1
|
Sun X, Kleiner RE. Dynamic Regulation of 5-Formylcytidine on tRNA. ACS Chem Biol 2025; 20:907-916. [PMID: 40079837 DOI: 10.1021/acschembio.4c00866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Post-transcriptional modifications on RNA play an important role in biological processes, but we lack an understanding of the molecular mechanisms underlying the function of many modifications. Here we characterize the distribution and dynamic regulation of 5-formylcytidine (f5C), a modification primarily found on tRNAs, across different cell lines, mouse tissues, and in response to environmental stress. We identify perturbation in bulk f5C levels using nucleoside LC-MS and quantify individual modification stoichiometry at the wobble base of mt-tRNA-Met and tRNA-Leu-CAA using nucleotide resolution f5C sequencing technology. Our studies show that f5C modifications on tRNAs are dynamic, and responsive to fluctuations in cellular iron levels and O2 concentration. Further, we show using a translation reporter assay that decoding of Leu UUA codons is impaired in cells lacking f5C, implicating f5C(m)34 on tRNA-Leu-CAA in wobble decoding. Together, our work illuminates dynamic epitranscriptomic mechanisms regulating protein translation in response to environment.
Collapse
Affiliation(s)
- Xuemeng Sun
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Ralph E Kleiner
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
2
|
Krammer L, Darnhofer B, Kljajic M, Liesinger L, Schittmayer M, Neshchadin D, Gescheidt G, Kollau A, Mayer B, Fischer RC, Wallner S, Macheroux P, Birner-Gruenberger R, Breinbauer R. A general approach for activity-based protein profiling of oxidoreductases with redox-differentiated diarylhalonium warheads. Chem Sci 2025; 16:6240-6256. [PMID: 40103729 PMCID: PMC11912224 DOI: 10.1039/d4sc08454c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/11/2025] [Indexed: 03/20/2025] Open
Abstract
Activity-based protein profiling (ABPP) is a unique proteomic tool for measuring the activity of enzymes in their cellular context, which has been well established for enzyme classes exhibiting a characteristic nucleophilic residue (e.g., hydrolases). In contrast, the enzyme class of oxidoreductases has received less attention, as its members rely mainly on cofactors instead of nucleophilic amino acid residues for catalysis. ABPP probes have been designed for specific oxidoreductase subclasses, which rely on the oxidative conversion of the probes into strong electrophiles. Here we describe the development of ABPP probes for the simultaneous labeling of various subclasses of oxidoreductases. The probe warheads are based on hypervalent diarylhalonium salts, which show unique reactivity as their activation proceeds via a reductive mechanism resulting in aryl radicals leading to covalent labeling of liver proteins at several different amino acids in close proximity to the active sites. The redox potential of the probes can be tuned by isosteric replacement varying the halonium central atom. ABPP experiments with liver using 16 probes differing in warhead, linker, and structure revealed distinct overlapping profiles and broad substrate specificities of several probes. With their capability of multi oxidoreductase subclass labeling - including rare examples for the class of reductases - and their unique design, the herein reported probes offer new opportunities for the investigation of the "oxidoreductome" of microorganisms, plants, animal and human tissues.
Collapse
Affiliation(s)
- Leo Krammer
- Institute of Organic Chemistry, Graz University of Technology Stremayrgasse 9 8010 Graz Austria
| | - Barbara Darnhofer
- Diagnostic and Research Institute of Pathology, Medical University of Graz Stiftingtalstraße 6 8036 Graz Austria
| | - Marko Kljajic
- Institute of Organic Chemistry, Graz University of Technology Stremayrgasse 9 8010 Graz Austria
| | - Laura Liesinger
- Institute of Chemical Technologies and Analytics, Technische Universität Wien Getreidemarkt 9 1060 Vienna Austria
| | - Matthias Schittmayer
- Institute of Chemical Technologies and Analytics, Technische Universität Wien Getreidemarkt 9 1060 Vienna Austria
| | - Dmytro Neshchadin
- Institute of Physical and Theoretical Chemistry, Graz University of Technology Stremayrgasse 9 8010 Graz Austria
| | - Georg Gescheidt
- Institute of Physical and Theoretical Chemistry, Graz University of Technology Stremayrgasse 9 8010 Graz Austria
| | - Alexander Kollau
- Institute of Pharmaceutical Sciences, University of Graz Humboldtstraße 46 8010 Graz Austria
| | - Bernd Mayer
- Institute of Pharmaceutical Sciences, University of Graz Humboldtstraße 46 8010 Graz Austria
| | - Roland C Fischer
- Institute of Inorganic Chemistry, Graz University of Technology Stremayrgasse 9 8010 Graz Austria
| | - Silvia Wallner
- Institute of Biochemistry, Graz University of Technology Petersgasse 12 8010 Graz Austria
| | - Peter Macheroux
- Institute of Biochemistry, Graz University of Technology Petersgasse 12 8010 Graz Austria
| | - Ruth Birner-Gruenberger
- Diagnostic and Research Institute of Pathology, Medical University of Graz Stiftingtalstraße 6 8036 Graz Austria
- Institute of Chemical Technologies and Analytics, Technische Universität Wien Getreidemarkt 9 1060 Vienna Austria
| | - Rolf Breinbauer
- Institute of Organic Chemistry, Graz University of Technology Stremayrgasse 9 8010 Graz Austria
| |
Collapse
|
3
|
Li F, Liu T, Dong Y, Gao Q, Lu R, Deng Z. 5-Methylcytosine RNA modification and its roles in cancer and cancer chemotherapy resistance. J Transl Med 2025; 23:390. [PMID: 40181461 PMCID: PMC11966802 DOI: 10.1186/s12967-025-06217-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/10/2025] [Indexed: 04/05/2025] Open
Abstract
Recent advancements in cancer therapies have improved clinical outcomes, yet therapeutic resistance remains a significant challenge because of its complex mechanisms. Among epigenetic factors, m5C RNA modification is emerging as a key player in cancer drug resistance, similar to the well-known m6A modification. m5C affects RNA metabolism processes, including splicing, export, translation, and stability, thereby influencing drug efficacy. This review highlights the critical roles of m5C in modulating resistance to chemotherapy, targeted therapy, radiotherapy, and immunotherapy. This review also discusses the functions of key regulators, including methyltransferases, demethylases, and m5C-binding proteins, as essential modulators of the m5C epigenetic landscape that contribute to its dynamic and complex regulatory network. Targeting these regulatory components offers a promising strategy to overcome resistance. We highlight the need for further research to elucidate the specific mechanisms by which m5C contributes to resistance and to develop precise m5C-targeted therapies, presenting m5C-focused strategies as potential novel anticancer treatments.
Collapse
Affiliation(s)
- Fang Li
- Science and technology department, Suzhou Key Laboratory of Neuro-Oncology and Nano-Bionics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, 215300, Jiangsu, China
| | - Tingting Liu
- Science and technology department, Suzhou Key Laboratory of Neuro-Oncology and Nano-Bionics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, 215300, Jiangsu, China
| | - Yajing Dong
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Qianqian Gao
- Science and technology department, Suzhou Key Laboratory of Neuro-Oncology and Nano-Bionics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, 215300, Jiangsu, China
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
- Center for Experimental Research, Kunshan Hospital Affiliated to Jiangsu University, Kunshan, 215130, Jiangsu, China.
| | - Zhiyong Deng
- Science and technology department, Suzhou Key Laboratory of Neuro-Oncology and Nano-Bionics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, 215300, Jiangsu, China.
| |
Collapse
|
4
|
Liu H, Peng C, Su Q, Liang S, Qiu Y, Mo W, Yang Z. Evaluated NSUN3 in reticulocytes from HbH-CS disease that reflects cellular stress in erythroblasts. Ann Hematol 2025; 104:2207-2219. [PMID: 40240513 PMCID: PMC12053367 DOI: 10.1007/s00277-025-06359-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 04/07/2025] [Indexed: 04/18/2025]
Abstract
Hemoglobin H Disease-Constant Spring (HbH-CS) represents a severe variant of α-thalassemia characterized by a fundamental pathological mechanism involving inadequate synthesis of α-globin chains. This deficiency results in the formation of unstable Hemoglobin H (HbH) due to the aggregation of free β-globin chains, which subsequently induces an imbalance in oxidative stress within erythrocytes. This imbalance leads to an abnormal accumulation of reactive oxygen species (ROS), which in turn promotes lipid peroxidation, culminating in the production of malondialdehyde (MDA) and a significant depletion of glutathione (GSH). Concurrently, Nrf2 is translocated to the nucleus, where it activates the antioxidant response element (ARE) to mitigate cellular stress. Here, we report that NSUN3 (which, together with ALKBH1, maintains mitochondrial function through m5C→f5C modification) is abnormally overexpressed in reticulocytes from patients with HbH-CS, and an in vitro cellular model of NSUN3 overexpression/silencing was constructed using K562 cells, which have the potential for erythroid lineage differentiation and retain an intact cluster of bead protein genes. Functional assays indicated that the overexpression of NSUN3 significantly intensified the accumulation of intracellular ROS and MDA, led to a reduction in GSH levels, and diminished the overall cellular antioxidant capacity (T-AOC). This may be due to ROS accumulation resulting from inhibition of mitochondrial respiratory chain complex I, II, and IV synthesis through aberrant m5C→f5C modification. In addition, NSUN3 overexpression further exacerbates oxidative stress by inhibiting the phosphorylation of Nrf2 hindering its translocation into the nucleus and weakening the cellular antioxidant system. Moreover, we also observed that NSUN3 overexpression exacerbated intracellular DNA damage and inhibited cellular value-added activity, and silencing NSUN3 showed the opposite result. Our research offers initial insights into the molecular mechanisms through which NSUN3 modulates oxidative stress in erythrocytes via its role in epigenetic modifications. These findings contribute to a deeper understanding of the clinical management of patients with Hb H-CS.
Collapse
Affiliation(s)
- Haodong Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning, China
| | - Chunting Peng
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Thalassemia Research, Nanning, China
| | - Qisheng Su
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning, China
| | - Shijie Liang
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Thalassemia Research, Nanning, China
| | - Yuling Qiu
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- NHC Key Laboratory of Thalassemia Medicine, Guangxi Key Laboratory of Thalassemia Research, Nanning, China
| | - Wuning Mo
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning, China
| | - Zheng Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
- NHC Key Laboratory of Thalassemia Medicine, Guangxi Key Laboratory of Thalassemia Research, Nanning, China.
| |
Collapse
|
5
|
Cheng L. Chemical Strategies to Modulate and Manipulate RNA Epigenetic Modifications. Acc Chem Res 2025. [PMID: 40100209 DOI: 10.1021/acs.accounts.4c00844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
ConspectusRNA epigenetics has rapidly emerged as a key frontier in chemical biology, revealing that modifications to RNA bases and riboses can fine-tune essential cellular processes such as gene expression, translation, and metabolic homeostasis. Traditionally, researchers have relied on manipulating the "writers," "erasers," and "readers" of RNA modifications─i.e., protein cofactors─to alter and study these marks. Those enzyme-centric strategies, including small molecule inhibitors and CRISPR/Cas-based genetic perturbations, have been highly effective and are advancing in clinical applications. However, purely chemical approaches for installing, removing, or transforming RNA modifications without enzyme disturbance have offered distinct advantages, such as temporal control, reversibility, and bypassing compensatory biological feedback mechanisms that often arise with genetic or enzymatic inhibition. Every chemist should be concerned about RNA modifications, because they represent a striking intersection of molecular recognition, organic transformation, and cellular function. The ability to direct chemical reactivity at specific nucleosides in RNA can illuminate how individual modifications impact the overall gene regulation. Further, since improper RNA modification and damage patterns are implicated in cancer, metabolic disorders, and neurodegeneration, these chemical repair tools have potential as diagnostic and therapeutic interventions. Beyond medicine, agriculture also stands to benefit from chemical control of nucleoside-based plant hormones, possibly leading to improved crop productivity and resilience.In this Account, we outline several innovative chemical strategies tailored to different classes of RNA modifications. Flavin-based bioorthogonal chemistry has enabled demethylation of N6-methyladenosine (m6A) independent of endogenous demethylases, while oxidative bioorthogonal reactions can convert 5-methylcytidine (m5C) into distinct formyl derivatives for labeling and sequencing. Nitrogen-oxide and photochemical routes provided access for the selective removal of the side chain of N6-isopentenyladenosine (i6A), offering insights for both cell biology and plant hormone research. We also showcase how rationally designed small molecules can rewire complex RNA damage repair pathways, facilitating selective correction of vinyl-adduct lesions otherwise resistant to enzymatic repair. These purely chemical methods bypass the constraints of enzyme dependence, affording temporal precision (e.g., via light activation) and site-selective modification or labeling of RNA. By strategically engineering reactivity, we have uncovered new epitranscriptomic phenomena, such as in situ generation of non-native RNA modification, that offer fresh capabilities for cell imaging or targeted manipulation of plant callus development. Together, these discoveries signal a paradigm shift: chemical tools can complement or even surpass conventional enzyme-based methods for investigating, editing, and repairing RNA modifications. The ramifications are broad. Chemists can leverage these new reactivities to dissect the molecular underpinnings of diseases linked to epitranscriptomic dysregulation and to engineer next-generation therapeutic, diagnostic, and sequencing platforms. Plant biologists can apply the same chemical strategies to hone agronomic traits, from seed vigor to stress resilience. Ultimately, as we have deepened the mechanistic insights and refined reaction design for increased biocompatibility, purely chemical control of the RNA epigenome is poised to become one of the mainstream approaches across fields spanning chemistry, biology, and medicine─fostering deeper understanding of RNA's role in health and disease and opening new avenues for precise interventions.
Collapse
Affiliation(s)
- Liang Cheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Hu X, Liu Y, Zhang S, Liu K, Gu X. The multifaceted role of m5C RNA methylation in digestive system tumorigenesis. Front Cell Dev Biol 2025; 13:1533148. [PMID: 40114967 PMCID: PMC11922842 DOI: 10.3389/fcell.2025.1533148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 02/05/2025] [Indexed: 03/22/2025] Open
Abstract
5-Methylcytosine (m5C) is a widespread RNA methylation modification, wherein a methyl group is enzymatically transferred to specific RNA sites by methyltransferases, such as the NSUN family and DNMT2. The m5C modification not only impacts RNA structure and stability but also governs post-transcriptional regulation by influencing RNA transport, translation, and protein interactions. Recently, the functional importance of m5C in complex diseases, including cancer, has gained substantial attention. Increasing evidence highlights the critical roles of m5C in digestive system malignancies, where it contributes to tumor progression by modulating oncogene expression and regulating processes such as tumor cell proliferation, migration, invasion, and resistance to chemotherapy. Furthermore, m5C's involvement in non-coding RNAs reveals additional dimensions in elucidating their roles in cancer. This review summarizes recent advances in m5C RNA methylation research within digestive system tumors, focusing on its functional mechanisms, clinical significance, and potential applications. Specifically, it aims to explore m5C's role in tumor diagnosis, prognosis, and treatment, while proposing future directions to address current challenges and broaden its clinical utility.
Collapse
Affiliation(s)
- Xinjun Hu
- Department of Infectious Diseases, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Yafeng Liu
- Department of Infectious Diseases, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Shujun Zhang
- Department of Infectious Diseases, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Kaijie Liu
- Department of Infectious Diseases, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| |
Collapse
|
7
|
Zhang L, Li Y, Li L, Yao F, Cai M, Ye D, Qu Y. Detection, molecular function and mechanisms of m5C in cancer. Clin Transl Med 2025; 15:e70239. [PMID: 40008496 PMCID: PMC11862898 DOI: 10.1002/ctm2.70239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/31/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Interest in RNA posttranscriptional modifications, particularly 5-methylcytosine (m5C), has surged in recent years. Studies have shown that m5C plays a key role in cellular processes and is closely linked to tumourigenesis. This growing focus emphasises the importance of understanding the diverse impacts of m5C modifications in both normal cellular functions and cancer development. Moreover, strides in methodologies for discerning m5C have facilitated intricate transcriptome cartography of RNA methylation at the solitary nucleotide echelon. This technical progress has fueled a surge in m5C-centric investigations, facilitating further exploration of this RNA modification. This review provides a comprehensive analysis of the oncogenic potential of m5C RNA modification, elucidating the precise molecular mechanisms driving its role in cancer development. It consolidates current knowledge regarding the biological consequences of m5C RNA modification in tumour cells. Understanding the role of methylation-related processes in tumourigenesis shows promise for advancing cancer diagnosis and therapeutic strategies. HIGHLIGHTS: m5C modifications are dynamically regulated by writers, readers, and erasers, influencing cancer progression, metastasis, and immune evasion. Distinct m5C regulatory networks exist across cancers, modulating oncogenic pathways and therapy responses. m5C signatures serve as biomarkers for cancer prognosis and treatment stratification, highlighting their role in precision oncology.
Collapse
Affiliation(s)
- Linhui Zhang
- Department of UrologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Genitourinary Cancer InstituteShanghaiChina
| | - Yuelong Li
- Department of UrologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Liqing Li
- Department of UrologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Genitourinary Cancer InstituteShanghaiChina
| | - Fei Yao
- Department of NursingFudan University Shanghai Cancer CenterShanghaiChina
| | - Maoping Cai
- Department of UrologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Genitourinary Cancer InstituteShanghaiChina
| | - Dingwei Ye
- Department of UrologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Genitourinary Cancer InstituteShanghaiChina
| | - Yuanyuan Qu
- Department of UrologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Genitourinary Cancer InstituteShanghaiChina
| |
Collapse
|
8
|
Li Z, Meng K, Lan S, Ren Z, Lai Z, Ao X, Liu Z, Xu J, Mo X, Zhang Z. The Role of mRNA Modifications in Bone Diseases. Int J Biol Sci 2025; 21:1065-1080. [PMID: 39897026 PMCID: PMC11781163 DOI: 10.7150/ijbs.104460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/24/2024] [Indexed: 02/04/2025] Open
Abstract
As a type of epigenetic modifications, mRNA modifications regulate the metabolism of mRNAs, thereby influencing gene expression. Previous studies have indicated that dysregulation of mRNA modifications is closely associated with the occurrence and progression of bone diseases (BDs). In this study, we first introduced the dynamic regulatory processes of five major mRNA modifications and their effects on the nucleus export, stability, and translation of mRNAs. We then summarized the mechanisms of mRNA modifications involved in the development of osteoporosis, osteoarthritis, rheumatoid arthritis, ankylosing spondylitis, fractures, osteomyelitis, and osteosarcoma. Finally, we reviewed therapeutic strategies for BDs based on the above mechanisms, focusing on regulating osteoblast and osteoclast differentiation, inhibiting cellular senescence and injury, and alleviating inflammation. This review identified mRNA modifications as potential targets for treating BDs and proposes perspectives on the diversity, targetability, and safety of mRNA-modifying therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jiajia Xu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiaoyi Mo
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhongmin Zhang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
9
|
Li K, Liang Y, Li X, Yang M, Wang M, Li F, Qi X, Zhou J, Fu W, Li L. Rapid and direct detection of m 6A methylation by DNAzyme-based and smartphone-assisted electrochemical biosensor. Biosens Bioelectron 2025; 267:116788. [PMID: 39316869 DOI: 10.1016/j.bios.2024.116788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/10/2024] [Accepted: 09/15/2024] [Indexed: 09/26/2024]
Abstract
m6A methylation detection is crucial for understanding RNA functions, revealing disease mechanisms, guiding drug development and advancing epigenetics research. Nevertheless, high-throughput sequencing and liquid chromatography-based traditional methods still face challenges to rapid and direct detection of m6A methylation. Here we report a DNAzyme-based and smartphone-assisted electrochemical biosensor for rapid detection of m6A. We initially identified m6A methylation-sensitive DNAzyme mutants through site mutation screening. These mutants were then combined with tetrahedral DNA to modify the electrodes, creating a 3D sensing interface. The detection of m6A was accomplished by using DNAzyme to capture and cleave the m6A sequence. The electrochemical biosensor detected the m6A sequence at nanomolar concentrations with a low detection limit of 0.69 nM and a wide detection range from 10 to 104 nM within 60 min. As a proof of concept, the 3'-UTR sequence of rice was selected as the m6A analyte. Combined with a smartphone, our biosensor shows good specificity, sensitivity, and easy-to-perform features, which indicates great prospects in the field of RNA modification detection and epigenetic analysis.
Collapse
Affiliation(s)
- Kai Li
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yu Liang
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xinran Li
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mengrui Yang
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Min Wang
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fukai Li
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Qi
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jian Zhou
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Wei Fu
- Development Center of Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing 100176, China.
| | - Liang Li
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
10
|
Xiao MZ, Fu JY, Bo LT, Li YD, Lin ZW, Chen ZS. ALKBH1: emerging biomarker and therapeutic target for cancer treatment. Discov Oncol 2024; 15:816. [PMID: 39704856 DOI: 10.1007/s12672-024-01696-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024] Open
Abstract
As neoplastic cells proliferate, disseminate, and infiltrate, they undergo substantial alterations in their epigenetic configuration. Among the pivotal enzymes implicated in this phenomenon is the AlkB family of demethylases, notably AlkB homolog 1 (ALKBH1), which demonstrates conspicuous upregulation across various malignancies. The heightened expression of ALKBH1 renders it a compelling candidate for the development of multifaceted anticancer modalities. Despite the commendable progress achieved by investigators in elucidating the perturbations associated with ALKBH1 in malignant tissues, a comprehensive mechanism remains elusive. The present study endeavors to address this lacuna by synthesizing recent advancements pertaining to ALKBH1's involvement in oncogenesis over the preceding decade. Therefore, this research not only furnishes novel insights but also establishes a foundation for prospective initiatives aimed at cancer prophylaxis and therapeutics that exploit epigenetic regulatory mechanisms.
Collapse
Affiliation(s)
- Ming Zhu Xiao
- Key Laboratory of Pharmaceutical Bioactive Substances, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jin Yin Fu
- Key Laboratory of Pharmaceutical Bioactive Substances, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Le Tao Bo
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Yi Dong Li
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Zhong Wei Lin
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhe Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.
| |
Collapse
|
11
|
Lu Y, Yang L, Feng Q, Liu Y, Sun X, Liu D, Qiao L, Liu Z. RNA 5-Methylcytosine Modification: Regulatory Molecules, Biological Functions, and Human Diseases. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae063. [PMID: 39340806 PMCID: PMC11634542 DOI: 10.1093/gpbjnl/qzae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/12/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024]
Abstract
RNA methylation modifications influence gene expression, and disruptions of these processes are often associated with various human diseases. The common RNA methylation modification 5-methylcytosine (m5C), which is dynamically regulated by writers, erasers, and readers, widely occurs in transfer RNAs (tRNAs), messenger RNAs (mRNAs), ribosomal RNAs (rRNAs), enhancer RNAs (eRNAs), and other non-coding RNAs (ncRNAs). RNA m5C modification regulates metabolism, stability, nuclear export, and translation of RNA molecules. An increasing number of studies have revealed the critical roles of the m5C RNA modification and its regulators in the development, diagnosis, prognosis, and treatment of various human diseases. In this review, we summarized the recent studies on RNA m5C modification and discussed the advances in its detection methodologies, distribution, and regulators. Furthermore, we addressed the significance of RNAs modified with m5C marks in essential biological processes as well as in the development of various human disorders, from neurological diseases to cancers. This review provides a new perspective on the diagnosis, treatment, and monitoring of human diseases by elucidating the complex regulatory network of the epigenetic m5C modification.
Collapse
Affiliation(s)
- Yanfang Lu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China
| | - Liu Yang
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China
| | - Qi Feng
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China
| | - Yong Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China
| | - Xiaohui Sun
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China
| | - Dongwei Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China
| | - Long Qiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhangsuo Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China
| |
Collapse
|
12
|
Li J, Wang X, Wang H. RNA modifications in long non-coding RNAs and their implications in cancer biology. Bioorg Med Chem 2024; 113:117922. [PMID: 39299080 DOI: 10.1016/j.bmc.2024.117922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Long non-coding RNAs (lncRNAs) represent the most diverse class of RNAs in cells and play crucial roles in maintaining cellular functions. RNA modifications, being a significant factor in regulating RNA biology, have been found to be extensively present in lncRNAs and exert regulatory effects on their behavior and biological functions. Most common types of RNA modifications in lncRNAs include N6-methyladenosine (m6A), 5-methylcytosine (m5C), and N1-methyladenosine (m1A). In this review, we summarize the major RNA modification types associated with lncRNAs, the regulatory roles of each modification, and the implications of modified lncRNAs in tumorigenesis and development. By examining these aspects, we aim to provide insights into the role of RNA modifications in lncRNAs and their potential impact on cancer biology.
Collapse
Affiliation(s)
- Jiexin Li
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation; State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiansong Wang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation; State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Hongsheng Wang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation; State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
13
|
Li D, Liu Y, Yang G, He M, Lu L. Recent insights into RNA m5C methylation modification in hepatocellular carcinoma. Biochim Biophys Acta Rev Cancer 2024; 1879:189223. [PMID: 39577751 DOI: 10.1016/j.bbcan.2024.189223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
RNA 5-methylcytosine (m5C) methylation involves the addition of a methyl (-CH3) group to the cytosine (C) base within an RNA molecule, forming the m5C modification. m5C plays a role in numerous essential biological processes, including the regulation of RNA stability, nuclear export, and protein translation. Recent studies have highlighted the importance of m5C in the pathogenesis of various diseases, particularly tumors. Emerging evidence indicates that RNA m5C methylation is intricately implicated in the mechanisms underlying hepatocellular carcinoma (HCC). Dysregulation of m5C-associated regulatory factors is common in HCC and shows significant associations with prognosis, treatment response, and clinicopathological features. This review provides an in-depth analysis of the components and functions of m5C regulators, particularly emphasizing their research advancements in the context of HCC.
Collapse
Affiliation(s)
- Danyang Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong Province 519000, PR China
| | - Yanyan Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong Province 519000, PR China
| | - Guang Yang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong Province 519000, PR China
| | - Mingyu He
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong Province 519000, PR China.
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong Province 519000, PR China; Guangzhou First Pepople's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong Province 510006, PR China.
| |
Collapse
|
14
|
Li Y, Yu Z, Jiang W, Lyu X, Guo A, Sun X, Yang Y, Zhang Y. tRNA and tsRNA: From Heterogeneity to Multifaceted Regulators. Biomolecules 2024; 14:1340. [PMID: 39456272 PMCID: PMC11506809 DOI: 10.3390/biom14101340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
As the most ancient RNA, transfer RNAs (tRNAs) play a more complex role than their constitutive function as amino acid transporters in the protein synthesis process. The transcription and maturation of tRNA in cells are subject to stringent regulation, resulting in the formation of tissue- and cell-specific tRNA pools with variations in tRNA overall abundance, composition, modification, and charging levels. The heterogeneity of tRNA pools contributes to facilitating the formation of histocyte-specific protein expression patterns and is involved in diverse biological processes. Moreover, tRNAs can be recognized by various RNase under physiological and pathological conditions to generate tRNA-derived small RNAs (tsRNAs) and serve as small regulatory RNAs in various biological processes. Here, we summarize these recent insights into the heterogeneity of tRNA and highlight the advances in the regulation of tRNA function and tsRNA biogenesis by tRNA modifications. We synthesize diverse mechanisms of tRNA and tsRNA in embryonic development, cell fate determination, and epigenetic inheritance regulation. We also discuss the potential clinical applications based on the new knowledge of tRNA and tsRNA as diagnostic and prognostic biomarkers and new therapeutic strategies for multiple diseases.
Collapse
Affiliation(s)
- Yun Li
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.L.); (Z.Y.); (W.J.); (X.L.); (A.G.); (X.S.)
| | - Zongyu Yu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.L.); (Z.Y.); (W.J.); (X.L.); (A.G.); (X.S.)
| | - Wenlin Jiang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.L.); (Z.Y.); (W.J.); (X.L.); (A.G.); (X.S.)
| | - Xinyi Lyu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.L.); (Z.Y.); (W.J.); (X.L.); (A.G.); (X.S.)
| | - Ailian Guo
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.L.); (Z.Y.); (W.J.); (X.L.); (A.G.); (X.S.)
| | - Xiaorui Sun
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.L.); (Z.Y.); (W.J.); (X.L.); (A.G.); (X.S.)
| | - Yiting Yang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.L.); (Z.Y.); (W.J.); (X.L.); (A.G.); (X.S.)
- NHC Key Laboratory of Reproduction Regulation, Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai 200032, China
| | - Yunfang Zhang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.L.); (Z.Y.); (W.J.); (X.L.); (A.G.); (X.S.)
| |
Collapse
|
15
|
Deng Y, Zhou J, Li HB. The physiological and pathological roles of RNA modifications in T cells. Cell Chem Biol 2024; 31:1578-1592. [PMID: 38986618 DOI: 10.1016/j.chembiol.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 04/20/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024]
Abstract
RNA molecules undergo dynamic chemical modifications in response to various external or cellular stimuli. Some of those modifications have been demonstrated to post-transcriptionally modulate the RNA transcription, localization, stability, translation, and degradation, ultimately tuning the fate decisions and function of mammalian cells, particularly T cells. As a crucial part of adaptive immunity, T cells play fundamental roles in defending against infections and tumor cells. Recent findings have illuminated the importance of RNA modifications in modulating T cell survival, proliferation, differentiation, and functional activities. Therefore, understanding the epi-transcriptomic control of T cell biology enables a potential avenue for manipulating T cell immunity. This review aims to elucidate the physiological and pathological roles of internal RNA modifications in T cell development, differentiation, and functionality drawn from current literature, with the goal of inspiring new insights for future investigations and providing novel prospects for T cell-based immunotherapy.
Collapse
Affiliation(s)
- Yu Deng
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jing Zhou
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hua-Bing Li
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Geriatrics, Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Chongqing International Institute for Immunology, Chongqing 401320, China.
| |
Collapse
|
16
|
Jiang X, Zhan L, Tang X. RNA modifications in physiology and pathology: Progressing towards application in clinical settings. Cell Signal 2024; 121:111242. [PMID: 38851412 DOI: 10.1016/j.cellsig.2024.111242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
The potential to modify individual nucleotides through chemical means in order to impact the electrostatic charge, hydrophobic properties, and base pairing of RNA molecules is harnessed in the medical application of stable synthetic RNAs like mRNA vaccines and synthetic small RNA molecules. These modifications are used to either increase or decrease the production of therapeutic proteins. Additionally, naturally occurring biochemical alterations of nucleotides play a role in regulating RNA metabolism and function, thereby modulating essential cellular processes. Research elucidating the mechanisms through which RNA modifications govern fundamental cellular functions in multicellular organisms has enhanced our comprehension of how irregular RNA modification profiles can lead to human diseases. Collectively, these fundamental scientific findings have unveiled the molecular and cellular functions of RNA modifications, offering new opportunities for therapeutic intervention and paving the way for a variety of innovative clinical strategies.
Collapse
Affiliation(s)
- Xue Jiang
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu 223005, China
| | - Lijuan Zhan
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu 223005, China.
| | - Xiaozhu Tang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
17
|
Wu Z, Zhou R, Li B, Cao M, Wang W, Li X. Methylation modifications in tRNA and associated disorders: Current research and potential therapeutic targets. Cell Prolif 2024; 57:e13692. [PMID: 38943267 PMCID: PMC11503269 DOI: 10.1111/cpr.13692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/14/2024] [Accepted: 06/03/2024] [Indexed: 07/01/2024] Open
Abstract
High-throughput sequencing has sparked increased research interest in RNA modifications, particularly tRNA methylation, and its connection to various diseases. However, the precise mechanisms underpinning the development of these diseases remain largely elusive. This review sheds light on the roles of several tRNA methylations (m1A, m3C, m5C, m1G, m2G, m7G, m5U, and Nm) in diverse biological functions, including metabolic processing, stability, protein interactions, and mitochondrial activities. It further outlines diseases linked to aberrant tRNA modifications, related enzymes, and potential underlying mechanisms. Moreover, disruptions in tRNA regulation and abnormalities in tRNA-derived small RNAs (tsRNAs) contribute to disease pathogenesis, highlighting their potential as biomarkers for disease diagnosis. The review also delves into the exploration of drugs development targeting tRNA methylation enzymes, emphasizing the therapeutic prospects of modulating these processes. Continued research is imperative for a comprehensive comprehension and integration of these molecular mechanisms in disease diagnosis and treatment.
Collapse
Affiliation(s)
- Zhijing Wu
- Department of General Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Ruixin Zhou
- Department of General Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Baizao Li
- Department of General Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Mingyu Cao
- Department of General Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Wenlong Wang
- Department of Breast Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Clinical Research Center for Breast Cancer in Hunan ProvinceChangshaHunanChina
| | - Xinying Li
- Department of General Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
18
|
Yu NJ, Jaber QZ, Kleiner RE. Global characterization of RNA modifying enzymes with RNA-mediated activity-based protein profiling (RNABPP). Methods Enzymol 2024; 705:111-125. [PMID: 39389661 DOI: 10.1016/bs.mie.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Post-transcriptional RNA modifications can regulate RNA function and play an important role in gene expression. Studying RNA modifying enzymes and their associated modifications remains a considerable challenge. Here we describe the RNA-mediated activity-based protein profiling (RNABPP) methodology, a chemoproteomic strategy for profiling the activity of RNA modifying enzymes in their native context. RNABPP relies upon metabolic RNA labeling with modified ribonucleoside-based probes, combined with protein-RNA enrichment and quantitative proteomics. The RNABPP approach is a general strategy based on chemical reactivity and enzyme mechanism, making it suitable for probing multiple classes of RNA modifying enzymes across diverse biological systems.
Collapse
Affiliation(s)
- Nathan J Yu
- Department of Chemistry, Princeton University, Princeton, NJ, United States
| | - Qais Z Jaber
- Department of Chemistry, Princeton University, Princeton, NJ, United States
| | - Ralph E Kleiner
- Department of Chemistry, Princeton University, Princeton, NJ, United States.
| |
Collapse
|
19
|
Lu L, Zhang X, Zhou Y, Shi Z, Xie X, Zhang X, Gao L, Fu A, Liu C, He B, Xiong X, Yin Y, Wang Q, Yi C, Li X. Base-resolution m 5C profiling across the mammalian transcriptome by bisulfite-free enzyme-assisted chemical labeling approach. Mol Cell 2024; 84:2984-3000.e8. [PMID: 39002544 DOI: 10.1016/j.molcel.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/03/2024] [Accepted: 06/20/2024] [Indexed: 07/15/2024]
Abstract
5-methylcytosine (m5C) is a prevalent RNA modification crucial for gene expression regulation. However, accurate and sensitive m5C sites identification remains challenging due to severe RNA degradation and reduced sequence complexity during bisulfite sequencing (BS-seq). Here, we report m5C-TAC-seq, a bisulfite-free approach combining TET-assisted m5C-to-f5C oxidation with selective chemical labeling, therefore enabling direct base-resolution m5C detection through pre-enrichment and C-to-T transitions at m5C sites. With m5C-TAC-seq, we comprehensively profiled the m5C methylomes in human and mouse cells, identifying a substantially larger number of confident m5C sites. Through perturbing potential m5C methyltransferases, we deciphered the responsible enzymes for most m5C sites, including the characterization of NSUN5's involvement in mRNA m5C deposition. Additionally, we characterized m5C dynamics during mESC differentiation. Notably, the mild reaction conditions and preservation of nucleotide composition in m5C-TAC-seq allow m5C detection in chromatin-associated RNAs. The accurate and robust m5C-TAC-seq will advance research into m5C methylation functional investigation.
Collapse
Affiliation(s)
- Liang Lu
- Department of Biochemistry and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaoting Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yuenan Zhou
- Department of Biochemistry and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zuokun Shi
- Department of Biochemistry and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiwen Xie
- Department of Biochemistry and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xinyue Zhang
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Liaoliao Gao
- Department of Biochemistry and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Anbo Fu
- Department of Biochemistry and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Cong Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Bo He
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xushen Xiong
- The Second Affiliated Hospital and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China
| | - Yafei Yin
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Xiaoyu Li
- Department of Biochemistry and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
20
|
XIONG J, FENG T, YUAN BF. [Advances in mapping analysis of ribonucleic acid modifications through sequencing]. Se Pu 2024; 42:632-645. [PMID: 38966972 PMCID: PMC11224946 DOI: 10.3724/sp.j.1123.2023.12025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Indexed: 07/06/2024] Open
Abstract
Over 170 chemical modifications have been discovered in various types of ribonucleic acids (RNAs), including messenger RNA (mRNA), ribosomal RNA (rRNA), transfer RNA (tRNA), and small nuclear RNA (snRNA). These RNA modifications play crucial roles in a wide range of biological processes such as gene expression regulation, RNA stability maintenance, and protein translation. RNA modifications represent a new dimension of gene expression regulation known as the "epitranscriptome". The discovery of RNA modifications and the relevant writers, erasers, and readers provides an important basis for studies on the dynamic regulation and physiological functions of RNA modifications. Owing to the development of detection technologies for RNA modifications, studies on RNA epitranscriptomes have progressed to the single-base resolution, multilayer, and full-coverage stage. Transcriptome-wide methods help discover new RNA modification sites and are of great importance for elucidating the molecular regulatory mechanisms of epitranscriptomics, exploring the disease associations of RNA modifications, and understanding their clinical applications. The existing RNA modification sequencing technologies can be categorized according to the pretreatment approach and sequencing principle as direct high-throughput sequencing, antibody-enrichment sequencing, enzyme-assisted sequencing, chemical labeling-assisted sequencing, metabolic labeling sequencing, and nanopore sequencing technologies. These methods, as well as studies on the functions of RNA modifications, have greatly expanded our understanding of epitranscriptomics. In this review, we summarize the recent progress in RNA modification detection technologies, focusing on the basic principles, advantages, and limitations of different methods. Direct high-throughput sequencing methods do not require complex RNA pretreatment and allow for the mapping of RNA modifications using conventional RNA sequencing methods. However, only a few RNA modifications can be analyzed by high-throughput sequencing. Antibody enrichment followed by high-throughput sequencing has emerged as a crucial approach for mapping RNA modifications, significantly advancing the understanding of RNA modifications and their regulatory functions in different species. However, the resolution of antibody-enrichment sequencing is limited to approximately 100-200 bp. Although chemical crosslinking techniques can achieve single-base resolution, these methods are often complex, and the specificity of the antibodies used in these methods has raised concerns. In particular, the issue of off-target binding by the antibodies requires urgent attention. Enzyme-assisted sequencing has improved the accuracy of the localization analysis of RNA modifications and enables stoichiometric detection with single-base resolution. However, the enzymes used in this technique show poor reactivity, specificity, and sequence preference. Chemical labeling sequencing has become a widely used approach for profiling RNA modifications, particularly by altering reverse transcription (RT) signatures such as RT stops, misincorporations, and deletions. Chemical-assisted sequencing provides a sequence-independent RNA modification detection strategy that enables the localization of multiple RNA modifications. Additionally, when combined with the biotin-streptavidin affinity method, low-abundance RNA modifications can be enriched and detected. Nevertheless, the specificity of many chemical reactions remains problematic, and the development of specific reaction probes for particular modifications should continue in the future to achieve the precise localization of RNA modifications. As an indirect localization method, metabolic labeling sequencing specifically localizes the sites at which modifying enzymes act, which is of great significance in the study of RNA modification functions. However, this method is limited by the intracellular labeling of RNA and cannot be applied to biological samples such as clinical tissues and blood samples. Nanopore sequencing is a direct RNA-sequencing method that does not require RT or the polymerase chain reaction (PCR). However, challenges in analyzing the data obtained from nanopore sequencing, such as the high rate of false positives, must be resolved. Discussing sequencing analysis methods for various types of RNA modifications is instructive for the future development of novel RNA modification mapping technologies, and will aid studies on the functions of RNA modifications across the entire transcriptome.
Collapse
|
21
|
Zhang X, Yuan L, Zhang W, Zhang Y, Wu Q, Li C, Wu M, Huang Y. Liquid-liquid phase separation in diseases. MedComm (Beijing) 2024; 5:e640. [PMID: 39006762 PMCID: PMC11245632 DOI: 10.1002/mco2.640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 07/16/2024] Open
Abstract
Liquid-liquid phase separation (LLPS), an emerging biophysical phenomenon, can sequester molecules to implement physiological and pathological functions. LLPS implements the assembly of numerous membraneless chambers, including stress granules and P-bodies, containing RNA and protein. RNA-RNA and RNA-protein interactions play a critical role in LLPS. Scaffolding proteins, through multivalent interactions and external factors, support protein-RNA interaction networks to form condensates involved in a variety of diseases, particularly neurodegenerative diseases and cancer. Modulating LLPS phenomenon in multiple pathogenic proteins for the treatment of neurodegenerative diseases and cancer could present a promising direction, though recent advances in this area are limited. Here, we summarize in detail the complexity of LLPS in constructing signaling pathways and highlight the role of LLPS in neurodegenerative diseases and cancers. We also explore RNA modifications on LLPS to alter diseases progression because these modifications can influence LLPS of certain proteins or the formation of stress granules, and discuss the possibility of proper manipulation of LLPS process to restore cellular homeostasis or develop therapeutic drugs for the eradication of diseases. This review attempts to discuss potential therapeutic opportunities by elaborating on the connection between LLPS, RNA modification, and their roles in diseases.
Collapse
Affiliation(s)
- Xinyue Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Lin Yuan
- Laboratory of Research in Parkinson's Disease and Related Disorders Health Sciences Institute China Medical University Shenyang China
| | - Wanlu Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Yi Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Qun Wu
- Department of Pediatrics Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine Shanghai China
| | - Chunting Li
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Min Wu
- Wenzhou Institute University of Chinese Academy of Sciences Wenzhou Zhejiang China
- The Joint Research Center Affiliated Xiangshan Hospital of Wenzhou Medical University Ningbo China
| | - Yongye Huang
- College of Life and Health Sciences Northeastern University Shenyang China
- Key Laboratory of Bioresource Research and Development of Liaoning Province College of Life and Health Sciences Northeastern University Shenyang China
| |
Collapse
|
22
|
Deng T, Wang Z, Geng Q, Wang Z, Jiao Y, Diao W, Xu J, Deng T, Luo J, Tao Q, Xiao C. Methylation of T and B Lymphocytes in Autoimmune Rheumatic Diseases. Clin Rev Allergy Immunol 2024; 66:401-422. [PMID: 39207646 DOI: 10.1007/s12016-024-09003-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
The role of abnormal epigenetic modifications, particularly DNA methylation, in the pathogenesis of autoimmune rheumatic diseases (ARDs) has garnered increasing attention. Lymphocyte dysfunction is a significant contributor to the pathogenesis of ARDs. Methylation is crucial for maintaining normal immune system function, and aberrant methylation can hinder lymphocyte differentiation, resulting in functional abnormalities that disrupt immune tolerance, leading to the excessive expression of inflammatory cytokines, thereby exacerbating the onset and progression of ARDs. Recent studies suggest that methylation-related factors have the potential to serve as biomarkers for monitoring the activity of ARDs. This review summarizes the current state of research on the impact of DNA and RNA methylation on the development, differentiation, and function of T and B cells and examines the progress of these epigenetic modifications in studies of six specific ARDs: systemic lupus erythematosus, rheumatoid arthritis, Sjögren's syndrome, systemic sclerosis, juvenile idiopathic arthritis, and ankylosing spondylitis. Additionally, we propose that exploring the interplay between RNA methylation and DNA methylation may represent a novel direction for understanding the pathogenesis of ARDs and developing novel treatment strategies.
Collapse
Affiliation(s)
- Tiantian Deng
- Beijing University of Chinese Medicine, School of Clinical Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Zihan Wang
- Beijing University of Chinese Medicine, School of Clinical Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Qishun Geng
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Zhaoran Wang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Yi Jiao
- Beijing University of Chinese Medicine, School of Clinical Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Wenya Diao
- Beijing University of Chinese Medicine, School of Clinical Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Jiahe Xu
- China-Japan Friendship Hospital, Peking University, Beijing, 100029, China
| | - Tingting Deng
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Jing Luo
- Department of TCM Rheumatology, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Qingwen Tao
- Department of TCM Rheumatology, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, 100029, China.
| |
Collapse
|
23
|
Qian W, Yang L, Li T, Li W, Zhou J, Xie S. RNA modifications in pulmonary diseases. MedComm (Beijing) 2024; 5:e546. [PMID: 38706740 PMCID: PMC11068158 DOI: 10.1002/mco2.546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 02/26/2024] [Accepted: 03/14/2024] [Indexed: 05/07/2024] Open
Abstract
Threatening public health, pulmonary disease (PD) encompasses diverse lung injuries like chronic obstructive PD, pulmonary fibrosis, asthma, pulmonary infections due to pathogen invasion, and fatal lung cancer. The crucial involvement of RNA epigenetic modifications in PD pathogenesis is underscored by robust evidence. These modifications not only shape cell fates but also finely modulate the expression of genes linked to disease progression, suggesting their utility as biomarkers and targets for therapeutic strategies. The critical RNA modifications implicated in PDs are summarized in this review, including N6-methylation of adenosine, N1-methylation of adenosine, 5-methylcytosine, pseudouridine (5-ribosyl uracil), 7-methylguanosine, and adenosine to inosine editing, along with relevant regulatory mechanisms. By shedding light on the pathology of PDs, these summaries could spur the identification of new biomarkers and therapeutic strategies, ultimately paving the way for early PD diagnosis and treatment innovation.
Collapse
Affiliation(s)
- Weiwei Qian
- Emergency Department of Emergency MedicineLaboratory of Emergency Medicine, West China Hospital, And Disaster Medical, Sichuan UniversityChengduSichuanChina
- Emergency DepartmentShangjinnanfu Hospital, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Lvying Yang
- The Department of Respiratory and Critical Care MedicineThe First Veterans Hospital of Sichuan ProvinceChengduSichuanChina
| | - Tianlong Li
- Department of Critical Care Medicine Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Wanlin Li
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's HospitalShenzhenGuangdongChina
| | - Jian Zhou
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National‐Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical SchoolShenzhenChina
- Department of ImmunologyInternational Cancer Center, Shenzhen University Health Science CenterShenzhenGuangdongChina
| | - Shenglong Xie
- Department of Thoracic SurgerySichuan Provincial People's Hospital, University of Electronic Science and Technology of ChinaChengduSichuanChina
| |
Collapse
|
24
|
Ji J, Yu NJ, Kleiner RE. Sequence- and Structure-Specific tRNA Dihydrouridylation by hDUS2. ACS CENTRAL SCIENCE 2024; 10:803-812. [PMID: 38680565 PMCID: PMC11046453 DOI: 10.1021/acscentsci.3c01382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 05/01/2024]
Abstract
The post-transcriptional reduction of uridine to dihydrouridine (D) by dihydrouridine synthase (DUS) enzymes is among the most ubiquitous transformations in RNA biology. D is found at multiple sites in tRNAs, and studies in yeast have proposed that each of the four eukaryotic DUS enzymes modifies a different site; however, the molecular basis for this exquisite selectivity is unknown, and human DUS enzymes have remained largely uncharacterized. Here we investigate the substrate specificity of human dihydrouridine synthase 2 (hDUS2) using mechanism-based cross-linking with 5-bromouridine (5-BrUrd)-modified oligonucleotide probes and in vitro dihydrouridylation assays. We find that hDUS2 exclusively modifies U20 across diverse tRNA substrates and identify a minimal GU sequence within the tRNA D loop that underlies selective substrate modification. Further, we use our mechanism-based platform to screen small molecule inhibitors of hDUS2, a potential anticancer target. Our work elucidates the principles of substrate modification by a conserved DUS and provides a general platform for studying RNA modifying enzymes with sequence-defined activity-based probes.
Collapse
Affiliation(s)
- Jingwei Ji
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Nathan J. Yu
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Ralph E. Kleiner
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
25
|
Berggren KA, Schwartz RE, Kleiner RE, Ploss A. The impact of epitranscriptomic modifications on liver disease. Trends Endocrinol Metab 2024; 35:331-346. [PMID: 38212234 DOI: 10.1016/j.tem.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/13/2024]
Abstract
RNA modifications have emerged as important mechanisms of gene regulation. Developmental, metabolic, and cell cycle regulatory processes are all affected by epitranscriptomic modifications, which control gene expression in a dynamic manner. The hepatic tissue is highly metabolically active and has an impressive ability to regenerate after injury. Cell proliferation, differentiation, and metabolism, which are all essential to the liver response to injury and regeneration, are regulated via RNA modification. Two such modifications, N6-methyladenosine (m6A)and 5-methylcytosine (m5C), have been identified as prognostic disease markers and potential therapeutic targets for liver diseases. Here, we describe progress in understanding the role of RNA modifications in liver biology and disease and discuss specific areas where unexpected results could lead to improved future understanding.
Collapse
Affiliation(s)
- Keith A Berggren
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Robert E Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ralph E Kleiner
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
26
|
Liu WW, Zheng SQ, Li T, Fei YF, Wang C, Zhang S, Wang F, Jiang GM, Wang H. RNA modifications in cellular metabolism: implications for metabolism-targeted therapy and immunotherapy. Signal Transduct Target Ther 2024; 9:70. [PMID: 38531882 DOI: 10.1038/s41392-024-01777-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/28/2024] Open
Abstract
Cellular metabolism is an intricate network satisfying bioenergetic and biosynthesis requirements of cells. Relevant studies have been constantly making inroads in our understanding of pathophysiology, and inspiring development of therapeutics. As a crucial component of epigenetics at post-transcription level, RNA modification significantly determines RNA fates, further affecting various biological processes and cellular phenotypes. To be noted, immunometabolism defines the metabolic alterations occur on immune cells in different stages and immunological contexts. In this review, we characterize the distribution features, modifying mechanisms and biological functions of 8 RNA modifications, including N6-methyladenosine (m6A), N6,2'-O-dimethyladenosine (m6Am), N1-methyladenosine (m1A), 5-methylcytosine (m5C), N4-acetylcytosine (ac4C), N7-methylguanosine (m7G), Pseudouridine (Ψ), adenosine-to-inosine (A-to-I) editing, which are relatively the most studied types. Then regulatory roles of these RNA modification on metabolism in diverse health and disease contexts are comprehensively described, categorized as glucose, lipid, amino acid, and mitochondrial metabolism. And we highlight the regulation of RNA modifications on immunometabolism, further influencing immune responses. Above all, we provide a thorough discussion about clinical implications of RNA modification in metabolism-targeted therapy and immunotherapy, progression of RNA modification-targeted agents, and its potential in RNA-targeted therapeutics. Eventually, we give legitimate perspectives for future researches in this field from methodological requirements, mechanistic insights, to therapeutic applications.
Collapse
Affiliation(s)
- Wei-Wei Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- School of Clinical Medicine, Shandong University, Jinan, China
| | - Si-Qing Zheng
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Tian Li
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Yun-Fei Fei
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Chen Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Shuang Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Fei Wang
- Neurosurgical Department, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Guan-Min Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.
| | - Hao Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China.
| |
Collapse
|
27
|
Fitzsimmons CM, Mandler MD, Lunger JC, Chan D, Maligireddy S, Schmiechen A, Gamage S, Link C, Jenkins L, Chan K, Andresson T, Crooks D, Meier J, Linehan W, Batista P. Rewiring of RNA methylation by the oncometabolite fumarate in renal cell carcinoma. NAR Cancer 2024; 6:zcae004. [PMID: 38328795 PMCID: PMC10849186 DOI: 10.1093/narcan/zcae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 02/09/2024] Open
Abstract
Metabolic reprogramming is a hallmark of cancer that facilitates changes in many adaptive biological processes. Mutations in the tricarboxylic acid cycle enzyme fumarate hydratase (FH) lead to fumarate accumulation and cause hereditary leiomyomatosis and renal cell cancer (HLRCC). HLRCC is a rare, inherited disease characterized by the development of non-cancerous smooth muscle tumors of the uterus and skin, and an increased risk of an aggressive form of kidney cancer. Fumarate has been shown to inhibit 2-oxoglutarate-dependent dioxygenases (2OGDDs) involved in the hydroxylation of HIF1α, as well as in DNA and histone demethylation. However, the link between fumarate accumulation and changes in RNA post-transcriptional modifications has not been defined. Here, we determine the consequences of fumarate accumulation on the activity of different members of the 2OGDD family targeting RNA modifications. By evaluating multiple RNA modifications in patient-derived HLRCC cell lines, we show that mutation of FH selectively affects the levels of N6-methyladenosine (m6A), while the levels of 5-formylcytosine (f5C) in mitochondrial tRNA are unaffected. This supports the hypothesis of a differential impact of fumarate accumulation on distinct RNA demethylases. The observation that metabolites modulate specific subsets of RNA-modifying enzymes offers new insights into the intersection between metabolism and the epitranscriptome.
Collapse
Affiliation(s)
- Christina M Fitzsimmons
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mariana D Mandler
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Judith C Lunger
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dalen Chan
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Siddhardha S Maligireddy
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexandra C Schmiechen
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Supuni Thalalla Gamage
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Courtney Link
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Lisa M Jenkins
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - King Chan
- Protein Characterization Laboratory, Research Technology Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21701, USA
| | - Thorkell Andresson
- Protein Characterization Laboratory, Research Technology Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21701, USA
| | - Daniel R Crooks
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jordan L Meier
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pedro J Batista
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
28
|
Rashad S, Al-Mesitef S, Mousa A, Zhou Y, Ando D, Sun G, Fukuuchi T, Iwasaki Y, Xiang J, Byrne SR, Sun J, Maekawa M, Saigusa D, Begley TJ, Dedon PC, Niizuma K. Translational response to mitochondrial stresses is orchestrated by tRNA modifications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580389. [PMID: 38405984 PMCID: PMC10888749 DOI: 10.1101/2024.02.14.580389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Mitochondrial stress and dysfunction play important roles in many pathologies. However, how cells respond to mitochondrial stress is not fully understood. Here, we examined the translational response to electron transport chain (ETC) inhibition and arsenite induced mitochondrial stresses. Our analysis revealed that during mitochondrial stress, tRNA modifications (namely f5C, hm5C, queuosine and its derivatives, and mcm5U) dynamically change to fine tune codon decoding, usage, and optimality. These changes in codon optimality drive the translation of many pathways and gene sets, such as the ATF4 pathway and selenoproteins, involved in the cellular response to mitochondrial stress. We further examined several of these modifications using targeted approaches. ALKBH1 knockout (KO) abrogated f5C and hm5C levels and led to mitochondrial dysfunction, reduced proliferation, and impacted mRNA translation rates. Our analysis revealed that tRNA queuosine (tRNA-Q) is a master regulator of the mitochondrial stress response. KO of QTRT1 or QTRT2, the enzymes responsible for tRNA-Q synthesis, led to mitochondrial dysfunction, translational dysregulation, and metabolic alterations in mitochondria-related pathways, without altering cellular proliferation. In addition, our analysis revealed that tRNA-Q loss led to a domino effect on various tRNA modifications. Some of these changes could be explained by metabolic profiling. Our analysis also revealed that utilizing serum deprivation or alteration with Queuine supplementation to study tRNA-Q or stress response can introduce various confounding factors by altering many other tRNA modifications. In summary, our data show that tRNA modifications are master regulators of the mitochondrial stress response by driving changes in codon decoding.
Collapse
Affiliation(s)
- Sherif Rashad
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shadi Al-Mesitef
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Abdulrahman Mousa
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuan Zhou
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Daisuke Ando
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Neurology, Tohoku university Graduate school of Medicine, Sendai, Japan
| | - Guangxin Sun
- Department of Biological Engineering, Massachusetts Institute of Technology, MA, USA
| | - Tomoko Fukuuchi
- Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Yuko Iwasaki
- Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Jingdong Xiang
- Department of Biological Engineering, Massachusetts Institute of Technology, MA, USA
| | - Shane R Byrne
- Department of Biological Engineering, Massachusetts Institute of Technology, MA, USA
- Codomax Inc, 17 Briden St STE 219, Worcester, MA 01605
| | - Jingjing Sun
- Department of Biological Engineering, Massachusetts Institute of Technology, MA, USA
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Resistance IRG, Campus for Research Excellence and Technological Enterprise, Singapore
| | - Masamitsu Maekawa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Daisuke Saigusa
- Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Thomas J Begley
- Department of Biological Sciences, University at Albany, Albany, NY, USA
| | - Peter C Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, MA, USA
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Resistance IRG, Campus for Research Excellence and Technological Enterprise, Singapore
| | - Kuniyasu Niizuma
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
29
|
Zhang A, Zhang H, Wang R, He H, Song B, Song R. Bactericidal bissulfone B 7 targets bacterial pyruvate kinase to impair bacterial biology and pathogenicity in plants. SCIENCE CHINA. LIFE SCIENCES 2024; 67:391-402. [PMID: 37987940 DOI: 10.1007/s11427-023-2449-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/11/2023] [Indexed: 11/22/2023]
Abstract
The prevention and control of rice bacterial leaf blight (BLB) disease has not yet been achieved due to the lack of effective agrochemicals and available targets. Herein, we develop a series of novel bissulfones and a novel target with a unique mechanism to address this challenge. The developed bissulfones can control Xanthomonas oryzae pv. oryzae (Xoo), and 2-(bis(methylsulfonyl)methylene)-N-(4-chlorophenyl) hydrazine-1-carboxamide (B7) is more effective than the commercial drugs thiodiazole copper (TC) and bismerthiazol (BT). Pyruvate kinase (PYK) in Xoo has been identified for the first time as the target protein of our bissulfone B7. PYK modulates bacterial virulence via a CRP-like protein (Clp)/two-component system regulatory protein (regR) axis. The elucidation of this pathway facilitates the use of B7 to reduce PYK expression at the transcriptional level, block PYK activity at the protein level, and impair the interaction within the PYK-Clp-regR complex via competitive inhibition, thereby attenuating bacterial biology and pathogenicity. This study offers insights into the molecular and mechanistic aspects underlying anti-Xoo strategies that target PYK. We believe that these valuable discoveries will be used for bacterial disease control in the future.
Collapse
Affiliation(s)
- Awei Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Haizhen Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Ronghua Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Hongfu He
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Baoan Song
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| | - Runjiang Song
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
30
|
Zheng L, Duan Y, Li M, Wei J, Xue C, Chen S, Wei Q, Tang F, Xiong W, Zhou M, Deng H. Deciphering the vital roles and mechanism of m5C modification on RNA in cancers. Am J Cancer Res 2023; 13:6125-6146. [PMID: 38187052 PMCID: PMC10767349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
5-methylcytosine (m5C modification) plays an essential role in tumors, which affects different types of RNA, the expression of downstream target genes, and downstream pathways, thus participating in the tumor process. However, the effect of m5C modification on RNA in tumors and the exact mechanism have not been systematically reviewed. Therefore, we reviewed the status and sites of m5C modification, as well as the expression pattern and biological functions of m5C regulators in tumors, and further summarized the effects and regulation mechanism of m5C modification on messenger RNA (mRNA), ribosomal RNA (rRNA), transfer RNA (tRNA), long non-coding RNA (lncRNA) and other RNA in tumors. Finally, we summed up the interaction network, potential application, and value in clinical diagnosis and treatment of tumors. Taken together, this review benefits revealing the mechanism of m5C modification in tumor progression and provides new strategies for tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Lemei Zheng
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Central South UniversityChangsha, Hunan, China
| | - Yumei Duan
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Central South UniversityChangsha, Hunan, China
| | - Mengna Li
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Central South UniversityChangsha, Hunan, China
| | - Jianxia Wei
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Central South UniversityChangsha, Hunan, China
| | - Changning Xue
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Central South UniversityChangsha, Hunan, China
| | - Shipeng Chen
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Central South UniversityChangsha, Hunan, China
| | - Qingqing Wei
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Central South UniversityChangsha, Hunan, China
| | - Faqing Tang
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha, Hunan, China
- Department of Clinical Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Central South UniversityChangsha, Hunan, China
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Central South UniversityChangsha, Hunan, China
| | - Hongyu Deng
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha, Hunan, China
- Department of Clinical Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha, Hunan, China
| |
Collapse
|
31
|
Yu NJ, Dai W, Li A, He M, Kleiner RE. Cell type-specific translational regulation by human DUS enzymes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.565399. [PMID: 37965204 PMCID: PMC10635104 DOI: 10.1101/2023.11.03.565399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dihydrouridine is an abundant and conserved modified nucleoside present on tRNA, but characterization and functional studies of modification sites and associated DUS writer enzymes in mammals is lacking. Here we use a chemical probing strategy, RNABPP-PS, to identify 5-chlorouridine as an activity-based probe for human DUS enzymes. We map D modifications using RNA-protein crosslinking and chemical transformation and mutational profiling to reveal D modification sites on human tRNAs. Further, we knock out individual DUS genes in two human cell lines to investigate regulation of tRNA expression levels and codon-specific translation. We show that whereas D modifications are present across most tRNA species, loss of D only perturbs the translational function of a subset of tRNAs in a cell type-specific manner. Our work provides powerful chemical strategies for investigating D and DUS enzymes in diverse biological systems and provides insight into the role of a ubiquitous tRNA modification in translational regulation.
Collapse
|
32
|
Ji J, Yu NJ, Kleiner RE. A minimal sequence motif drives selective tRNA dihydrouridylation by hDUS2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.04.565616. [PMID: 37961591 PMCID: PMC10635142 DOI: 10.1101/2023.11.04.565616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The post-transcriptional reduction of uridine to dihydrouridine (D) by dihydrouridine synthase (DUS) enzymes is among the most ubiquitous transformations in RNA biology. D is found at multiple sites in tRNAs and studies in yeast have proposed that each of the four eukaryotic DUS enzymes modifies a different site, however the molecular basis for this exquisite selectivity is unknown and human DUS enzymes have remained largely uncharacterized. Here we investigate the substrate specificity of human dihydrouridine synthase 2 (hDUS2) using mechanism-based crosslinking with 5-bromouridine (5-BrUrd)-modified oligonucleotide probes and in vitro dihydrouridylation assays. We find that hDUS2 modifies U20 in the D loop of diverse tRNA substrates and identify a minimal GU motif within the tRNA tertiary fold required for directing its activity. Further, we use our mechanism-based platform to screen small molecule inhibitors of hDUS2, a potential anti-cancer target. Our work elucidates the principles of substrate modification by a conserved DUS and provides a general platform to studying RNA modifying enzymes with sequence-defined activity-based probes.
Collapse
|
33
|
Wang C, Hou X, Guan Q, Zhou H, Zhou L, Liu L, Liu J, Li F, Li W, Liu H. RNA modification in cardiovascular disease: implications for therapeutic interventions. Signal Transduct Target Ther 2023; 8:412. [PMID: 37884527 PMCID: PMC10603151 DOI: 10.1038/s41392-023-01638-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 08/15/2023] [Accepted: 09/03/2023] [Indexed: 10/28/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in the world, with a high incidence and a youth-oriented tendency. RNA modification is ubiquitous and indispensable in cell, maintaining cell homeostasis and function by dynamically regulating gene expression. Accumulating evidence has revealed the role of aberrant gene expression in CVD caused by dysregulated RNA modification. In this review, we focus on nine common RNA modifications: N6-methyladenosine (m6A), N1-methyladenosine (m1A), 5-methylcytosine (m5C), N7-methylguanosine (m7G), N4-acetylcytosine (ac4C), pseudouridine (Ψ), uridylation, adenosine-to-inosine (A-to-I) RNA editing, and modifications of U34 on tRNA wobble. We summarize the key regulators of RNA modification and their effects on gene expression, such as RNA splicing, maturation, transport, stability, and translation. Then, based on the classification of CVD, the mechanisms by which the disease occurs and progresses through RNA modifications are discussed. Potential therapeutic strategies, such as gene therapy, are reviewed based on these mechanisms. Herein, some of the CVD (such as stroke and peripheral vascular disease) are not included due to the limited availability of literature. Finally, the prospective applications and challenges of RNA modification in CVD are discussed for the purpose of facilitating clinical translation. Moreover, we look forward to more studies exploring the mechanisms and roles of RNA modification in CVD in the future, as there are substantial uncultivated areas to be explored.
Collapse
Affiliation(s)
- Cong Wang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xuyang Hou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qing Guan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Huiling Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Li Zhou
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, The Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lijun Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jijia Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Feng Li
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Haidan Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
34
|
Dai W, Yu NJ, Kleiner RE. Chemoproteomic Approaches to Studying RNA Modification-Associated Proteins. Acc Chem Res 2023; 56:2726-2739. [PMID: 37733063 PMCID: PMC11025531 DOI: 10.1021/acs.accounts.3c00450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The function of cellular RNA is modulated by a host of post-transcriptional chemical modifications installed by dedicated RNA-modifying enzymes. RNA modifications are widespread in biology, occurring in all kingdoms of life and in all classes of RNA molecules. They regulate RNA structure, folding, and protein-RNA interactions, and have important roles in fundamental gene expression processes involving mRNA, tRNA, rRNA, and other types of RNA species. Our understanding of RNA modifications has advanced considerably; however, there are still many outstanding questions regarding the distribution of modifications across all RNA transcripts and their biological function. One of the major challenges in the study of RNA modifications is the lack of sequencing methods for the transcriptome-wide mapping of different RNA-modification structures. Furthermore, we lack general strategies to characterize RNA-modifying enzymes and RNA-modification reader proteins. Therefore, there is a need for new approaches to enable integrated studies of RNA-modification chemistry and biology.In this Account, we describe our development and application of chemoproteomic strategies for the study of RNA-modification-associated proteins. We present two orthogonal methods based on nucleoside and oligonucleotide chemical probes: 1) RNA-mediated activity-based protein profiling (RNABPP), a metabolic labeling strategy based on reactive modified nucleoside probes to profile RNA-modifying enzymes in cells and 2) photo-cross-linkable diazirine-containing synthetic oligonucleotide probes for identifying RNA-modification reader proteins.We use RNABPP with C5-modified cytidine and uridine nucleosides to capture diverse RNA-pyrimidine-modifying enzymes including methyltransferases, dihydrouridine synthases, and RNA dioxygenase enzymes. Metabolic labeling facilitates the mechanism-based cross-linking of RNA-modifying enzymes with their native RNA substrates in cells. Covalent RNA-protein complexes are then isolated by denaturing oligo(dT) pulldown, and cross-linked proteins are identified by quantitative proteomics. Once suitable modified nucleosides have been identified as mechanism-based proteomic probes, they can be further deployed in transcriptome-wide sequencing experiments to profile the substrates of RNA-modifying enzymes at nucleotide resolution. Using 5-fluorouridine-mediated RNA-protein cross-linking and sequencing, we analyzed the substrates of human dihydrouridine synthase DUS3L. 5-Ethynylcytidine-mediated cross-linking enabled the investigation of ALKBH1 substrates. We also characterized the functions of these RNA-modifying enzymes in human cells by using genetic knockouts and protein translation reporters.We profiled RNA readers for N6-methyladenosine (m6A) and N1-methyladenosine (m1A) using a comparative proteomic workflow based on diazirine-containing modified oligonucleotide probes. Our approach enables quantitative proteome-wide analysis of the preference of RNA-binding proteins for modified nucleotides across a range of affinities. Interestingly, we found that YTH-domain proteins YTHDF1/2 can bind to both m6A and m1A to mediate transcript destabilization. Furthermore, m6A also inhibits stress granule proteins from binding to RNA.Taken together, we demonstrate the application of chemical probing strategies, together with proteomic and transcriptomic workflows, to reveal new insights into the biological roles of RNA modifications and their associated proteins.
Collapse
Affiliation(s)
| | | | - Ralph E. Kleiner
- Department of Chemistry, Princeton University, Princeton, NJ, USA 08544
| |
Collapse
|
35
|
Wu S, Xie H, Su Y, Jia X, Mi Y, Jia Y, Ying H. The landscape of implantation and placentation: deciphering the function of dynamic RNA methylation at the maternal-fetal interface. Front Endocrinol (Lausanne) 2023; 14:1205408. [PMID: 37720526 PMCID: PMC10499623 DOI: 10.3389/fendo.2023.1205408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023] Open
Abstract
The maternal-fetal interface is defined as the interface between maternal tissue and sections of the fetus in close contact. RNA methylation modifications are the most frequent kind of RNA alterations. It is effective throughout both normal and pathological implantation and placentation during pregnancy. By influencing early embryo development, embryo implantation, endometrium receptivity, immune microenvironment, as well as some implantation and placentation-related disorders like miscarriage and preeclampsia, it is essential for the establishment of the maternal-fetal interface. Our review focuses on the role of dynamic RNA methylation at the maternal-fetal interface, which has received little attention thus far. It has given the mechanistic underpinnings for both normal and abnormal implantation and placentation and could eventually provide an entirely novel approach to treating related complications.
Collapse
Affiliation(s)
- Shengyu Wu
- Department of Clinical Medicine, Tongji University School of Medicine, Shanghai, China
- Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Han Xie
- Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yao Su
- Department of Clinical Medicine, Tongji University School of Medicine, Shanghai, China
- Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinrui Jia
- Department of Clinical Medicine, Tongji University School of Medicine, Shanghai, China
- Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yabing Mi
- Department of Clinical Medicine, Tongji University School of Medicine, Shanghai, China
- Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuanhui Jia
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hao Ying
- Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
36
|
Kleiner RE. Chemical Approaches To Investigate Post-transcriptional RNA Regulation. ACS Chem Biol 2023; 18:1684-1697. [PMID: 37540831 PMCID: PMC11031734 DOI: 10.1021/acschembio.3c00406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
RNA plays a central role in biological processes, and its activity is regulated by a host of diverse chemical and biochemical mechanisms including post-transcriptional modification and interactions with RNA-binding proteins. Here, we describe our efforts to illuminate RNA biology through the application of chemical tools, focusing on post-transcriptional regulatory mechanisms. We describe the development of an activity-based protein profiling approach for discovery and characterization of RNA-modifying enzymes. Next, we highlight novel approaches for RNA imaging based upon metabolic labeling with modified nucleosides and engineering of the nucleotide salvage pathway. Finally, we discuss profiling RNA-protein interactions using small molecule-dependent RNA editing and synthetic photo-cross-linkable oligonucleotide probes. Our work provides enabling technologies for deciphering the complexity of RNA and its diverse functions in biology.
Collapse
Affiliation(s)
- Ralph E. Kleiner
- Department of Chemistry, Princeton University, Princeton, NJ, USA 08544
| |
Collapse
|
37
|
Gu X, Ma X, Chen C, Guan J, Wang J, Wu S, Zhu H. Vital roles of m 5C RNA modification in cancer and immune cell biology. Front Immunol 2023; 14:1207371. [PMID: 37325635 PMCID: PMC10264696 DOI: 10.3389/fimmu.2023.1207371] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
RNA modification plays an important role in epigenetics at the posttranscriptional level, and 5-methylcytosine (m5C) has attracted increasing attention in recent years due to the improvement in RNA m5C site detection methods. By influencing transcription, transportation and translation, m5C modification of mRNA, tRNA, rRNA, lncRNA and other RNAs has been proven to affect gene expression and metabolism and is associated with a wide range of diseases, including malignant cancers. RNA m5C modifications also substantially impact the tumor microenvironment (TME) by targeting different groups of immune cells, including B cells, T cells, macrophages, granulocytes, NK cells, dendritic cells and mast cells. Alterations in immune cell expression, infiltration and activation are highly linked to tumor malignancy and patient prognosis. This review provides a novel and holistic examination of m5C-mediated cancer development by examining the exact mechanisms underlying the oncogenicity of m5C RNA modification and summarizing the biological effects of m5C RNA modification on tumor cells as well as immune cells. Understanding methylation-related tumorigenesis can provide useful insights for the diagnosis as well as the treatment of cancer.
Collapse
Affiliation(s)
- Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Ma
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chao Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Guan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shanshan Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haihong Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
38
|
Ping D, Pu X, Ding G, Zhang C, Jin J, Xu C, Liu J, Jia S, Cao L. Sirtuin4 impacts mitochondrial homeostasis in pancreatic cancer cells by reducing the stability of AlkB homolog 1 via deacetylation of the HRD1-SEL1L complex. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194941. [PMID: 37146713 DOI: 10.1016/j.bbagrm.2023.194941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant tumor with a poor prognosis. As a tumor inhibitor, the specific tumor suppressor mechanism of Sirtuin4(SIRT4) in PDAC remains elusive. In this study, SIRT4 was found to inhibit PDAC by impacting mitochondrial homeostasis. SIRT4 deacetylated lysine 547 of SEL1L and increased the protein level of an E3 ubiquitin ligase HRD1. As a central member of ER-associated protein degradation (ERAD), HRD1-SEL1L complex is recently reported to regulate the mitochondria, though the mechanism is not fully delineated. Here, we found the increase in SEL1L-HRD1 complex decreased the stability of a mitochondrial protein, ALKBH1. Downregulation of ALKBH1 subsequently blocked the transcription of mitochondrial DNA-coded genes, and resulted in mitochondrial damage. Lastly, a putative SIRT4 stimulator, Entinostat, was identified, which upregulated the expression of SIRT4 and effectively inhibited pancreatic cancer in vivo and in vitro.
Collapse
Affiliation(s)
- Dongnan Ping
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3, Qingchun Road, Hangzhou, China
| | - Xiaofan Pu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3, Qingchun Road, Hangzhou, China
| | - Guoping Ding
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3, Qingchun Road, Hangzhou, China
| | - Chaolei Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3, Qingchun Road, Hangzhou, China
| | - Junbin Jin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3, Qingchun Road, Hangzhou, China
| | - Chengjie Xu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3, Qingchun Road, Hangzhou, China
| | - Jiazheng Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macao
| | - Shengnan Jia
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3, Qingchun Road, Hangzhou, China; Zhejiang Engineering Research Center of Cognitive Healthcare, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, China.
| | - Liping Cao
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3, Qingchun Road, Hangzhou, China; Zhejiang Engineering Research Center of Cognitive Healthcare, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, China.
| |
Collapse
|
39
|
Liu K, Xu P, Lv J, Ge H, Yan Z, Huang S, Li B, Xu H, Yang L, Xu Z, Zhang D. Peritoneal high-fat environment promotes peritoneal metastasis of gastric cancer cells through activation of NSUN2-mediated ORAI2 m5C modification. Oncogene 2023:10.1038/s41388-023-02707-5. [PMID: 37130916 DOI: 10.1038/s41388-023-02707-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/04/2023]
Abstract
Peritoneal metastasis (PM) is an important metastatic modality of gastric cancer (GC).It is associated with poor prognosis. The underlying molecular mechanism of PM remains elusive. 5-Methylcytosine (m5C), a posttranscriptional RNA modification, involves in the progression of many tumors. However, its role in GC peritoneal metastasis remains unclear. In our study, transcriptome results suggested that NSUN2 expression was significantly upregulated in PM. And patients with high NSUN2 expression of PM predicted a worse prognosis. Mechanistically, NSUN2 regulates ORAI2 mRNA stability by m5C modification, thereby promoting ORAI2 expression and further promoting peritoneal metastasis and colonization of GC. YBX1 acts as a "reader" by binding to the ORAI2 m5C modification site. Following the uptake of fatty acids from omental adipocytes by GC cells, the transcription factor E2F1 was upregulated, which further promoted the expression of NSUN2 through cis-element. Briefly, these results revealed that peritoneal adipocytes provide fatty acid for GC cells, thus contributing to the elevation of E2F1 and NSUN2 through AMPK pathway, and upregulated NSUN2 activates the key gene ORAI2 through m5C modification, thereby promoting peritoneal metastasis and colonization of gastric cancer.
Collapse
Affiliation(s)
- Kanghui Liu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Peng Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jialun Lv
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Han Ge
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhengyuan Yan
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Department of Surgery, Nanjing Lishui People's Hospital, Nanjing, 211200, China
| | - Shansong Huang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Bowen Li
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hao Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Li Yang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zekuan Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Diancai Zhang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
40
|
Cusenza VY, Tameni A, Neri A, Frazzi R. The lncRNA epigenetics: The significance of m6A and m5C lncRNA modifications in cancer. Front Oncol 2023; 13:1063636. [PMID: 36969033 PMCID: PMC10033960 DOI: 10.3389/fonc.2023.1063636] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/10/2023] [Indexed: 03/12/2023] Open
Abstract
Most of our transcribed RNAs are represented by non-coding sequences. Long non-coding RNAs (lncRNAs) are transcripts with no or very limited protein coding ability and a length >200nt. They can be epigenetically modified. N6-methyladenosine (m6A), N1-methyladenosine (m1A), 5-methylcytosine (m5C), 7-methylguanosine (m7G) and 2’-O-methylation (Nm) are some of the lncRNAs epigenetic modifications. The epigenetic modifications of RNA are controlled by three classes of enzymes, each playing a role in a specific phase of the modification. These enzymes are defined as “writers”, “readers” and “erasers”. m6A and m5C are the most studied epigenetic modifications in RNA. These modifications alter the structure and properties, thus modulating the functions and interactions of lncRNAs. The aberrant expression of several lncRNAs is linked to the development of a variety of cancers and the epigenetic signatures of m6A- or m5C-related lncRNAs are increasingly recognized as potential biomarkers of prognosis, predictors of disease stage and overall survival. In the present manuscript, the most up to date literature is reviewed with the focus on m6A and m5C modifications of lncRNAs and their significance in cancer.
Collapse
Affiliation(s)
- Vincenza Ylenia Cusenza
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Annalisa Tameni
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Antonino Neri
- Scientific Directorate, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Raffaele Frazzi
- Scientific Directorate, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
- *Correspondence: Raffaele Frazzi,
| |
Collapse
|
41
|
Krammer L, Breinbauer R. Activity‐Based Protein Profiling of Oxidases and Reductases. Isr J Chem 2023. [DOI: 10.1002/ijch.202200086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Leo Krammer
- Institute of Organic Chemistry Graz University of Technology Stremayrgasse 9 A-8010 Graz Austria
| | - Rolf Breinbauer
- Institute of Organic Chemistry Graz University of Technology Stremayrgasse 9 A-8010 Graz Austria
- BIOTECHMED Graz A-8010 Graz Austria
| |
Collapse
|
42
|
Dorn RS, Prescher JA. Bioorthogonal Phosphines: Then and Now. Isr J Chem 2022. [DOI: 10.1002/ijch.202200070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Robert S. Dorn
- Departments of Chemistry University of California Irvine California 92697 United States
| | - Jennifer A. Prescher
- Departments of Chemistry University of California Irvine California 92697 United States
- Molecular Biology & Biochemistry University of California Irvine California 92697 United States
- Pharmaceutical Sciences University of California Irvine California 92697 United States
| |
Collapse
|
43
|
Jin X, Huang Z, Xie L, Liu L, Han D, Cheng L. Photo‐Facilitated Detection and Sequencing of 5‐Formylcytidine RNA. Angew Chem Int Ed Engl 2022; 61:e202210652. [DOI: 10.1002/anie.202210652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Xiao‐Yang Jin
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Laboratory of Molecular Recognition and Function CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Zu‐Rui Huang
- China National Center for Bioinformation Beijing Institute of Genomics Chinese Academy of Sciences Beijing 100101 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Li‐Jun Xie
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Laboratory of Molecular Recognition and Function CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Li Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Laboratory of Molecular Recognition and Function CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Da‐Li Han
- China National Center for Bioinformation Beijing Institute of Genomics Chinese Academy of Sciences Beijing 100101 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Liang Cheng
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Laboratory of Molecular Recognition and Function CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
44
|
Rashad S, Byrne SR, Saigusa D, Xiang J, Zhou Y, Zhang L, Begley TJ, Tominaga T, Niizuma K. Codon Usage and mRNA Stability are Translational Determinants of Cellular Response to Canonical Ferroptosis Inducers. Neuroscience 2022; 501:103-130. [PMID: 35987429 PMCID: PMC10023133 DOI: 10.1016/j.neuroscience.2022.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022]
Abstract
Ferroptosis is a non-apoptotic cell death mechanism characterized by the generation of lipid peroxides. While many effectors in the ferroptosis pathway have been mapped, its epitranscriptional regulation is not yet fully understood. Ferroptosis can be induced via system xCT inhibition (Class I) or GPX4 inhibition (Class II). Previous works have revealed important differences in cellular response to different ferroptosis inducers. Importantly, blocking mRNA transcription or translation appears to protect cells against Class I ferroptosis inducing agents but not Class II. In this work, we examined the impact of blocking transcription (via Actinomycin D) or translation (via Cycloheximide) on Erastin (Class I) or RSL3 (Class II) induced ferroptosis. Blocking transcription or translation protected cells against Erastin but was detrimental against RSL3. Cycloheximide led to increased levels of GSH alone or when co-treated with Erastin via the activation of the reverse transsulfuration pathway. RNA sequencing analysis revealed early activation of a strong alternative splice program before observed changes in transcription. mRNA stability analysis revealed divergent mRNA stability changes in cellular response to Erastin or RSL3. Importantly, codon optimality biases were drastically different in either condition. Our data also implicated translation repression and rate as an important determinant of the cellular response to ferroptosis inducers. Given that mRNA stability and codon usage can be influenced via the tRNA epitranscriptome, we evaluated the role of a tRNA modifying enzyme in ferroptosis stress response. Alkbh1, a tRNA demethylase, led to translation repression and increased the resistance to Erastin but made cells more sensitive to RSL3.
Collapse
Affiliation(s)
- Sherif Rashad
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan; Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Shane R Byrne
- Department of Biological Engineering and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daisuke Saigusa
- Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan; Department of Integrative Genomics, Tohoku University Medical Megabank Organization, Sendai, Japan
| | - Jingdong Xiang
- Department of Biological Engineering and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yuan Zhou
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Liyin Zhang
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Thomas J Begley
- The RNA Institute, University at Albany, Albany, NY, USA; Department of Biological Sciences, University at Albany, Albany, NY, USA; RNA Epitranscriptomics and Proteomics Resource, University at Albany, Albany, NY, USA
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kuniyasu Niizuma
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan; Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
45
|
RNA modifications: importance in immune cell biology and related diseases. Signal Transduct Target Ther 2022; 7:334. [PMID: 36138023 PMCID: PMC9499983 DOI: 10.1038/s41392-022-01175-9] [Citation(s) in RCA: 164] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
RNA modifications have become hot topics recently. By influencing RNA processes, including generation, transportation, function, and metabolization, they act as critical regulators of cell biology. The immune cell abnormality in human diseases is also a research focus and progressing rapidly these years. Studies have demonstrated that RNA modifications participate in the multiple biological processes of immune cells, including development, differentiation, activation, migration, and polarization, thereby modulating the immune responses and are involved in some immune related diseases. In this review, we present existing knowledge of the biological functions and underlying mechanisms of RNA modifications, including N6-methyladenosine (m6A), 5-methylcytosine (m5C), N1-methyladenosine (m1A), N7-methylguanosine (m7G), N4-acetylcytosine (ac4C), pseudouridine (Ψ), uridylation, and adenosine-to-inosine (A-to-I) RNA editing, and summarize their critical roles in immune cell biology. Via regulating the biological processes of immune cells, RNA modifications can participate in the pathogenesis of immune related diseases, such as cancers, infection, inflammatory and autoimmune diseases. We further highlight the challenges and future directions based on the existing knowledge. All in all, this review will provide helpful knowledge as well as novel ideas for the researchers in this area.
Collapse
|