1
|
Yong C, Liang Y, Wang M, Jin W, Fan X, Wang Z, Cao K, Wu T, Li Q, Chang C. Alternative splicing: A key regulator in T cell response and cancer immunotherapy. Pharmacol Res 2025; 215:107713. [PMID: 40147681 DOI: 10.1016/j.phrs.2025.107713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/03/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Alternative splicing (AS), a key post-transcriptional regulatory mechanism, is frequently dysregulated in cancer, driving both tumor progression and immune modulation. Aberrant AS influences antigen presentation, T cell activation, immune checkpoint regulation, and cytokine signaling, contributing to immune evasion but also presenting unique therapeutic vulnerabilities. Targeting AS has emerged as a promising strategy in cancer immunotherapy. Splicing-derived neoantigens have been identified as potent inducers of CD8⁺ T cell responses, offering potential for personalized treatment. AS modulators such as PRMT5 inhibitor GSK3326595 enhance immunotherapy efficacy by upregulating MHC class II expression and promoting T cell infiltration, while RBM39 inhibitor indisulam induces tumor-specific neoantigens. Furthermore, combining AS-targeting drugs with immune checkpoint inhibitors (ICIs) has demonstrated synergistic effects, improved response rates and overcoming resistance in preclinical models. Despite these advances, challenges remain in optimizing drug specificity and minimizing toxicity. Future efforts should focus on refining AS-targeting therapies, identifying predictive biomarkers, and integrating these approaches into clinical applications. This review highlights the therapeutic potential of AS modulation in cancer immunotherapy and its implications for advancing precision oncology.
Collapse
Affiliation(s)
- Caiyu Yong
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Yexin Liang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Minmin Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Weiwei Jin
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Xuefei Fan
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Zhengwen Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Kui Cao
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Tong Wu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Qian Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Cunjie Chang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China.
| |
Collapse
|
2
|
Shirzadian M, Moori S, Rabbani R, Rahbarizadeh F. SynNotch CAR-T cell, when synthetic biology and immunology meet again. Front Immunol 2025; 16:1545270. [PMID: 40308611 PMCID: PMC12040928 DOI: 10.3389/fimmu.2025.1545270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 03/28/2025] [Indexed: 05/02/2025] Open
Abstract
Cancer immunotherapy has been transformed by chimeric antigen receptor (CAR) T-cell treatment, which has shown groundbreaking results in hematological malignancies. However, its application in solid tumors remains a formidable challenge due to immune evasion, tumor heterogeneity, and safety concerns arising from off-target effects. A long-standing effort in this field has been the development of synthetic receptors to create new signaling pathways and rewire immune cells for the specific targeting of cancer cells, particularly in cell-based immunotherapy. This field has undergone a paradigm shift with the introduction of synthetic Notch (synNotch) receptors, which offer a highly versatile signaling platform modeled after natural receptor-ligand interactions. By functioning as molecular logic gates, synNotch receptors enable precise, multi-antigen regulation of T-cell activation, paving the way for enhanced specificity and control. This review explores the revolutionary integration of synNotch systems with CAR T-cell therapy, emphasizing cutting-edge strategies to overcome the inherent limitations of traditional approaches. We delve into the mechanisms of synNotch receptor design, focusing on their ability to discriminate between cancerous and normal cells through spatiotemporally controlled gene expression. Additionally, we highlight recent advancements to improve therapeutic efficacy, safety, and adaptability in treating solid tumors. This study highlights the potential of synNotch-based CAR-T cells to transform the field of targeted cancer therapy by resolving present challenges and shedding light on potential future paths.
Collapse
Affiliation(s)
- Mohsen Shirzadian
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sepideh Moori
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Reza Rabbani
- Department of Stem Cell Technology and Tissue Engineering, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
3
|
Krawczyk M, Fernandez-Fuentes N, Fidyt K, Winiarski T, Pepek M, Graczyk-Jarzynka A, Davis J, Bousquets-Muñoz P, Puente XS, Menendez P, Benard E, Wälchli S, Thomas-Tikhonenko A, Winiarska M. The costimulatory domain influences CD19 CAR-T cell resistance development in B-cell malignancies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640707. [PMID: 40093096 PMCID: PMC11908201 DOI: 10.1101/2025.02.28.640707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
CD19-CAR-T-cells emerge as a major therapeutic option for relapsed/refractory B-cell-derived malignancies, however approximately half of patients eventually relapse. To identify resistance-driving factors, we repeatedly exposed B-cell lymphoma/B-cell acute lymphoblastic leukemia to 4-1BB/CD28-based CD19-CAR-T-cells in vitro. Generated models revealed costimulatory domain-dependent differences in CD19 loss. While CD19-4-1BB-CAR-T-cells induced combination epitope/total CD19 protein loss, CD19-CD28-CAR-T-cells did not drive antigen-escape. Consistent with observations in patients relapsing after CD19-4-1BB-CAR-T-cells, we identified CD19 frameshift/missense mutations affecting residues critical for FMC63 epitope recognition. Mathematical simulations revealed that differences between CD19-4-1BB- and CD19-CD28-CAR-T-cells activity against low-antigen-expressing tumor contribute to heterogeneous therapeutic responses. By integrating in vitro and in silico data, we propose a biological scenario where CD19-4-1BB-CAR-T-cells fail to eliminate low-antigen tumor cells, fostering CAR-resistance. These findings offer mechanistic insight into the observed clinical differences between axi-cel (CD28-based) and tisa-cel (4-1BB-based)-treated B-cell lymphoma patients and advance our understanding on CAR-T resistance. Furthermore, we underscore the need for specific FMC63 epitope detection to deliver information on antigen levels accessible for CD19-CAR-T-cells.
Collapse
Affiliation(s)
- Marta Krawczyk
- Department of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Doctoral School of Translational Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Narcis Fernandez-Fuentes
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Klaudyna Fidyt
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Tomasz Winiarski
- Warsaw University of Technology, Institute of Control and Computation Engineering, Warsaw, Poland
| | - Monika Pepek
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Graczyk-Jarzynka
- Department of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Jacinta Davis
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Pablo Bousquets-Muñoz
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Xose S Puente
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Pablo Menendez
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Red Española de Terapias Avanzadas (TERAV) - Instituto de Salud Carlos III (ISCII)
- Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Institut de Recerca Hospital Sant Joan de Déu-Pediatric Cancer Center Barcelona (SJD-PCCB), Barcelona, Spain
| | - Emmanuelle Benard
- Translational Research Unit, Section of Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Sébastien Wälchli
- Translational Research Unit, Section of Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Andrei Thomas-Tikhonenko
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Magdalena Winiarska
- Department of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
4
|
Capitanchik C, Wilkins OG, Wagner N, Gagneur J, Ule J. From computational models of the splicing code to regulatory mechanisms and therapeutic implications. Nat Rev Genet 2025; 26:171-190. [PMID: 39358547 DOI: 10.1038/s41576-024-00774-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 10/04/2024]
Abstract
Since the discovery of RNA splicing and its role in gene expression, researchers have sought a set of rules, an algorithm or a computational model that could predict the splice isoforms, and their frequencies, produced from any transcribed gene in a specific cellular context. Over the past 30 years, these models have evolved from simple position weight matrices to deep-learning models capable of integrating sequence data across vast genomic distances. Most recently, new model architectures are moving the field closer to context-specific alternative splicing predictions, and advances in sequencing technologies are expanding the type of data that can be used to inform and interpret such models. Together, these developments are driving improved understanding of splicing regulatory mechanisms and emerging applications of the splicing code to the rational design of RNA- and splicing-based therapeutics.
Collapse
Affiliation(s)
- Charlotte Capitanchik
- The Francis Crick Institute, London, UK
- UK Dementia Research Institute at King's College London, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, UK
| | - Oscar G Wilkins
- The Francis Crick Institute, London, UK
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Nils Wagner
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Helmholtz Association - Munich School for Data Science (MUDS), Munich, Germany
| | - Julien Gagneur
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany.
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany.
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany.
| | - Jernej Ule
- The Francis Crick Institute, London, UK.
- UK Dementia Research Institute at King's College London, London, UK.
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, UK.
- National Institute of Chemistry, Ljubljana, Slovenia.
| |
Collapse
|
5
|
Nasiri F, Safarzadeh Kozani P, Salem F, Mahboubi Kancha M, Dashti Shokoohi S, Safarzadeh Kozani P. Mechanisms of antigen-dependent resistance to chimeric antigen receptor (CAR)-T cell therapies. Cancer Cell Int 2025; 25:64. [PMID: 39994651 PMCID: PMC11849274 DOI: 10.1186/s12935-025-03697-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/14/2025] [Indexed: 02/26/2025] Open
Abstract
Cancer immunotherapy has reshaped the landscape of cancer treatment over the past decades. Genetic manipulation of T cells to express synthetic receptors, known as chimeric antigen receptors (CAR), has led to the creation of tremendous commercial and therapeutic success for the treatment of certain hematologic malignancies. However, since the engagement of CAR-T cells with their respective antigens is solely what triggers their cytotoxic reactions against target cells, the slightest changes to the availability and/or structure of the target antigen often result in the incapacitation of CAR-T cells to enforce tumoricidal responses. This results in the resistance of tumor cells to a particular CAR-T cell therapy that requires meticulous heeding to sustain remissions in cancer patients. In this review, we highlight the antigen-dependent resistance mechanisms by which tumor cells dodge being recognized and targeted by CAR-T cells. Moreover, since substituting the target antigen is the most potent strategy for overcoming antigen-dependent disease relapse, we tend to highlight the current status of some target antigens that might be considered suitable alternatives to the currently available antigens in various cancers. We also propose target antigens whose targeting might reduce the off-tumor adverse events of CAR-T cells in certain malignancies.
Collapse
Affiliation(s)
- Fatemeh Nasiri
- Department of Internal Medicine, College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran
| | - Pouya Safarzadeh Kozani
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran.
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Faeze Salem
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maral Mahboubi Kancha
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham Maritime, Chatham, Kent, ME4 4TB, UK
| | | | - Pooria Safarzadeh Kozani
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran.
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
6
|
Lv X, Sun X, Gao Y, Song X, Hu X, Gong L, Han L, He M, Wei M. Targeting RNA splicing modulation: new perspectives for anticancer strategy? J Exp Clin Cancer Res 2025; 44:32. [PMID: 39885614 PMCID: PMC11781073 DOI: 10.1186/s13046-025-03279-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/07/2025] [Indexed: 02/01/2025] Open
Abstract
The excision of introns from pre-mRNA is a crucial process in the expression of the majority of genes. Alternative splicing allows a single gene to generate diverse mRNA and protein products. Aberrant RNA splicing is recognized as a molecular characteristic present in almost all types of tumors. Therefore, identifying cancer-specific subtypes from aberrant processing offers new opportunities for therapeutic development. Numerous splicing modulators, each utilizing different mechanisms, have been developed as promising anticancer therapies, some of which are in clinical trials. In this review, we summarize the splice-altered signatures of cancer cell transcriptomes and the contributions of splicing aberrations to tumorigenesis and progression. Especially, we discuss current and emerging RNA splicing-targeted strategies for cancer therapy, including pharmacological approaches and splice-switching antisense oligonucleotides (ASOs). Finally, we address the challenges and opportunities in translating these findings into clinical practice.
Collapse
Affiliation(s)
- Xuemei Lv
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, P. R. China
- Central Laboratory, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Xiaoyu Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, P. R. China
| | - Yang Gao
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, P. R. China
| | - Xinyue Song
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, P. R. China
| | - Xiaoyun Hu
- Scientific Experimental Center, School of Pharmacy, China Medical University, Shenyang, 110122, P. R. China
| | - Lang Gong
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, P. R. China
| | - Li Han
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, P. R. China.
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China.
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, P. R. China.
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China.
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, P. R. China.
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China.
- Shenyang Kangwei Medical Laboratory Analysis Co. LTD, Shenyang, China.
| |
Collapse
|
7
|
Wu D, Maus N, Jha A, Yang K, Wales-McGrath BD, Jewell S, Tangiyan A, Choi P, Gardner JR, Barash Y. Generative modeling for RNA splicing predictions and design. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.20.633986. [PMID: 39896553 PMCID: PMC11785043 DOI: 10.1101/2025.01.20.633986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Alternative splicing (AS) of pre-mRNA plays a crucial role in tissue-specific gene regulation, with disease implications due to splicing defects. Predicting and manipulating AS can therefore uncover new regulatory mechanisms and aid in therapeutics design. We introduce TrASPr+BOS, a generative AI model with Bayesian Optimization for predicting and designing RNA for tissue-specific splicing outcomes. TrASPr is a multi-transformer model that can handle different types of AS events and generalize to unseen cellular conditions. It then serves as an oracle, generating labeled data to train a Bayesian Optimization for Splicing (BOS) algorithm to design RNA for condition-specific splicing outcomes. We show TrASPr+BOS outperforms existing methods, enhancing tissue-specific AUPRC by up to 2.4 fold and capturing tissue-specific regulatory elements. We validate hundreds of predicted novel tissue-specific splicing variations and confirm new regulatory elements using dCas13. We envision TrASPr+BOS as a light yet accurate method researchers can probe or adopt for specific tasks.
Collapse
Affiliation(s)
- Di Wu
- Department of Computer and Information Science, School of Engineering, University of Pennsylvania
| | - Natalie Maus
- Department of Computer and Information Science, School of Engineering, University of Pennsylvania
| | - Anupama Jha
- Department of Genome Sciences, University of Washington
| | - Kevin Yang
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania
| | | | - San Jewell
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania
| | - Anna Tangiyan
- Division of Cancer Pathobiology, The Children’s Hospital of Philadelphia
| | - Peter Choi
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Division of Cancer Pathobiology, The Children’s Hospital of Philadelphia
| | - Jacob R. Gardner
- Department of Computer and Information Science, School of Engineering, University of Pennsylvania
| | - Yoseph Barash
- Department of Computer and Information Science, School of Engineering, University of Pennsylvania
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania
| |
Collapse
|
8
|
Steinhardt MJ, Einsele H, Waldschmidt JM. Advances in CD19-targeting CAR-T cell therapies for multiple myeloma. Expert Opin Biol Ther 2025; 25:21-25. [PMID: 39670821 DOI: 10.1080/14712598.2024.2443093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/27/2024] [Accepted: 12/12/2024] [Indexed: 12/14/2024]
Abstract
INTRODUCTION Emerging evidence suggests that, while CD19 is primarily expressed on immature B-cell precursors, it is also present on drug-resistant plasma cells that have been postulated to function as multiple myeloma (MM) stem cells, driving the progression of relapsing disease. Targeting CD19 with chimeric antigen receptor (CAR) T cells offers a promising strategy for addressing this residual disease burden, potentially leading to more durable treatments and enhanced relapse prevention. AREAS COVERED This review examines the molecular basis of CD19-targeted CAR-T therapy in MM, highlighting its potential, key challenges, and efficacy and safety in early clinical trials for relapsed/refractory and newly diagnosed MM. EXPERT OPINION CD19 expression in MM correlates with poor prognosis and may be significantly underestimated, particularly following debulking therapy, as demonstrated by advanced visualization technologies like single molecule-sensitive direct stochastic optical reconstruction microscopy (dSTORM). Early-phase trials using CD19-directed CAR-T as post-transplant consolidation show promise in prolonging progression-free survival. Multi-target approaches, e.g. the bispecific BCMA×CD19 CAR-T product GC012F, are advancing through clinical development with encouraging safety and efficacy data. However, randomized controlled trials will be necessary to confirm the role and positioning of CD19-directed CAR-T cells within the current MM treatment landscape.
Collapse
Affiliation(s)
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | | |
Collapse
|
9
|
Anczukow O, Allain FHT, Angarola BL, Black DL, Brooks AN, Cheng C, Conesa A, Crosse EI, Eyras E, Guccione E, Lu SX, Neugebauer KM, Sehgal P, Song X, Tothova Z, Valcárcel J, Weeks KM, Yeo GW, Thomas-Tikhonenko A. Steering research on mRNA splicing in cancer towards clinical translation. Nat Rev Cancer 2024; 24:887-905. [PMID: 39384951 DOI: 10.1038/s41568-024-00750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 10/11/2024]
Abstract
Splicing factors are affected by recurrent somatic mutations and copy number variations in several types of haematologic and solid malignancies, which is often seen as prima facie evidence that splicing aberrations can drive cancer initiation and progression. However, numerous spliceosome components also 'moonlight' in DNA repair and other cellular processes, making their precise role in cancer difficult to pinpoint. Still, few would deny that dysregulated mRNA splicing is a pervasive feature of most cancers. Correctly interpreting these molecular fingerprints can reveal novel tumour vulnerabilities and untapped therapeutic opportunities. Yet multiple technological challenges, lingering misconceptions, and outstanding questions hinder clinical translation. To start with, the general landscape of splicing aberrations in cancer is not well defined, due to limitations of short-read RNA sequencing not adept at resolving complete mRNA isoforms, as well as the shallow read depth inherent in long-read RNA-sequencing, especially at single-cell level. Although individual cancer-associated isoforms are known to contribute to cancer progression, widespread splicing alterations could be an equally important and, perhaps, more readily actionable feature of human cancers. This is to say that in addition to 'repairing' mis-spliced transcripts, possible therapeutic avenues include exacerbating splicing aberration with small-molecule spliceosome inhibitors, targeting recurrent splicing aberrations with synthetic lethal approaches, and training the immune system to recognize splicing-derived neoantigens.
Collapse
Affiliation(s)
- Olga Anczukow
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
| | - Frédéric H-T Allain
- Department of Biology, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | | | - Douglas L Black
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - Angela N Brooks
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Chonghui Cheng
- Department of Molecular and Human Genetics, Lester & Sue Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Ana Conesa
- Institute for Integrative Systems Biology, Spanish National Research Council, Paterna, Spain
| | - Edie I Crosse
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Eduardo Eyras
- Shine-Dalgarno Centre for RNA Innovation, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Ernesto Guccione
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY, USA
| | - Sydney X Lu
- Department of Medicine, Stanford Medical School, Palo Alto, CA, USA
| | - Karla M Neugebauer
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
| | - Priyanka Sehgal
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xiao Song
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Zuzana Tothova
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Juan Valcárcel
- Centre for Genomic Regulation, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Andrei Thomas-Tikhonenko
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
10
|
La Fleur A, Shi Y, Seelig G. Decoding biology with massively parallel reporter assays and machine learning. Genes Dev 2024; 38:843-865. [PMID: 39362779 PMCID: PMC11535156 DOI: 10.1101/gad.351800.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Massively parallel reporter assays (MPRAs) are powerful tools for quantifying the impacts of sequence variation on gene expression. Reading out molecular phenotypes with sequencing enables interrogating the impact of sequence variation beyond genome scale. Machine learning models integrate and codify information learned from MPRAs and enable generalization by predicting sequences outside the training data set. Models can provide a quantitative understanding of cis-regulatory codes controlling gene expression, enable variant stratification, and guide the design of synthetic regulatory elements for applications from synthetic biology to mRNA and gene therapy. This review focuses on cis-regulatory MPRAs, particularly those that interrogate cotranscriptional and post-transcriptional processes: alternative splicing, cleavage and polyadenylation, translation, and mRNA decay.
Collapse
Affiliation(s)
- Alyssa La Fleur
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Yongsheng Shi
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, California 92697, USA;
| | - Georg Seelig
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, USA;
- Department of Electrical & Computer Engineering, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
11
|
O'Neill MJ, Yang T, Laudeman J, Calandranis ME, Harvey ML, Solus JF, Roden DM, Glazer AM. ParSE-seq: a calibrated multiplexed assay to facilitate the clinical classification of putative splice-altering variants. Nat Commun 2024; 15:8320. [PMID: 39333091 PMCID: PMC11437130 DOI: 10.1038/s41467-024-52474-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/10/2024] [Indexed: 09/29/2024] Open
Abstract
Interpreting the clinical significance of putative splice-altering variants outside canonical splice sites remains difficult without time-intensive experimental studies. To address this, we introduce Parallel Splice Effect Sequencing (ParSE-seq), a multiplexed assay to quantify variant effects on RNA splicing. We first apply this technique to study hundreds of variants in the arrhythmia-associated gene SCN5A. Variants are studied in 'minigene' plasmids with molecular barcodes to allow pooled variant effect quantification. We perform experiments in two cell types, including disease-relevant induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). The assay strongly separates known control variants from ClinVar, enabling quantitative calibration of the ParSE-seq assay. Using these evidence strengths and experimental data, we reclassify 29 of 34 variants with conflicting interpretations and 11 of 42 variants of uncertain significance. In addition to intronic variants, we show that many synonymous and missense variants disrupted RNA splicing. Two splice-altering variants in the assay also disrupt splicing and sodium current when introduced into iPSC-CMs by CRISPR-Cas9 editing. ParSE-seq provides high-throughput experimental data for RNA-splicing to support precision medicine efforts and can be readily adopted to study other loss-of-function genotype-phenotype relationships.
Collapse
Affiliation(s)
| | - Tao Yang
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Julie Laudeman
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Maria E Calandranis
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M Lorena Harvey
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joseph F Solus
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dan M Roden
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Andrew M Glazer
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
12
|
Chen PH, Raghunandan R, Morrow JS, Katz SG. Finding Your CAR: The Road Ahead for Engineered T Cells. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1409-1423. [PMID: 38697513 PMCID: PMC11284763 DOI: 10.1016/j.ajpath.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/08/2024] [Accepted: 04/02/2024] [Indexed: 05/05/2024]
Abstract
Adoptive cellular therapy using chimeric antigen receptors (CARs) has transformed immunotherapy by engineering T cells to target specific antigens on tumor cells. As the field continues to advance, pathology laboratories will play increasingly essential roles in the complicated multi-step process of CAR T-cell therapy. These include detection of targetable tumor antigens by flow cytometry or immunohistochemistry at the time of disease diagnosis and the isolation and infusion of CAR T cells. Additional roles include: i) detecting antigen loss or heterogeneity that renders resistance to CAR T cells as well as identifying alternative targetable antigens on tumor cells, ii) monitoring the phenotype, persistence, and tumor infiltration properties of CAR T cells and the tumor microenvironment for factors that predict CAR T-cell therapy success, and iii) evaluating side effects and biomarkers of CAR T-cell cytotoxicity such as cytokine release syndrome. This review highlights existing technologies that are applicable to monitoring CAR T-cell persistence, target antigen identification, and loss. Also discussed are emerging technologies that address new challenges such as how to put a brake on CAR T cells. Although pathology laboratories have already provided companion diagnostic tests important in immunotherapy (eg, programmed death-ligand 1, microsatellite instability, and human epidermal growth factor receptor 2 testing), it draws attention to the exciting new translational research opportunities in adoptive cellular therapy.
Collapse
Affiliation(s)
- Po-Han Chen
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Rianna Raghunandan
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Jon S Morrow
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Samuel G Katz
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut.
| |
Collapse
|
13
|
Wei L, Meng J, Xiang D, Yang Q, Zhou Y, Xu L, Chen J, Han Y. The Pan-Cancer Analysis Uncovers the Prognostic and Immunotherapeutic Significance of CD19 as an Immune Marker in Tumor. Int J Gen Med 2024; 17:2593-2612. [PMID: 38855424 PMCID: PMC11162214 DOI: 10.2147/ijgm.s459914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/17/2024] [Indexed: 06/11/2024] Open
Abstract
Background The specific cytotoxic effects of anti-CD19 chimeric antigen receptor (CAR) T-cell therapy have led to impressive outcomes in individuals previously treated for B-cell malignancies. However, the specific biological role of CD19(+) target cells, which exert antitumor immunity against some solid tumors, remains to be elucidated. Methods We collected information regarding the level of CD19 mRNA and protein expression from various databases including The Cancer Genome Atlas (TCGA), Tumor Immune Estimation Resource (TIMER), Genotype-Tissue Expression (GTEx), and Human Protein Atlas (HPA) for both tumor and normal samples. To evaluate the patient's prognosis according to CD19 expression, a Kaplan-Meier (KM) analysis and univariate Cox regression were performed. Furthermore, using the Estimation of Stromal and Immune Cells in Malignant Tumor Tissues Using the Expression Data (ESTIMATE) algorithm, we estimated the ratio of immune cells infiltrating malignant tumor tissues. Afterward, the GSCALite repository was employed to evaluate the vulnerability of tumors expressing CD19 to drugs used in chemotherapy. To validate the results in clinical samples of certain cancer types, immunohistochemistry was then performed. Results Most tumor types exhibited CD19 expression differently, apart from colon adenocarcinoma (COAD). The early diagnostic value of CD19 has been demonstrated in 9 different tumor types, and the overexpression of CD19 has the potential to extend the survival duration of patients. Multiple tumors showed a positive correlation between CD19 expression and tumor mutation burden (TMB), microsatellite instability (MSI), and ESTIMATE score. Furthermore, a direct association was discovered between the expression of CD19 and the infiltration of immune cells, particularly in cases of breast invasive carcinoma (BRCA). Moreover, CD19 is highly sensitive to a variety of chemotherapy drugs. Conclusion The study reveals the potential of CD19 as both a predictive biomarker and a target for different cancer immunotherapies.
Collapse
Affiliation(s)
- Lanyi Wei
- Department of Pharmacy, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People’s Republic of China
| | - Jingjing Meng
- Department of Pharmacy, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People’s Republic of China
| | - Danfeng Xiang
- Department of Pharmacy, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People’s Republic of China
| | - Quanjun Yang
- Department of Pharmacy, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People’s Republic of China
| | - Yangyun Zhou
- Department of Pharmacy, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People’s Republic of China
| | - Lingyan Xu
- Department of Pharmacy, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People’s Republic of China
| | - Junjun Chen
- Department of Pharmacy, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People’s Republic of China
| | - Yonglong Han
- Department of Pharmacy, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People’s Republic of China
| |
Collapse
|
14
|
Huang Y, Qin Y, He Y, Qiu D, Zheng Y, Wei J, Zhang L, Yang DH, Li Y. Advances in molecular targeted drugs in combination with CAR-T cell therapy for hematologic malignancies. Drug Resist Updat 2024; 74:101082. [PMID: 38569225 DOI: 10.1016/j.drup.2024.101082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/03/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
Molecular targeted drugs and chimeric antigen receptor (CAR) T cell therapy represent specific biological treatments that have significantly improved the efficacy of treating hematologic malignancies. However, they face challenges such as drug resistance and recurrence after treatment. Combining molecular targeted drugs and CAR-T cells could regulate immunity, improve tumor microenvironment (TME), promote cell apoptosis, and enhance sensitivity to tumor cell killing. This approach might provide a dual coordinated attack on cancer cells, effectively eliminating minimal residual disease and overcoming therapy resistance. Moreover, molecular targeted drugs can directly or indirectly enhance the anti-tumor effect of CAR-T cells by inducing tumor target antigen expression, reversing CAR-T cell exhaustion, and reducing CAR-T cell associated toxic side effects. Therefore, combining molecular targeted drugs with CAR-T cells is a promising and novel tactic for treating hematologic malignancies. In this review article, we focus on analyzing the mechanism of therapy resistance and its reversal of CAR-T cell therapy resistance, as well as the synergistic mechanism, safety, and future challenges in CAR-T cell therapy in combination with molecular targeted drugs. We aim to explore the benefits of this combination therapy for patients with hematologic malignancies and provide a rationale for subsequent clinical studies.
Collapse
Affiliation(s)
- Yuxian Huang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong, China.
| | - Yinjie Qin
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong, China
| | - Yingzhi He
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong, China
| | - Dezhi Qiu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong, China
| | - Yeqin Zheng
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong, China
| | - Jiayue Wei
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong, China
| | - Lenghe Zhang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong, China
| | - Dong-Hua Yang
- New York College of Traditional Chinese Medicine, Mineola, NY, USA.
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong, China.
| |
Collapse
|
15
|
Tao Y, Zhang Q, Wang H, Yang X, Mu H. Alternative splicing and related RNA binding proteins in human health and disease. Signal Transduct Target Ther 2024; 9:26. [PMID: 38302461 PMCID: PMC10835012 DOI: 10.1038/s41392-024-01734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 02/03/2024] Open
Abstract
Alternative splicing (AS) serves as a pivotal mechanism in transcriptional regulation, engendering transcript diversity, and modifications in protein structure and functionality. Across varying tissues, developmental stages, or under specific conditions, AS gives rise to distinct splice isoforms. This implies that these isoforms possess unique temporal and spatial roles, thereby associating AS with standard biological activities and diseases. Among these, AS-related RNA-binding proteins (RBPs) play an instrumental role in regulating alternative splicing events. Under physiological conditions, the diversity of proteins mediated by AS influences the structure, function, interaction, and localization of proteins, thereby participating in the differentiation and development of an array of tissues and organs. Under pathological conditions, alterations in AS are linked with various diseases, particularly cancer. These changes can lead to modifications in gene splicing patterns, culminating in changes or loss of protein functionality. For instance, in cancer, abnormalities in AS and RBPs may result in aberrant expression of cancer-associated genes, thereby promoting the onset and progression of tumors. AS and RBPs are also associated with numerous neurodegenerative diseases and autoimmune diseases. Consequently, the study of AS across different tissues holds significant value. This review provides a detailed account of the recent advancements in the study of alternative splicing and AS-related RNA-binding proteins in tissue development and diseases, which aids in deepening the understanding of gene expression complexity and offers new insights and methodologies for precision medicine.
Collapse
Affiliation(s)
- Yining Tao
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Qi Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
| | - Haoyu Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Xiyu Yang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Haoran Mu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China.
- Shanghai Bone Tumor Institution, 200000, Shanghai, China.
| |
Collapse
|
16
|
Mishra A, Maiti R, Mohan P, Gupta P. Antigen loss following CAR-T cell therapy: Mechanisms, implications, and potential solutions. Eur J Haematol 2024; 112:211-222. [PMID: 37705357 DOI: 10.1111/ejh.14101] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
Chimeric Antigen Receptor T-cell (CAR-T cell) therapy has emerged as a groundbreaking immunotherapeutic approach for treating various hematological malignancies. CAR-T cells are engineered to express synthetic receptors that target specific antigens on cancer cells, leading to their eradication. While the therapy has shown remarkable efficacy, a significant challenge that has been observed in 30%-70% of patients showing recurrent disease is antigen loss or downregulation. We searched PubMed/MEDLINE, EMBASE, and Google scholar for articles on antigen loss/escape following Chimeric antigen receptor T-cell therapy in malignancies. Antigen loss refers to the loss or reduction in the expression of the target antigen on cancer cells, rendering CAR-T cells ineffective. This phenomenon poses a significant clinical concern, as it can lead to disease relapse and limited treatment options. This review explores the mechanisms underlying antigen loss following CAR-T cell therapy, its implications on treatment outcomes, and potential strategies to overcome the problem.
Collapse
Affiliation(s)
- Archana Mishra
- Department of Pharmacology, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Rituparna Maiti
- Department of Pharmacology, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Prafull Mohan
- Clinical Pharmacologist, Armed Forces Medical Services, Guwahati, India
| | - Pooja Gupta
- Department of Pharmacology, All India Institute of Medical Sciences, Delhi, India
| |
Collapse
|
17
|
Zhao B, Yin J, Ding L, Luo J, Luo J, Mu J, Pan S, Du J, Zhong Y, Zhang L, Liu L. SPAG6 regulates cell proliferation and apoptosis via TGF-β/Smad signal pathway in adult B-cell acute lymphoblastic leukemia. Int J Hematol 2024; 119:119-129. [PMID: 38147275 DOI: 10.1007/s12185-023-03684-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 12/27/2023]
Abstract
Adult B-cell acute lymphoblastic leukemia (B-ALL) prognosis remains unsatisfactory, and searching for new therapeutic targets is crucial for improving patient prognosis. Sperm-associated antigen 6 (SPAG6), a member of the cancer-testis antigen family, plays an important role in tumors, especially hematologic tumors; however, it is unknown whether SPAG6 plays a role in adult B-ALL. In this study, we demonstrated for the first time that SPAG6 expression was up-regulated in the bone marrow of adult B-ALL patients compared to healthy donors, and expression was significantly reduced in patients who achieved complete remission (CR) after treatment. In addition, patients with high SPAG6 expression were older (≥ 35 years; P = 0.015), had elevated white blood cell counts (WBC > 30 × 109/L; P = 0.021), and a low rate of CR (P = 0.036). We explored the SPAG6 effect on cell function by lentiviral transfection of adult B-ALL cell lines BALL-1 and NALM-6, and discovered that knocking down SPAG6 significantly inhibited cell proliferation and promoted apoptosis. We identified that SPAG6 knockdown might regulate cell proliferation and apoptosis via the transforming growth factor-β (TGF-β)/Smad signaling pathway.
Collapse
Affiliation(s)
- Beibei Zhao
- Department of Hematology, Chongqing Medical University, Medical College Road, Yuzhong District, Chongqing, China
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Jiaxiu Yin
- Department of Hematology, Chongqing Medical University, Medical College Road, Yuzhong District, Chongqing, China
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Li Ding
- Department of Hematology, Chongqing Medical University, Medical College Road, Yuzhong District, Chongqing, China
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jie Luo
- Department of Hematology, Chongqing Medical University, Medical College Road, Yuzhong District, Chongqing, China
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Jing Luo
- Department of Hematology, Chongqing Medical University, Medical College Road, Yuzhong District, Chongqing, China
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Jiao Mu
- Department of Hematology, Chongqing Medical University, Medical College Road, Yuzhong District, Chongqing, China
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Shirui Pan
- Department of Hematology, Chongqing Medical University, Medical College Road, Yuzhong District, Chongqing, China
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Juan Du
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Yirui Zhong
- Department of Hematology, Chongqing Medical University, Medical College Road, Yuzhong District, Chongqing, China
| | - Linyi Zhang
- Department of Hematology, Chongqing Medical University, Medical College Road, Yuzhong District, Chongqing, China
| | - Lin Liu
- Department of Hematology, Chongqing Medical University, Medical College Road, Yuzhong District, Chongqing, China.
| |
Collapse
|
18
|
Zhao Y, Wang Y, Xia Q, He H, Mao Q, Dong H, Zhu L, Hu Z, Xia J, Weng Z, Liao W, Xin Z. Pan-Cancer Analysis of PTBP1 to Identify it as a Prognostic and Immunological Biomarker. Cancer Control 2024; 31:10732748241302865. [PMID: 39612472 DOI: 10.1177/10732748241302865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2024] Open
Abstract
OBJECTIVES Human cancer is considered to be an important cause of death worldwide. Polypyrimidine tract binding protein 1 (PTBP1) is emerging as a powerful pro-oncogenic factor in bladder and liver cancer; however, no pan-cancer analysis is presently available. Our study aimed to explore PTBP1 expression profiles, prognostic immunological value, and biological functions across various cancers. METHODS We conducted a comprehensive analysis using multi-omics bioinformatics from public databases, including TIMER, GEPIA2, ProteinAtlas, Kaplan-Meier Plotter, PrognoScan, cBioPortal, STRING, ENCORI, TargetScan, and DAVID. RESULTS We found that PTBP1 was overexpressed across multiple cancer types. qRT-PCR results demonstrated that the PTBP1 mRNA was significantly up-regulated in lung adenocarcinoma (LUAD), colon cancer (COAD), and melanoma (SKCM) cell lines, as well as in melanoma-forming mouse models. Higher PTBP1 mRNA levels were associated with poorer survival probabilities in several cancer types. PTBP1 genetic alterations were related to amplification and mutation. PTBP1 significantly modulates tumor immunity by enhancing Tregs infiltration and reducing CD8+ T cell activity, promoting immune evasion and adversely affecting cancer prognosis. GO and KEGG pathway analyses implied that PTBP1 may participate in RNA metabolism, the spliceosome, the cell cycle, and the p53 signaling pathway in cancer development. CONCLUSION Our study is the first to demonstrate the oncogenic role of PTBP1 in a pan-cancer context. PTBP1 might serve as a new biomarker for prognostic prediction and immune cell infiltration across cancers in the future.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yanyang Wang
- Department of Cell Engineering Laboratory, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qiuqiu Xia
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Huanhuan He
- Department of Cell Engineering Laboratory, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qiming Mao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Huaize Dong
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Lu Zhu
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zongyue Hu
- Department of Pain Rehabilitation, Affiliated Sinopharm Gezhouba Central Hospital, Third Clinical Medical College of Three Gorges University, Yichang, China
| | - Jiyue Xia
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zijing Weng
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wenbo Liao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhijun Xin
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Institut Curie, PSL Research University, CNRS UMR3244, Dynamics of Genetic Information, Sorbonne Université, Paris, France
| |
Collapse
|
19
|
Calderon A, Han C, Karma S, Wang E. Non-genetic mechanisms of drug resistance in acute leukemias. Trends Cancer 2024; 10:38-51. [PMID: 37839973 DOI: 10.1016/j.trecan.2023.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023]
Abstract
Acute leukemia is characterized by clonal heterogeneity that contributes to poor drug responses in patients. Despite treatment advances, the occurrence of relapse remains a major barrier to achieving cures as current therapeutic approaches are inadequate to effectively prevent or overcome resistance. Given that only a few genetic mutations are associated with relapse in acute leukemia patients, there is a growing focus on 'non-genetic' mechanisms that affect the hallmarks of cancer to allow leukemic cells to survive post therapy. In this review, we provide an overview of the therapeutic landscape in acute leukemias. Importantly, we discuss non-genetic mechanisms exploited by leukemic cells to promote their survival after treatment. Last, we present current strategies to prevent or overcome drug resistance in this disease.
Collapse
Affiliation(s)
| | - Cuijuan Han
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Sadik Karma
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Graduate Program in Genetics and Development, UConn Health, Farmington, CT, USA
| | - Eric Wang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA; Institute for Systems Genomics, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
20
|
O'Neill MJ, Yang T, Laudeman J, Calandranis M, Solus J, Roden DM, Glazer AM. ParSE-seq: A Calibrated Multiplexed Assay to Facilitate the Clinical Classification of Putative Splice-altering Variants. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.04.23295019. [PMID: 37732247 PMCID: PMC10508793 DOI: 10.1101/2023.09.04.23295019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Background Interpreting the clinical significance of putative splice-altering variants outside 2-base pair canonical splice sites remains difficult without functional studies. Methods We developed Parallel Splice Effect Sequencing (ParSE-seq), a multiplexed minigene-based assay, to test variant effects on RNA splicing quantified by high-throughput sequencing. We studied variants in SCN5A, an arrhythmia-associated gene which encodes the major cardiac voltage-gated sodium channel. We used the computational tool SpliceAI to prioritize exonic and intronic candidate splice variants, and ClinVar to select benign and pathogenic control variants. We generated a pool of 284 barcoded minigene plasmids, transfected them into Human Embryonic Kidney (HEK293) cells and induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs), sequenced the resulting pools of splicing products, and calibrated the assay to the American College of Medical Genetics and Genomics scheme. Variants were interpreted using the calibrated functional data, and experimental data were compared to SpliceAI predictions. We further studied some splice-altering missense variants by cDNA-based automated patch clamping (APC) in HEK cells and assessed splicing and sodium channel function in CRISPR-edited iPSC-CMs. Results ParSE-seq revealed the splicing effect of 224 SCN5A variants in iPSC-CMs and 244 variants in HEK293 cells. The scores between the cell types were highly correlated (R2=0.84). In iPSCs, the assay had concordant scores for 21/22 benign/likely benign and 24/25 pathogenic/likely pathogenic control variants from ClinVar. 43/112 exonic variants and 35/70 intronic variants with determinate scores disrupted splicing. 11 of 42 variants of uncertain significance were reclassified, and 29 of 34 variants with conflicting interpretations were reclassified using the functional data. SpliceAI computational predictions correlated well with experimental data (AUC = 0.96). We identified 20 unique SCN5A missense variants that disrupted splicing, and 2 clinically observed splice-altering missense variants of uncertain significance had normal function when tested with the cDNA-based APC assay. A splice-altering intronic variant detected by ParSE-seq, c.1891-5C>G, also disrupted splicing and sodium current when introduced into iPSC-CMs at the endogenous locus by CRISPR editing. Conclusions ParSE-seq is a calibrated, multiplexed, high-throughput assay to facilitate the classification of candidate splice-altering variants.
Collapse
Affiliation(s)
| | - Tao Yang
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Julie Laudeman
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Maria Calandranis
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Joseph Solus
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Dan M Roden
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Departments of Medicine, Pharmacology, and Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN
| | - Andrew M Glazer
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
21
|
Marques-Piubelli ML, Kim DH, Medeiros LJ, Lu W, Khan K, Gomez-Bolanos LI, Rodriguez S, Parra ER, Ok CY, Aradhya A, Solis LM, Nieto YL, Steiner R, Ahmed S, Vega F. CD30 expression is frequently decreased in relapsed classic Hodgkin lymphoma after anti-CD30 CAR T-cell therapy. Histopathology 2023; 83:143-148. [PMID: 36994939 DOI: 10.1111/his.14910] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/22/2023] [Accepted: 03/12/2023] [Indexed: 03/31/2023]
Abstract
Chimeric antigen receptor (CAR) T-cells anti-CD30 is an innovative therapeutic option that has been used to treat cases of refractory/relapsed (R/R) classic Hodgkin lymphoma (CHL). Limited data are available regarding the CD30 expression status of patients who relapsed after this therapy. This is the first study to show decreased CD30 expression in R/R CHL in patients (n = 5) who underwent CAR T-cell therapy in our institution between 2018 and 2022. Although conventional immunohistochemical assays showed decreased CD30 expression in neoplastic cells in all cases (8/8) the tyramide amplification assay and RNAScope in situ hybridisation detected CD30 expression at different levels in 100% (n = 8/8) and 75% (n = 3/4), respectively. Hence, our findings document that certain levels of CD30 expression are retained by the neoplastic cells. This is not only of biological interest but also diagnostically important, as detection of CD30 is an essential factor in establishing a diagnosis of CHL.
Collapse
Affiliation(s)
- Mario L Marques-Piubelli
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Do Hwan Kim
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei Lu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Khaja Khan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lorena Isabel Gomez-Bolanos
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Saxon Rodriguez
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Edwin R Parra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chi Young Ok
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Akanksha Aradhya
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luisa M Solis
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yago L Nieto
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Raphael Steiner
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sairah Ahmed
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Francisco Vega
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
22
|
Bonner EA, Lee SC. Therapeutic Targeting of RNA Splicing in Cancer. Genes (Basel) 2023; 14:1378. [PMID: 37510283 PMCID: PMC10379351 DOI: 10.3390/genes14071378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
RNA splicing is a key regulatory step in the proper control of gene expression. It is a highly dynamic process orchestrated by the spliceosome, a macro-molecular machinery that consists of protein and RNA components. The dysregulation of RNA splicing has been observed in many human pathologies ranging from neurodegenerative diseases to cancer. The recent identification of recurrent mutations in the core components of the spliceosome in hematologic malignancies has advanced our knowledge of how splicing alterations contribute to disease pathogenesis. This review article will discuss our current understanding of how aberrant RNA splicing regulation drives tumor initiation and progression. We will also review current therapeutic modalities and highlight emerging technologies designed to target RNA splicing for cancer treatment.
Collapse
Affiliation(s)
- Elizabeth A. Bonner
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA;
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Stanley C. Lee
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
23
|
Seipel K, Abbühl M, Bacher U, Nilius H, Daskalakis M, Pabst T. Clinical Impact of Single Nucleotide Polymorphism in CD-19 on Treatment Outcome in FMC63-CAR-T Cell Therapy. Cancers (Basel) 2023; 15:3058. [PMID: 37297020 PMCID: PMC10252965 DOI: 10.3390/cancers15113058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy is effective in patients with relapsed or refractory diffuse large B-cell lymphoma (r/r DLBCL) with response rates of 63-84% and complete response observed in 43-54%. Common germline variants of the target antigen CD19 may elicit different responses to CAR-T cell therapy. The CD19 gene single nucleotide polymorphism rs2904880 encoding leucine or valine at amino acid position 174 of the CD19 antigen was prevalent in 51% of the studied DLBCL patients. In a retrospective comparative analysis of clinical outcome, there were significant differences in CD19 L174 versus V174 carriers: the median time of progression-free survival was 22 vs. 6 months (p = 0.06), overall survival was 37 vs. 8 months (p = 0.11), complete response rates were 51% vs. 30% (p = 0.05), and refractory disease rates were 14% vs. 32% (p = 0.04). The single nucleotide polymorphism in CD19 was shown to influence the treatment outcome in FMC63-anti-CD19-CAR-T cell therapy, and the CD19 minor allele L174 predicted a favorable treatment outcome.
Collapse
Affiliation(s)
- Katja Seipel
- Department for Biomedical Research, University of Bern, 3008 Bern, Switzerland
| | - Mariesol Abbühl
- Department of Medical Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
| | - Ulrike Bacher
- Department of Hematology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
| | - Henning Nilius
- Department of Clinical Chemistry, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
| | - Michael Daskalakis
- Department of Hematology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
| | - Thomas Pabst
- Department of Medical Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
| |
Collapse
|
24
|
Rogalska ME, Vivori C, Valcárcel J. Regulation of pre-mRNA splicing: roles in physiology and disease, and therapeutic prospects. Nat Rev Genet 2023; 24:251-269. [PMID: 36526860 DOI: 10.1038/s41576-022-00556-8] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2022] [Indexed: 12/23/2022]
Abstract
The removal of introns from mRNA precursors and its regulation by alternative splicing are key for eukaryotic gene expression and cellular function, as evidenced by the numerous pathologies induced or modified by splicing alterations. Major recent advances have been made in understanding the structures and functions of the splicing machinery, in the description and classification of physiological and pathological isoforms and in the development of the first therapies for genetic diseases based on modulation of splicing. Here, we review this progress and discuss important remaining challenges, including predicting splice sites from genomic sequences, understanding the variety of molecular mechanisms and logic of splicing regulation, and harnessing this knowledge for probing gene function and disease aetiology and for the design of novel therapeutic approaches.
Collapse
Affiliation(s)
- Malgorzata Ewa Rogalska
- Genome Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Claudia Vivori
- Genome Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- The Francis Crick Institute, London, UK
| | - Juan Valcárcel
- Genome Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
25
|
Horn T, Gosliga A, Li C, Enculescu M, Legewie S. Position-dependent effects of RNA-binding proteins in the context of co-transcriptional splicing. NPJ Syst Biol Appl 2023; 9:1. [PMID: 36653378 PMCID: PMC9849329 DOI: 10.1038/s41540-022-00264-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 12/08/2022] [Indexed: 01/19/2023] Open
Abstract
Alternative splicing is an important step in eukaryotic mRNA pre-processing which increases the complexity of gene expression programs, but is frequently altered in disease. Previous work on the regulation of alternative splicing has demonstrated that splicing is controlled by RNA-binding proteins (RBPs) and by epigenetic DNA/histone modifications which affect splicing by changing the speed of polymerase-mediated pre-mRNA transcription. The interplay of these different layers of splicing regulation is poorly understood. In this paper, we derived mathematical models describing how splicing decisions in a three-exon gene are made by combinatorial spliceosome binding to splice sites during ongoing transcription. We additionally take into account the effect of a regulatory RBP and find that the RBP binding position within the sequence is a key determinant of how RNA polymerase velocity affects splicing. Based on these results, we explain paradoxical observations in the experimental literature and further derive rules explaining why the same RBP can act as inhibitor or activator of cassette exon inclusion depending on its binding position. Finally, we derive a stochastic description of co-transcriptional splicing regulation at the single-cell level and show that splicing outcomes show little noise and follow a binomial distribution despite complex regulation by a multitude of factors. Taken together, our simulations demonstrate the robustness of splicing outcomes and reveal that quantitative insights into kinetic competition of co-transcriptional events are required to fully understand this important mechanism of gene expression diversity.
Collapse
Affiliation(s)
- Timur Horn
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Alison Gosliga
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
- University of Stuttgart, Department of Systems Biology and Stuttgart Research Center Systems Biology (SRCSB), Allmandring 31, 70569, Stuttgart, Germany
| | - Congxin Li
- University of Stuttgart, Department of Systems Biology and Stuttgart Research Center Systems Biology (SRCSB), Allmandring 31, 70569, Stuttgart, Germany
| | - Mihaela Enculescu
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany.
| | - Stefan Legewie
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany.
- University of Stuttgart, Department of Systems Biology and Stuttgart Research Center Systems Biology (SRCSB), Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
26
|
Ziegler N, Cortés-López M, Alt F, Sprang M, Ustjanzew A, Lehmann N, El Malki K, Wingerter A, Russo A, Beck O, Attig S, Roth L, König J, Paret C, Faber J. Analysis of RBP expression and binding sites identifies PTBP1 as a regulator of CD19 expression in B-ALL. Oncoimmunology 2023; 12:2184143. [PMID: 36875548 PMCID: PMC9980455 DOI: 10.1080/2162402x.2023.2184143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
Despite massive improvements in the treatment of B-ALL through CART-19 immunotherapy, a large number of patients suffer a relapse due to loss of the targeted epitope. Mutations in the CD19 locus and aberrant splicing events are known to account for the absence of surface antigen. However, early molecular determinants suggesting therapy resistance as well as the time point when first signs of epitope loss appear to be detectable are not enlightened so far. By deep sequencing of the CD19 locus, we identified a blast-specific 2-nucleotide deletion in intron 2 that exists in 35% of B-ALL samples at initial diagnosis. This deletion overlaps with the binding site of RNA binding proteins (RBPs) including PTBP1 and might thereby affect CD19 splicing. Moreover, we could identify a number of other RBPs that are predicted to bind to the CD19 locus being deregulated in leukemic blasts, including NONO. Their expression is highly heterogeneous across B-ALL molecular subtypes as shown by analyzing 706 B-ALL samples accessed via the St. Jude Cloud. Mechanistically, we show that downregulation of PTBP1, but not of NONO, in 697 cells reduces CD19 total protein by increasing intron 2 retention. Isoform analysis in patient samples revealed that blasts, at diagnosis, express increased amounts of CD19 intron 2 retention compared to normal B cells. Our data suggest that loss of RBP functionality by mutations altering their binding motifs or by deregulated expression might harbor the potential for the disease-associated accumulation of therapy-resistant CD19 isoforms.
Collapse
Affiliation(s)
- Nicole Ziegler
- Center for Pediatric and Adolescent Medicine, Department of Pediatric Hematology/Oncology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Francesca Alt
- Center for Pediatric and Adolescent Medicine, Department of Pediatric Hematology/Oncology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Maximilian Sprang
- Faculty of Biology, Johannes Gutenberg University Mainz, Biozentrum I, Mainz, Germany
| | - Arsenij Ustjanzew
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Nadine Lehmann
- Center for Pediatric and Adolescent Medicine, Department of Pediatric Hematology/Oncology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Khalifa El Malki
- Center for Pediatric and Adolescent Medicine, Department of Pediatric Hematology/Oncology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Arthur Wingerter
- Center for Pediatric and Adolescent Medicine, Department of Pediatric Hematology/Oncology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Alexandra Russo
- Center for Pediatric and Adolescent Medicine, Department of Pediatric Hematology/Oncology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Olaf Beck
- Center for Pediatric and Adolescent Medicine, Department of Pediatric Hematology/Oncology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sebastian Attig
- Department of Translational Oncology and Immunology at the Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Lea Roth
- Center for Pediatric and Adolescent Medicine, Department of Pediatric Hematology/Oncology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Julian König
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Claudia Paret
- Center for Pediatric and Adolescent Medicine, Department of Pediatric Hematology/Oncology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,German Cancer Consortium (DKTK), Site Frankfurt/Mainz, Germany, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jörg Faber
- Center for Pediatric and Adolescent Medicine, Department of Pediatric Hematology/Oncology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,German Cancer Consortium (DKTK), Site Frankfurt/Mainz, Germany, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
27
|
Closa A, Reixachs-Solé M, Fuentes-Fayos AC, Hayer K, Melero J, Adriaanse FRS, Bos R, Torres-Diz M, Hunger S, Roberts K, Mullighan C, Stam R, Thomas-Tikhonenko A, Castaño J, Luque R, Eyras E. A convergent malignant phenotype in B-cell acute lymphoblastic leukemia involving the splicing factor SRRM1. NAR Cancer 2022; 4:zcac041. [PMID: 36518527 PMCID: PMC9732526 DOI: 10.1093/narcan/zcac041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/09/2022] [Accepted: 11/25/2022] [Indexed: 11/07/2024] Open
Abstract
A significant proportion of infant B-cell acute lymphoblastic leukemia (B-ALL) patients remains with a dismal prognosis due to yet undetermined mechanisms. We performed a comprehensive multicohort analysis of gene expression, gene fusions, and RNA splicing alterations to uncover molecular signatures potentially linked to the observed poor outcome. We identified 87 fusions with significant allele frequency across patients and shared functional impacts, suggesting common mechanisms across fusions. We further identified a gene expression signature that predicts high risk independently of the gene fusion background and includes the upregulation of the splicing factor SRRM1. Experiments in B-ALL cell lines provided further evidence for the role of SRRM1 on cell survival, proliferation, and invasion. Supplementary analysis revealed that SRRM1 potentially modulates splicing events associated with poor outcomes through protein-protein interactions with other splicing factors. Our findings reveal a potential convergent mechanism of aberrant RNA processing that sustains a malignant phenotype independently of the underlying gene fusion and that could potentially complement current clinical strategies in infant B-ALL.
Collapse
Affiliation(s)
- Adria Closa
- The Shine-Dalgarno Centre for RNA Innovation, John Curtin School of Medical Research, Australian National University, Canberra, Australia
- Centre for Computational Biomedical Sciences, John Curtin School of Medical Research, Australian National University, Canberra, Australia
- EMBL Australia Partner Laboratory Network at the Australian National University, Canberra, Australia
| | - Marina Reixachs-Solé
- The Shine-Dalgarno Centre for RNA Innovation, John Curtin School of Medical Research, Australian National University, Canberra, Australia
- Centre for Computational Biomedical Sciences, John Curtin School of Medical Research, Australian National University, Canberra, Australia
- EMBL Australia Partner Laboratory Network at the Australian National University, Canberra, Australia
| | - Antonio C Fuentes-Fayos
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
- University of Cordoba (UCO), Cordoba, Spain
- Reina Sofía University Hospital, Cordoba, Spain
| | - Katharina E Hayer
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Juan L Melero
- The Shine-Dalgarno Centre for RNA Innovation, John Curtin School of Medical Research, Australian National University, Canberra, Australia
- Centre for Computational Biomedical Sciences, John Curtin School of Medical Research, Australian National University, Canberra, Australia
- EMBL Australia Partner Laboratory Network at the Australian National University, Canberra, Australia
| | | | - Romy S Bos
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Manuel Torres-Diz
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Stephen P Hunger
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Kathryn G Roberts
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, USA
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, USA
| | - Ronald W Stam
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Andrei Thomas-Tikhonenko
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Justo P Castaño
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
- University of Cordoba (UCO), Cordoba, Spain
- Reina Sofía University Hospital, Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Raúl M Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
- University of Cordoba (UCO), Cordoba, Spain
- Reina Sofía University Hospital, Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Eduardo Eyras
- The Shine-Dalgarno Centre for RNA Innovation, John Curtin School of Medical Research, Australian National University, Canberra, Australia
- Centre for Computational Biomedical Sciences, John Curtin School of Medical Research, Australian National University, Canberra, Australia
- EMBL Australia Partner Laboratory Network at the Australian National University, Canberra, Australia
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| |
Collapse
|