation to identify isolates with unique CTX-Φ genomic features. Gene localization was then determined on MinION-derived assemblies, revealing an organization similar to that of non-O1 V. cholerae isolates found in Asia (O139 VC1374, and environmental O4 VCE232), but never described in V. cholerae O1 El Tor from the third wave. In conclusion, while the core genome of AFR10d and AFR10e showed minimal changes, significant alterations in the CTX-Φ and pre-CTX-Φ prophage content and organization were identified in AFR10e from 2022 onwards.
Collapse
Affiliation(s)
- Leonid M Irenge
- Centre for Applied Molecular Technologies, Institute of Clinical and Experimental Research, Université catholique de Louvain (UCLouvain), Woluwe-Saint-Lambert, Belgium
| | - Jérôme Ambroise
- Centre for Applied Molecular Technologies, Institute of Clinical and Experimental Research, Université catholique de Louvain (UCLouvain), Woluwe-Saint-Lambert, Belgium
| | - Bertrand Bearzatto
- Centre for Applied Molecular Technologies, Institute of Clinical and Experimental Research, Université catholique de Louvain (UCLouvain), Woluwe-Saint-Lambert, Belgium
| | - Jean-François Durant
- Centre for Applied Molecular Technologies, Institute of Clinical and Experimental Research, Université catholique de Louvain (UCLouvain), Woluwe-Saint-Lambert, Belgium
| | - Maxime Bonjean
- Centre for Applied Molecular Technologies, Institute of Clinical and Experimental Research, Université catholique de Louvain (UCLouvain), Woluwe-Saint-Lambert, Belgium
| | - Louisette K Wimba
- Institut Supérieur des Techniques Médicales/Bukavu, Bukavu, The Democratic Republic of the Congo
| | - Jean-Luc Gala
- Centre for Applied Molecular Technologies, Institute of Clinical and Experimental Research, Université catholique de Louvain (UCLouvain), Woluwe-Saint-Lambert, Belgium
| |
Collapse
|
3
|
Bote L, Taylor-Brown A, Maes M, Ingle DJ, Valcanis M, Howden BP, Thomson NR. Surveillance of travel-associated isolates elucidates the diversity of non-pandemic Vibrio cholerae. Microb Genom 2024; 10:001307. [PMID: 39412871 PMCID: PMC11900828 DOI: 10.1099/mgen.0.001307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/23/2024] [Indexed: 10/18/2024] Open
Abstract
Vibrio cholerae is a Gram-negative bacterium found in aquatic environments and is the aetiological agent of cholera, characterized by acute watery diarrhoea and severe dehydration. Cholera presents a significant global health burden of an estimated 1.3-5 million annual cases, with the current pandemic caused by a toxigenic lineage of the O1 El Tor biotype called seventh pandemic El Tor (7PET) that is still ongoing. Whilst it is known that non-7PET lineages can cause sporadic disease, little is known about the transmission of these non-epidemic lineages. Thirty-four V. cholerae isolates were obtained from travellers returning from Indonesia to Australia between 2005 and 2017. These were whole genome sequenced, placed into a global phylogenetic context with 883 isolates, and screened for known genes associated with antimicrobial resistance and virulence. This analysis revealed that 30 isolates fell within non-7PET lineages and four within the 7PET lineage. Both 7PET and non-7PET isolates carried genes for resistance to antibiotics that are commonly used in cholera treatment such as tetracyclines and fluoroquinolones. Diverse virulence factors were also present in non-7PET isolates, with two isolates notably carrying toxin-coregulated pilus genes, which are primarily responsible for intestinal colonization in 7PET V. cholerae. This study demonstrates the role of travel in long-range carriage of epidemic and non-epidemic lineages of V. cholerae, and how sentinel travel surveillance can enrich our knowledge of V. cholerae diversity, reveal new biology about the spread of diverse lineages with differing disease potential and illuminate disease presence in endemic regions with limited surveillance data.
Collapse
Affiliation(s)
- Lia Bote
- Wellcome Sanger Institute, Hinxton, UK
| | | | | | - Danielle J. Ingle
- The Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Mary Valcanis
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Benjamin P. Howden
- The Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Centre for Pathogen Genomics, The University of Melbourne, Melbourne, Australia
- Department of Infectious Diseases and Immunology, Austin Health, Heidelberg, Australia
| | - Nicholas R. Thomson
- Wellcome Sanger Institute, Hinxton, UK
- London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
4
|
Westerström P, Gabrielsen Ås C, Bak Dragsted U. Characterising virulence in a nontoxigenic non-O1/non-O139 Vibrio cholerae isolate imported from Vietnam. Heliyon 2024; 10:e37205. [PMID: 39309771 PMCID: PMC11416250 DOI: 10.1016/j.heliyon.2024.e37205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Vibrio cholerae is a major human pathogen that can cause life-threatening acute diarrhea. V. cholerae are classified according to O-antigen polysaccharide outer membrane properties, where the serotypes O1 and O139 are strains that cause pandemics and epidemics while non-O1/non-O139 usually cause mild disease. The dynamic evolution of V. cholerae involves acquisition of new virulence factors through horizontal gene transfer and formerly nontoxigenic serogroups are increasingly being reported to cause severe forms of human disease. In this study we have serotyped one isolate (ST588-CPH) of imported V. cholerae from Vietnam to Denmark and performed whole genome sequencing to identify known virulence genes and furthermore studied the pattern of virulence in closely related pathogenic strains of V. cholerae. ST558-CPH was found to be a non-O1/non-O139 strain. Initial analysis from the whole genome sequencing gave a 96,6 % match to the O139-specific wbfZ gene, but in a second analysis with a higher identification threshold, the wbfZ gene was absent. We suggest a "de novo" display of a database misannotation, which explains the conflicting results. The MLST analysis revealed that the isolate belongs to the nontoxigenic non-O1/non-O139 sequence type ST558. ST558 has recently been reported as a sequence type forming a cluster of ST's that should be monitored, as it has shown to have virulence causing moderate to severe illness. Our analysis of virulence genes identified MakA, a recently discovered toxin, which seems to be generally present in both toxigenic and nontoxigenic strains.
Collapse
Affiliation(s)
- Pontus Westerström
- Department of Medical Microbiology, Clinic of Laboratory Medicine, St. Olavs University Hospital, Trondheim, Norway
| | - Christina Gabrielsen Ås
- Department of Medical Microbiology, Clinic of Laboratory Medicine, St. Olavs University Hospital, Trondheim, Norway
| | - Ulrik Bak Dragsted
- Department for Multimorbidity, North Zealand Hospital, Hilleroed, Denmark
| |
Collapse
|
5
|
Xu Y, Zheng Z, Sun R, Ye L, Chan EWC, Chen S. Epidemiological and genetic characterization of multidrug-resistant non-O1 and non-O139 Vibrio cholerae from food in southern China. Int J Food Microbiol 2024; 418:110734. [PMID: 38759293 DOI: 10.1016/j.ijfoodmicro.2024.110734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/19/2024]
Abstract
This study reports a comprehensive epidemiological and genetic analysis of V. cholerae strains, specifically non-O1/non-O139 serogroups, isolated from animal-derived food samples in Guangdong province from 2015 to 2019. A total of 21 V. cholerae strains were obtained, which exhibited high resistance rates for nalidixic acid (57.14 %, 12/21), ampicillin (33.33 %, 7/21), and ciprofloxacin (19.05 %, 4/21). The quinolone resistance-related gene, qnrVC, was prevalent in 80.95 % (17/21) of the isolates. Additionally, chromosomally mediated quinolone-resistance mutations, including mutations in GyrA at position 83 (S83I) and ParC at position 85 (S85L), were detected in 47.62 % of the isolates. The combination of target mutation and qnrVC genes was shown to mediate resistance or intermediate resistance to ciprofloxacin in V. cholerae. Furthermore, an IncC-type conjugative plasmid carrying thirteen antibiotic resistance genes, including genes conferring resistance to two clinically important antibiotics, cephalosporins and fluoroquinolones, was identified in the shrimp-derived strain Vc516. While none of our food isolates harbored the toxigenic CTX- and TCP-encoding genes, they did possess genes encoding toxins such as HlyA and Autoinducer-2. Notably, some V. cholerae strains from this study exhibited a close genetic relationship with clinical strains, suggesting their potential to cause human infections. Taken together, this study provides a comprehensive view of the epidemiological features and genetic basis of antimicrobial resistance and virulence potential of V. cholerae strains isolated from food in southern China, thereby advancing our understanding of this important pathogen.
Collapse
Affiliation(s)
- Yating Xu
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong; State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Zhiwei Zheng
- State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, People's Republic of China
| | - Ruanyang Sun
- State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, People's Republic of China
| | - Lianwei Ye
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong; State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Edward Wai-Chi Chan
- State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Sheng Chen
- State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, People's Republic of China.
| |
Collapse
|
6
|
Ahmed AK, Sijercic VC, Akhtar MS, Elbayomy A, Marouf MA, Zeleke MS, Sayad R, Abdelshafi A, Laird NJ, El‐Mokhtar MA, Ruthig GR, Hetta HF. Cholera rages in Africa and the Middle East: A narrative review on challenges and solutions. Health Sci Rep 2024; 7:e2013. [PMID: 38742091 PMCID: PMC11089255 DOI: 10.1002/hsr2.2013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/27/2024] [Accepted: 03/12/2024] [Indexed: 05/16/2024] Open
Abstract
Background and Aim Cholera is a life-threatening infectious disease that is still one of the most common acute watery diarrheal diseases in the world today. Acute diarrhea and severe dehydration brought on by cholera can cause hypovolemic shock, which can be fatal in minutes. Without competent clinical therapy, the rate of case fatality surpasses 50%. The purpose of this review was to highlight cholera challenges in Africa and the Middle East and explain the reasons for why this region is currently a fertile environment for cholera. We investigated cholera serology, epidemiology, and the geographical distribution of cholera in Africa and the Middle East in 2022 and 2023. We reviewed detection methods, such as rapid diagnostic tests (RDTs), and treatments, such as antibiotics and phage therapy. Finally, this review explored oral cholera vaccines (OCVs), and the vaccine shortage crisis. Methods We carried out a systematic search in multiple databases, including PubMed, Web of Science, Google Scholar, Scopus, MEDLINE, and Embase, for studies on cholera using the following keywords: ((Cholera) OR (Vibrio cholera) and (Coronavirus) OR (COVID-19) OR (SARS-CoV2) OR (The Middle East) OR (Africa)). Results and Conclusions Cholera outbreaks have increased dramatically, mainly in Africa and many Middle Eastern countries. The COVID-19 pandemic has reduced the attention devoted to cholera and disrupted diagnosis and treatment services, as well as vaccination initiatives. Most of the cholera cases in Africa and the Middle East were reported in Malawi and Syria, respectively, in 2022. RDTs are effective in the early detection of cholera epidemics, especially with limited advanced resources, which is the case in much of Africa. By offering both direct and indirect protection, expanding the use of OCV will significantly reduce the burden of current cholera outbreaks in Africa and the Middle East.
Collapse
Affiliation(s)
| | | | | | - Ahmed Elbayomy
- Faculty of MedicineMansoura UniversityMansouraEgypt
- School of Medicine and Public HealthUniversity of Wisconsin−MadisonMadisonWisconsinUSA
| | - Mohamed A. Marouf
- Faculty of MedicineMansoura UniversityMansouraEgypt
- Department of Internal Medicine, Morsani College of MedicineUniversity of South FloridaTampaFloridaUSA
| | - Mahlet S. Zeleke
- Menelik II Medical and Health Science CollegeKotebe Metropolitan UniversityAddis AbabaEthiopia
| | - Reem Sayad
- Faculty of MedicineAssiut UniversityAssiutEgypt
| | | | | | - Mohamed A. El‐Mokhtar
- Gilbert & Rose‐Marie Chagoury School of MedicineLebanese American UniversityByblosLebanon
| | | | - Helal F. Hetta
- Division of Microbiology and Immunology, Department of Natural Products and Alternative Medicine, Faculty of PharmacyUniversity of TabukTabukSaudi Arabia
| |
Collapse
|
7
|
Roy S, Shah A, Singh V, Kumar H, Mukherjee D. The rise and fall of Vibrio cholerae O139. Trop Doct 2024; 54:9-10. [PMID: 37908075 DOI: 10.1177/00494755231209350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Affiliation(s)
- Shubhajeet Roy
- MBBS Student, Faculty of Medical Sciences, King George's Medical University, Lucknow, India
| | - Aditi Shah
- MBBS Student, Faculty of Medical Sciences, King George's Medical University, Lucknow, India
| | - Vaishali Singh
- MBBS Student, Faculty of Medical Sciences, King George's Medical University, Lucknow, India
| | - Harendra Kumar
- MBBS Student, Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Dattatreya Mukherjee
- Extern Physician, Internal Medicine, Raiganj Government Medical College and Hospital, Raiganj, India
| |
Collapse
|
8
|
Saha M, Pragasam AK, Kumari S, Verma J, Das B, Bhadra RK. Genomic and functional insights into antibiotic resistance genes floR and strA linked with the SXT element of Vibrio cholerae non-O1/non-O139. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001424. [PMID: 38180462 PMCID: PMC10866021 DOI: 10.1099/mic.0.001424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/15/2023] [Indexed: 01/06/2024]
Abstract
The emergence and spread of antibiotic-resistant bacterial pathogens are a critical public health concern across the globe. Mobile genetic elements (MGEs) play an important role in the horizontal acquisition of antimicrobial resistance genes (ARGs) in bacteria. In this study, we have decoded the whole genome sequences of multidrug-resistant Vibrio cholerae clinical isolates carrying the ARG-linked SXT, an integrative and conjugative element, in their large chromosomes. As in others, the SXT element has been found integrated into the 5'-end of the prfC gene (which encodes peptide chain release factor 3 involved in translational regulation) on the large chromosome of V. cholerae non-O1/non-O139 strains. Further, we demonstrate the functionality of SXT-linked floR and strAB genes, which confer resistance to chloramphenicol and streptomycin, respectively. The floR gene-encoded protein FloR belongs to the major facilitator superfamily efflux transporter containing 12 transmembrane domains (TMDs). Deletion analysis confirmed that even a single TMD of FloR is critical for the export function of chloramphenicol. The floR gene has two putative promoters, P1 and P2. Sequential deletions reveal that P2 is responsible for the expression of the floR. Deletion analysis of the N- and/or C-terminal coding regions of strA established their importance for conferring resistance against streptomycin. Interestingly, qPCR analysis of the floR and strA genes indicated that both of the genes are constitutively expressed in V. cholerae cells. Further, whole genome-based global phylogeography confirmed the presence of the integrative and conjugative element SXT in non-O1/non-O139 strains despite being non-multidrug resistant by lacking antimicrobial resistance (AMR) gene cassettes, which needs monitoring.
Collapse
Affiliation(s)
- Mousumi Saha
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology (CSIR), Kolkata-700032, India
| | - Agila Kumari Pragasam
- Centre for Microbial Research, Translational Health Science and Technology Institute, Faridabad-121001, Haryana, India
| | - Shashi Kumari
- Centre for Microbial Research, Translational Health Science and Technology Institute, Faridabad-121001, Haryana, India
| | - Jyoti Verma
- Centre for Microbial Research, Translational Health Science and Technology Institute, Faridabad-121001, Haryana, India
| | - Bhabatosh Das
- Centre for Microbial Research, Translational Health Science and Technology Institute, Faridabad-121001, Haryana, India
| | - Rupak K. Bhadra
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology (CSIR), Kolkata-700032, India
| |
Collapse
|
9
|
Kaisar MH, Kelly M, Kamruzzaman M, Bhuiyan TR, Chowdhury F, Khan AI, LaRocque RC, Calderwood SB, Harris JB, Charles RC, Čížová A, Mečárová J, Korcová J, Bystrický S, Kováč P, Xu P, Qadri F, Ryan ET. Comparison of O-specific polysaccharide responses in patients following infection with Vibrio cholerae O139 versus vaccination with a bivalent (O1/O139) oral killed cholera vaccine in Bangladesh. mSphere 2023; 8:e0025523. [PMID: 37646517 PMCID: PMC10597347 DOI: 10.1128/msphere.00255-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/05/2023] [Indexed: 09/01/2023] Open
Abstract
Cholera caused by Vibrio cholerae O139 emerged in the early 1990s and spread rapidly to 11 Asian countries before receding for unclear reasons. Protection against cholera is serogroup-specific, which is defined by the O-specific polysaccharide (OSP) component of lipopolysaccharide (LPS). V. cholerae O139 also expresses the OSP-capsule. We, therefore, assessed antibody responses targeting V. cholerae O139 OSP, LPS, capsule, and vibriocidal responses in patients in Bangladesh with cholera caused by V. cholerae O139. We compared these responses to those of age-gender-blood group-matched recipients of the bivalent oral cholera vaccine (OCV O1/O139). We found prominent OSP, LPS, and vibriocidal responses in patients, with a high correlation between these responses. OSP responses primarily targeted the terminal tetrasaccharide of OSP. Vaccinees developed OSP, LPS, and vibriocidal antibody responses, but of significantly lower magnitude and responder frequency (RF) than matched patients. We separately analyzed responses in pediatric vaccinees born after V. cholerae O139 had receded in Bangladesh. We found that OSP responses were boosted in children who had previously received a single dose of bivalent OCV 3 yr previously but not in vaccinated immunologically naïve children. Our results suggest that OSP-specific responses occur during cholera caused by V. cholerae O139 despite the presence of capsules, that vaccination with bivalent OCV is poorly immunogenic in the short term in immunologically naïve individuals, but that OSP-specific immune responses can be primed by previous exposure, although whether such responses can protect against O139 cholera is uncertain. IMPORTANCE Cholera is a severe dehydrating illness in humans caused by Vibrio cholerae serogroups O1 or O139. Protection against cholera is serogroup-specific, which is defined by the O-specific polysaccharide (OSP) of V. cholerae LPS. Yet, little is known about immunity to O139 OSP. In this study, we assessed immune responses targeting OSP in patients from an endemic region with cholera caused by V. cholerae O139. We compared these responses to those of the age-gender-blood group-matched recipients of the bivalent oral cholera vaccine. Our results suggest that OSP-specific responses occur during cholera caused by V. cholerae O139 and that the OSP responses primarily target the terminal tetrasaccharide of OSP. Our results further suggest that vaccination with the bivalent vaccine is poorly immunogenic in the short term for inducing O139-specific OSP responses in immunologically naïve individuals, but OSP-specific immune responses can be primed by previous exposure or vaccination.
Collapse
Affiliation(s)
- M. Hasanul Kaisar
- International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Meagan Kelly
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Mohammad Kamruzzaman
- International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Taufiqur R. Bhuiyan
- International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Fahima Chowdhury
- International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Ashraful Islam Khan
- International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Regina C. LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Stephen B. Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Jason B. Harris
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Division of Global Health, MassGeneral Hospital for Children, Boston, Massachusetts, USA
| | - Richelle C. Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Alžbeta Čížová
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jana Mečárová
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jana Korcová
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Chemical Theory of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia
| | - Slavomír Bystrický
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Pavol Kováč
- Laboratory of Bioorganic Chemistry (LBC), National Institute of Diabetes, Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, Maryland, USA
| | - Peng Xu
- Laboratory of Bioorganic Chemistry (LBC), National Institute of Diabetes, Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, Maryland, USA
| | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Edward T. Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Pragasam AK, Balaji V, Mutreja A. Understanding antimicrobial resistance to manage cholera. Nat Microbiol 2023; 8:1754-1755. [PMID: 37770746 DOI: 10.1038/s41564-023-01482-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Affiliation(s)
| | | | - Ankur Mutreja
- Department of Clinical Microbiology, Christian Medical College, Vellore, India.
- Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
11
|
Mehrotra T, Konar D, Pragasam AK, Kumar S, Jana P, Babele P, Paul D, Purohit A, Tanwar S, Bakshi S, Das S, Verma J, Talukdar D, Narendrakumar L, Kothidar A, Karmakar SP, Chaudhuri S, Pal S, Jain K, Srikanth CV, Sankar MJ, Atmakuri K, Agarwal R, Gaind R, Ballal M, Kammili N, Bhadra RK, Ramamurthy T, Nair GB, Das B. Antimicrobial resistance heterogeneity among multidrug-resistant Gram-negative pathogens: Phenotypic, genotypic, and proteomic analysis. Proc Natl Acad Sci U S A 2023; 120:e2305465120. [PMID: 37549252 PMCID: PMC10434301 DOI: 10.1073/pnas.2305465120] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/07/2023] [Indexed: 08/09/2023] Open
Abstract
Microbes evolve rapidly by modifying their genomes through mutations or through the horizontal acquisition of mobile genetic elements (MGEs) linked with fitness traits such as antimicrobial resistance (AMR), virulence, and metabolic functions. We conducted a multicentric study in India and collected different clinical samples for decoding the genome sequences of bacterial pathogens associated with sepsis, urinary tract infections, and respiratory infections to understand the functional potency associated with AMR and its dynamics. Genomic analysis identified several acquired AMR genes (ARGs) that have a pathogen-specific signature. We observed that blaCTX-M-15, blaCMY-42, blaNDM-5, and aadA(2) were prevalent in Escherichia coli, and blaTEM-1B, blaOXA-232, blaNDM-1, rmtB, and rmtC were dominant in Klebsiella pneumoniae. In contrast, Pseudomonas aeruginosa and Acinetobacter baumannii harbored blaVEB, blaVIM-2, aph(3'), strA/B, blaOXA-23, aph(3') variants, and amrA, respectively. Regardless of the type of ARG, the MGEs linked with ARGs were also pathogen-specific. The sequence type of these pathogens was identified as high-risk international clones, with only a few lineages being predominant and region-specific. Whole-cell proteome analysis of extensively drug-resistant K. pneumoniae, A. baumannii, E. coli, and P. aeruginosa strains revealed differential abundances of resistance-associated proteins in the presence and absence of different classes of antibiotics. The pathogen-specific resistance signatures and differential abundance of AMR-associated proteins identified in this study should add value to AMR diagnostics and the choice of appropriate drug combinations for successful antimicrobial therapy.
Collapse
Affiliation(s)
- Tanshi Mehrotra
- Infection and Immunology Division, Functional Genomics Laboratory, Centre for Microbial Research, Translational Health Science and Technology Institute, Faridabad121001, India
| | - Dipasri Konar
- Division of Diagnostic Laboratory, Jan Swasthya Sahyog, Ganiyari, Bilaspur495112, India
| | - Agila Kumari Pragasam
- Infection and Immunology Division, Functional Genomics Laboratory, Centre for Microbial Research, Translational Health Science and Technology Institute, Faridabad121001, India
| | - Shakti Kumar
- Infection and Immunology Division, Functional Genomics Laboratory, Centre for Microbial Research, Translational Health Science and Technology Institute, Faridabad121001, India
| | - Pradipta Jana
- Infection and Immunology Division, Functional Genomics Laboratory, Centre for Microbial Research, Translational Health Science and Technology Institute, Faridabad121001, India
| | - Prabhakar Babele
- Infection and Immunology Division, Functional Genomics Laboratory, Centre for Microbial Research, Translational Health Science and Technology Institute, Faridabad121001, India
| | - Deepjyoti Paul
- Infection and Immunology Division, Functional Genomics Laboratory, Centre for Microbial Research, Translational Health Science and Technology Institute, Faridabad121001, India
| | - Ayushi Purohit
- Infection and Immunology Division, Functional Genomics Laboratory, Centre for Microbial Research, Translational Health Science and Technology Institute, Faridabad121001, India
| | - Subhash Tanwar
- Multidisciplinary Clinical and Translational Research, Translational Health Science and Technology Institute, Faridabad121001, India
| | - Susmita Bakshi
- Infection and Immunology Division, Functional Genomics Laboratory, Centre for Microbial Research, Translational Health Science and Technology Institute, Faridabad121001, India
| | - Santanu Das
- Infection and Immunology Division, Functional Genomics Laboratory, Centre for Microbial Research, Translational Health Science and Technology Institute, Faridabad121001, India
| | - Jyoti Verma
- Infection and Immunology Division, Functional Genomics Laboratory, Centre for Microbial Research, Translational Health Science and Technology Institute, Faridabad121001, India
| | - Daizee Talukdar
- Infection and Immunology Division, Functional Genomics Laboratory, Centre for Microbial Research, Translational Health Science and Technology Institute, Faridabad121001, India
| | - Lekshmi Narendrakumar
- Infection and Immunology Division, Functional Genomics Laboratory, Centre for Microbial Research, Translational Health Science and Technology Institute, Faridabad121001, India
| | - Akanksha Kothidar
- Infection and Immunology Division, Functional Genomics Laboratory, Centre for Microbial Research, Translational Health Science and Technology Institute, Faridabad121001, India
| | - Sonali Porey Karmakar
- Infection and Immunology Division, Functional Genomics Laboratory, Centre for Microbial Research, Translational Health Science and Technology Institute, Faridabad121001, India
| | - Susmita Chaudhuri
- Multidisciplinary Clinical and Translational Research, Translational Health Science and Technology Institute, Faridabad121001, India
| | - Sujoy Pal
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi110029, India
| | - Kajal Jain
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi110029, India
| | - Chittur V. Srikanth
- Laboratory of Gut Infection and Inflammation Biology, Regional Centre for Biotechnology, Faridabad121001, India
| | - M. Jeeva Sankar
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi110029, India
| | - Krishnamohan Atmakuri
- Infection and Immunology Division, Functional Genomics Laboratory, Centre for Microbial Research, Translational Health Science and Technology Institute, Faridabad121001, India
| | - Ramesh Agarwal
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi110029, India
| | - Rajni Gaind
- Department of Microbiology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi110029, India
| | - Mamatha Ballal
- Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal576104, India
| | - Nagamani Kammili
- Department of Microbiology, Pathogen Biology Division, Gandhi Medical College and Hospital, Secunderabad500003, India
| | - Rupak K. Bhadra
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Kolkata700 032, India
| | - Thandavarayan Ramamurthy
- Infection and Immunology Division, Functional Genomics Laboratory, Centre for Microbial Research, Translational Health Science and Technology Institute, Faridabad121001, India
- Division of Bacteriology, Indian Council of Medical Research-National Institute of Cholera and Enteric Diseases, Kolkata700010, India
| | - G. Balakrish Nair
- Infection and Immunology Division, Functional Genomics Laboratory, Centre for Microbial Research, Translational Health Science and Technology Institute, Faridabad121001, India
- Pathogen Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram695014, India
| | - Bhabatosh Das
- Infection and Immunology Division, Functional Genomics Laboratory, Centre for Microbial Research, Translational Health Science and Technology Institute, Faridabad121001, India
| |
Collapse
|
12
|
Mittal M, Tripathi S, Saini A, Mani I. Phage for treatment of Vibrio cholerae infection. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 201:21-39. [PMID: 37770173 DOI: 10.1016/bs.pmbts.2023.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Bacteriophages (or "phages") are ubiquitous and the amplest biological entities on our planet. It is a natural enemy of bacteria. Cholera is one of the most known diseases to cause multiple pandemics around the world, killing millions of people. The pathogen of cholera is Vibrio species. Up until the emergence of multidrug resistance, preventive therapeutics like antibiotics were the most effective means of battling bacteria. Globally, one of the most significant challenges in treating microbial infections is the development of drug-resistant strains. Based on their antibacterial properties and unique characteristics, phages are being comprehensively evaluated taxonomically. Moreover, phage-based vaccination is evolving as one of the most encouraging preventive approaches. Due to this, its related research got remarkable recognition. However, due to the rapid emergence of bacterial resistance to antibiotics, the use of phages (phage therapy) could be a major motive for research because the most promising solution lies in bacteriophages. This chapter briefly highlights the promising use of bacteriophages to combat Vibrio-related infectious diseases.
Collapse
Affiliation(s)
- Milky Mittal
- Dr. B.R. Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi, India
| | - Surbhi Tripathi
- Dr. B.R. Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi, India
| | - Ashok Saini
- Department of Microbiology, Institute of Home Economics, University of Delhi, New Delhi, India.
| | - Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| |
Collapse
|
13
|
Dorman MJ, Thomson NR. Vibrio cholerae O37: one of the exceptions that prove the rule. Microb Genom 2023; 9:mgen000980. [PMID: 37043377 PMCID: PMC10210954 DOI: 10.1099/mgen.0.000980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 02/10/2023] [Indexed: 04/13/2023] Open
Abstract
Between 1965 and 1968, outbreaks of cholera in Sudan and former Czechoslovakia provoked considerable public health concern. These still represent important historical events that need to be linked to the growing genomic evidence describing the aetiological agent of cholera, Vibrio cholerae. Whilst O1 serogroup V. cholerae are canonically associated with epidemic and pandemic cholera, these events were caused by a clone of toxigenic V. cholerae O37 that may be more globally distributed than just to Europe and North Africa. Understanding the biology of these non-O1 strains of V. cholerae is key to understanding how diseases like cholera continue to be globally important. In this article, we consolidate epidemiological, molecular and genomic descriptions of the bacteria responsible for these outbreaks. We attempt to resolve discrepancies in order to summarize the history and provenance of as many commonly used serogroup O37 strains as possible. Finally, we highlight the potential for whole-genome sequencing of V. cholerae O37 isolates from strain collections to shed light on the open questions that we identify.
Collapse
Affiliation(s)
- Matthew J. Dorman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Churchill College, University of Cambridge, Storey’s Way, Cambridge, CB3 0DS, UK
| | - Nicholas R. Thomson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- London School of Hygiene and Tropical Medicine, Keppel St, Bloomsbury, London, WC1E 7HT, UK
| |
Collapse
|