1
|
Gao F, Zhou R, He Y, Zhang Y, Bao C, Feng G. Bio-Mimicking Nanoparticle System Facilitates Sonodynamic-Mediated Clearance of Extensively Drug-Resistant Bacteria. ACS Biomater Sci Eng 2025; 11:2988-3002. [PMID: 40294106 DOI: 10.1021/acsbiomaterials.4c02455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
The increasing prevalence of carbapenem-resistant and extensively drug-resistant Acinetobacter baumannii (XDR-Ab) poses a critical challenge in treating hospital-acquired pulmonary infections. In this study, we developed a biomimetic neutrophil membrane-coated nanoparticle system, NM@PCN-TIG, for the targeted delivery of tigecycline (TIG). The system utilizes the porphyrin-based metal-organic framework (MOF) PCN-224 as the core of the nanoparticle, encapsulating TIG and coated with a neutrophil membrane (NM) to enhance immune evasion and targeting of infection sites. Its loading efficiency, controlled release properties, cytotoxicity, and bactericidal activity under ultrasound mediation were systematically evaluated in vitro and in vivo. Our results demonstrated that NM@PCN-TIG significantly enhanced the bactericidal efficacy of TIG, increased reactive oxygen species (ROS) production, and promoted macrophage polarization toward an anti-inflammatory phenotype. This innovative biomimetic TIG nanosystem shows great potential as a platform for addressing XDR-Ab-induced pneumonia.
Collapse
Affiliation(s)
- Fenglin Gao
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Runlu Zhou
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Yucong He
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Yuanyuan Zhang
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Cui Bao
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Ganzhu Feng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, China
| |
Collapse
|
2
|
Wu L, Jin L, Zou X, He X, Dai Y, Huang J. Selenium-vacancy-mediated NiCoSe nanoplatforms with NIR-II amplified nanozymes for methicillin-resistant Staphylococcus aureus-infected pneumonia. Biomater Sci 2025. [PMID: 40230180 DOI: 10.1039/d5bm00188a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
The clinical management of bacterial pneumonia (BP) induced by multidrug-resistant (MDR) pathogens poses substantial therapeutic challenges, necessitating urgent development of novel antibacterial agents and treatment paradigms, particularly those targeting deep-tissue biofilms. While reactive oxygen species (ROS)-mediated nanozyme-catalyzed therapy represents a promising therapeutic strategy, its effectiveness remains limited by the suboptimal nanozyme biocatalytic efficiency and restricted therapeutic efficacy of monomodal approaches. To address these challenges, we engineered selenium vacancy-enriched nickel-cobalt selenide (NiCoSe) nanoplatforms demonstrating dual functional capabilities: exceptional biocatalytic performance and superior photothermal conversion efficiency within the second near-infrared window (NIR-II). Systematic evaluations revealed that the NiCoSe platform facilitates robust ROS generation, achieving potent bactericidal effects while synergistically accelerating biofilm eradication through NIR-II photothermal activation. This combined therapeutic modality establishes NiCoSe as a promising candidate for anti-infective treatment of MDR-BP. Our findings not only present an innovative strategy for combating deep-seated bacterial infections but also advance the translational potential of nanozyme-based therapeutics in clinical nanomedicine.
Collapse
Affiliation(s)
- Liqin Wu
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China.
- Department of Pulmonary Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| | - Lida Jin
- Department of Anesthesiology. The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xintong Zou
- Department of Anesthesiology. The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaojun He
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| | - Yuanrong Dai
- Department of Pulmonary Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| | - Jianan Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China.
| |
Collapse
|
3
|
Li F, Xu T, Fang D, Wang Z, Liu Y. Restoring tigecycline efficacy with lysine supplementation in tmexCD-toprJ-positive bacteria. Int J Antimicrob Agents 2025; 66:107511. [PMID: 40246209 DOI: 10.1016/j.ijantimicag.2025.107511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/28/2025] [Accepted: 04/07/2025] [Indexed: 04/19/2025]
Abstract
OBJECTIVES Antimicrobial resistance is one of the most pressing challenges to global public health. Tigecycline, a last-resort antibiotic, has been undermined by the emergence of the tmexCD1-toprJ1 gene cluster, a transferable RND-type efflux pump that confers resistance. Metabolite-enabled killing of antibiotic-resistant pathogens by antibiotics is an attractive strategy to tackle antibiotic resistance. METHODS The potentiation of lysine to tigecycline was evaluated through a series of in vitro studies, including bacterial viability assays, time-kill kinetics analysis, persister assays, and biofilm eradication experiments, as well as in vivo assessment using a murine systemic infection model. The underlying mechanisms of action were further explored through transcriptomic profiling and biochemical validation. RESULTS Herein, we show that lysine synergistically enhances the antibacterial efficacy of tigecycline against tmexCD-toprJ-positive bacteria. Mechanistic studies indicate that lysine supplementation promotes tigecycline uptake by upregulating ∆pH and disrupting membrane permeability. Transcriptomic analysis, coupled with phenotypic experiments, indicates that lysine not only triggers the generation of reactive oxygen species (ROS) by inhibiting hydrogen sulfide (H2S) production but also downregulates energy metabolism pathways essential for efflux pump function. These effects promote intracellular accumulation of tigecycline, thereby overcoming tmexCD-toprJ-mediated resistance. In mouse infection models, the combination of lysine and tigecycline shows improved therapeutic efficacy compared to tigecycline monotherapy. CONCLUSION Collectively, our findings indicate that lysine can serve as a promising tigecycline booster to tackle infections caused by tmexCD-toprJ-positive bacteria.
Collapse
Affiliation(s)
- Fulei Li
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Tianqi Xu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Dan Fang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhiqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China.
| | - Yuan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, China.
| |
Collapse
|
4
|
Wu F, Wang Y, Li Y, Shi L, Yuan L, Ren Y, van der Mei HC, Liu Y. Single-Atom Cu Anchored on Carbon Nitride as a Bifunctional Glucose Oxidase and Peroxidase Nanozyme for Antibacterial Therapy. ACS NANO 2025; 19:10816-10828. [PMID: 40087138 PMCID: PMC11948616 DOI: 10.1021/acsnano.4c12348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 03/06/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
A very promising strategy to avoid bacterial drug resistance is to replace antibiotics with artificial nanozymes, but this has not yet been translated to the clinic. Here, we construct a single-atom nanozyme using graphitic carbon nitride nanosheets modified by copper (Cu-g-C3N4). This Cu-g-C3N4 nanosheet possesses both glucose oxidase-like and peroxidase-like activities responsible for reactive-oxygen-species generation by a cascade reaction to eradicate Gram-positive and Gram-negative multidrug-resistant bacteria. Cu-g-C3N4 is introduced into polycaprolactone (PCL) by electrospinning to obtain (Cu-g-C3N4/PCL) nanofibers, which can be used as a dressing for bacterially infected wounds. It is demonstrated that Cu-g-C3N4/PCL nanofiber dressings can eradicate bacterial infections and accelerate wound healing in a mouse model with a skin wound.
Collapse
Affiliation(s)
- Fan Wu
- Translational
Medicine Laboratory, the First Affiliated
Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Department
of Biomaterials & Biomedical Technology, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, The Netherlands
- State Key
Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional
Polymer Materials, Ministry of Education, Institute of Polymer Chemistry,
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yaran Wang
- Translational
Medicine Laboratory, the First Affiliated
Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Department
of Biomaterials & Biomedical Technology, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, The Netherlands
- State Key
Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional
Polymer Materials, Ministry of Education, Institute of Polymer Chemistry,
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yuanfeng Li
- Translational
Medicine Laboratory, the First Affiliated
Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Linqi Shi
- State Key
Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional
Polymer Materials, Ministry of Education, Institute of Polymer Chemistry,
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Lu Yuan
- Department
of Biomaterials & Biomedical Technology, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, The Netherlands
| | - Yijin Ren
- Department
of Orthodontics, University of Groningen
and University Medical Center Groningen, Hanzeplein 1, Groningen 9700 RB, The Netherlands
| | - Henny C. van der Mei
- Department
of Biomaterials & Biomedical Technology, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, The Netherlands
| | - Yong Liu
- Translational
Medicine Laboratory, the First Affiliated
Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- State Key
Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional
Polymer Materials, Ministry of Education, Institute of Polymer Chemistry,
College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
5
|
Jin SS, Wang WQ, Jiang YH, Yu YT, Wang RL. A Comprehensive Overview of Klebsiella Pneumoniae: Resistance Dynamics, Clinical Manifestations, and Therapeutic Options. Infect Drug Resist 2025; 18:1611-1628. [PMID: 40162036 PMCID: PMC11954396 DOI: 10.2147/idr.s502175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/20/2025] [Indexed: 04/02/2025] Open
Abstract
Klebsiella pneumoniae (Kp) is a notable pathogen responsible for various infections. The emergence of hypervirulent and carbapenem-resistant strains has raised global concern. Many novel approaches were developed to combat the current severe situation of antibiotic resistance, and clinical guidelines have also provided corresponding recommendations. This review highlights the critical aspects of Kp, including classification, virulence factors, systemic dissemination, drug resistance progression and the new therapeutic strategies to combat this evolving threat.
Collapse
Affiliation(s)
- Shan-Shan Jin
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, People’s Republic of China
- Department of Critical Care Medicine, Shanghai General Hospital of Nanjing Medical University, Shanghai, People’s Republic of China
| | - Wei-Qin Wang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, People’s Republic of China
| | - Yi-Han Jiang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, People’s Republic of China
| | - Yue-Tian Yu
- Department of Critical Care Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Rui-Lan Wang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, People’s Republic of China
- Department of Critical Care Medicine, Shanghai General Hospital of Nanjing Medical University, Shanghai, People’s Republic of China
| |
Collapse
|
6
|
Chen Y, Xu M, Pan J, Liao Y, Na J, Li P, Sun Y, Yu S, Zhao Y, Hu H. Moxifloxacin-Loaded Polymeric Nanoparticles for Overcoming Multidrug Resistance in Chronic Pulmonary Infections Caused by Pseudomonas aeruginosa. ACS APPLIED MATERIALS & INTERFACES 2025; 17:5695-5709. [PMID: 39804842 DOI: 10.1021/acsami.4c14991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) infections are increasingly challenging due to their propensity to form biofilms and low outer membrane permeability, especially in chronically infected patients with thick mucus. P. aeruginosa exhibits multiple drug resistance mechanisms, making it one of the most significant global public health threats. In this study, we found that moxifloxacin (MXC) and antibacterial peptides (ε-poly-l-lysine, ε-PLL) exhibited a synergistic effect against multidrug-resistant P. aeruginosa (MDR-P. aeruginosa). MXC was combined with ε-PLL to prepare lipase-responsive nanoparticles (MCIP/(PEG-PCL)/PLL NPs) with a weakly negative charge. The weakly negatively charged MCIP/(PEG-PCL)/PLL NPs demonstrated remarkable mucus and biofilm penetration capabilities, thereby overcoming one of the adaptive drug resistance mechanisms. MCIP/(PEG-PCL)/PLL NPs improved the outer and inner membrane permeability and inhibited the expression of the efflux pump MexAB-OprM gene in MDR-P. aeruginosa, thereby overcoming mechanisms of both intrinsic and acquired drug resistance. Meanwhile, the nanoparticles demonstrated an ability to reduce repeated infections with MDR-P. aeruginosa. Additionally, the bacterial burden in the lungs of mice treated with MCIP/(PEG-PCL)/PLL NPs was significantly lower than that in the MXC group, resulting in a 99% clearance rate. Notably, MCIP/(PEG-PCL)/PLL NPs showed no toxicity toward BEAS-2B cells or RAW 267.4 cells, nor did they adversely affect pulmonary function or major organs. This study demonstrated the potential of the nanodrug delivery system composed of the antibiotic moxifloxacin and the antibacterial peptide ε-PLL in addressing the clinical challenges of treating chronic pulmonary infections caused by MDR-P. aeruginosa.
Collapse
Affiliation(s)
- Yujun Chen
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Mao Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jieyi Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuan Liao
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jintong Na
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Pengyu Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yingying Sun
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shihui Yu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yongxiang Zhao
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Haiyan Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
7
|
Yang F, Mo D, Wu B, Chen J, Liu Q, Chen W, Pang J, Wang W, Jing X, Xiong Y, Yang N, Xu Y, Li Y, Huang Y, Mo L, He J. Photo-controlled multifunctional hydrogel for photothermal sterilization and microenvironment amelioration of infected diabetic wounds. J Control Release 2025; 377:470-484. [PMID: 39580077 DOI: 10.1016/j.jconrel.2024.11.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024]
Abstract
Diabetic foot ulcers are linked to a high disability rate, with no effective treatment currently available. Addressing infection, reducing oxidative stress, and safely managing chronic inflammation remain major challenges. In this study, a composite hydrogel dressing was developed using natural substances or clinically approved components (dopamine, D-alpha-tocopheryl polyethylene glycol succinate, and rhein). Upon near-infrared laser irradiation, the composite system rapidly heats and solidifies into a gel with photothermal antibacterial properties. Additionally, the decomposition of hydrogen peroxide releases oxygen, alleviating wound hypoxia. The hydrogel exhibited strong bactericidal activity against multiple bacterial strains. Without laser irradiation, the hydrogel effectively scavenged various free radicals and intracellular reactive oxygen species, restoring redox balance. Furthermore, it significantly reduced the expression of inflammatory cytokines, including interleukin-6 and interleukin-1β. In a diabetic mouse wound model infected with S. aureus, the mild photothermal therapy, combined with the antibacterial action of rhein, effectively managed bacterial infections, reduced inflammation, and promoted wound healing. Consequently, the photo-controlled therapeutic approach, offering antibacterial, antioxidant, and anti-inflammatory effects, holds promise for the effective treatment and management of infected diabetic wounds.
Collapse
Affiliation(s)
- Fan Yang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Dong Mo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Beibei Wu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jiahao Chen
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qinhui Liu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Wenfei Chen
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Juan Pang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Wenjing Wang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiandan Jing
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yimin Xiong
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Na Yang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yining Xu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yanping Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Mo
- Center of Gerontology and Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Jinhan He
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
8
|
Meng J, Zhang L, Tuo X, Ding Y, Chen K, Li M, Chen B, Long Q, Wang Z, Ouyang G, Zhou X, Yang S. Activity-based protein profiling guided new target identification of quinazoline derivatives for expediting bactericide discovery: Activity-based protein profiling derived new target discovery of antibacterial quinazolines. J Adv Res 2024:S2090-1232(24)00435-1. [PMID: 39389307 DOI: 10.1016/j.jare.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/11/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024] Open
Abstract
INTRODUCTION The looming antibiotic-resistance problem has imposed an enormous crisis on global public health and agricultural development. Even worse, the evolution and widespread distribution of antibiotic-resistance elements in bacterial pathogens have made the resurgence of diseases that were once easily treatable deadly again. The development of antibiotics with novel mechanisms of action is urgently required. OBJECTIVES Inspired by charming activity-based protein profiling (ABPP) technology and increasing attention to quinazolines in the development of antibacterial agents, this study engineered a series of new quinazoline derivatives, assessed their antibacterial profiles, and first identified the possible target. METHODS The target identification and their possible binding sites were verified by ABPP technology, molecular docking, and molecular dynamic simulations. The fatty acid synthesis process was analyzed by gas chromatography, propidium iodide staining, and scanning electron microscopy. The physicochemical properties and fungicide-likeness were evaluated using the Fungicide Physicochemical-properties Analysis Database. RESULTS Compound 7a, an acrylamide-functionalized quinazoline derivative, exhibited excellent antibacterial potency against Xanthomonas oryzae pv. oryzae with an EC50 value of 13.20 µM. More importantly, ABPP technology showed that β-ketoacyl-ACP-synthase Ⅱ (FabF) was the first identified quinazolines' potential target. Compound 7a could selectively bind to the Cys151 residue of FabF through covalent interaction, suppress fatty acid biosynthesis, and damage the cell membrane integrity, thereby killing the bacteria. The pot experiment results showed that compound 7a demonstrated protective and curative values of 49.55 % and 47.46 %, surpassing controls bismerthiazol and thiodiazole copper. Finally, compound 7a exhibited low toxicity towards non-target organisms. These unprecedented performances contributed to excavating new quinazoline-based bactericidal agents. CONCLUSION Our research highlights the superiority of ABPP technology, for the first time, identifies the target of engineered quinazolines in pathogenic bacteria, and their potential target fished by ABPP tools holds great promise for the development of quinazoline-based and/or FabF-targeted bactericides.
Collapse
Affiliation(s)
- Jiao Meng
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Ling Zhang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xinxin Tuo
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yue Ding
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Kunlun Chen
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Mei Li
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Biao Chen
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Qingsu Long
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhenchao Wang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China; School of Pharmaceutical Sciences, Guizhou University, Huaxi District, Guiyang 550025, China.
| | - Guiping Ouyang
- School of Pharmaceutical Sciences, Guizhou University, Huaxi District, Guiyang 550025, China.
| | - Xiang Zhou
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Song Yang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| |
Collapse
|
9
|
Liu L, Deng K, Zeng Z, Zou D, Xu Y, Liu Y, Guo B, Li Y, Xu X. Interrupting Antibiotic Resistance Transmission via Natural Product-Embedded Lipopeptide–Polymeric Nanoblockers. ACS MATERIALS LETTERS 2024; 6:4461-4471. [DOI: 10.1021/acsmaterialslett.4c00840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Liguo Liu
- Department of Pharmacy, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Kefurong Deng
- Department of Pharmacy, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Zenan Zeng
- Department of Pharmacy, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Dongzhe Zou
- Department of Pharmacy, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Yini Xu
- Department of Pharmacy, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Yiming Liu
- Department of Pharmacy, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Beiling Guo
- Department of Pharmacy, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Yachao Li
- Department of Pharmacy, College of Biology, Hunan University, Changsha, Hunan 410082, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan 410082, China
| | - Xianghui Xu
- Department of Pharmacy, College of Biology, Hunan University, Changsha, Hunan 410082, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
10
|
Zhu J, Chen T, Ju Y, Dai J, Zhuge X. Transmission Dynamics and Novel Treatments of High Risk Carbapenem-Resistant Klebsiella pneumoniae: The Lens of One Health. Pharmaceuticals (Basel) 2024; 17:1206. [PMID: 39338368 PMCID: PMC11434721 DOI: 10.3390/ph17091206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The rise of antibiotic resistance and the dwindling antimicrobial pipeline have emerged as significant threats to public health. The emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) poses a global threat, with limited options available for targeted therapy. The CRKP has experienced various changes and discoveries in recent years regarding its frequency, transmission traits, and mechanisms of resistance. In this comprehensive review, we present an in-depth analysis of the global epidemiology of K. pneumoniae, elucidate resistance mechanisms underlying its spread, explore evolutionary dynamics concerning carbapenem-resistant hypervirulent strains as well as KL64 strains of K. pneumoniae, and discuss recent therapeutic advancements and effective control strategies while providing insights into future directions. By going through up-to-date reports, we found that the ST11 KL64 CRKP subclone with high risk demonstrated significant potential for expansion and survival benefits, likely due to genetic influences. In addition, it should be noted that phage and nanoparticle treatments still pose significant risks for resistance development; hence, innovative infection prevention and control initiatives rooted in One Health principles are advocated as effective measures against K. pneumoniae transmission. In the future, further imperative research is warranted to comprehend bacterial resistance mechanisms by focusing particularly on microbiome studies' application and implementation of the One Health strategy.
Collapse
Affiliation(s)
- Jiaying Zhu
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226019, China
| | - Taoyu Chen
- Department of Orthopaedics, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Yanmin Ju
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jianjun Dai
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangkai Zhuge
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226019, China
| |
Collapse
|
11
|
Huang J, Hong X, Chen S, He Y, Xie L, Gao F, Zhu C, Jin X, Yan H, Ye Y, Shao M, Du X, Feng G. Biomimetic Metal-Organic Framework Gated Nanoplatform for Sonodynamic Therapy against Extensively Drug Resistant Bacterial Lung Infection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402473. [PMID: 38962911 PMCID: PMC11434100 DOI: 10.1002/advs.202402473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/03/2024] [Indexed: 07/05/2024]
Abstract
Novel antimicrobial strategies are urgently needed to treat extensively drug-resistant (XDR) bacterial infections due to the high mortality rate and lack of effective therapeutic agents. Herein, nanoengineered human umbilical cord mesenchymal stem cells (hUC-MSCs), named PMZMU, are designed as a sonosensitizer for synergistic sonodynamic-nano-antimicrobial therapy against gram-negative XDR bacteria. PMZMU is composed of a bacterial targeting peptide (UBI29-41) modified hUC-MSCs membrane (MSCm), a sonosensitizer meso-tetra(4-car-boxyphenyl) porphine doped mesoporous organo-silica nanoparticle and an acidity-responsive metal-organic framework ZIF-8. This innovative formulation enables efficient loading of polymyxin B, reduces off-target drug release, increases circulation and targeting efficacy, and generates reactive oxygen species upon ultrasound irradiation. PMZMU exhibits remarkable in vitro inhibitory activity against four XDR bacteria: Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa (PA), and Escherichia coli. Taking advantage of the bacterial targeting ability of UBI29-41 and the inflammatory chemotaxis of hUC-MSC, PMZMU can be precisely delivered to lung infection sites thereby augmenting polymyxin B concentration. PMZMU-mediated sonodynamic therapy significantly reduces bacterial burden, relieves inflammatory damage by promoting the polarization of macrophages toward M2 phenotype, and improves survival rates without introducing adverse events. Overall, this study offers promising strategies for treating deep-tissue XDR bacterial infections, and guides the design and optimization of biomimetic nanomedicine.
Collapse
Affiliation(s)
- Jianling Huang
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Xiuwen Hong
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Sixi Chen
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Yucong He
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Lixu Xie
- Department of Pulmonary and Critical Care Medicine, Qi Lu Hospital of Shandong University, Wen hua xi Road 107#, Jinan, 250012, China
| | - Fenglin Gao
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Chenghua Zhu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Xiao Jin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Haihao Yan
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Yongxia Ye
- Department of Radiology, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, 210009, China
| | - Mingyue Shao
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Xingran Du
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, 211100, China
| | - Ganzhu Feng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| |
Collapse
|
12
|
Bu Q, Jiang D, Yu Y, Deng Y, Chen T, Xu L. Surface chemistry engineered selenium nanoparticles as bactericidal and immuno-modulating dual-functional agents for combating methicillin-resistant Staphylococcus aureus Infection. Drug Resist Updat 2024; 76:101102. [PMID: 38936006 DOI: 10.1016/j.drup.2024.101102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/26/2024] [Accepted: 06/09/2024] [Indexed: 06/29/2024]
Abstract
Because of the extremely complexed microenvironment of drug-resistant bacterial infection, nanomaterials with both bactericidal and immuno-modulating activities are undoubtedly the ideal modality for overcoming drug resistance. Herein, we precisely engineered the surface chemistry of selenium nanoparticles (SeNPs) using neutral (polyvinylpyrrolidone-PVP), anionic (letinan-LET) and cationic (chitosan-CS) surfactants. It was found that surface chemistry greatly influenced the bioactivities of functionalized SeNPs, their interactions with methicillin-resistant Staphylococcus aureus (MRSA), immune cells and metabolisms. LET-functionalized SeNPs with distinct metabolisms exhibited the best inhibitory efficacy compared to other kinds of SeNPs against MRSA through inducing robust ROS generation and damaging bacterial cell wall. Meanwhile, only LET-SeNPs could effectively activate natural kill (NK) cells, and enhance the phagocytic capability of macrophages and its killing activity against bacteria. Furthermore, in vivo studies suggested that LET-SeNPs treatment highly effectively combated MRSA infection and promoted wound healing by triggering much more mouse NK cells, CD8+ and CD4+ T lymphocytes infiltrating into the infected area at the early stage to efficiently eliminate MRSA in the mouse model. This study demonstrates that the novel functionalized SeNP with dual functions could serve as an effective antibacterial agent and could guide the development of next generation antibacterial agents.
Collapse
Affiliation(s)
- Qingyue Bu
- Department of Intensive Care Unit, The First Affiliated Hospital, Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou 510632, China
| | - Dan Jiang
- Department of Intensive Care Unit, The First Affiliated Hospital, Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou 510632, China
| | - Yangyang Yu
- Department of Intensive Care Unit, The First Affiliated Hospital, Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou 510632, China
| | - Yunqing Deng
- Department of Intensive Care Unit, The First Affiliated Hospital, Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou 510632, China
| | - Tianfeng Chen
- Department of Intensive Care Unit, The First Affiliated Hospital, Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou 510632, China.
| | - Ligeng Xu
- Department of Intensive Care Unit, The First Affiliated Hospital, Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
13
|
de Melo ALF, Rossato L, Velasques J, de Sousa VL, Pina Rodrigues GV, Cardoso CAL, Arantes JP, Lima BF, Simionatto S. Polymyxin combined with Ocimum gratissimum essential oil: one alternative strategy for combating polymyxin-resistant Klebsiella pneumoniae. J Med Microbiol 2024; 73. [PMID: 39292222 DOI: 10.1099/jmm.0.001891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Introduction. Multidrug-resistant infections present a critical public health due to scarce treatment options and high mortality. Ocimum gratissimum L. essential oil (O.geo) is a natural resource rich in eugenol known for its antimicrobial activity.Hypothesis/Gap Statement. O.geo may exert effective antimicrobial activity against polymyxin-resistant Klebsiella pneumoniae and, when combined with Polymyxin B (PMB), may exhibit a synergistic effect, enhancing treatment efficacy and reducing antimicrobial resistance.Aim. This study aims to investigate the antimicrobial activity of O.geo against polymyxin-resistant K. pneumoniae using in vitro tests and an in vivo Caenorhabditis elegans model.Methodology. The O.geo was obtained by hydrodistillation followed by gas chromatography. The MIC and antibiofilm activity were determined using broth microdilution. Checkerboard and time-kill assays evaluated the combination of O.geo and polymyxin B (PMB), whereas a protein leakage assay verified its action.Results. Eugenol (39.67%) was a major constituent identified. The MIC of the O.geo alone ranged from 128 to 512 µg ml-1. The fractional inhibitory concentration index (0.28) and time-kill assay showed a synergism. In addition, O.geo and PMB inhibited biofilm formation and increased protein leakage in the plasma membrane. The treatment was tested in vivo using a Caenorhabditis elegans model, and significantly increased survival without toxicity was observed.Conclusion. O.geo could be used as a potential therapeutic alternative to combat infections caused by multidrug-resistant bacteria, especially in combination with PMB.
Collapse
Affiliation(s)
- Andressa Leite Ferraz de Melo
- Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados - UFGD, Dourados, Mato Grosso do Sul, Brazil
| | - Luana Rossato
- Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados - UFGD, Dourados, Mato Grosso do Sul, Brazil
| | - Jannaína Velasques
- Centro de Formação em Ciências Agroflorestais, Universidade Federal do Sul da Bahia - UFSB, Itabuna, Bahia, Brazil
| | - Virginia Lopes de Sousa
- Centro de Formação em Ciências Agroflorestais, Universidade Federal do Sul da Bahia - UFSB, Itabuna, Bahia, Brazil
| | | | | | - Julia Pimentel Arantes
- Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados - UFGD, Dourados, Mato Grosso do Sul, Brazil
| | - Bruno Fernandes Lima
- Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados - UFGD, Dourados, Mato Grosso do Sul, Brazil
| | - Simone Simionatto
- Present address: Itahum km 12, Cidade Universitária, CEP: 79804970, Dourados, Mato Grosso do Sul, Brazil
| |
Collapse
|
14
|
Yi S, Wei M, Li F, Liu X, Fan Q, Lu H, Wu Y, Liu Y, Tian J, Zhang M. In-situ enrichment of ARGs and their carriers in soil by hydroxamate siderophore: A promising biocontrol approach for source reduction. ENVIRONMENT INTERNATIONAL 2024; 190:108915. [PMID: 39084127 DOI: 10.1016/j.envint.2024.108915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/04/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
Pathogenic microorganisms with antibiotic resistance genes (ARGs) pose a serious threat to public health and soil ecology. Although new drugs and available antibacterial materials can kill ARG carriers but accidentally kill beneficial microorganisms. Therefore, the rapid enrichment and separation of ARGs and their carriers from soil is becoming an important strategy for controlling the diffusion of ARGs. Hydroxamate siderophore (HDS) has gained widespread attentions for its involvement in trace element transfer among microorganisms in the soil environment, we thus explored an in-situ trapping-enrichment method for ARGs and their carriers via a small molecular HDS secreted by Pseudomonas fluorescens HMP01. In this study, we demonstrate that HDS significantly in-situ traps and enriches certain ARGs, including chloramphenicol, MLS, rifamycin, and tetracycline resistance genes in the soil environment. The enrichment efficiencies were 1473-fold, 38-fold, 17-fold, and 5-fold, respectively, higher than those in the control group. Specifically, the primary enriched ARGs were rpoB, mphL, catB2, and tetA(60), and Bacillus, Rhizobium, Rossellomorea, and Agrobacterium were hosts for these ARGs. This enrichment was caused by the upregulation of chemotaxis genes (e.g., cheW, cheC, and cheD) and rapid biofilm formation within the enriched bacterial population. Notably, representative ARGs such as cat, macB, and rpoB were significantly reduced by 36%, 85.7%, and 72%, respectively, in the paddy soil after HDS enrichment. Our research sheds light on the potential application of siderophore as a rapping agent for the eco-friendly reduction of ARGs and their carriers in soil environments.
Collapse
Affiliation(s)
- Shengwei Yi
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China
| | - Ming Wei
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China
| | - Feng Li
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China
| | - Xingang Liu
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China
| | - Qingqing Fan
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China
| | - Hainan Lu
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Yujun Wu
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China
| | - Yun Liu
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China
| | - Jiang Tian
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China
| | - Ming Zhang
- Department of Environmental Engineering, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
15
|
Zhuang F, Jing L, Xiang H, Li C, Lu B, Yan L, Wang J, Chen Y, Huang B. Engineering Photothermal Catalytic CO 2 Nanoreactor for Osteomyelitis Treatment by In Situ CO Generation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402256. [PMID: 38650112 PMCID: PMC11220635 DOI: 10.1002/advs.202402256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/05/2024] [Indexed: 04/25/2024]
Abstract
Photocatalytic carbon dioxide (CO2) reduction is an effective method for in vivo carbon monoxide (CO) generation for antibacterial use. However, the available strategies mainly focus on utilizing visible-light-responsive photocatalysts to achieve CO generation. The limited penetration capability of visible light hinders CO generation in deep-seated tissues. Herein, a photothermal CO2 catalyst (abbreviated as NNBCs) to achieve an efficient hyperthermic effect and in situ CO generation is rationally developed, to simultaneously suppress bacterial proliferation and relieve inflammatory responses. The NNBCs are modified with a special polyethylene glycol and further embellished by bicarbonate (BC) decoration via ferric ion-mediated coordination. Upon exposure to 1064 nm laser irradiation, the NNBCs facilitated efficient photothermal conversion and in situ CO generation through photothermal CO2 catalysis. Specifically, the photothermal effect accelerated the decomposition of BC to produce CO2 for photothermal catalytic CO production. Benefiting from the hyperthermic effect and in situ CO production, in vivo assessments using an osteomyelitis model confirmed that NNBCs can simultaneously inhibit bacterial proliferation and attenuate the photothermal effect-associated pro-inflammatory response. This study represents the first attempt to develop high-performance photothermal CO2 nanocatalysts to achieve in situ CO generation for the concurrent inhibition of bacterial growth and attenuation of inflammatory responses.
Collapse
Affiliation(s)
- Fan Zhuang
- Department of UltrasoundZhongshan HospitalFudan Universityand Shanghai Institute of Medical ImagingShanghai200032P. R. China
| | - Luxia Jing
- Department of UltrasoundZhongshan HospitalFudan Universityand Shanghai Institute of Medical ImagingShanghai200032P. R. China
| | - Huijing Xiang
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Cuixian Li
- Department of UltrasoundZhongshan HospitalFudan Universityand Shanghai Institute of Medical ImagingShanghai200032P. R. China
| | - Beilei Lu
- Department of UltrasoundZhongshan HospitalFudan Universityand Shanghai Institute of Medical ImagingShanghai200032P. R. China
| | - Lixia Yan
- Department of UltrasoundZhongshan HospitalFudan Universityand Shanghai Institute of Medical ImagingShanghai200032P. R. China
| | - Jingjing Wang
- Department of UltrasoundZhongshan HospitalFudan Universityand Shanghai Institute of Medical ImagingShanghai200032P. R. China
| | - Yu Chen
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative MedicineVision and Brain Health)Wenzhou Institute of Shanghai UniversityWenzhouZhejiang325088P. R. China
- Shanghai Institute of MaterdicineShanghai200051P. R. China
| | - Beijian Huang
- Department of UltrasoundZhongshan HospitalFudan Universityand Shanghai Institute of Medical ImagingShanghai200032P. R. China
| |
Collapse
|
16
|
Yang J, Xu L, Zhou Y, Cui M, Liu D, Wang J, Wang Y, Deng X. Repurposing harmaline as a novel approach to reverse tmexCD1-toprJ1-mediated tigecycline resistance against klebsiella pneumoniae infections. Microb Cell Fact 2024; 23:152. [PMID: 38790017 PMCID: PMC11127330 DOI: 10.1186/s12934-024-02410-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND A novel plasmid-mediated resistance-nodulation-division (RND) efflux pump gene cluster tmexCD1-toprJ1 in Klebsiella pneumoniae tremendously threatens the use of convenient therapeutic options in the post-antibiotic era, including the "last-resort" antibiotic tigecycline. RESULTS In this work, the natural alkaloid harmaline was found to potentiate tigecycline efficacy (4- to 32-fold) against tmexCD1-toprJ1-positive K. pneumoniae, which also thwarted the evolution of tigecycline resistance. Galleria mellonella and mouse infection models in vivo further revealed that harmaline is a promising candidate to reverse tigecycline resistance. Inspiringly, harmaline works synergistically with tigecycline by undermining tmexCD1-toprJ1-mediated multidrug resistance efflux pump function via interactions with TMexCD1-TOprJ1 active residues and dissipation of the proton motive force (PMF), and triggers a vicious cycle of disrupting cell membrane integrity and metabolic homeostasis imbalance. CONCLUSION These results reveal the potential of harmaline as a novel tigecycline adjuvant to combat hypervirulent K. pneumoniae infections.
Collapse
Affiliation(s)
- Jindian Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Lei Xu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yonglin Zhou
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, School of Life Sciences, Ningxia University, Yinchuan, China
| | - Minhe Cui
- Jilin Province Mushuo Livestock Farming Co., Ltd., Jilin, China
| | - Dejun Liu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jianfeng Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Yang Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| | - Xuming Deng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
17
|
Lu G, Zhao G, Wang S, Li H, Yu Q, Sun Q, Wang B, Wei L, Fu Z, Zhao Z, Yang L, Deng L, Zheng X, Cai M, Lu M. Injectable Nano-Micro Composites with Anti-bacterial and Osteogenic Capabilities for Minimally Invasive Treatment of Osteomyelitis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306964. [PMID: 38234236 DOI: 10.1002/advs.202306964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/17/2023] [Indexed: 01/19/2024]
Abstract
The effective management of osteomyelitis remains extremely challenging due to the difficulty associated with treating bone defects, the high probability of recurrence, the requirement of secondary surgery or multiple surgeries, and the difficulty in eradicating infections caused by methicillin-resistant Staphylococcus aureus (MRSA). Hence, smart biodegradable biomaterials that provide effective and precise local anti-infection effects and can promote the repair of bone defects are actively being developed. Here, a novel nano-micro composite is fabricated by combining calcium phosphate (CaP) nanosheets with drug-loaded GelMA microspheres via microfluidic technology. The microspheres are covalently linked with vancomycin (Van) through an oligonucleotide (oligo) linker using an EDC/NHS carboxyl activator. Accordingly, a smart nano-micro composite called "CaP@MS-Oligo-Van" is synthesized. The porous CaP@MS-Oligo-Van composites can target and capture bacteria. They can also release Van in response to the presence of bacterial micrococcal nuclease and Ca2+, exerting additional antibacterial effects and inhibiting the inflammatory response. Finally, the released CaP nanosheets can promote bone tissue repair. Overall, the findings show that a rapid, targeted drug release system based on CaP@MS-Oligo-Van can effectively target bone tissue infections. Hence, this agent holds potential in the clinical treatment of osteomyelitis caused by MRSA.
Collapse
Affiliation(s)
- Guanghua Lu
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Gang Zhao
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Shen Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Hanqing Li
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Qiang Yu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Qi Sun
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Bo Wang
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Li Wei
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Zi Fu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Zhenyu Zhao
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Linshan Yang
- Taikang Bybo Dental, Shanghai, 200001, P. R. China
| | - Lianfu Deng
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Xianyou Zheng
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Ming Cai
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Min Lu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| |
Collapse
|
18
|
Li H, Duan S, Li L, Zhao G, Wei L, Zhang B, Ma Y, Wu MX, Mao Y, Lu M. Bio-Responsive Sliver Peroxide-Nanocarrier Serves as Broad-Spectrum Metallo-β-lactamase Inhibitor for Combating Severe Pneumonia. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310532. [PMID: 38095435 DOI: 10.1002/adma.202310532] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/04/2023] [Indexed: 12/22/2023]
Abstract
Metallo-β-lactamases (MBLs) represent a prevalent resistance mechanism in Gram-negative bacteria, rendering last-line carbapenem-related antibiotics ineffective. Here, a bioresponsive sliver peroxide (Ag2 O2 )-based nanovesicle, named Ag2 O2 @BP-MT@MM, is developed as a broad-spectrum MBL inhibitor for combating MBL-producing bacterial pneumonia. Ag2 O2 nanoparticle is first orderly modified with bovine serum albumin and polydopamine to co-load meropenem (MER) and [5-(p-fluorophenyl)-2-ureido]-thiophene-3-carboxamide (TPCA-1) and then encapsulated with macrophage membrane (MM) aimed to target inflammatory lung tissue specifically. The resultant Ag2 O2 @BP-MT@MM effectively abrogates MBL activity by displacing the Zn2+ cofactor in MBLs with Ag+ and displays potent bactericidal and anti-inflammatory properties, specific targeting abilities, and great bioresponsive characteristics. After intravenous injection, the nanoparticles accumulate prominently at infection sites through MM-mediated targeting . Ag+ released from Ag2 O2 decomposition at the infection sites effectively inhibits MBL activity and overcomes the resistance of MBL-producing bacteria to MER, resulting in synergistic elimination of bacteria in conjunction with MER. In two murine infection models of NDM-1+ Klebsiella pneumoniae-induced severe pneumonia and NDM-1+ Escherichia coli-induced sepsis-related bacterial pneumonia, the nanoparticles significantly reduce bacterial loading, pro-inflammatory cytokine levels locally and systemically, and the recruitment and activation of neutrophils and macrophages. This innovative approach presents a promising new strategy for combating infections caused by MBL-producing carbapenem-resistant bacteria.
Collapse
Affiliation(s)
- Hanqing Li
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shuxian Duan
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Lixia Li
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Gang Zhao
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Li Wei
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Bohan Zhang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yingying Ma
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Mei X Wu
- Wellman Center for Photomedicine, Massachusetts General Hospital Department of Dermatology, Harvard Medical School, 50 Blossom Street, Boston, MA, 02114, USA
| | - Yanfei Mao
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Min Lu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
19
|
Ijaz M, Aslam B, Hasan I, Ullah Z, Roy S, Guo B. Cell membrane-coated biomimetic nanomedicines: productive cancer theranostic tools. Biomater Sci 2024; 12:863-895. [PMID: 38230669 DOI: 10.1039/d3bm01552a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
As the second-leading cause of human death, cancer has drawn attention in the area of biomedical research and therapy from all around the world. Certainly, the development of nanotechnology has made it possible for nanoparticles (NPs) to be used as a carrier for delivery systems in the treatment of tumors. This is a biomimetic approach established to craft remedial strategies comprising NPs cloaked with membrane obtained from various natural cells like blood cells, bacterial cells, cancer cells, etc. Here we conduct an in-depth exploration of cell membrane-coated NPs (CMNPs) and their extensive array of applications including drug delivery, vaccination, phototherapy, immunotherapy, MRI imaging, PET imaging, multimodal imaging, gene therapy and a combination of photothermal and chemotherapy. This review article provides a thorough summary of the most recent developments in the use of CMNPs for the diagnosis and treatment of cancer. It critically assesses the state of research while recognizing significant accomplishments and innovations. Additionally, it indicates ongoing problems in clinical translation and associated queries that warrant deeper research. By doing so, this study encourages creative thinking for future projects in the field of tumor therapy using CMNPs while also educating academics on the present status of CMNP research.
Collapse
Affiliation(s)
- Muhammad Ijaz
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
- Institute of Microbiology, Government College University Faisalabad Pakistan, Pakistan
| | - Bilal Aslam
- Institute of Microbiology, Government College University Faisalabad Pakistan, Pakistan
| | - Ikram Hasan
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Zia Ullah
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
| | - Shubham Roy
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen-518055, China.
| |
Collapse
|
20
|
Zhu J, Ju Y, Zhou X, Chen T, Zhuge X, Dai J. Epidemiological characteristics of SHV, cmlv, and FosA6-producing carbapenem-resistant Klebsiella pneumoniae based on whole genome sequences in Jiangsu, China. Front Microbiol 2023; 14:1219733. [PMID: 37538843 PMCID: PMC10394843 DOI: 10.3389/fmicb.2023.1219733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP), particularly those with high virulence, cause invasive disease in clinical settings. An epidemiological investigation was conducted on the evolution, virulence, and antimicrobial resistance of CRKP isolates in two tertiary teaching hospitals in Jiangsu, China from November 2020 to December 2021. There were 31 different CRKP strains discovered. We performed whole genome sequencing (WGS) on 13 SHV, cmlv, and FosA6-producing CRKP to reveal molecular characteristics. Five ST15/ST11 isolates had CRISPR-Cas systems. By conjugation tests, KPC-2 can be transmitted horizontally to E. coil. A conjugative pHN7A8-related multi-resistance plasmid (KPC-2, blaCTX-M-65, blaTEM-1, fosA3, catII, and rmtB) was first discovered in CRKP clinical isolates. Using bacteriological testing, a serum killing assay, and an infection model with Galleria mellonella, three ST11-K64 KPC-2 generating carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) were identified. These strains harbored a virulent plasmid and an IncFII-family pKPC/pHN7A8 conjugative plasmid, which led to hypervirulence and resistance. One of these CR-hvKPs, which co-harbored KPC-2, NDM-6, SHV-182, SHV-64, and blaCTX-M-122 genes, was first discovered. Importantly, this CR-hvKP strain also produced biofilm and had non-inferior fitness. The widespread use of ceftazidime/avibactam might provide this CR-hvKP with a selective advantage; hence, immediate action is required to stop its dissemination. Another important finding is the novel ST6136 in K. pneumoniae. Finally, the sterilization efficiency rates of Fe2C nanoparticles in CRKP were more than 98%. Furthermore, our novel antibacterial Fe2C nanoparticles may also provide a therapeutic strategy for infections.
Collapse
Affiliation(s)
- Jiaying Zhu
- College of Pharmacy, China Pharmaceutical University, Nanjing, China
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Yanmin Ju
- College of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xinyu Zhou
- College of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Taoyu Chen
- Department of Orthopedics, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Xiangkai Zhuge
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Jianjun Dai
- College of Pharmacy, China Pharmaceutical University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
21
|
Song Y, Zheng X, Hu J, Ma S, Li K, Chen J, Xu X, Lu X, Wang X. Recent advances of cell membrane-coated nanoparticles for therapy of bacterial infection. Front Microbiol 2023; 14:1083007. [PMID: 36876074 PMCID: PMC9981803 DOI: 10.3389/fmicb.2023.1083007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/01/2023] [Indexed: 02/19/2023] Open
Abstract
The rapid evolution of antibiotic resistance and the complicated bacterial infection microenvironments are serious obstacles to traditional antibiotic therapy. Developing novel antibacterial agents or strategy to prevent the occurrence of antibiotic resistance and enhance antibacterial efficiency is of the utmost importance. Cell membrane-coated nanoparticles (CM-NPs) combine the characteristics of the naturally occurring membranes with those of the synthetic core materials. CM-NPs have shown considerable promise in neutralizing toxins, evading clearance by the immune system, targeting specific bacteria, delivering antibiotics, achieving responsive antibiotic released to the microenvironments, and eradicating biofilms. Additionally, CM-NPs can be utilized in conjunction with photodynamic, sonodynamic, and photothermal therapies. In this review, the process for preparing CM-NPs is briefly described. We focus on the functions and the recent advances in applications of several types of CM-NPs in bacterial infection, including CM-NPs derived from red blood cells, white blood cells, platelet, bacteria. CM-NPs derived from other cells, such as dendritic cells, genetically engineered cells, gastric epithelial cells and plant-derived extracellular vesicles are introduced as well. Finally, we place a novel perspective on CM-NPs' applications in bacterial infection, and list the challenges encountered in this field from the preparation and application standpoint. We believe that advances in this technology will reduce threats posed by bacteria resistance and save lives from infectious diseases in the future.
Collapse
Affiliation(s)
- Yue Song
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Xia Zheng
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Juan Hu
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Subo Ma
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kun Li
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Junyao Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Xiaoling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Xiaoyang Lu
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaojuan Wang
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
22
|
Tang J, Ouyang Q, Li Y, Zhang P, Jin W, Qu S, Yang F, He Z, Qin M. Nanomaterials for Delivering Antibiotics in the Therapy of Pneumonia. Int J Mol Sci 2022; 23:ijms232415738. [PMID: 36555379 PMCID: PMC9779065 DOI: 10.3390/ijms232415738] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 12/14/2022] Open
Abstract
Bacterial pneumonia is one of the leading causes of death worldwide and exerts a significant burden on health-care resources. Antibiotics have long been used as first-line drugs for the treatment of bacterial pneumonia. However, antibiotic therapy and traditional antibiotic delivery are associated with important challenges, including drug resistance, low bioavailability, and adverse side effects; the existence of physiological barriers further hampers treatment. Fortunately, these limitations may be overcome by the application of nanotechnology, which can facilitate drug delivery while improving drug stability and bioavailability. This review summarizes the challenges facing the treatment of bacterial pneumonia and also highlights the types of nanoparticles that can be used for antibiotic delivery. This review places a special focus on the state-of-the-art in nanomaterial-based approaches to the delivery of antibiotics for the treatment of pneumonia.
Collapse
Affiliation(s)
- Jie Tang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Qiuhong Ouyang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yanyan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Peisen Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Weihua Jin
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Shuang Qu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fengmei Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Zhanlong He
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
- Correspondence: (Z.H.); (M.Q.)
| | - Meng Qin
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Correspondence: (Z.H.); (M.Q.)
| |
Collapse
|
23
|
Yahya RO. Problems Associated with Co-Infection by Multidrug-Resistant Klebsiella pneumoniae in COVID-19 Patients: A Review. Healthcare (Basel) 2022; 10:2412. [PMID: 36553936 PMCID: PMC9778403 DOI: 10.3390/healthcare10122412] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/02/2022] Open
Abstract
To date, coronavirus disease 2019 (COVID-19) and its variants have been reported as a novel public health concern threatening us worldwide. The presence of Klebsiella pneumoniae in COVID-19-infected patients is a major problem due to its resistance to multiple antibiotics, and it can possibly make the management of COVID-19 in patients more problematic. The impact of co-infection by K. pneumoniae on COVID-19 patients was explored in the current review. The spread of K. pneumoniae as a co-infection among critically ill COVID-19 patients, particularly throughout hospitalization, was identified and recorded via numerous reports. Alarmingly, the extensive application of antibiotics in the initial diagnosis of COVID-19 infection may reduce bacterial co-infection, but it increases the antibiotic resistance of bacteria such as the strains of K. pneumoniae. The correct detection of multidrug-resistant K. pneumoniae can offer a supportive reference for the diagnosis and therapeutic management of COVID-19 patients. Furthermore, the prevention and control of K. pneumoniae are required to minimize the risk of COVID-19. The aim of the present review is, therefore, to report on the virulence factors of the K. pneumonia genotypes, the drug resistance of K. pneumonia, and the impact of K. pneumoniae co-infection with COVID-19 on patients through a study of the published scientific papers, reports, and case studies.
Collapse
Affiliation(s)
- Reham Omar Yahya
- Basic Sciences Department, College of Sciences and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Riyadh 11671, Saudi Arabia;
- King Abduallah International Medical Research Center, Riyadh 11481, Saudi Arabia
| |
Collapse
|