1
|
Buckel W, Ermler U, Vonck J, Fritz G, Steuber J. The RNF/NQR redox pumps: a versatile system for energy transduction in bacteria and archaea. Appl Microbiol Biotechnol 2025; 109:148. [PMID: 40528048 DOI: 10.1007/s00253-025-13531-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 05/22/2025] [Accepted: 05/26/2025] [Indexed: 06/20/2025]
Abstract
The Na+ (or H+)-translocating ferredoxin:NAD+ oxidoreductase (also called RNF, rhodobacter nitrogen fixation, complex) catalyzes the oxidation of reduced ferredoxin with NAD+, hereby generating an electrochemical gradient. In the reverse reaction driven by an electrochemical gradient, RNF provides reduced ferredoxin using NADH as electron donor. RNF plays a crucial role in the metabolism of many anaerobes, such as amino acid fermenters, acetogens, or aceticlastic methanogens. The Na+-translocating NADH:quinone oxidoreductase (NQR), which has evolved from an RNF, is found in selected bacterial groups including anaerobic, marine, or pathogenic organisms. Since NQR and RNF are not related to eukaryotic respiratory complex I (NADH:quinone oxidoreductase), members of this oxidoreductase family are promising targets for novel antibiotics. RNF and NQR share a membrane-bound core complex consisting of four subunits, which represent an essential functional module for redox-driven cation transport. Several recent 3D structures of RNF and NQR in different states put forward conformational coupling of electron transfer and Na+ translocation reaction steps. Based on this common principle, putative reaction mechanisms of RNF and NQR redox pumps are compared. KEY POINTS: • Electrogenic ferredoxin:NAD+ oxidoreductases (RNF complexes) are found in bacteria and archaea. • The Na+ -translocating NADH:quinone oxidoreductase (NQR) is evolutionary related to RNF. • The mechanism of energy conversion by RNF/NQR complexes is based on conformational coupling of electron transfer and cation transport reactions.
Collapse
Affiliation(s)
- Wolfgang Buckel
- Faculty of Biology, Philipps-Universität Marburg, Karl-von-Frisch-Straße 8, 35043, Marburg, Germany
| | - Ulrich Ermler
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438, Frankfurt am Main, Germany
| | - Janet Vonck
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von- Laue-Straße 3, 60438, Frankfurt am Main, Germany
| | - Günter Fritz
- Department of Cellular Microbiology, Institute of Biology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
| | - Julia Steuber
- Department of Cellular Microbiology, Institute of Biology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany.
| |
Collapse
|
2
|
Ishikawa-Fukuda M, Seki T, Kishikawa JI, Masuya T, Okazaki KI, Kato T, Barquera B, Miyoshi H, Murai M. The Na +-pumping mechanism driven by redox reactions in the NADH-quinone oxidoreductase from Vibrio cholerae relies on dynamic conformational changes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.06.01.656757. [PMID: 40501732 PMCID: PMC12157696 DOI: 10.1101/2025.06.01.656757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/28/2025]
Abstract
The Na+-pumping NADH-quinone oxidoreductase (Na+-NQR) is a key respiratory enzyme in many marine and pathogenic bacteria that couples electron transfer to Na+-pumping across the membrane. Earlier X-ray and cryo-EM structures of Na+-NQR from Vibrio cholerae suggested that the subunits harboring redox cofactors undergo conformational changes during catalytic turnover. However, these proposed rearrangements have not yet been confirmed. Here, we have identified at least five distinct conformational states of Na+-NQR using: mutants that lack specific cofactors, specific inhibitors or low-sodium conditions. Molecular dynamics simulations based on these structural insights indicate that 2Fe-2S reduction in NqrD/E plays a crucial role in triggering Na+ translocation by driving structural rearrangements in the NqrD/E subunits, which subsequently influence NqrC and NqrF positioning. This study provides the first structural insights into the mechanism of Na+ translocation coupled to electron transfer in Na+-NQR.
Collapse
Affiliation(s)
- Moe Ishikawa-Fukuda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto 606 8502, Japan
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, United States
| | - Takehito Seki
- Research Center for Computational Science, Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Aichi 444-8585, Japan
| | - Jun-ichi Kishikawa
- Faculty of Applied Biology, Kyoto Institute of Technology, Kyoto, Kyoto 606-8585, Japan
- Institute for Protein Research, The University of Osaka, Suita, Osaka565-0871, Japan
| | - Takahiro Masuya
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto 606 8502, Japan
| | - Kei-ichi Okazaki
- Research Center for Computational Science, Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Aichi 444-8585, Japan
| | - Takayuki Kato
- Institute for Protein Research, The University of Osaka, Suita, Osaka565-0871, Japan
| | - Blanca Barquera
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, United States
| | - Hideto Miyoshi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto 606 8502, Japan
| | - Masatoshi Murai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto 606 8502, Japan
| |
Collapse
|
3
|
Chen Q, Xu Z, Dai H, Shen Y, Zhang J, Liu Z, Pei Y, Yu J. A large-scale curated and filterable dataset for cryo-EM foundation model pre-training. Sci Data 2025; 12:960. [PMID: 40483273 PMCID: PMC12145456 DOI: 10.1038/s41597-025-05179-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 05/09/2025] [Indexed: 06/11/2025] Open
Abstract
Cryo-electron microscopy (cryo-EM) is a transformative imaging technology that enables near-atomic resolution 3D reconstruction of target biomolecule, playing a critical role in structural biology and drug discovery. Cryo-EM faces significant challenges due to its extremely low signal-to-noise ratio (SNR) where the complexity of data processing becomes particularly pronounced. To address this challenge, foundation models have shown great potential in other biological imaging domains. However, their application in cryo-EM has been limited by the lack of large-scale, high-quality datasets. To fill this gap, we introduce CryoCRAB, the first large-scale dataset for cryo-EM foundation models. CryoCRAB includes 746 proteins, comprising 152,385 sets of raw movie frames (116.8 TB in total). To tackle the high-noise nature of cryo-EM data, each movie is split into odd and even frames to generate paired micrographs for denoising tasks. The dataset is stored in HDF5 chunked format, significantly improving random sampling efficiency and training speed. CryoCRAB offers diverse data support for cryo-EM foundation models, enabling advancements in image denoising and general-purpose feature extraction for downstream tasks.
Collapse
Affiliation(s)
- Qihe Chen
- School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Cellverse, Cellverse Co., Ltd., Shanghai, 201210, China
| | - Zhenyang Xu
- School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Cellverse, Cellverse Co., Ltd., Shanghai, 201210, China
| | - Haizhao Dai
- School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Cellverse, Cellverse Co., Ltd., Shanghai, 201210, China
| | - Yingjun Shen
- School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Cellverse, Cellverse Co., Ltd., Shanghai, 201210, China
| | - Jiakai Zhang
- School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Cellverse, Cellverse Co., Ltd., Shanghai, 201210, China
| | - Zhijie Liu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China.
| | - Yuan Pei
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China.
| | - Jingyi Yu
- School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
4
|
Ishikawa-Fukuda M, Kishikawa JI, Masuya T, Ito T, Butler NL, McFee D, Kato T, Barquera B, Miyoshi H, Murai M. Structural Elucidation of the Mechanism for Inhibitor Resistance in the Na +-Translocating NADH-Ubiquinone Oxidoreductase from Vibrio cholerae. Biochemistry 2025; 64:1963-1972. [PMID: 40263754 PMCID: PMC12117499 DOI: 10.1021/acs.biochem.5c00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Na+-translocating NADH-ubiquinone oxidoreductase (Na+-NQR) is a unique redox-driven Na+-pump. Since this enzyme is exclusively found in prokaryotes, including the human pathogens Vibrio cholerae and Neisseria gonorrhoeae, it is a promising target for highly selective antibiotics. Korormicin A, a natural product, and a specific and potent inhibitor of V. cholerae Na+-NQR, may become a lead compound for the relevant drug design. We previously showed that the G141A mutation in the NqrB subunit (NqrB-G141A) confers moderate resistance to korormicin A (about 100-fold). However, the efficiency of photoaffinity labeling of the mutant enzyme by a photoreactive korormicin derivative was the same as in the wild-type enzyme. Because of these apparently conflicting results, the molecular mechanism underlying the korormicin A-resistance remains elusive. In the present study, we determined the cryo-EM structure of the V. cholerae NqrB-G141A mutant in the presence of bound korormicin A, and compared it to the corresponding structure from the wild-type enzyme. The toxophoric moiety of korormicin A binds to the mutant enzyme similarly to how it binds to the wild type. However, the added bulk of the alanine-141 excludes the alkyl side chain from the binding cavity, resulting in a decrease in the binding affinity. In fact, isothermal titration calorimetry revealed that the binding affinity of korormicin to the NqrB-G141A mutant is significantly weaker compared to the wild-type. Altogether, we conclude that the inhibitory potency of korormicin A is weaker in the NqrB-G141A mutant due to the decrease in its binding affinity to the altered binding cavity.
Collapse
Affiliation(s)
- Moe Ishikawa-Fukuda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Jun-Ichi Kishikawa
- Institute for Protein Research, Osaka University, Suita 565-0871, Japan
- Faculty of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Takahiro Masuya
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Takeshi Ito
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Nicole L Butler
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Danielle McFee
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Takayuki Kato
- Institute for Protein Research, Osaka University, Suita 565-0871, Japan
| | - Blanca Barquera
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Hideto Miyoshi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Masatoshi Murai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
5
|
Alt TB, Moran GR. The binding modes of quinones in flavoprotein oxidoreductases. Arch Biochem Biophys 2025; 770:110443. [PMID: 40320059 DOI: 10.1016/j.abb.2025.110443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/23/2025] [Accepted: 04/26/2025] [Indexed: 05/11/2025]
Abstract
Flavoprotein quinone reductases regenerate quinols which serve metabolic and antioxidant roles. These enzymes catalyze the two-electron oxidation of substrates and the subsequent two electron reduction of quinones. Despite the net two electron transfer between substrates, the binding mode of quinones is typically end-on to the flavin, rather than stacked, dictating that the oxidative half reaction cannot proceed via hydride transfer and must instead occur by two successive single electron transfers. Here we present a review of six of the most well-studied flavoprotein quinone reductases to establish a framework for discussing this positional orientation for the quinone oxidant. There are two non-mutually exclusive rationalizations for this binding mode where the flavin isoalloxazine acts as a redox partition. The first is that energetics of the single electron transfer pathway create a kinetic barrier to the reverse reaction, trapping electrons in the quinone pool and countering the high ratio of quinol to quinone present in the membrane. The second is that the end-on binding allows the enzymes to utilize different binding sites for cytosolic and membrane associated substrates, avoiding the need to desorb substrates. These effects may be additive and serve to funnel electrons into the quinone pool as efficiently as possible.
Collapse
Affiliation(s)
- Tyler B Alt
- Department of Chemistry and Biochemistry, 1068 W Sheridan Rd, Loyola University Chicago, Chicago, IL 60660, USA
| | - Graham R Moran
- Department of Chemistry and Biochemistry, 1068 W Sheridan Rd, Loyola University Chicago, Chicago, IL 60660, USA.
| |
Collapse
|
6
|
Miyachi S, Tanaka H, Ishikawa M, Mcfee D, Aoki W, Murai M, Barquera B, Miyoshi H, Masuya T. Pinpoint introduction of functional molecular probe into the NqrB subunit of Na +-translocating NADH-ubiquinone oxidoreductase from Vibrio cholerae. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149551. [PMID: 40049505 DOI: 10.1016/j.bbabio.2025.149551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/24/2025] [Accepted: 03/02/2025] [Indexed: 03/15/2025]
Abstract
The Na+-translocating NADH-ubiquinone oxidoreductase (Na+-NQR) is a key enzyme in the respiratory chain of numerous pathogenic bacteria, including Vibrio cholerae. The flexible cytoplasmic N-terminal region of the NqrB subunit (Met1-Lys54), which may play an important role in the final UQ reduction at the adjacent NqrA, is the target of specific inhibitors. If we can develop a new method that enables pinpoint introduction of functional probe molecules (such as fluorescent probes) into the N-terminal region, this could lead to new experimental ways of monitoring dynamic structural changes of the region. We previously showed that an electrophilic chemical group, which can be released from korormicin A-templated synthetic ligand, can be predominantly introduced into nucleophilic Lys22 as a "foothold" via ligand-directed (LD) substitution, but the subsequent conjugation of a functional probe molecule to the foothold by Cu+-catalyzed click chemistry required destruction of the enzyme. Accordingly, we now report the nondestructive conjugation of the functional molecule into the N-terminal region via a two-step conjugation technique: first, pinpoint introduction of a foothold tag containing a ring-strained cyclopropene by LD substitution using a new korormicin A-templated ligand (BEK-1) and second, direct conjugation of a fluorescent probe molecule containing tetrazine with the introduced cyclopropene by inverse electron-demand Diels-Alder-type click chemistry. Protein sequence analyses revealed that the fluorescent probe is attached to Lys19, His20, or Lys22 in the region. The extent of conjugation of the fluorescent probe was approximately halved in the presence of different inhibitors, suggesting that the inhibitor binding induces structural changes around the residues.
Collapse
Affiliation(s)
- Saya Miyachi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Hinako Tanaka
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Moe Ishikawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Danielle Mcfee
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, United States
| | - Wataru Aoki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Masatoshi Murai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Blanca Barquera
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, United States
| | - Hideto Miyoshi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Takahiro Masuya
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
7
|
Kumar A, Roth J, Kim H, Saura P, Bohn S, Reif-Trauttmansdorff T, Schubert A, Kaila VRI, Schuller JM, Müller V. Molecular principles of redox-coupled sodium pumping of the ancient Rnf machinery. Nat Commun 2025; 16:2302. [PMID: 40055346 PMCID: PMC11889175 DOI: 10.1038/s41467-025-57375-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 02/14/2025] [Indexed: 05/13/2025] Open
Abstract
The Rnf complex is the primary respiratory enzyme of several anaerobic prokaryotes that transfers electrons from ferredoxin to NAD+ and pumps ions (Na+ or H+) across a membrane, powering ATP synthesis. Rnf is widespread in primordial organisms and the evolutionary predecessor of the Na+-pumping NADH-quinone oxidoreductase (Nqr). By running in reverse, Rnf uses the electrochemical ion gradient to drive ferredoxin reduction with NADH, providing low potential electrons for nitrogenases and CO2 reductases. Yet, the molecular principles that couple the long-range electron transfer to Na+ translocation remain elusive. Here, we resolve key functional states along the electron transfer pathway in the Na+-pumping Rnf complex from Acetobacterium woodii using redox-controlled cryo-electron microscopy that, in combination with biochemical functional assays and atomistic molecular simulations, provide key insight into the redox-driven Na+ pumping mechanism. We show that the reduction of the unique membrane-embedded [2Fe2S] cluster electrostatically attracts Na+, and in turn, triggers an inward/outward transition with alternating membrane access driving the Na+ pump and the reduction of NAD+. Our study unveils an ancient mechanism for redox-driven ion pumping, and provides key understanding of the fundamental principles governing energy conversion in biological systems.
Collapse
Affiliation(s)
- Anuj Kumar
- SYNMIKRO Research Center and Department of Chemistry, Philipps-University of Marburg, Marburg, Germany
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Jennifer Roth
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Hyunho Kim
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Patricia Saura
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Stefan Bohn
- Helmholtz Munich Cryo-Electron Microscopy Platform, Helmholtz Munich, Neuherberg, Germany
| | | | - Anja Schubert
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Ville R I Kaila
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| | - Jan M Schuller
- SYNMIKRO Research Center and Department of Chemistry, Philipps-University of Marburg, Marburg, Germany.
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany.
| |
Collapse
|
8
|
Steuber J, Fritz G. The Na +-translocating NADH:quinone oxidoreductase (Na +-NQR): Physiological role, structure and function of a redox-driven, molecular machine. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149485. [PMID: 38955304 DOI: 10.1016/j.bbabio.2024.149485] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
Many bacterial processes are powered by the sodium motive force (smf) and in case of pathogens, the smf contributes to virulence. Vibrio cholerae, the causative agent of Cholera disease, possesses a Na+-translocating NADH:quinone oxidoreductase (NQR), a six-subunit membrane protein assembly. The 3D structure of NQR revealed the arrangement of the six subunits NqrABCDEF, the position of all redox cofactors (four flavins, two [2Fe-2S] centers) and the binding sites for the substrates NADH (in NqrF) and ubiquinone (in NqrB). Upon oxidation of NADH, electrons are shuttled twice across the membrane, starting with cytoplasmic FADNqrF and electron transfer to the [2Fe2S] clusterNqrF and from there to an intra-membranous [2Fe-2S] clusterNqrDE, periplasmic FMNNqrC, FMNNqrB and from there to riboflavinNqrB. This riboflavin is located at the cytoplasmic entry site of the sodium channel in NqrB, and it donates electrons to ubiquinone-8 positioned at the cytoplasmic side of NqrB. Targeting the substrate binding sites of NQR is a promising strategy to identify new inhibitors against many bacterial pathogens. Detailed structural information on the binding mode of natural inhibitors and small molecules in the active sites of NQR is now available, paving the way for the development of new antibiotics. The NQR shows different conformations as revealed in recent cryo-EM and crystallographic studies combined with spectroscopic analyses. These conformations represent distinct steps in the catalytic cycle. Considering the structural and functional data available, we propose a mechanism of Na+-NQR based on conformational coupling of electron transfer and Na+ translocation reaction steps.
Collapse
Affiliation(s)
- Julia Steuber
- Institute of Biology, Department of Cellular Microbiology, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany.
| | - Günter Fritz
- Institute of Biology, Department of Cellular Microbiology, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany.
| |
Collapse
|
9
|
García-Trejo JJ, Rojas-Alcantar S, Alonso-Vargas M, Ortega R, Benítez-Guzmán A, Ramírez-Silva L, Pavón N, Peña-Segura C, Méndez-Romero O, Uribe-Carvajal S, Cadena-Ramírez A. A New Real-Time Simple Method to Measure the Endogenous Nitrate Reductase Activity (Nar) in Paracoccus denitrificans and Other Denitrifying Bacteria. Int J Mol Sci 2024; 25:9770. [PMID: 39337258 PMCID: PMC11431489 DOI: 10.3390/ijms25189770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
The transmembrane nitrate reductase (Nar) is the first enzyme in the dissimilatory alternate anaerobic nitrate respiratory chain in denitrifying bacteria. To date, there has been no real-time method to determine its specific activity embedded in its native membrane; here, we describe such a new method, which is useful with the inside-out membranes of Paracoccus denitrificans and other denitrifying bacteria. This new method takes advantage of the native coupling of the endogenous NADH dehydrogenase or Complex I with the reduction of nitrate by Nar through the quinone pool of the inner membranes of P. denitrificans. This is achieved under previously reached anaerobic conditions. Inner controls confirming the specific Nar activity determined by this new method were made by the total inhibition of the Nar enzyme by sodium azide and cyanide, well-known Nar inhibitors. The estimation of the Michaelis-Menten affinity of Nar for NO3- using this so-called Nar-JJ assay gave a Km of 70.4 μM, similar to previously determined values. This new Nar-JJ assay is a suitable, low-cost, and reproducible method to determine in real-time the endogenous Nar activity not only in P. denitrificans, but in other denitrifying bacteria such as Brucella canis, and potentially in other entero-pathogenic bacteria.
Collapse
Affiliation(s)
- José J. García-Trejo
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de México 04510, Mexico
| | - Sharon Rojas-Alcantar
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de México 04510, Mexico
| | - Monserrat Alonso-Vargas
- Laboratorio de Bioprocesos Ambientales, Universidad Politécnica de Pachuca (U.P.P.), Zempoala, Pachuca 43830, Mexico
| | - Raquel Ortega
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de México 04510, Mexico
| | - Alejandro Benítez-Guzmán
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de México 04510, Mexico
| | - Leticia Ramírez-Silva
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de México 04510, Mexico
| | - Natalia Pavón
- Departamento de Farmacología, Instituto Nacional de Cardiología “Ignacio Chávez”, Ciudad de México 14080, Mexico
| | - Claudia Peña-Segura
- Departamento de Bioterio, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de México 04510, Mexico
| | - Ofelia Méndez-Romero
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de México 04510, Mexico
| | - Salvador Uribe-Carvajal
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de México 04510, Mexico
| | - Arturo Cadena-Ramírez
- Laboratorio de Bioprocesos Ambientales, Universidad Politécnica de Pachuca (U.P.P.), Zempoala, Pachuca 43830, Mexico
| |
Collapse
|
10
|
Gui C, Kalkreuter E, Lauterbach L, Yang D, Shen B. Enediyne natural product biosynthesis unified by a diiodotetrayne intermediate. Nat Chem Biol 2024; 20:1210-1219. [PMID: 38831037 PMCID: PMC11658463 DOI: 10.1038/s41589-024-01636-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 05/08/2024] [Indexed: 06/05/2024]
Abstract
Enediyne natural products are renowned for their potent cytotoxicities but the biosynthesis of their defining 1,5-diyne-3-ene core moiety remains largely enigmatic. Since the discovery of the enediyne polyketide synthase cassette in 2002, genome sequencing has revealed thousands of distinct enediyne biosynthetic gene clusters, each harboring the conserved enediyne polyketide synthase cassette. Here we report that (1) the products of this cassette are an iodoheptaene, a diiodotetrayne and two pentaynes; (2) the diiodotetrayne represents a common biosynthetic intermediate for all known enediynes; and (3) cryptic iodination can be exploited to increase enediyne titers. These findings establish a unified biosynthetic pathway for the enediynes, set the stage to further advance enediyne core biosynthesis and enable fundamental breakthroughs in chemistry, enzymology and translational applications of enediyne natural products.
Collapse
Affiliation(s)
- Chun Gui
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, University of Florida, Jupiter, FL, USA
| | - Edward Kalkreuter
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, University of Florida, Jupiter, FL, USA
| | - Lukas Lauterbach
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, University of Florida, Jupiter, FL, USA
| | - Dong Yang
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, University of Florida, Jupiter, FL, USA
- Natural Products Discovery Center, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, University of Florida, Jupiter, FL, USA
| | - Ben Shen
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, University of Florida, Jupiter, FL, USA.
- Natural Products Discovery Center, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, University of Florida, Jupiter, FL, USA.
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, University of Florida, Jupiter, FL, USA.
| |
Collapse
|
11
|
Huang S, Méheust R, Barquera B, Light SH. Versatile roles of protein flavinylation in bacterial extracyotosolic electron transfer. mSystems 2024; 9:e0037524. [PMID: 39041811 PMCID: PMC11334425 DOI: 10.1128/msystems.00375-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/21/2024] [Indexed: 07/24/2024] Open
Abstract
Bacteria perform diverse redox chemistries in the periplasm, cell wall, and extracellular space. Electron transfer for these extracytosolic activities is frequently mediated by proteins with covalently bound flavins, which are attached through post-translational flavinylation by the enzyme ApbE. Despite the significance of protein flavinylation to bacterial physiology, the basis and function of this modification remain unresolved. Here we apply genomic context analyses, computational structural biology, and biochemical studies to address the role of ApbE flavinylation throughout bacterial life. We identify ApbE flavinylation sites within structurally diverse protein domains and show that multi-flavinylated proteins, which may mediate longer distance electron transfer via multiple flavinylation sites, exhibit substantial structural heterogeneity. We identify two novel classes of flavinylation substrates that are related to characterized proteins with non-covalently bound flavins, providing evidence that protein flavinylation can evolve from a non-covalent flavoprotein precursor. We further find a group of structurally related flavinylation-associated cytochromes, including those with the domain of unknown function DUF4405, that presumably mediate electron transfer in the cytoplasmic membrane. DUF4405 homologs are widespread in bacteria and related to ferrosome iron storage organelle proteins that may facilitate iron redox cycling within ferrosomes. These studies reveal a complex basis for flavinylated electron transfer and highlight the discovery power of coupling comparative genomic analyses with high-quality structural models. IMPORTANCE This study explores the mechanisms bacteria use to transfer electrons outside the cytosol, a fundamental process involved in energy metabolism and environmental interactions. Central to this process is a phenomenon known as flavinylation, where a flavin molecule-a compound related to vitamin B2-is covalently attached to proteins, to enable electron transfer. We employed advanced genomic analysis and computational modeling to explore how this modification occurs across different bacterial species. Our findings uncover new types of proteins that undergo this modification and highlight the diversity and complexity of bacterial electron transfer mechanisms. This research broadens our understanding of bacterial physiology and informs potential biotechnological applications that rely on microbial electron transfer, including bioenergy production and bioremediation.
Collapse
Affiliation(s)
- Shuo Huang
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Raphaël Méheust
- Génomique Métabolique, CEA, Genoscope, Institut François Jacob, Université d'Évry, Université Paris-Saclay, CNRS, Evry, France
| | - Blanca Barquera
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Samuel H. Light
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
12
|
Zhang L, Einsle O. Architecture of the RNF1 complex that drives biological nitrogen fixation. Nat Chem Biol 2024; 20:1078-1085. [PMID: 38890433 DOI: 10.1038/s41589-024-01641-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 05/10/2024] [Indexed: 06/20/2024]
Abstract
Biological nitrogen fixation requires substantial metabolic energy in form of ATP as well as low-potential electrons that must derive from central metabolism. During aerobic growth, the free-living soil diazotroph Azotobacter vinelandii transfers electrons from the key metabolite NADH to the low-potential ferredoxin FdxA that serves as a direct electron donor to the dinitrogenase reductases. This process is mediated by the RNF complex that exploits the proton motive force over the cytoplasmic membrane to lower the midpoint potential of the transferred electron. Here we report the cryogenic electron microscopy structure of the nitrogenase-associated RNF complex of A. vinelandii, a seven-subunit membrane protein assembly that contains four flavin cofactors and six iron-sulfur centers. Its function requires the strict coupling of electron and proton transfer but also involves major conformational changes within the assembly that can be traced with a combination of electron microscopy and modeling.
Collapse
Affiliation(s)
- Lin Zhang
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Oliver Einsle
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.
| |
Collapse
|
13
|
Erfu C, Li L, Weiting Q, Tao C, Liwei M, Hemin Y, Junkun L. Matrine attenuating cardiomyocyte apoptosis in doxorubicin-induced cardiotoxicity through improved mitochondrial membrane potential and activation of mitochondrial respiratory chain Complex I pathway. Biomed Pharmacother 2024; 173:116464. [PMID: 38503242 DOI: 10.1016/j.biopha.2024.116464] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024] Open
Abstract
The study aimed to demonstrate that matrine can reduce apoptosis in H9c2 cells induced by the cardiotoxic anticancer drug doxorubicin (DOX).The researchers pretreated H9c2 cells with different concentrations of matrine before exposing them to DOX and cultured them for 24 h. They assessed cell survival rates using cell counting kit-8 and MTT assay. Hoechst 33258 dye kits were used to determine apoptosis, while laser confocal JC-1 method was applied to test the mitochondrial membrane potential (MMP). Complex I activities were detected following the manufacturer's protocol. The results indicated that matrine pretreatment significantly increased the survival rate of H9c2 cells injured by DOX. Additionally, matrine reduced apoptosis in H9c2 cells through the improvement of MMP and activity of Complex I, which were damaged by DOX.
Collapse
Affiliation(s)
- Chu Erfu
- Department of Cardiology, Third Affiliated Hospital of Qiqihar Medical College, Qiqihar Medical College, Heilongjiang, China.
| | - Liu Li
- Department of Cardiology, First Traditional Medicine Hospital of Zhanjiang, Guangzhou University of Chinese Medicine, Guangdong, 524043, China
| | - Qu Weiting
- Department of Anesthesiology, Qiqihar Jianhua Hospital, Heilongjiang, China
| | - Chi Tao
- Department of Central Lab, Third Affiliated Hospital of Qiqihar Medical College, Qiqihar Medical College, Heilongjiang, China
| | - Ma Liwei
- Department of Institute of Medine & Pharmacy, Qiqihaer Medical College, Heilongjiang, China
| | - Yang Hemin
- Department of Central Lab, Third Affiliated Hospital of Qiqihar Medical College, Qiqihar Medical College, Heilongjiang, China
| | - Lu Junkun
- Department of Cardiology, First Traditional Medicine Hospital of Zhanjiang, Guangzhou University of Chinese Medicine, Guangdong, 524043, China.
| |
Collapse
|
14
|
Huang S, Méheust R, Barquera B, Light SH. Versatile roles of protein flavinylation in bacterial extracyotosolic electron transfer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584918. [PMID: 38559090 PMCID: PMC10979944 DOI: 10.1101/2024.03.13.584918] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Bacteria perform diverse redox chemistries in the periplasm, cell wall, and extracellular space. Electron transfer for these extracytosolic activities is frequently mediated by proteins with covalently bound flavins, which are attached through post-translational flavinylation by the enzyme ApbE. Despite the significance of protein flavinylation to bacterial physiology, the basis and function of this modification remains unresolved. Here we apply genomic context analyses, computational structural biology, and biochemical studies to address the role of ApbE flavinylation throughout bacterial life. We find that ApbE flavinylation sites exhibit substantial structural heterogeneity. We identify two novel classes of flavinylation substrates that are related to characterized proteins with non-covalently bound flavins, providing evidence that protein flavinylation can evolve from a non-covalent flavoprotein precursor. We further find a group of structurally related flavinylation-associated cytochromes, including those with the domain of unknown function DUF4405, that presumably mediate electron transfer in the cytoplasmic membrane. DUF4405 homologs are widespread in bacteria and related to ferrosome iron storage organelle proteins that may facilitate iron redox cycling within ferrosomes. These studies reveal a complex basis for flavinylated electron transfer and highlight the discovery power of coupling comparative genomic analyses with high-quality structural models.
Collapse
Affiliation(s)
- Shuo Huang
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Raphaël Méheust
- Génomique Métabolique, CEA, Genoscope, Institut François Jacob, Université d’Évry, Université Paris-Saclay, CNRS, Evry, France
| | - Blanca Barquera
- Department of Biological Sciences, Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute; Troy, NY
| | - Samuel H. Light
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
15
|
Hu Y, Yuan M, Julian A, Tuz K, Juárez O. Identification of complex III, NQR, and SDH as primary bioenergetic enzymes during the stationary phase of Pseudomonas aeruginosa cultured in urine-like conditions. Front Microbiol 2024; 15:1347466. [PMID: 38468849 PMCID: PMC10926992 DOI: 10.3389/fmicb.2024.1347466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024] Open
Abstract
Pseudomonas aeruginosa is a common cause of urinary tract infections by strains that are often multidrug resistant, representing a major challenge to the world's health care system. This microorganism has a highly adaptable metabolism that allows it to colonize many environments, including the urinary tract. In this work, we have characterized the metabolic strategies used by stationary phase P. aeruginosa cells cultivated in urine-like media to understand the adaptations used by this microorganism to survive and produce disease. Our proteomics results show that cells rely on the Entner-Duodoroff pathway, pentose phosphate pathway, the Krebs cycle/ glyoxylate shunt and the aerobic oxidative phosphorylation to survive in urine-like media and other conditions. A deep characterization of the oxidative phosphorylation showed that the respiratory rate of stationary phase cells is increased 3-4 times compared to cells in the logarithmic phase of growth, indicating that the aerobic metabolism plays critical roles in the stationary phase of cells grown in urine like media. Moreover, the data show that respiratory complex III, succinate dehydrogenase and the NADH dehydrogenase NQR have important functions and could be used as targets to develop new antibiotics against this bacterium.
Collapse
Affiliation(s)
| | | | | | | | - Oscar Juárez
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL, United States
| |
Collapse
|
16
|
Hau JL, Schleicher L, Herdan S, Simon J, Seifert J, Fritz G, Steuber J. Functionality of the Na +-translocating NADH:quinone oxidoreductase and quinol:fumarate reductase from Prevotella bryantii inferred from homology modeling. Arch Microbiol 2023; 206:32. [PMID: 38127130 PMCID: PMC10739449 DOI: 10.1007/s00203-023-03769-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023]
Abstract
Members of the family Prevotellaceae are Gram-negative, obligate anaerobic bacteria found in animal and human microbiota. In Prevotella bryantii, the Na+-translocating NADH:quinone oxidoreductase (NQR) and quinol:fumarate reductase (QFR) interact using menaquinone as electron carrier, catalyzing NADH:fumarate oxidoreduction. P. bryantii NQR establishes a sodium-motive force, whereas P. bryantii QFR does not contribute to membrane energization. To elucidate the possible mode of function, we present 3D structural models of NQR and QFR from P. bryantii to predict cofactor-binding sites, electron transfer routes and interaction with substrates. Molecular docking reveals the proposed mode of menaquinone binding to the quinone site of subunit NqrB of P. bryantii NQR. A comparison of the 3D model of P. bryantii QFR with experimentally determined structures suggests alternative pathways for transmembrane proton transport in this type of QFR. Our findings are relevant for NADH-dependent succinate formation in anaerobic bacteria which operate both NQR and QFR.
Collapse
Affiliation(s)
- Jann-Louis Hau
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
| | - Lena Schleicher
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
- HoLMiR-Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Leonore-Blosser-Reisen-Weg 3, 70599, Stuttgart, Germany
| | - Sebastian Herdan
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
- HoLMiR-Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Leonore-Blosser-Reisen-Weg 3, 70599, Stuttgart, Germany
| | - Jörg Simon
- Microbial Energy Conservation and Biotechnology, Department of Biology, Technical University of Darmstadt, Schnittspahnstraße 10, 64287, Darmstadt, Germany
| | - Jana Seifert
- HoLMiR-Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Leonore-Blosser-Reisen-Weg 3, 70599, Stuttgart, Germany
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Straße 8, 70599, Stuttgart, Germany
| | - Günter Fritz
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
| | - Julia Steuber
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany.
- HoLMiR-Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Leonore-Blosser-Reisen-Weg 3, 70599, Stuttgart, Germany.
| |
Collapse
|
17
|
He Z, Li Q, Xu Y, Zhang D, Pan X. Production of extracellular superoxide radical in microorganisms and its environmental implications: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122563. [PMID: 37717891 DOI: 10.1016/j.envpol.2023.122563] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/24/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Extracellular superoxide radical (O2•-) is ubiquitous in microbial environments and has significant implications for pollutant transformation. Microbial extracellular O2•- can be produced through multiple pathways, including electron leakage from the respiratory electron transport chain (ETC), NADPH oxidation by the transmembrane NADPH oxidase (NOX), and extracellular reactions. Extracellular O2•- significantly influences the geochemical processes of various substances, including toxic metals and refractory organic pollutants. On one hand, extracellular O2•- can react with variable-valence metals and detoxify certain highly toxic metals, such as As(III), Cr(VI), and Hg(II). On the other hand, extracellular O2•- can directly or indirectly (via Bio-Fenton) degrade many organic pollutants, including a variety of emerging contaminants. In this work, we summarize the production mechanisms of microbial extracellular O2•-, review its roles in the transformation of environmental pollutants, and discuss the potential applications, limiting factors, and future research directions in this field.
Collapse
Affiliation(s)
- Zhanfei He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Qunqun Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yao Xu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
18
|
Soder-Walz JM, Wasmund K, Deobald D, Vicent T, Adrian L, Marco-Urrea E. Respiratory protein interactions in Dehalobacter sp. strain 8M revealed through genomic and native proteomic analyses. Environ Microbiol 2023; 25:2604-2620. [PMID: 37452527 DOI: 10.1111/1462-2920.16464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Dehalobacter (Firmicutes) encompass obligate organohalide-respiring bacteria used for bioremediation of groundwater contaminated with halogenated organics. Various aspects of their biochemistry remain unknown, including the identities and interactions of respiratory proteins. Here, we sequenced the genome of Dehalobacter sp. strain 8M and analysed its protein expression. Strain 8M encodes 22 reductive dehalogenase homologous (RdhA) proteins. RdhA D8M_v2_40029 (TmrA) was among the two most abundant proteins during growth with trichloromethane and 1,1,2-trichloroethane. To examine interactions of respiratory proteins, we used blue native gel electrophoresis together with dehalogenation activity tests and mass spectrometry. The highest activities were found in gel slices with the highest abundance of TmrA. Protein distributions across gel lanes provided biochemical evidence that the large and small subunits of the membrane-bound [NiFe] uptake hydrogenase (HupL and HupS) interacted strongly and that HupL/S interacted weakly with RdhA. Moreover, the interaction of RdhB and membrane-bound b-type cytochrome HupC was detected. RdhC proteins, often encoded in rdh operons but without described function, migrated in a protein complex not associated with HupL/S or RdhA. This study provides the first biochemical evidence of respiratory protein interactions in Dehalobacter, discusses implications for the respiratory architecture and advances the molecular comprehension of this unique respiratory chain.
Collapse
Affiliation(s)
- Jesica M Soder-Walz
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Kenneth Wasmund
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- School of Biological Sciences, University of Portsmouth, Portsmouth, UK
| | - Darja Deobald
- Department Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Teresa Vicent
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Lorenz Adrian
- Department Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- Chair of Geobiotechnology, Technische Universität Berlin, Berlin, Germany
| | - Ernest Marco-Urrea
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| |
Collapse
|
19
|
Hau JL, Kaltwasser S, Muras V, Casutt MS, Vohl G, Claußen B, Steffen W, Leitner A, Bill E, Cutsail GE, DeBeer S, Vonck J, Steuber J, Fritz G. Conformational coupling of redox-driven Na +-translocation in Vibrio cholerae NADH:quinone oxidoreductase. Nat Struct Mol Biol 2023; 30:1686-1694. [PMID: 37710014 PMCID: PMC10643135 DOI: 10.1038/s41594-023-01099-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/17/2023] [Indexed: 09/16/2023]
Abstract
In the respiratory chain, NADH oxidation is coupled to ion translocation across the membrane to build up an electrochemical gradient. In the human pathogen Vibrio cholerae, the sodium-pumping NADH:quinone oxidoreductase (Na+-NQR) generates a sodium gradient by a so far unknown mechanism. Here we show that ion pumping in Na+-NQR is driven by large conformational changes coupling electron transfer to ion translocation. We have determined a series of cryo-EM and X-ray structures of the Na+-NQR that represent snapshots of the catalytic cycle. The six subunits NqrA, B, C, D, E, and F of Na+-NQR harbor a unique set of cofactors that shuttle the electrons from NADH twice across the membrane to quinone. The redox state of a unique intramembranous [2Fe-2S] cluster orchestrates the movements of subunit NqrC, which acts as an electron transfer switch. We propose that this switching movement controls the release of Na+ from a binding site localized in subunit NqrB.
Collapse
Affiliation(s)
- Jann-Louis Hau
- Department of Cellular Microbiology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Susann Kaltwasser
- Central Electron Microscopy Facility, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Valentin Muras
- Department of Cellular Microbiology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Marco S Casutt
- Department of Cellular Microbiology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Georg Vohl
- Department of Cellular Microbiology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Björn Claußen
- Department of Cellular Microbiology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Wojtek Steffen
- Department of Cellular Microbiology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Eckhard Bill
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
| | - George E Cutsail
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
| | - Janet Vonck
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
| | - Julia Steuber
- Department of Cellular Microbiology, Institute of Biology, University of Hohenheim, Stuttgart, Germany.
| | - Günter Fritz
- Department of Cellular Microbiology, Institute of Biology, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
20
|
Baothman OAS. Identifying therapeutic antibacterial peptides against Vibrio cholerae to inhibit the function of Na(+)-translocating NADH-quinone reductase. J Biomol Struct Dyn 2023; 42:12489-12504. [PMID: 37850460 DOI: 10.1080/07391102.2023.2270696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/07/2023] [Indexed: 10/19/2023]
Abstract
Vibrio cholerae is the bacteria responsible for cholera, which is a significant threat to many nations. Curing and treating this infection requires identification of the critical protein and development of a drug to inhibit its function. In this context, Na(+)-translocating NADH-quinone reductase was considered a potential therapeutic target. A library of antibacterial peptides with residue lengths of 50 was screened using a docking method, and the five most potent peptides were selected on the basis of a weighted score derived from solvent accessible surface area and docking score. To investigate the stability of the protein-peptide complex, a 100-ns molecular dynamics simulation was performed. These peptides targeted the native dimeric binding interface of Na(+)-transporting NADH-quinone reductase. This study evaluated the binding affinity and conformational stability of these peptides with the protein using different post-simulation metrics. A peptide, CCL28, exhibited steady RMSD characteristics; nonetheless, it modified the docked conformation but stabilized in the new conformation. This peptide also demonstrated the best performance in addressing the protein's native binding interface. It demonstrated a binding free energy of -120 kcal/mol with the protein. Principal component analysis (PCA) revealed that the first PC had the lowest conformational variation and the greatest coverage. Eventually, these peptides were also evaluated using steered molecular dynamics, and it was discovered that CCL28 had a greater maximum force than the other five peptides, at 1139.08 kJ/mol/nm. Targeting the native binding interface, we present a CCL28 peptide with a strong potential to block the biological activity of Vibrio cholerae's Na(+)-translocating NADH-quinone reductase.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Othman A S Baothman
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
21
|
Ikunishi R, Otani R, Masuya T, Shinzawa-Itoh K, Shiba T, Murai M, Miyoshi H. Respiratory complex I in mitochondrial membrane catalyzes oversized ubiquinones. J Biol Chem 2023; 299:105001. [PMID: 37394006 PMCID: PMC10416054 DOI: 10.1016/j.jbc.2023.105001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/04/2023] Open
Abstract
NADH-ubiquinone (UQ) oxidoreductase (complex I) couples electron transfer from NADH to UQ with proton translocation in its membrane part. The UQ reduction step is key to triggering proton translocation. Structural studies have identified a long, narrow, tunnel-like cavity within complex I, through which UQ may access a deep reaction site. To elucidate the physiological relevance of this UQ-accessing tunnel, we previously investigated whether a series of oversized UQs (OS-UQs), whose tail moiety is too large to enter and transit the narrow tunnel, can be catalytically reduced by complex I using the native enzyme in bovine heart submitochondrial particles (SMPs) and the isolated enzyme reconstituted into liposomes. Nevertheless, the physiological relevance remained unclear because some amphiphilic OS-UQs were reduced in SMPs but not in proteoliposomes, and investigation of extremely hydrophobic OS-UQs was not possible in SMPs. To uniformly assess the electron transfer activities of all OS-UQs with the native complex I, here we present a new assay system using SMPs, which were fused with liposomes incorporating OS-UQ and supplemented with a parasitic quinol oxidase to recycle reduced OS-UQ. In this system, all OS-UQs tested were reduced by the native enzyme, and the reduction was coupled with proton translocation. This finding does not support the canonical tunnel model. We propose that the UQ reaction cavity is flexibly open in the native enzyme to allow OS-UQs to access the reaction site, but their access is obstructed in the isolated enzyme as the cavity is altered by detergent-solubilizing from the mitochondrial membrane.
Collapse
Affiliation(s)
- Ryo Ikunishi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Ryohei Otani
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takahiro Masuya
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kyoko Shinzawa-Itoh
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Hyogo, Japan
| | - Tomoo Shiba
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Japan
| | - Masatoshi Murai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Hideto Miyoshi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
| |
Collapse
|