1
|
Piano V. Multitasking Proteins: Exploring Noncanonical Functions of Proteins during Mitosis. Biochemistry 2025; 64:2123-2137. [PMID: 40315343 DOI: 10.1021/acs.biochem.5c00083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
Abstract
This review provides a comprehensive overview of how mitotic cells drive the repurposing of proteins to fulfill mitosis-specific functions. To ensure the successful completion of cell division, the cell strategically reallocates its "workforce" by assigning additional functions to available proteins. Protein repurposing occurs at multiple levels of cellular organization and involves diverse mechanisms. At the protein level, proteins may gain mitosis-specific functions through post-translational modifications. At the structural level, proteins that typically maintain cellular architecture in interphase are co-opted to participate in mitotic spindle formation, chromosome condensation, and kinetochore assembly. Furthermore, the dynamic reorganization of the nuclear envelope and other organelles relies on the temporary reassignment of enzymes, structural proteins, and motor proteins to facilitate these changes. These adaptive mechanisms underscore the remarkable versatility of the cellular proteome in responding to the stringent requirements of mitosis. By leveraging the existing proteome for dual or multiple specialized roles, cells optimize resource usage while maintaining the precision needed to preserve genomic integrity and ensure the survival of the next generation of cells.
Collapse
Affiliation(s)
- Valentina Piano
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital, University of Cologne, 50931 Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
2
|
Luo Y, Biswas H, Makinwa Y, Liu SH, Dong Z, Liu JY, Zhang JT, Zou Y. A PP2A-mtATR-tBid axis links DNA damage-induced CIP2A degradation to apoptotic dormancy and therapeutic resistance in PDAC. Cancer Lett 2025:217790. [PMID: 40354992 DOI: 10.1016/j.canlet.2025.217790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 05/06/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
DNA damage-based drugs are widely used in cancer therapy, yet resistance remains a significant challenge. In this study, we uncovered a non-DNA repair mechanism contributing to resistance in cancer cells. We found that in gemcitabine-resistant pancreatic ductal adenocarcinoma (PDAC) cells, CIP2A degradation via ubiquitination enhanced PP2A phosphatase activity, leading to the dephosphorylation of ATR at Ser428 in the cytoplasm. This dephosphorylation promoted the formation of the prolyl cis-isomeric form of ATR at its Ser428-Pro429 motif, a mitochondria-targeted antiapoptotic protein (mtATR). Surprisingly, the resistant PDAC cells paradoxically accumulated both mtATR and proapoptotic tBid at mitochondria, forming the mtATR-tBid complex. This complex silenced tBid, inducing apoptotic dormancy. Antagonizing mtATR, either through the PP2A inhibitor LB-100 or a cytoplasmic ATR-specific antibody, reactivated the pre-accumulated mitochondrial tBid and induced apoptosis in resistant PDAC cells. In an orthotopic PDAC mouse model, LB-100 alone significantly suppressed resistant tumor growth by disrupting the mtATR-tBid complex. These findings reveal a novel mechanism of resistance to DNA damage-based cancer drugs and introduce a new action mechanism of LB-100, which works through mtATR-tBid complex-mediated apoptotic dormancy triggered by CIP2A degradation-mediated PP2A activation. Disrupting the mtATR-tBid complex may represent a promising strategy to restore or sensitize resistant cancer cells to apoptosis.
Collapse
Affiliation(s)
- Yibo Luo
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, USA
| | - Himadri Biswas
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, USA
| | - Yetunde Makinwa
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, USA
| | - Shi-He Liu
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, USA
| | - Zizheng Dong
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, USA
| | - Jing-Yuan Liu
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, USA
| | - Jian-Ting Zhang
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, USA
| | - Yue Zou
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, USA.
| |
Collapse
|
3
|
Mcneil TR, Sikder S, Dalal Y. Cancer cells' chamber of secrets: the link between micronuclei, chromothripsis and malignancy. Open Biol 2025; 15:240388. [PMID: 40359993 DOI: 10.1098/rsob.240388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/19/2025] [Accepted: 04/09/2025] [Indexed: 05/15/2025] Open
Abstract
Micronuclei exhibit defective proteomes rendering their chromatin vulnerable to fragmentation. This fragmentation process, known as chromothripsis, promotes tumorigenesis by catalysing the activation of oncogenes and the silencing of tumor suppressors. With this role in mind, micronuclei serve as promising targets for therapeutic intervention. This review will explore recent discoveries regarding how micronuclei form, their function in catalysing chromothripsis and how chromothripsis provides a selective advantage for cancer cells.
Collapse
Affiliation(s)
| | - Sweta Sikder
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yamini Dalal
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
4
|
Moser SC, Jonkers J. Thirty Years of BRCA1: Mechanistic Insights and Their Impact on Mutation Carriers. Cancer Discov 2025; 15:461-480. [PMID: 40025950 PMCID: PMC11893084 DOI: 10.1158/2159-8290.cd-24-1326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/04/2024] [Accepted: 12/06/2024] [Indexed: 03/04/2025]
Abstract
SIGNIFICANCE Here, we explore the impact of three decades of BRCA1 research on the lives of mutation carriers and propose strategies to improve the prevention and treatment of BRCA1-associated cancer.
Collapse
Affiliation(s)
- Sarah C. Moser
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Heyza JR, Mikhova M, Perez GI, Broadbent DG, Schmidt JC. The PST repeat region of MDC1 is a tunable multivalent chromatin tethering domain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632395. [PMID: 39868091 PMCID: PMC11761366 DOI: 10.1101/2025.01.10.632395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
DNA double strand breaks (DSBs) are widely considered the most cytotoxic DNA lesions occurring in cells because they physically disrupt the connectivity of the DNA double helix. Homologous recombination (HR) is a high-fidelity DSB repair pathway that copies the sequence spanning the DNA break from a homologous template, most commonly the sister chromatid. How both DNA ends, and the sister chromatid are held in close proximity during HR is unknown. Here we demonstrate that the PST repeat region of MDC1 is a mutlivalent nucleosome binding domain, sufficient to tether chromatin in multiple contexts. In mitotic cells the affinity of the PST repeats for chromatin is downregulated by phosphorylation to prevent chromosome missegregation, while still contributing to DNA break tethering by the MDC1-TOPBP1-CIP2A complex. In interphase, the PST repeat region is critical for RAD51 focus formation but not the recruitment of 53BP1 to DNA breaks, consistent with a chromatin tethering function. In total, this work demonstrates that the PST repeat region of MDC1 is a multivalent chromatin binding domain with tunable affinity that contributes to DNA break tethering during HR and in mitosis.
Collapse
Affiliation(s)
- Joshua R. Heyza
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing
| | - Maria Mikhova
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing
| | - Gloria I. Perez
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing
| | - David G. Broadbent
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing
- College of Osteopathic Medicine, Michigan State University, East Lansing
| | - Jens C. Schmidt
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing
| |
Collapse
|
6
|
Lee C, Oh JS. Novel BRCA1-PLK1-CIP2A axis orchestrates homologous recombination-mediated DNA repair to maintain chromosome integrity during oocyte meiosis. Nucleic Acids Res 2025; 53:gkae1207. [PMID: 39657788 PMCID: PMC11754672 DOI: 10.1093/nar/gkae1207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 12/12/2024] Open
Abstract
Double-strand breaks (DSBs) are a formidable threat to genome integrity, potentially leading to cancer and various genetic diseases. The prolonged lifespan of mammalian oocytes increases their susceptibility to DNA damage over time. While somatic cells suppress DSB repair during mitosis, oocytes exhibit a remarkable capacity to repair DSBs during meiotic maturation. However, the precise mechanisms underlying DSB repair in oocytes remain poorly understood. Here, we describe the pivotal role of the BRCA1-PLK1-CIP2A axis in safeguarding genomic integrity during meiotic maturation in oocytes. We found that inhibition of homologous recombination (HR) severely impaired chromosome integrity by generating chromosome fragments during meiotic maturation. Notably, HR inhibition impaired the recruitment of CIP2A to damaged chromosomes, and the depletion of CIP2A led to chromosome fragmentation following DSB induction. Moreover, BRCA1 depletion impaired chromosomal recruitment of CIP2A, but not vice versa. Importantly, the impaired chromosomal recruitment of CIP2A could be rescued by PLK1 inhibition. Consequently, our findings not only underscore the importance of the chromosomal recruitment of CIP2A in preventing chromosome fragmentation, but also demonstrate the regulatory role of the BRCA1-PLK1-CIP2A axis in this process during oocyte meiotic maturation.
Collapse
Affiliation(s)
- Crystal Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, South Korea
| | - Jeong Su Oh
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, South Korea
| |
Collapse
|
7
|
Khalizieva A, Moser SC, Bouwman P, Jonkers J. BRCA1 and BRCA2: from cancer susceptibility to synthetic lethality. Genes Dev 2025; 39:86-108. [PMID: 39510841 PMCID: PMC11789497 DOI: 10.1101/gad.352083.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The discovery of BRCA1 and BRCA2 as tumor susceptibility genes and their role in genome maintenance has transformed our understanding of hereditary breast and ovarian cancer. This review traces the evolution of BRCA1/2 research over the past 30 years, highlighting key discoveries in the field and their contributions to tumor development. Additionally, we discuss current preventive measures for BRCA1/2 mutation carriers and targeted treatment options based on the concept of synthetic lethality. Finally, we explore the challenges of acquired therapy resistance and discuss potential alternative avenues for targeting BRCA1/2 mutant tumors.
Collapse
Affiliation(s)
- Anna Khalizieva
- Division of Molecular Pathology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
- Division of Cell Systems and Drug Safety, Leiden Academic Center for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Sarah C Moser
- Division of Molecular Pathology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Peter Bouwman
- Division of Cell Systems and Drug Safety, Leiden Academic Center for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| |
Collapse
|
8
|
Ngoi NYL, Gallo D, Torrado C, Nardo M, Durocher D, Yap TA. Synthetic lethal strategies for the development of cancer therapeutics. Nat Rev Clin Oncol 2025; 22:46-64. [PMID: 39627502 DOI: 10.1038/s41571-024-00966-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2024] [Indexed: 12/20/2024]
Abstract
Synthetic lethality is a genetic phenomenon whereby the simultaneous presence of two different genetic alterations impairs cellular viability. Importantly, targeting synthetic lethal interactions offers potential therapeutic strategies for cancers with alterations in pathways that might otherwise be considered undruggable. High-throughput screening methods based on modern CRISPR-Cas9 technologies have emerged and become crucial for identifying novel synthetic lethal interactions with the potential for translation into biologically rational cancer therapeutic strategies as well as associated predictive biomarkers of response capable of guiding patient selection. Spurred by the clinical success of PARP inhibitors in patients with BRCA-mutant cancers, novel agents targeting multiple synthetic lethal interactions within DNA damage response pathways are in clinical development, and rational strategies targeting synthetic lethal interactions spanning alterations in epigenetic, metabolic and proliferative pathways have also emerged and are in late preclinical and/or early clinical testing. In this Review, we provide a comprehensive overview of established and emerging technologies for synthetic lethal drug discovery and development and discuss promising therapeutic strategies targeting such interactions.
Collapse
Affiliation(s)
- Natalie Y L Ngoi
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - David Gallo
- Repare Therapeutics, Inc., Montreal, Quebec, Canada
| | - Carlos Torrado
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mirella Nardo
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel Durocher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
9
|
Feng S, Liu K, Shang J, Hoeg L, Pastore G, Yang W, Roy S, Sastre-Moreno G, Young JTF, Wu W, Xu D, Durocher D. Profound synthetic lethality between SMARCAL1 and FANCM. Mol Cell 2024; 84:4522-4537.e7. [PMID: 39510066 DOI: 10.1016/j.molcel.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 09/06/2024] [Accepted: 10/11/2024] [Indexed: 11/15/2024]
Abstract
DNA replication stress is a threat to genome integrity. The large SNF2-family of ATPases participates in preventing and mitigating DNA replication stress by employing their ATP-driven motor to remodel DNA or DNA-bound proteins. To understand the contribution of these ATPases in genome maintenance, we undertook CRISPR-based synthetic lethality screens in human cells with three SNF2-type ATPases: SMARCAL1, ZRANB3, and HLTF. Here, we show that SMARCAL1 displays a profound synthetic-lethal interaction with FANCM, another ATP-dependent translocase involved in DNA replication and genome stability. Their combined loss causes severe genome instability that we link to chromosome breakage at loci enriched in simple repeats, which are known to challenge replication fork progression. Our findings illuminate a critical genetic buffering mechanism that provides an essential function for maintaining genome integrity.
Collapse
Affiliation(s)
- Sumin Feng
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Kaiwen Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jinfeng Shang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Lisa Hoeg
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Graziana Pastore
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - William Yang
- Repare Therapeutics, 7171 rue Frederick Banting, Saint-Laurent, QC H4S 1Z9, Canada
| | - Sabrina Roy
- Repare Therapeutics, 7171 rue Frederick Banting, Saint-Laurent, QC H4S 1Z9, Canada
| | - Guillermo Sastre-Moreno
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Jordan T F Young
- Repare Therapeutics, 7171 rue Frederick Banting, Saint-Laurent, QC H4S 1Z9, Canada
| | - Wei Wu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dongyi Xu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Daniel Durocher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
10
|
Xu F, Li J, Ai M, Zhang T, Ming Y, Li C, Pu W, Yang Y, Li Z, Qi Y, Xu X, Sun Q, Yuan Z, Xia Y, Peng Y. Penfluridol inhibits melanoma growth and metastasis through enhancing von Hippel‒Lindau tumor suppressor-mediated cancerous inhibitor of protein phosphatase 2A (CIP2A) degradation. MedComm (Beijing) 2024; 5:e758. [PMID: 39399646 PMCID: PMC11470999 DOI: 10.1002/mco2.758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 10/15/2024] Open
Abstract
Melanoma's high metastatic potential, especially to the brain, poses significant challenges to patient survival. The blood‒brain barrier (BBB) is a major obstacle to the effective treatment of melanoma brain metastases. We screened antipsychotic drugs capable of crossing the BBB and identified penfluridol (PF) as the most active candidate. PF reduced melanoma cell viability and induced apoptosis. In animal models, PF effectively inhibited melanoma growth and metastasis to the lung and brain. Using immunoprecipitation combined with high-resolution mass spectrometry, and other techniques such as drug affinity responsive target stability, we identified CIP2A as a direct binding protein of PF. CIP2A is highly expressed in melanoma and its metastases, and is linked to poor prognosis. PF can restore Protein Phosphatase 2A activity by promoting CIP2A degradation, thereby inhibiting several key oncogenic pathways, including AKT and c-Myc. Additionally, von Hippel‒Lindau (VHL) is the endogenous E3 ligase for CIP2A, and PF enhances the interaction between VHL and CIP2A, promoting the ubiquitin‒proteasome degradation of CIP2A, thereby inhibiting melanoma growth and metastasis. Overall, this study not only suggests PF's potential in treating melanoma and its brain metastases but also highlights CIP2A degradation as a therapeutic strategy for melanoma.
Collapse
Affiliation(s)
- Fuyan Xu
- Laboratory of Molecular OncologyFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Jiao Li
- Laboratory of Molecular OncologyFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Min Ai
- Laboratory of Molecular OncologyFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Tingting Zhang
- Laboratory of Molecular OncologyFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yue Ming
- Laboratory of Molecular OncologyFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Cong Li
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Wenchen Pu
- Laboratory of Molecular OncologyFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yang Yang
- Laboratory of Molecular OncologyFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Zhang Li
- Laboratory of Molecular OncologyFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yucheng Qi
- Laboratory of Molecular OncologyFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Xiaomin Xu
- Laboratory of Molecular OncologyFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Qingxiang Sun
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Zhu Yuan
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yong Xia
- Rehabilitation Medicine CenterState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yong Peng
- Laboratory of Molecular OncologyFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
- Frontier Medical CenterTianfu Jincheng LaboratoryChengduChina
| |
Collapse
|
11
|
Devillers R, Dos Santos A, Destombes Q, Laplante M, Elowe S. Recent insights into the causes and consequences of chromosome mis-segregation. Oncogene 2024; 43:3139-3150. [PMID: 39278989 DOI: 10.1038/s41388-024-03163-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/18/2024]
Abstract
Mitotic cells face the challenging task of ensuring accurate and equal segregation of their duplicated, condensed chromosomes between the nascent daughter cells. Errors in the process result in chromosome missegregation, a significant consequence of which is the emergence of aneuploidy-characterized by an imbalance in chromosome number-and the associated phenomenon of chromosome instability (CIN). Aneuploidy and CIN are common features of cancer, which leverages them to promote genome heterogeneity and plasticity, thereby facilitating rapid tumor evolution. Recent research has provided insights into how mitotic errors shape cancer genomes by inducing both numerical and structural chromosomal changes that drive tumor initiation and progression. In this review, we survey recent findings regarding the mitotic causes and consequences of aneuploidy. We discuss new findings into the types of chromosome segregation errors that lead to aneuploidy and novel pathways that protect genome integrity during mitosis. Finally, we describe new developments in our understanding of the immediate consequences of chromosome mis-segregation on the genome stability of daughter cells.
Collapse
Affiliation(s)
- Romain Devillers
- Centre de Recherche sur le Cancer, CHU de Québec-Université Laval, Québec City, QC, Canada
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de reproduction, santé de la mère et de l'enfant, Québec, QC, Canada
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, QC, Canada
- Regroupement Québécois de Recherche sur la Fonction, L'ingénierie et les Applications des Protéines, Québec, Canada
| | - Alexsandro Dos Santos
- Centre de Recherche sur le Cancer, CHU de Québec-Université Laval, Québec City, QC, Canada
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de reproduction, santé de la mère et de l'enfant, Québec, QC, Canada
- Regroupement Québécois de Recherche sur la Fonction, L'ingénierie et les Applications des Protéines, Québec, Canada
| | - Quentin Destombes
- Centre de Recherche sur le Cancer, CHU de Québec-Université Laval, Québec City, QC, Canada
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de reproduction, santé de la mère et de l'enfant, Québec, QC, Canada
- Regroupement Québécois de Recherche sur la Fonction, L'ingénierie et les Applications des Protéines, Québec, Canada
| | - Mathieu Laplante
- Centre de Recherche sur le Cancer, CHU de Québec-Université Laval, Québec City, QC, Canada
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Sabine Elowe
- Centre de Recherche sur le Cancer, CHU de Québec-Université Laval, Québec City, QC, Canada.
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de reproduction, santé de la mère et de l'enfant, Québec, QC, Canada.
- Regroupement Québécois de Recherche sur la Fonction, L'ingénierie et les Applications des Protéines, Québec, Canada.
- Département de Pédiatrie, Faculté de Médecine, Université Laval, Québec City, QC, Canada.
| |
Collapse
|
12
|
Sfeir A, Tijsterman M, McVey M. Microhomology-Mediated End-Joining Chronicles: Tracing the Evolutionary Footprints of Genome Protection. Annu Rev Cell Dev Biol 2024; 40:195-218. [PMID: 38857538 DOI: 10.1146/annurev-cellbio-111822-014426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
The fidelity of genetic information is essential for cellular function and viability. DNA double-strand breaks (DSBs) pose a significant threat to genome integrity, necessitating efficient repair mechanisms. While the predominant repair strategies are usually accurate, paradoxically, error-prone pathways also exist. This review explores recent advances and our understanding of microhomology-mediated end joining (MMEJ), an intrinsically mutagenic DSB repair pathway conserved across organisms. Central to MMEJ is the activity of DNA polymerase theta (Polθ), a specialized polymerase that fuels MMEJ mutagenicity. We examine the molecular intricacies underlying MMEJ activity and discuss its function during mitosis, where the activity of Polθ emerges as a last-ditch effort to resolve persistent DSBs, especially when homologous recombination is compromised. We explore the promising therapeutic applications of targeting Polθ in cancer treatment and genome editing. Lastly, we discuss the evolutionary consequences of MMEJ, highlighting its delicate balance between protecting genome integrity and driving genomic diversity.
Collapse
Affiliation(s)
- Agnel Sfeir
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA;
| | - Marcel Tijsterman
- Department of Human Genetics, Leiden University Medical Center; Institute of Biology Leiden, Leiden University, Leiden, The Netherlands;
| | - Mitch McVey
- Department of Biology, Tufts University, Medford, Massachusetts, USA;
| |
Collapse
|
13
|
Ejaz U, Dou Z, Yao PY, Wang Z, Liu X, Yao X. Chromothripsis: an emerging crossroad from aberrant mitosis to therapeutic opportunities. J Mol Cell Biol 2024; 16:mjae016. [PMID: 38710586 PMCID: PMC11487160 DOI: 10.1093/jmcb/mjae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/23/2024] [Accepted: 05/04/2024] [Indexed: 05/08/2024] Open
Abstract
Chromothripsis, a type of complex chromosomal rearrangement originally known as chromoanagenesis, has been a subject of extensive investigation due to its potential role in various diseases, particularly cancer. Chromothripsis involves the rapid acquisition of tens to hundreds of structural rearrangements within a short period, leading to complex alterations in one or a few chromosomes. This phenomenon is triggered by chromosome mis-segregation during mitosis. Errors in accurate chromosome segregation lead to formation of aberrant structural entities such as micronuclei or chromatin bridges. The association between chromothripsis and cancer has attracted significant interest, with potential implications for tumorigenesis and disease prognosis. This review aims to explore the intricate mechanisms and consequences of chromothripsis, with a specific focus on its association with mitotic perturbations. Herein, we discuss a comprehensive analysis of crucial molecular entities and pathways, exploring the intricate roles of the CIP2A-TOPBP1 complex, micronuclei formation, chromatin bridge processing, DNA damage repair, and mitotic checkpoints. Moreover, the review will highlight recent advancements in identifying potential therapeutic targets and the underlying molecular mechanisms associated with chromothripsis, paving the way for future therapeutic interventions in various diseases.
Collapse
Affiliation(s)
- Umer Ejaz
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Chemical Biology, Hefei National Science Center for Inter-disciplinary Sciences, Hefei 230027, China
| | - Zhen Dou
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Chemical Biology, Hefei National Science Center for Inter-disciplinary Sciences, Hefei 230027, China
| | - Phil Y Yao
- University of California San Diego School of Medicine, San Diego, CA 92103, USA
| | - Zhikai Wang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Chemical Biology, Hefei National Science Center for Inter-disciplinary Sciences, Hefei 230027, China
| | - Xing Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Chemical Biology, Hefei National Science Center for Inter-disciplinary Sciences, Hefei 230027, China
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
| |
Collapse
|
14
|
Liu Z, Xi Q, Hou M, Zou T, Liu H, Zhou X, Jin L, Zhu L, Zhang X. Loss of function variant in CIP2A associated with female infertility with early embryonic arrest and fragmentation. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167228. [PMID: 38734318 DOI: 10.1016/j.bbadis.2024.167228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Early embryonic arrest and fragmentation (EEAF) is a common cause of female infertility, but the genetic causes remain to be largely unknown. CIP2A encodes the cellular inhibitor of PP2A, playing a crucial role in mitosis and mouse oocyte meiosis. METHODS Exome sequencing and Sanger sequencing were performed to identify candidate causative genes in patients with EEAF. The pathogenicity of the CIP2A variant was assessed and confirmed in cultured cell lines and human oocytes through Western blotting, semi-quantitative RT-PCR, TUNEL staining, and fluorescence localization analysis. FINDINGS We identified CIP2A (c.1510C > T, p.L504F) as a novel disease-causing gene in human EEAF from a consanguineous family. L504 is highly conserved throughout evolution. The CIP2A variant (c.1510C > T, p.L504F) reduced the expression level of the mutant CIP2A protein, leading to the abnormal aggregation of mutant CIP2A protein and cell apoptosis. Abnormal aggregation of CIP2A protein and chromosomal dispersion occurred in the patient's oocytes and early embryos. We further replicated the patient phenotype by knockdown CIP2A in human oocytes. Additionally, CIP2A deficiency resulted in decreased levels of phosphorylated ERK1/2. INTERPRETATION We first found that the CIP2A loss-of-function variant associate with female infertility characterized by EEAF. Our findings suggest the uniqueness and importance of CIP2A gene in human oocyte and early embryo development. FUNDING This work was supported by National Key Research and Development Program of China (2023YFC2706302), the National Natural Science Foundation of China (81000079, 81170165, and 81870959), the HUST Academic Frontier Youth Team (2016QYTD02), and the Key Research of Huazhong University of Science and Technology, Tongji Hospital (2022A20).
Collapse
Affiliation(s)
- Zhenxing Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Qingsong Xi
- Oncology Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meiqi Hou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Tingting Zou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Huihui Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xiaopei Zhou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Lei Jin
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lixia Zhu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Xianqin Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| |
Collapse
|
15
|
Prabhakar AT, James CD, Youssef AH, Hossain RA, Hill RD, Bristol ML, Wang X, Dubey A, Karimi E, Morgan IM. A human papillomavirus 16 E2-TopBP1 dependent SIRT1-p300 acetylation switch regulates mitotic viral and human protein levels and activates the DNA damage response. mBio 2024; 15:e0067624. [PMID: 38722185 PMCID: PMC11237546 DOI: 10.1128/mbio.00676-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/27/2024] [Indexed: 05/21/2024] Open
Abstract
An interaction between human papillomavirus 16 (HPV16) E2 and the cellular proteins TopBP1 and BRD4 is required for E2 plasmid segregation function. The E2-TopBP1 interaction promotes increased mitotic E2 protein levels in U2OS and N/Tert-1 cells, as well as in human foreskin keratinocytes immortalized by HPV16 (HFK + HPV16). SIRT1 deacetylation reduces E2 protein stability and here we demonstrate that increased E2 acetylation occurs during mitosis in a TopBP1 interacting-dependent manner, promoting E2 mitotic stabilization. p300 mediates E2 acetylation and acetylation is increased due to E2 switching off SIRT1 function during mitosis in a TopBP1 interacting-dependent manner, confirmed by increased p53 stability and acetylation on lysine 382, a known target for SIRT1 deacetylation. SIRT1 can complex with E2 in growing cells but is unable to do so during mitosis due to the E2-TopBP1 interaction; SIRT1 is also unable to complex with p53 in mitotic E2 wild-type cells but can complex with p53 outside of mitosis. E2 lysines 111 and 112 are highly conserved residues across all E2 proteins and we demonstrate that K111 hyper-acetylation occurs during mitosis, promoting E2 interaction with Topoisomerase 1 (Top1). We demonstrate that K112 ubiquitination promotes E2 proteasomal degradation during mitosis. E2-TopBP1 interaction promotes mitotic acetylation of CHK2, promoting phosphorylation and activation of the DNA damage response (DDR). The results present a new model in which the E2-TopBP1 complex inactivates SIRT1 during mitosis, and activates the DDR. This is a novel mechanism of HPV16 activation of the DDR, a requirement for the viral life cycle. IMPORTANCE Human papillomaviruses (HPVs) are causative agents in around 5% of all human cancers. While there are prophylactic vaccines that will significantly alleviate HPV disease burden on future generations, there are currently no anti-viral strategies available for the treatment of HPV cancers. To generate such reagents, we must understand more about the HPV life cycle, and in particular about viral-host interactions. Here, we describe a novel mitotic complex generated by the HPV16 E2 protein interacting with the host protein TopBP1 that controls the function of the deacetylase SIRT1. The E2-TopBP1 interaction disrupts SIRT1 function during mitosis in order to enhance acetylation and stability of viral and host proteins. We also demonstrate that the E2-TopBP1 interaction activates the DDR. This novel complex is essential for the HPV16 life cycle and represents a novel anti-viral therapeutic target.
Collapse
Affiliation(s)
- Apurva T. Prabhakar
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Claire D. James
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Aya H. Youssef
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Reafa A. Hossain
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Ronald D. Hill
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Molly L. Bristol
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
- VCU Massey Cancer Center, Richmond, Viginia, USA
| | - Xu Wang
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Aanchal Dubey
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Elmira Karimi
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Iain M. Morgan
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
- VCU Massey Cancer Center, Richmond, Viginia, USA
| |
Collapse
|
16
|
Cho T, Hoeg L, Setiaputra D, Durocher D. NFATC2IP is a mediator of SUMO-dependent genome integrity. Genes Dev 2024; 38:233-252. [PMID: 38503515 PMCID: PMC11065178 DOI: 10.1101/gad.350914.123] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 03/04/2024] [Indexed: 03/21/2024]
Abstract
The post-translational modification of proteins by SUMO is crucial for cellular viability and mammalian development in part due to the contribution of SUMOylation to genome duplication and repair. To investigate the mechanisms underpinning the essential function of SUMO, we undertook a genome-scale CRISPR/Cas9 screen probing the response to SUMOylation inhibition. This effort identified 130 genes whose disruption reduces or enhances the toxicity of TAK-981, a clinical-stage inhibitor of the SUMO E1-activating enzyme. Among the strongest hits, we validated and characterized NFATC2IP, an evolutionarily conserved protein related to the fungal Esc2 and Rad60 proteins that harbors tandem SUMO-like domains. Cells lacking NFATC2IP are viable but are hypersensitive to SUMO E1 inhibition, likely due to the accumulation of mitotic chromosome bridges and micronuclei. NFATC2IP primarily acts in interphase and associates with nascent DNA, suggesting a role in the postreplicative resolution of replication or recombination intermediates. Mechanistically, NFATC2IP interacts with the SMC5/6 complex and UBC9, the SUMO E2, via its first and second SUMO-like domains, respectively. AlphaFold-Multimer modeling suggests that NFATC2IP positions and activates the UBC9-NSMCE2 complex, the SUMO E3 ligase associated with SMC5/SMC6. We conclude that NFATC2IP is a key mediator of SUMO-dependent genomic integrity that collaborates with the SMC5/6 complex.
Collapse
Affiliation(s)
- Tiffany Cho
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Lisa Hoeg
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Dheva Setiaputra
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Daniel Durocher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada;
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
17
|
Messer CL, Fox DT. Broken chromosomes heading into mitosis: More than one way to patch a flat tire. J Cell Biol 2024; 223:e202401085. [PMID: 38477879 PMCID: PMC10937182 DOI: 10.1083/jcb.202401085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
A cell dealing with a broken chromosome in mitosis is like a driver dealing with a flat tire on the highway: damage repair must occur under non-ideal circumstances. Mitotic chromosome breaks encounter problems related to structures called micronuclei. These aberrant nuclei are linked to cell death, mutagenesis, and cancer. In the last few years, a flurry of studies illuminated two mechanisms that prevent mitotic problems related to micronuclei. One mechanism prevents micronuclei from forming during mitosis and involves DNA Polymerase Theta, a DNA repair regulator that patches up broken mitotic chromosomes. A second mechanism is activated after micronuclei form and then rupture, and involves CIP2A and TOPBP1 proteins, which patch micronuclear fragments to promote their subsequent mitotic segregation. Here, we review recent progress in this field of mitotic DNA damage and discuss why multiple mechanisms exist. Future studies in this exciting area will reveal new DNA break responses and inform therapeutic strategies.
Collapse
Affiliation(s)
- C. Luke Messer
- Department of Biology, St. Bonaventure University, St. Bonaventure, NY, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Donald T. Fox
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
- Duke Regeneration Center, Duke University Medical Center, Durham, NC, USA
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
18
|
Herz M, Zarowiecki M, Wessels L, Pätzel K, Herrmann R, Braun C, Holroyd N, Huckvale T, Bergmann M, Spiliotis M, Koziol U, Berriman M, Brehm K. Genome-wide transcriptome analysis of Echinococcus multilocularis larvae and germinative cell cultures reveals genes involved in parasite stem cell function. Front Cell Infect Microbiol 2024; 14:1335946. [PMID: 38333034 PMCID: PMC10850878 DOI: 10.3389/fcimb.2024.1335946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/12/2024] [Indexed: 02/10/2024] Open
Abstract
The lethal zoonosis alveolar echinococcosis is caused by tumour-like growth of the metacestode stage of the tapeworm Echinococcus multilocularis within host organs. We previously demonstrated that metacestode proliferation is exclusively driven by somatic stem cells (germinative cells), which are the only mitotically active parasite cells that give rise to all differentiated cell types. The Echinococcus gene repertoire required for germinative cell maintenance and differentiation has not been characterised so far. We herein carried out Illumina sequencing on cDNA from Echinococcus metacestode vesicles, from metacestode tissue depleted of germinative cells, and from Echinococcus primary cell cultures. We identified a set of ~1,180 genes associated with germinative cells, which contained numerous known stem cell markers alongside genes involved in replication, cell cycle regulation, mitosis, meiosis, epigenetic modification, and nucleotide metabolism. Interestingly, we also identified 44 stem cell associated transcription factors that are likely involved in regulating germinative cell differentiation and/or pluripotency. By in situ hybridization and pulse-chase experiments, we also found a new general Echinococcus stem cell marker, EmCIP2Ah, and we provide evidence implying the presence of a slow cycling stem cell sub-population expressing the extracellular matrix factor Emkal1. RNA-Seq analyses on primary cell cultures revealed that metacestode-derived Echinococcus stem cells display an expanded differentiation capability and do not only form differentiated cell types of the metacestode, but also cells expressing genes specific for protoscoleces, adult worms, and oncospheres, including an ortholog of the schistosome praziquantel target, EmTRPMPZQ. Finally, we show that primary cell cultures contain a cell population expressing an ortholog of the tumour necrosis factor α receptor family and that mammalian TNFα accelerates the development of metacestode vesicles from germinative cells. Taken together, our analyses provide a robust and comprehensive characterization of the Echinococcus germinative cell transcriptome, demonstrate expanded differentiation capability of metacestode derived stem cells, and underscore the potential of primary germinative cell cultures to investigate developmental processes of the parasite. These data are relevant for studies into the role of Echinococcus stem cells in parasite development and will facilitate the design of anti-parasitic drugs that specifically act on the parasite germinative cell compartment.
Collapse
Affiliation(s)
- Michaela Herz
- Consultant Laboratory for Echinococcosis, Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | | | - Leonie Wessels
- Consultant Laboratory for Echinococcosis, Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Katharina Pätzel
- Consultant Laboratory for Echinococcosis, Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Ruth Herrmann
- Consultant Laboratory for Echinococcosis, Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Christiane Braun
- Consultant Laboratory for Echinococcosis, Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Nancy Holroyd
- Parasite Genomics, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Thomas Huckvale
- Parasite Genomics, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Monika Bergmann
- Consultant Laboratory for Echinococcosis, Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Markus Spiliotis
- Consultant Laboratory for Echinococcosis, Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Uriel Koziol
- Consultant Laboratory for Echinococcosis, Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Matthew Berriman
- Parasite Genomics, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Klaus Brehm
- Consultant Laboratory for Echinococcosis, Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
19
|
Prabhakar AT, James CD, Youssef AH, Hossain RA, Hill RD, Bristol ML, Wang X, Dubey A, Morgan IM. A human papillomavirus 16 E2-TopBP1 dependent SIRT1-p300 acetylation switch regulates mitotic viral and human protein levels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575713. [PMID: 38293041 PMCID: PMC10827094 DOI: 10.1101/2024.01.15.575713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
An interaction between human papillomavirus 16 (HPV16) E2 and the cellular proteins TopBP1 and BRD4 is required for E2 plasmid segregation function. The E2-TopBP1 interaction promotes increased mitotic E2 protein levels in U2OS and N/Tert-1 cells, as well as in human foreskin keratinocytes immortalized by HPV16 (HFK+HPV16). SIRT1 deacetylation reduces E2 protein stability and here we demonstrate that increased E2 acetylation occurs during mitosis in a TopBP1 interacting dependent manner, promoting E2 mitotic stabilization. p300 mediates E2 acetylation and acetylation is increased due to E2 switching off SIRT1 function during mitosis in a TopBP1 interacting dependent manner, confirmed by increased p53 stability and acetylation on lysine 382, a known target for SIRT1 deacetylation. SIRT1 can complex with E2 in growing cells but is unable to do so during mitosis due to the E2-TopBP1 interaction; SIRT1 is also unable to complex with p53 in mitotic E2 wild type cells but can complex with p53 outside of mitosis. E2 lysines 111 and 112 are highly conserved residues across all E2 proteins and we demonstrate that K111 hyper-acetylation occurs during mitosis, promoting E2 interaction with Topoisomerase 1 (Top1). We also demonstrate that K112 ubiquitination promotes E2 proteasomal degradation during mitosis. The results present a model in which the E2-TopBP1 complex inactivates SIRT1 during mitosis and E2 acetylation on K111 by p300 increases, promoting interaction with Top1 that protects K112 from ubiquitination and therefore E2 proteasomal degradation. Importance Human papillomaviruses are causative agents in around 5% of all human cancers. While there are prophylactic vaccines that will significantly alleviate HPV disease burden on future generations, there are currently no anti-viral strategies available for the treatment of HPV cancers. To generate such reagents, we must understand more about the HPV life cycle, and in particular about viral-host interactions. Here we describe a novel mitotic complex generated by the HPV16 E2 protein interacting with the host protein TopBP1 that controls the function of the deacetylase SIRT1. The E2-TopBP1 interaction disrupts SIRT1 function during mitosis in order to enhance acetylation and stability of viral and host proteins. This novel complex is essential for the HPV16 life cycle and represents a novel anti-viral therapeutic target.
Collapse
|
20
|
Mazzagatti A, Engel JL, Ly P. Boveri and beyond: Chromothripsis and genomic instability from mitotic errors. Mol Cell 2024; 84:55-69. [PMID: 38029753 PMCID: PMC10842135 DOI: 10.1016/j.molcel.2023.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023]
Abstract
Mitotic cell division is tightly monitored by checkpoints that safeguard the genome from instability. Failures in accurate chromosome segregation during mitosis can cause numerical aneuploidy, which was hypothesized by Theodor Boveri over a century ago to promote tumorigenesis. Recent interrogation of pan-cancer genomes has identified unexpected classes of chromosomal abnormalities, including complex rearrangements arising through chromothripsis. This process is driven by mitotic errors that generate abnormal nuclear structures that provoke extensive yet localized shattering of mis-segregated chromosomes. Here, we discuss emerging mechanisms underlying chromothripsis from micronuclei and chromatin bridges, as well as highlight how this mutational cascade converges on the DNA damage response. A fundamental understanding of these catastrophic processes will provide insight into how initial errors in mitosis can precipitate rapid cancer genome evolution.
Collapse
Affiliation(s)
- Alice Mazzagatti
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Justin L Engel
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Peter Ly
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Cell Biology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
21
|
Nagelli S, Westermarck J. CIP2A coordinates phosphosignaling, mitosis, and the DNA damage response. Trends Cancer 2024; 10:52-64. [PMID: 37793965 DOI: 10.1016/j.trecan.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/18/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023]
Abstract
Human cancers share requirements for phosphorylation-dependent signaling, mitotic hyperactivity, and survival after DNA damage. The oncoprotein CIP2A (cancerous inhibitor of PP2A) can coordinate all these cancer cell characteristics. In addition to controlling cancer cell phosphoproteomes via inhibition of protein phosphatase PP2A, CIP2A directly interacts with the DNA damage protein TopBP1 (topoisomerase II-binding protein 1). Consequently, CIP2A allows DNA-damaged cells to enter mitosis and is essential for mitotic cells that are defective in homologous recombination (HR)-mediated DNA repair (e.g., BRCA mutants). The CIP2A-TopBP1 complex is also important for clustering fragmented chromosomes at mitosis. Clinically, CIP2A is a disease driver for basal-like triple-negative breast cancer (BL-TNBC) and a promising cancer therapy target across many cancer types.
Collapse
Affiliation(s)
- Srikar Nagelli
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; Institute of Biomedicine and FICANWest Cancer Center, University of Turku, Turku, Finland
| | - Jukka Westermarck
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; Institute of Biomedicine and FICANWest Cancer Center, University of Turku, Turku, Finland; InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
| |
Collapse
|
22
|
Stracker TH, Osagie OI, Escorcia FE, Citrin DE. Exploiting the DNA Damage Response for Prostate Cancer Therapy. Cancers (Basel) 2023; 16:83. [PMID: 38201511 PMCID: PMC10777950 DOI: 10.3390/cancers16010083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Prostate cancers that progress despite androgen deprivation develop into castration-resistant prostate cancer, a fatal disease with few treatment options. In this review, we discuss the current understanding of prostate cancer subtypes and alterations in the DNA damage response (DDR) that can predispose to the development of prostate cancer and affect its progression. We identify barriers to conventional treatments, such as radiotherapy, and discuss the development of new therapies, many of which target the DDR or take advantage of recurring genetic alterations in the DDR. We place this in the context of advances in understanding the genetic variation and immune landscape of CRPC that could help guide their use in future treatment strategies. Finally, we discuss several new and emerging agents that may advance the treatment of lethal disease, highlighting selected clinical trials.
Collapse
Affiliation(s)
- Travis H. Stracker
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.I.O.); (F.E.E.); (D.E.C.)
| | - Oloruntoba I. Osagie
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.I.O.); (F.E.E.); (D.E.C.)
| | - Freddy E. Escorcia
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.I.O.); (F.E.E.); (D.E.C.)
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Deborah E. Citrin
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.I.O.); (F.E.E.); (D.E.C.)
| |
Collapse
|
23
|
Ummethum H, Li J, Lisby M, Oestergaard V. Emerging roles of the CIP2A-TopBP1 complex in genome integrity. NAR Cancer 2023; 5:zcad052. [PMID: 37829116 PMCID: PMC10566317 DOI: 10.1093/narcan/zcad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/27/2023] [Accepted: 09/24/2023] [Indexed: 10/14/2023] Open
Abstract
CIP2A is an inhibitor of the tumour suppressor protein phosphatase 2A. Recently, CIP2A was identified as a synthetic lethal interactor of BRCA1 and BRCA2 and a driver of basal-like breast cancers. In addition, a joint role of TopBP1 (topoisomerase IIβ-binding protein 1) and CIP2A for maintaining genome integrity during mitosis was discovered. TopBP1 has multiple functions as it is a scaffold for proteins involved in DNA replication, transcriptional regulation, cell cycle regulation and DNA repair. Here, we briefly review details of the CIP2A-TopBP1 interaction, its role in maintaining genome integrity, its involvement in cancer and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Henning Ummethum
- Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark
| | - Jiayi Li
- Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark
| | - Michael Lisby
- Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark
| | - Vibe H Oestergaard
- Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark
| |
Collapse
|
24
|
van Vugt MATM, Tijsterman M. POLQ to the rescue for double-strand break repair during mitosis. Nat Struct Mol Biol 2023; 30:1828-1830. [PMID: 37996664 DOI: 10.1038/s41594-023-01168-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Affiliation(s)
- Marcel A T M van Vugt
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Marcel Tijsterman
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
25
|
Lin FT, Liu K, Garan LAW, Folly-Kossi H, Song Y, Lin SJ, Lin WC. A small-molecule inhibitor of TopBP1 exerts anti-MYC activity and synergy with PARP inhibitors. Proc Natl Acad Sci U S A 2023; 120:e2307793120. [PMID: 37878724 PMCID: PMC10622895 DOI: 10.1073/pnas.2307793120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/19/2023] [Indexed: 10/27/2023] Open
Abstract
We have previously identified TopBP1 (topoisomerase IIβ-binding protein 1) as a promising target for cancer therapy, given its role in the convergence of Rb, PI(3)K/Akt, and p53 pathways. Based on this, we conducted a large-scale molecular docking screening to identify a small-molecule inhibitor that specifically targets the BRCT7/8 domains of TopBP1, which we have named 5D4. Our studies show that 5D4 inhibits TopBP1 interactions with E2F1, mutant p53, and Cancerous Inhibitor of Protein Phosphatase 2A. This leads to the activation of E2F1-mediated apoptosis and the inhibition of mutant p53 gain of function. In addition, 5D4 disrupts the interaction of TopBP1 with MIZ1, which in turn allows MIZ1 to bind to its target gene promoters and repress MYC activity. Moreover, 5D4 inhibits the association of the TopBP1-PLK1 complex and prevents the formation of Rad51 foci. When combined with inhibitors of PARP1/2 or PARP14, 5D4 synergizes to effectively block cancer cell proliferation. Our animal studies have demonstrated the antitumor activity of 5D4 in breast and ovarian cancer xenograft models. Moreover, the effectiveness of 5D4 is further enhanced when combined with a PARP1/2 inhibitor talazoparib. Taken together, our findings strongly support the potential use of TopBP1-BRCT7/8 inhibitors as a targeted cancer therapy.
Collapse
Affiliation(s)
- Fang-Tsyr Lin
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, Houston, TX77030
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX77030
| | - Kang Liu
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, Houston, TX77030
| | - Lidija A. Wilhelms Garan
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, Houston, TX77030
- Cancer and Cell Biology Graduate Program, Baylor College of Medicine, Houston, TX77030
| | - Helena Folly-Kossi
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, Houston, TX77030
| | - Yongcheng Song
- Department of Pharmacology, Baylor College of Medicine, Houston, TX77030
| | - Shwu-Jiuan Lin
- Department of Pharmaceutical Sciences, School of Pharmacy, Taipei Medical University, Taipei11031, Taiwan
- PhD Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Weei-Chin Lin
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, Houston, TX77030
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX77030
- Cancer and Cell Biology Graduate Program, Baylor College of Medicine, Houston, TX77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX77030
| |
Collapse
|
26
|
Brambati A, Sacco O, Porcella S, Heyza J, Kareh M, Schmidt JC, Sfeir A. RHINO directs MMEJ to repair DNA breaks in mitosis. Science 2023; 381:653-660. [PMID: 37440612 PMCID: PMC10561558 DOI: 10.1126/science.adh3694] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023]
Abstract
Nonhomologous end-joining (NHEJ) and homologous recombination (HR) are the primary pathways for repairing DNA double-strand breaks (DSBs) during interphase, whereas microhomology-mediated end-joining (MMEJ) has been regarded as a backup mechanism. Through CRISPR-Cas9-based synthetic lethal screens in cancer cells, we identified subunits of the 9-1-1 complex (RAD9A-RAD1-HUS1) and its interacting partner, RHINO, as crucial MMEJ factors. We uncovered an unexpected function for RHINO in restricting MMEJ to mitosis. RHINO accumulates in M phase, undergoes Polo-like kinase 1 (PLK1) phosphorylation, and interacts with polymerase θ (Polθ), enabling its recruitment to DSBs for subsequent repair. Additionally, we provide evidence that MMEJ activity in mitosis repairs persistent DSBs that originate in S phase. Our findings offer insights into the synthetic lethal relationship between the genes POLQ and BRCA1 and BRAC2 and the synergistic effect of Polθ and poly(ADP-ribose) polymerase (PARP) inhibitors.
Collapse
Affiliation(s)
- Alessandra Brambati
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Olivia Sacco
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Sarina Porcella
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Joshua Heyza
- Institute for Quantitative Health Sciences and Engineering, Michigan State University; East Lansing, MI, USA
- Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University; East Lansing, MI, USA
| | - Mike Kareh
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Jens C. Schmidt
- Institute for Quantitative Health Sciences and Engineering, Michigan State University; East Lansing, MI, USA
- Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University; East Lansing, MI, USA
| | - Agnel Sfeir
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| |
Collapse
|
27
|
Vedula CP, Ganem NJ. CIP2A and TOPBP1: Molecular lassos that herd pulverized micronuclear chromosomes. Mol Cell 2023; 83:1964-1966. [PMID: 37327773 DOI: 10.1016/j.molcel.2023.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 05/23/2023] [Accepted: 05/23/2023] [Indexed: 06/18/2023]
Abstract
Lin et al.1 demonstrate that acentric chromosome fragments generated within micronuclei are tethered by the CIP2A-TOPBP1 complex during mitosis, thus promoting clustered segregation of the fragments to a single daughter cell nucleus and facilitating re-ligation with limited chromosomal scattering and loss.
Collapse
Affiliation(s)
- Chaithanya P Vedula
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Neil J Ganem
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
28
|
Xue Y, Durocher D. A mitotic glue for shattered chromosomes. Nature 2023:10.1038/d41586-023-01890-5. [PMID: 37316590 DOI: 10.1038/d41586-023-01890-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
29
|
Trivedi P, Steele CD, Au FKC, Alexandrov LB, Cleveland DW. Mitotic tethering enables inheritance of shattered micronuclear chromosomes. Nature 2023; 618:1049-1056. [PMID: 37316668 PMCID: PMC10424572 DOI: 10.1038/s41586-023-06216-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 05/12/2023] [Indexed: 06/16/2023]
Abstract
Chromothripsis, the shattering and imperfect reassembly of one (or a few) chromosome(s)1, is an ubiquitous2 mutational process generating localized and complex chromosomal rearrangements that drive genome evolution in cancer. Chromothripsis can be initiated by mis-segregation errors in mitosis3,4 or DNA metabolism5-7 that lead to entrapment of chromosomes within micronuclei and their subsequent fragmentation in the next interphase or following mitotic entry6,8-10. Here we use inducible degrons to demonstrate that chromothriptically produced pieces of a micronucleated chromosome are tethered together in mitosis by a protein complex consisting of mediator of DNA damage checkpoint 1 (MDC1), DNA topoisomerase II-binding protein 1 (TOPBP1) and cellular inhibitor of PP2A (CIP2A), thereby enabling en masse segregation to the same daughter cell. Such tethering is shown to be crucial for the viability of cells undergoing chromosome mis-segregation and shattering after transient inactivation of the spindle assembly checkpoint. Transient, degron-induced reduction in CIP2A following chromosome micronucleation-dependent chromosome shattering is shown to drive acquisition of segmental deletions and inversions. Analyses of pancancer tumour genomes showed that expression of CIP2A and TOPBP1 was increased overall in cancers with genomic rearrangements, including copy number-neutral chromothripsis with minimal deletions, but comparatively reduced in cancers with canonical chromothripsis in which deletions were frequent. Thus, chromatin-bound tethers maintain the proximity of fragments of a shattered chromosome enabling their re-encapsulation into, and religation within, a daughter cell nucleus to form heritable, chromothriptically rearranged chromosomes found in the majority of human cancers.
Collapse
Affiliation(s)
- Prasad Trivedi
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Christopher D Steele
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California at San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, CA, USA
| | - Franco K C Au
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California at San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, CA, USA
| | - Don W Cleveland
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA, USA.
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California at San Diego, La Jolla, CA, USA.
| |
Collapse
|
30
|
Lin YF, Hu Q, Mazzagatti A, Valle-Inclán JE, Maurais EG, Dahiya R, Guyer A, Sanders JT, Engel JL, Nguyen G, Bronder D, Bakhoum SF, Cortés-Ciriano I, Ly P. Mitotic clustering of pulverized chromosomes from micronuclei. Nature 2023; 618:1041-1048. [PMID: 37165191 PMCID: PMC10307639 DOI: 10.1038/s41586-023-05974-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 03/17/2023] [Indexed: 05/12/2023]
Abstract
Complex genome rearrangements can be generated by the catastrophic pulverization of missegregated chromosomes trapped within micronuclei through a process known as chromothripsis1-5. As each chromosome contains a single centromere, it remains unclear how acentric fragments derived from shattered chromosomes are inherited between daughter cells during mitosis6. Here we tracked micronucleated chromosomes with live-cell imaging and show that acentric fragments cluster in close spatial proximity throughout mitosis for asymmetric inheritance by a single daughter cell. Mechanistically, the CIP2A-TOPBP1 complex prematurely associates with DNA lesions within ruptured micronuclei during interphase, which poises pulverized chromosomes for clustering upon mitotic entry. Inactivation of CIP2A-TOPBP1 caused acentric fragments to disperse throughout the mitotic cytoplasm, stochastically partition into the nucleus of both daughter cells and aberrantly misaccumulate as cytoplasmic DNA. Mitotic clustering facilitates the reassembly of acentric fragments into rearranged chromosomes lacking the extensive DNA copy-number losses that are characteristic of canonical chromothripsis. Comprehensive analysis of pan-cancer genomes revealed clusters of DNA copy-number-neutral rearrangements-termed balanced chromothripsis-across diverse tumour types resulting in the acquisition of known cancer driver events. Thus, distinct patterns of chromothripsis can be explained by the spatial clustering of pulverized chromosomes from micronuclei.
Collapse
Affiliation(s)
- Yu-Fen Lin
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qing Hu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alice Mazzagatti
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jose Espejo Valle-Inclán
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Elizabeth G Maurais
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rashmi Dahiya
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alison Guyer
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Interdisciplinary Biomedical Graduate Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jacob T Sanders
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Justin L Engel
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Giaochau Nguyen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Daniel Bronder
- Human Oncology and Pathogenesis Program, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samuel F Bakhoum
- Human Oncology and Pathogenesis Program, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Isidro Cortés-Ciriano
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK.
| | - Peter Ly
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Cell Biology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
31
|
Brambati A, Sacco O, Porcella S, Heyza J, Kareh M, Schmidt JC, Sfeir A. RHINO restricts MMEJ activity to mitosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.532763. [PMID: 36993461 PMCID: PMC10055031 DOI: 10.1101/2023.03.16.532763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
DNA double-strand breaks (DSBs) are toxic lesions that can lead to genome instability if not properly repaired. Breaks incurred in G1 phase of the cell cycle are predominantly fixed by non-homologous end-joining (NHEJ), while homologous recombination (HR) is the primary repair pathway in S and G2. Microhomology-mediated end-joining (MMEJ) is intrinsically error-prone and considered a backup DSB repair pathway that becomes essential when HR and NHEJ are compromised. In this study, we uncover MMEJ as the major DSB repair pathway in M phase. Using CRISPR/Cas9-based synthetic lethal screens, we identify subunits of the 9-1-1 complex (RAD9A-HUS1-RAD1) and its interacting partner, RHINO, as critical MMEJ factors. Mechanistically, we show that the function of 9-1-1 and RHINO in MMEJ is inconsistent with their well-established role in ATR signaling. Instead, RHINO plays an unexpected and essential role in directing mutagenic repair to M phase by directly binding to Polymerase theta (Polθ) and promoting its recruitment to DSBs in mitosis. In addition, we provide evidence that mitotic MMEJ repairs persistent DNA damage that originates in S phase but is not repaired by HR. The latter findings could explain the synthetic lethal relationship between POLQ and BRCA1/2 and the synergistic effect of Polθ and PARP inhibitors. In summary, our study identifies MMEJ as the primary pathway for repairing DSBs during mitosis and highlights an unanticipated role for RHINO in directing mutagenic repair to M phase.
Collapse
|
32
|
Groelly FJ, Fawkes M, Dagg RA, Blackford AN, Tarsounas M. Targeting DNA damage response pathways in cancer. Nat Rev Cancer 2023; 23:78-94. [PMID: 36471053 DOI: 10.1038/s41568-022-00535-5] [Citation(s) in RCA: 363] [Impact Index Per Article: 181.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/01/2022] [Indexed: 12/12/2022]
Abstract
Cells have evolved a complex network of biochemical pathways, collectively known as the DNA damage response (DDR), to prevent detrimental mutations from being passed on to their progeny. The DDR coordinates DNA repair with cell-cycle checkpoint activation and other global cellular responses. Genes encoding DDR factors are frequently mutated in cancer, causing genomic instability, an intrinsic feature of many tumours that underlies their ability to grow, metastasize and respond to treatments that inflict DNA damage (such as radiotherapy). One instance where we have greater insight into how genetic DDR abrogation impacts on therapy responses is in tumours with mutated BRCA1 or BRCA2. Due to compromised homologous recombination DNA repair, these tumours rely on alternative repair mechanisms and are susceptible to chemical inhibitors of poly(ADP-ribose) polymerase (PARP), which specifically kill homologous recombination-deficient cancer cells, and have become a paradigm for targeted cancer therapy. It is now clear that many other synthetic-lethal relationships exist between DDR genes. Crucially, some of these interactions could be exploited in the clinic to target tumours that become resistant to PARP inhibition. In this Review, we discuss state-of-the-art strategies for DDR inactivation using small-molecule inhibitors and highlight those compounds currently being evaluated in the clinic.
Collapse
Affiliation(s)
- Florian J Groelly
- Genome Stability and Tumourigenesis Group, Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Matthew Fawkes
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Rebecca A Dagg
- Genome Stability and Tumourigenesis Group, Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Andrew N Blackford
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| | - Madalena Tarsounas
- Genome Stability and Tumourigenesis Group, Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK.
| |
Collapse
|