1
|
Eberhard JN, Shallberg LA, Winn A, Chandrasekaran S, Giuliano CJ, Merritt EF, Willis E, Konradt C, Christian DA, Aldridge DL, Bunkofske ME, Jacquet M, Dzierszinski F, Katifori E, Lourido S, Koshy AA, Hunter CA. Immune targeting and host-protective effects of the latent stage of Toxoplasma gondii. Nat Microbiol 2025; 10:992-1005. [PMID: 40148566 PMCID: PMC11964939 DOI: 10.1038/s41564-025-01967-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/19/2025] [Indexed: 03/29/2025]
Abstract
Latency is a microbial strategy for persistence. For Toxoplasma gondii the bradyzoite stage forms long-lived cysts critical for transmission, and its presence in neurons is considered important for immune evasion. However, the extent to which cyst formation escapes immune pressure and mediates persistence remained unclear. Here we developed a mathematical model highlighting that bradyzoite-directed immunity contributes to control of cyst numbers. In vivo studies demonstrated that transgenic CD8+ T cells recognized a cyst-derived antigen, and neuronal STAT1 signalling promoted cyst control in mice. Modelling and experiments with parasites unable to form bradyzoites (Δbfd1) revealed that the absence of cyst formation in the central nervous system did not prevent long-term persistence but resulted in increased tachyzoite replication with associated tissue damage and mortality. These findings suggest the latent form of T. gondii is under immune pressure, mitigates infection-induced damage and promotes survival of host and parasite.
Collapse
Affiliation(s)
- Julia N Eberhard
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lindsey A Shallberg
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aaron Winn
- Department of Physics and Astronomy, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Christopher J Giuliano
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emily F Merritt
- Department of Immunology, University of Arizona, Tucson, AZ, USA
| | - Elinor Willis
- Comparative Pathology Core, Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christoph Konradt
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, IN, USA
| | - David A Christian
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel L Aldridge
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Molly E Bunkofske
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maxime Jacquet
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Florence Dzierszinski
- The Royal Ottawa Mental Health Center, Institute of Mental Health Research, Ottawa, Ontario, Canada
| | - Eleni Katifori
- Department of Physics and Astronomy, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
| | - Sebastian Lourido
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anita A Koshy
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
- Department of Immunology, University of Arizona, Tucson, AZ, USA
- Department of Neurology, University of Arizona, Tucson, AZ, USA
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Johnson HJ, Kochanowsky JA, Chandrasekaran S, Hunter CA, Beiting DP, Koshy AA. Defining neuronal responses to the neurotropic parasite Toxoplasma gondii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.645603. [PMID: 40236177 PMCID: PMC11996365 DOI: 10.1101/2025.03.31.645603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
A select group of pathogens infect neurons in the brain. Prior dogma held that neurons were "defenseless" against infecting microbes, but many studies suggest that neurons can mount anti-microbial defenses. However, a knowledge gap in understanding how neurons respond in vitro and in vivo to different classes of micro-organisms remains. To address this gap, we compared a transcriptional dataset derived from primary neuron cultures (PNCs) infected with the neurotropic intracellular parasite Toxoplasma gondii with a dataset derived from neurons injected with T. gondii protein in vivo . These curated responses were then compared to the transcriptional responses of PNCs infected with the single stranded RNA viruses West Nile Virus (WNV) or Zika Virus (ZKV). These analyses highlighted a conserved response to infection associated with chemokines ( Cxcl10, Ccl2 ) and cytokines (interferon signaling). However, T. gondii had diminished IFN-α signaling in vitro compared to the viral datasets and was uniquely associated with a decrease in neuron-specific genes ( Snap25 , Slc17a7 , Prkcg ). These data underscore that neurons participate in infection-induced neuroinflammation and illustrate that neurons possess both pathogen-specific and pathogen-conserved responses. Importance Though neurons are commonly the target of pathogens that infect the CNS, few datasets assess the neuronal response to infection. This paucity of data is likely because neurons are perceived to have diminished immune capabilities. However, to understand the role of neurons in neuroinflammation and their immune capabilities, their responses must be investigated. Here we analyzed publicly accessible, neuron-specific datasets to compare neuron responses to a eukaryotic pathogen versus two Orthoflaviviruses. A better understanding of neuron responses to different infections will allow us to develop methods for inhibiting pathways that lead to neuron dysfunction, enhancing those that limit pathogen survival, and mitigating infection-induced damage to the CNS.
Collapse
|
3
|
Yang Z, Chen J, Zhang C, Peng H. Pathological mechanisms of glial cell activation and neurodegenerative and neuropsychiatric disorders caused by Toxoplasma gondii infection. Front Microbiol 2024; 15:1512233. [PMID: 39723133 PMCID: PMC11668811 DOI: 10.3389/fmicb.2024.1512233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
Toxoplasma gondii is an intracellular opportunistic parasite that exists in a latent form within the human central nervous system (CNS), even in immune-competent hosts. During acute infection, T. gondii traverses the blood-brain barrier (BBB). In the subsequent chronic infection phase, the infiltration of immune cells into the brain, driven by T. gondii infection and the formation of parasitic cysts, leads to persistent activation and proliferation of astrocytes and microglia. This process results in neuronal damages that are fatal in some cases. Through inducing systemic immune responses, T. gondii infection can dramatically alter the behavior of rodents and increase the risk of various neuropsychiatric disorders in humans. In this review, we explore some recent research progress on the major events involved in BBB disruption, glial cell activation and neuronal damage following T. gondii infection in hosts. It further discusses potential pathological mechanisms and the feasible treatment approaches for the neurodegenerative and neuropsychiatric disorders caused by T. gondii infection to extend our understanding for pathogenesis and preventive control of toxoplasmosis in humans.
Collapse
Affiliation(s)
| | | | | | - Hongjuan Peng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Cao H, Lin J, Yuan H, Yang Z, Nie M, Pathak JL, Yuan ZG, Yu M. The emerging role of Toxoplasma gondii in periodontal diseases and underlying mechanisms. Front Immunol 2024; 15:1464108. [PMID: 39430742 PMCID: PMC11487530 DOI: 10.3389/fimmu.2024.1464108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/17/2024] [Indexed: 10/22/2024] Open
Abstract
Toxoplasma gondii (T. gondii), an obligate intracellular protozoan parasite, is increasingly recognized for its role in various human diseases, including periodontal diseases. Periodontal diseases comprise a wide range of inflammatory conditions that not only affect the supporting structures of the teeth and oral health but also contribute to systemic diseases. The parasite's ability to modulate the host's immune response and induce chronic inflammation within the periodontium is a key factor in periodontal tissue damage. Through its virulence factors, T. gondii disrupts the balance of inflammatory cytokines, leading to dysregulated immune responses, and exacerbates oxidative stress in periodontal tissues. And T. gondii invasion could affect specific proteins in host cells including HSP70, BAGs, MICs, ROPs, SAGs, and GRAs leading to periodontal tissue damage. The indirect role of the host immune response to T. gondii via natural killer cells, monocytes, macrophages, neutrophils, dendritic cells, T cells, and B cells also contributes to periodontal diseases. Understanding these complex interactions of T. gondii with host cells could unravel disease mechanisms and therapeutic targets for periodontal diseases. This review delves into the pathogenic mechanisms of T. gondii in periodontal diseases, offering a detailed exploration of both direct and indirect pathways of its impact on periodontal health.
Collapse
Affiliation(s)
- Henglong Cao
- Department of Periodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Jianfeng Lin
- Department of Periodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Hao Yuan
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zipeng Yang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Min Nie
- Department of Periodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Janak L. Pathak
- Department of Periodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Zi-Guo Yuan
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Miao Yu
- Department of Periodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
- Department of Oral Health Sciences-BIOMAT, KU Leuven and Dentistry, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Bracha S, Johnson HJ, Pranckevicius NA, Catto F, Economides AE, Litvinov S, Hassi K, Rigoli MT, Cheroni C, Bonfanti M, Valenti A, Stucchi S, Attreya S, Ross PD, Walsh D, Malachi N, Livne H, Eshel R, Krupalnik V, Levin D, Cobb S, Koumoutsakos P, Caporale N, Testa G, Aguzzi A, Koshy AA, Sheiner L, Rechavi O. Engineering Toxoplasma gondii secretion systems for intracellular delivery of multiple large therapeutic proteins to neurons. Nat Microbiol 2024; 9:2051-2072. [PMID: 39075233 PMCID: PMC11306108 DOI: 10.1038/s41564-024-01750-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 06/05/2024] [Indexed: 07/31/2024]
Abstract
Delivering macromolecules across biological barriers such as the blood-brain barrier limits their application in vivo. Previous work has demonstrated that Toxoplasma gondii, a parasite that naturally travels from the human gut to the central nervous system (CNS), can deliver proteins to host cells. Here we engineered T. gondii's endogenous secretion systems, the rhoptries and dense granules, to deliver multiple large (>100 kDa) therapeutic proteins into neurons via translational fusions to toxofilin and GRA16. We demonstrate delivery in cultured cells, brain organoids and in vivo, and probe protein activity using imaging, pull-down assays, scRNA-seq and fluorescent reporters. We demonstrate robust delivery after intraperitoneal administration in mice and characterize 3D distribution throughout the brain. As proof of concept, we demonstrate GRA16-mediated brain delivery of the MeCP2 protein, a putative therapeutic target for Rett syndrome. By characterizing the potential and current limitations of the system, we aim to guide future improvements that will be required for broader application.
Collapse
Affiliation(s)
- Shahar Bracha
- Department of Neurobiology, Biochemistry and Biophysics, Wise Faculty of Life Sciences and Sagol School for Neuroscience, Tel Aviv University, Tel Aviv, Israel.
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA.
| | - Hannah J Johnson
- Neuroscience Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA
- Departments of Neurology and Immunobiology, College of Medicine, and BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | - Nicole A Pranckevicius
- Centre for Parasitology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Francesca Catto
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Athena E Economides
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Sergey Litvinov
- Computational Science and Engineering Laboratory, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Karoliina Hassi
- Centre for Parasitology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Marco Tullio Rigoli
- Human Technopole, Milan, Italy
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Cristina Cheroni
- Human Technopole, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | | | - Alessia Valenti
- Human Technopole, Milan, Italy
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Sarah Stucchi
- Human Technopole, Milan, Italy
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Shruti Attreya
- Undergraduate Biology Research Program, University of Arizona, Tucson, AZ, USA
| | - Paul D Ross
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Daniel Walsh
- Centre for Parasitology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | | | | | | | | | - Stuart Cobb
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Petros Koumoutsakos
- Computational Science and Engineering Laboratory, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Nicolò Caporale
- Human Technopole, Milan, Italy
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Giuseppe Testa
- Human Technopole, Milan, Italy.
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy.
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy.
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| | - Anita A Koshy
- Departments of Neurology and Immunobiology, College of Medicine, and BIO5 Institute, University of Arizona, Tucson, AZ, USA.
| | - Lilach Sheiner
- Centre for Parasitology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| | - Oded Rechavi
- Department of Neurobiology, Biochemistry and Biophysics, Wise Faculty of Life Sciences and Sagol School for Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
6
|
Asadi M, Babaei Z, Afgar A, Banabazi MH, ZiaAli N, Daryani A, Aghajani E, Mahdavi M, Attari M, Zarrinkar F. Brain -cyst-driven genes expression in Toxoplasma Gondii Tehran strain: a parasitic-immunogenicity assessment by dint of RNA-Seq. Vet Res Commun 2024; 48:2563-2581. [PMID: 38916691 DOI: 10.1007/s11259-023-10241-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/10/2023] [Indexed: 06/26/2024]
Abstract
Toxoplasma gondii (T. gondii) is an obligate intracellular parasite of warm-blooded vertebrates. At present, High-throughput RNA sequencing analysis have made it possible to determine the role of effective genes in host immune response. The aim of the present study is to global transcriptome analysis of the brain of mice infected with T. gondii Tehran strain for the first time and also to evaluate the expression of effective genes in the chronic form of infection. RNA was extracted from the samples and the library was prepared and sequenced using the IlluminaNovaSeq 6000 system. After analyzing gene expression changes, the results were confirmed by real-time method. We found 125 genes that were significantly differentially expressed between infected and non-infected samples (p < 0.0005). Gene ontology analysis revealed that the expression of many genes is critical for pathways such as T cell receptor signaling pathway, Natural Killer cell mediated cytotoxicity, Lysosome and Apoptosis of the host. As infection with Tehran strain leads to chronic infection in mice, therefore, we investigated the genes effective in creating the chronic form of Toxoplasma infection. The comparative analysis of genes showed increases in the expression of genes ctla4, ccl4, cd3e, c3, lcn2, gbp5, usp18, cyba, tap1 and samhd1 in the in the infected sample, which highlights their role in causing chronic infection. RNA-seq provides a valuable tool for analyzing host transcriptomes, better understanding the parasite-host interaction, and developing future drug and vaccine targets.
Collapse
Affiliation(s)
- Marzieh Asadi
- Department of Medical Parasitology and Mycology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Babaei
- Leishmaniasis Research Center, Kerman University of Medical Sciences, 22 Bahman Boulevard, Pajouhesh Square, Kerman, Iran.
| | - Ali Afgar
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mohammad Hossein Banabazi
- Department of Animal Breeding and Genetics (HGEN), Centre for Veterinary Medicine and Animal Science (VHC), Swedish University of Agricultural Sciences (SLU), Uppsala, 75007, Sweden
| | - Naser ZiaAli
- Department of Medical Parasitology and Mycology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ahmad Daryani
- Toxoplasmosis Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ehsan Aghajani
- Computer-Oriented Software Engineering, Rouzbahan University of Mazandaran, Sari, Iran
| | - Milad Mahdavi
- Computer-Oriented Software Engineering, Rouzbahan University of Mazandaran, Sari, Iran
| | - Mohamadreza Attari
- College of Agriculture & National Resources, University of Tehran, Karaj, Iran
| | - Farzaneh Zarrinkar
- Leishmaniasis Research Center, Kerman University of Medical Sciences, 22 Bahman Boulevard, Pajouhesh Square, Kerman, Iran
| |
Collapse
|
7
|
Uzelac A, Klun I, Djurković-Djaković O. Early immune response to Toxoplasma gondii lineage III isolates of different virulence phenotype. Front Cell Infect Microbiol 2024; 14:1414067. [PMID: 38912206 PMCID: PMC11190176 DOI: 10.3389/fcimb.2024.1414067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction Toxoplasma gondii is an intracellular parasite of importance to human and veterinary health. The structure and diversity of the genotype population of T. gondii varies considerably with respect to geography, but three lineages, type I, II and III, are distributed globally. Lineage III genotypes are the least well characterized in terms of biology, host immunity and virulence. Once a host is infected with T.gondii, innate immune mechanisms are engaged to reduce the parasite burden in tissues and create a pro-inflammatory environment in which the TH1 response develops to ensure survival. This study investigated the early cellular immune response of Swiss-Webster mice post intraperitoneal infection with 10 tachyzoites of four distinct non-clonal genotypes of lineage III and a local isolate of ToxoDB#1. The virulence phenotype, cumulative mortality (CM) and allele profiles of ROP5, ROP16, ROP18 and GRA15 were published previously. Methods Parasite dissemination in different tissues was analyzed by real-time PCR and relative expression levels of IFNγ, IL12-p40, IL-10 and TBX21 in the cervical lymph nodes (CLN), brain and spleen were calculated using the ΔΔCt method. Stage conversion was determined by detection of the BAG1 transcript in the brain. Results Tissue dissemination depends on the virulence phenotype but not CM, while the TBX21 and cytokine levels and kinetics correlate better with CM than virulence phenotype. The earliest detection of BAG1 was seven days post infection. Only infection with the genotype of high CM (69.4%) was associated with high T-bet levels in the CLN 24 h and high systemic IFNγ expression which was sustained over the first week, while infection with genotypes of lower CM (38.8%, 10.7% and 6.8%) is characterized by down-regulation and/or low systemic levels of IFNγ. The response intensity, as assessed by cytokine levels, to the genotype of high CM wanes over time, while it increases gradually to genotypes of lower CM. Discussion The results point to the conclusion that the immune response is not correlated with the virulence phenotype and/or allele profile, but an early onset, intense pro-inflammatory response is characteristic of genotypes with high CM. Additionally, high IFNγ level in the brain may hamper stage conversion.
Collapse
Affiliation(s)
- Aleksandra Uzelac
- Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | | | | |
Collapse
|
8
|
Pardy RD, Walzer KA, Wallbank BA, Byerly JH, O’Dea KM, Cohn IS, Haskins BE, Roncaioli JL, Smith EJ, Buenconsejo GY, Striepen B, Hunter CA. Analysis of intestinal epithelial cell responses to Cryptosporidium highlights the temporal effects of IFN-γ on parasite restriction. PLoS Pathog 2024; 20:e1011820. [PMID: 38718306 PMCID: PMC11078546 DOI: 10.1371/journal.ppat.1011820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/14/2024] [Indexed: 05/12/2024] Open
Abstract
The production of IFN-γ is crucial for control of multiple enteric infections, but its impact on intestinal epithelial cells (IEC) is not well understood. Cryptosporidium parasites exclusively infect epithelial cells and the ability of interferons to activate the transcription factor STAT1 in IEC is required for parasite clearance. Here, the use of single cell RNA sequencing to profile IEC during infection revealed an increased proportion of mid-villus enterocytes during infection and induction of IFN-γ-dependent gene signatures that was comparable between uninfected and infected cells. These analyses were complemented by in vivo studies, which demonstrated that IEC expression of the IFN-γ receptor was required for parasite control. Unexpectedly, treatment of Ifng-/- mice with IFN-γ showed the IEC response to this cytokine correlates with a delayed reduction in parasite burden but did not affect parasite development. These data sets provide insight into the impact of IFN-γ on IEC and suggest a model in which IFN-γ signalling to uninfected enterocytes is important for control of Cryptosporidium.
Collapse
Affiliation(s)
- Ryan D. Pardy
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Katelyn A. Walzer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Bethan A. Wallbank
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jessica H. Byerly
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Keenan M. O’Dea
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ian S. Cohn
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Breanne E. Haskins
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Justin L. Roncaioli
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Eleanor J. Smith
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gracyn Y. Buenconsejo
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Christopher A. Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
9
|
Casanova JL, MacMicking JD, Nathan CF. Interferon- γ and infectious diseases: Lessons and prospects. Science 2024; 384:eadl2016. [PMID: 38635718 DOI: 10.1126/science.adl2016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/13/2024] [Indexed: 04/20/2024]
Abstract
Infectious diseases continue to claim many lives. Prevention of morbidity and mortality from these diseases would benefit not just from new medicines and vaccines but also from a better understanding of what constitutes protective immunity. Among the major immune signals that mobilize host defense against infection is interferon-γ (IFN-γ), a protein secreted by lymphocytes. Forty years ago, IFN-γ was identified as a macrophage-activating factor, and, in recent years, there has been a resurgent interest in IFN-γ biology and its role in human defense. Here we assess the current understanding of IFN-γ, revisit its designation as an "interferon," and weigh its prospects as a therapeutic against globally pervasive microbial pathogens.
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, Paris Cité University, 75015 Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, 75015 Paris, France
| | - John D MacMicking
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
- Yale Systems Biology Institute, Yale University, West Haven, CT 06477, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Carl F Nathan
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
10
|
Wang X, Qu L, Chen J, Jin Y, Hu K, Zhou Z, Zhang J, An Y, Zheng J. Toxoplasma rhoptry proteins that affect encephalitis outcome. Cell Death Discov 2023; 9:439. [PMID: 38049394 PMCID: PMC10696021 DOI: 10.1038/s41420-023-01742-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 12/06/2023] Open
Abstract
Toxoplasma gondii, a widespread obligate intracellular parasite, can infect almost all warm-blooded animals, including humans. The cellular barrier of the central nervous system (CNS) is generally able to protect the brain parenchyma from infectious damage. However, T. gondii typically causes latent brain infections in humans and other vertebrates. Here, we discuss how T. gondii rhoptry proteins (ROPs) affect signaling pathways in host cells and speculate how this might affect the outcome of Toxoplasma encephalitis.
Collapse
Affiliation(s)
- Xinlei Wang
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, 130021, China
| | - Lai Qu
- Department of Intensive Care Unit, First Hospital of Jilin University, Changchun, 130021, China
| | - Jie Chen
- Institute of Theoretical Chemistry, Jilin University, Changchun, 130021, China
| | - Yufen Jin
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, 130021, China
| | - Kaisong Hu
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Zhengjie Zhou
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Jiaqi Zhang
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Yiming An
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Jingtong Zheng
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| |
Collapse
|
11
|
Pardy RD, Walzer KA, Wallbank BA, Byerly JH, O’Dea KM, Cohn IS, Haskins BE, Roncaioli JL, Smith EJ, Buenconsejo GY, Striepen B, Hunter CA. Analysis of intestinal epithelial cell responses to Cryptosporidium highlights the temporal effects of IFN-γ on parasite restriction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.567008. [PMID: 38014210 PMCID: PMC10680692 DOI: 10.1101/2023.11.14.567008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The production of IFN-γ is crucial for control of multiple enteric infections, but its impact on intestinal epithelial cells (IEC) is not well understood. Cryptosporidium parasites exclusively infect epithelial cells and the ability of interferons to activate the transcription factor STAT1 in IEC is required for parasite clearance. The use of single cell RNA sequencing to profile IEC during infection revealed induction of IFN-γ-dependent gene signatures that was comparable between uninfected and infected cells, and IEC expression of the IFN-γ receptor was required for parasite control. Unexpectedly, treatment of Ifng-/- mice with IFN-γ demonstrated the IEC response to this cytokine correlates with a delayed reduction in parasite burden but did not affect parasite development. These data sets provide insight into the impact of IFN-γ on IEC and suggest a model in which IFN-γ-mediated bystander activation of uninfected enterocytes is important for control of Cryptosporidium.
Collapse
Affiliation(s)
- Ryan D. Pardy
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katelyn A. Walzer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bethan A. Wallbank
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jessica H. Byerly
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Keenan M. O’Dea
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian S. Cohn
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Breanne E. Haskins
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Justin L. Roncaioli
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eleanor J. Smith
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gracyn Y. Buenconsejo
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher A. Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
12
|
Butterworth S, Kordova K, Chandrasekaran S, Thomas KK, Torelli F, Lockyer EJ, Edwards A, Goldstone R, Koshy AA, Treeck M. High-throughput identification of Toxoplasma gondii effector proteins that target host cell transcription. Cell Host Microbe 2023; 31:1748-1762.e8. [PMID: 37827122 PMCID: PMC12033024 DOI: 10.1016/j.chom.2023.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/04/2023] [Accepted: 09/07/2023] [Indexed: 10/14/2023]
Abstract
Intracellular pathogens and other endosymbionts reprogram host cell transcription to suppress immune responses and recalibrate biosynthetic pathways. This reprogramming is critical in determining the outcome of infection or colonization. We combine pooled CRISPR knockout screening with dual host-microbe single-cell RNA sequencing, a method we term dual perturb-seq, to identify the molecular mediators of these transcriptional interactions. Applying dual perturb-seq to the intracellular pathogen Toxoplasma gondii, we are able to identify previously uncharacterized effector proteins and directly infer their function from the transcriptomic data. We show that TgGRA59 contributes to the export of other effector proteins from the parasite into the host cell and identify an effector, TgSOS1, that is necessary for sustained host STAT6 signaling and thereby contributes to parasite immune evasion and persistence. Together, this work demonstrates a tool that can be broadly adapted to interrogate host-microbe transcriptional interactions and reveal mechanisms of infection and immune evasion.
Collapse
Affiliation(s)
- Simon Butterworth
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Kristina Kordova
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | | | | | - Francesca Torelli
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Eloise J Lockyer
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Amelia Edwards
- Advanced Sequencing Facility, The Francis Crick Institute, London NW1 1AT, UK
| | - Robert Goldstone
- Advanced Sequencing Facility, The Francis Crick Institute, London NW1 1AT, UK
| | - Anita A Koshy
- BIO5 Institute, University of Arizona, Tucson, AZ 85719, USA; Department of Immunobiology, University of Arizona, Tucson, AZ 85719, USA; Department of Neurology, University of Arizona, Tucson, AZ 85719, USA
| | - Moritz Treeck
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Cell Biology of Host-Pathogen Interaction Laboratory, Instituto Gulbenkian de Ciência, Oeiras 2780-156, Portugal.
| |
Collapse
|
13
|
Lockyer EJ, Torelli F, Butterworth S, Song OR, Howell S, Weston A, East P, Treeck M. A heterotrimeric complex of Toxoplasma proteins promotes parasite survival in interferon gamma-stimulated human cells. PLoS Biol 2023; 21:e3002202. [PMID: 37459303 PMCID: PMC10373997 DOI: 10.1371/journal.pbio.3002202] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/27/2023] [Accepted: 06/16/2023] [Indexed: 07/28/2023] Open
Abstract
Toxoplasma gondii secretes protein effectors to subvert the human immune system sufficiently to establish a chronic infection. Relative to murine infections, little is known about which parasite effectors disarm human immune responses. Here, we used targeted CRISPR screening to identify secreted protein effectors required for parasite survival in IFNγ-activated human cells. Independent screens were carried out using 2 Toxoplasma strains that differ in virulence in mice, leading to the identification of effectors required for survival in IFNγ-activated human cells. We identify the secreted protein GRA57 and 2 other proteins, GRA70 and GRA71, that together form a complex which enhances the ability of parasites to persist in IFNγ-activated human foreskin fibroblasts (HFFs). Components of the protein machinery required for export of Toxoplasma proteins into the host cell were also found to be important for parasite resistance to IFNγ in human cells, but these export components function independently of the identified protein complex. Host-mediated ubiquitination of the parasite vacuole has previously been associated with increased parasite clearance from human cells, but we find that vacuoles from GRA57, GRA70, and GRA71 knockout strains are surprisingly less ubiquitinated by the host cell. We hypothesise that this is likely a secondary consequence of deletion of the complex, unlinked to the IFNγ resistance mediated by these effectors.
Collapse
Affiliation(s)
- Eloise J Lockyer
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Francesca Torelli
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Simon Butterworth
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Ok-Ryul Song
- High-Throughput Screening Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Steven Howell
- Proteomics Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Anne Weston
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Philip East
- Bioinformatics and Biostatistics Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Moritz Treeck
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
- Cell Biology of Host-Pathogen Interaction Laboratory, Instituto Gulbenkian Ciência, Oeiras, Portugal
| |
Collapse
|
14
|
Licon MH, Giuliano CJ, Chan AW, Chakladar S, Eberhard JN, Shallberg LA, Chandrasekaran S, Waldman BS, Koshy AA, Hunter CA, Lourido S. A positive feedback loop controls Toxoplasma chronic differentiation. Nat Microbiol 2023; 8:889-904. [PMID: 37081202 PMCID: PMC10520893 DOI: 10.1038/s41564-023-01358-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 03/07/2023] [Indexed: 04/22/2023]
Abstract
Successful infection strategies must balance pathogen amplification and persistence. In the obligate intracellular parasite Toxoplasma gondii this is accomplished through differentiation into dedicated cyst-forming chronic stages that avoid clearance by the host immune system. The transcription factor BFD1 is both necessary and sufficient for stage conversion; however, its regulation is not understood. In this study we examine five factors that are transcriptionally activated by BFD1. One of these is a cytosolic RNA-binding protein of the CCCH-type zinc-finger family, which we name bradyzoite formation deficient 2 (BFD2). Parasites lacking BFD2 fail to induce BFD1 and are consequently unable to fully differentiate in culture or in mice. BFD2 interacts with the BFD1 transcript under stress, and deletion of BFD2 reduces BFD1 protein levels but not messenger RNA abundance. The reciprocal effects on BFD2 transcription and BFD1 translation outline a positive feedback loop that enforces the chronic-stage gene-expression programme. Thus, our findings help explain how parasites both initiate and commit to chronic differentiation. This work provides new mechanistic insight into the regulation of T. gondii persistence, and can be exploited in the design of strategies to prevent and treat these key reservoirs of human infection.
Collapse
Affiliation(s)
| | - Christopher J Giuliano
- Whitehead Institute, Cambridge, MA, USA
- Biology Department, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alex W Chan
- Whitehead Institute, Cambridge, MA, USA
- Biology Department, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sundeep Chakladar
- Biology Department, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Julia N Eberhard
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lindsey A Shallberg
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Benjamin S Waldman
- Whitehead Institute, Cambridge, MA, USA
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Anita A Koshy
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
- Department of Neurology, Department of Immunobiology, University of Arizona, Tucson, AZ, USA
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sebastian Lourido
- Whitehead Institute, Cambridge, MA, USA.
- Biology Department, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
15
|
Wang Q, Zhong Y, Chen N, Chen J. From the immune system to mood disorders especially induced by Toxoplasma gondii: CD4+ T cell as a bridge. Front Cell Infect Microbiol 2023; 13:1078984. [PMID: 37077528 PMCID: PMC10106765 DOI: 10.3389/fcimb.2023.1078984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/23/2023] [Indexed: 04/05/2023] Open
Abstract
Toxoplasma gondii (T. gondii), a ubiquitous and obligatory intracellular protozoa, not only alters peripheral immune status, but crosses the blood-brain barrier to trigger brain parenchymal injury and central neuroinflammation to establish latent cerebral infection in humans and other vertebrates. Recent findings underscore the strong correlation between alterations in the peripheral and central immune environment and mood disorders. Th17 and Th1 cells are important pro-inflammatory cells that can drive the pathology of mood disorders by promoting neuroinflammation. As opposed to Th17 and Th1, regulatory T cells have inhibitory inflammatory and neuroprotective functions that can ameliorate mood disorders. T. gondii induces neuroinflammation, which can be mediated by CD4+ T cells (such as Tregs, Th17, Th1, and Th2). Though the pathophysiology and treatment of mood disorder have been currently studied, emerging evidence points to unique role of CD4+ T cells in mood disorder, especially those caused by T. gondii infection. In this review, we explore some recent studies that extend our understanding of the relationship between mood disorders and T. gondii.
Collapse
|
16
|
Kochanowsky JA, Chandrasekaran S, Sanchez JR, Thomas KK, Koshy AA. ROP16-mediated activation of STAT6 enhances cyst development of type III Toxoplasma gondii in neurons. PLoS Pathog 2023; 19:e1011347. [PMID: 37068104 PMCID: PMC10138205 DOI: 10.1371/journal.ppat.1011347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 04/27/2023] [Accepted: 04/07/2023] [Indexed: 04/18/2023] Open
Abstract
Toxoplasma gondii establishes a long-lived latent infection in the central nervous system (CNS) of its hosts. Reactivation in immunocompromised individuals can lead to life threatening disease. Latent infection is driven by the ability of the parasite to convert from the acute-stage tachyzoite to the latent-stage bradyzoite which resides in long-lived intracellular cysts. While much work has focused on the parasitic factors that drive cyst development, the host factors that influence encystment are not well defined. Here we show that a polymorphic secreted parasite kinase (ROP16), that phosphorylates host cell proteins, mediates efficient encystment of T. gondii in a stress-induced model of encystment and primary neuronal cell cultures (PNCs) in a strain-specific manner. Using short-hairpin RNA (shRNA) knockdowns in human foreskin fibroblasts (HFFs) and PNCs from transgenic mice, we determined that ROP16's cyst enhancing abilities are mediated, in part, by phosphorylation-and therefore activation-of the host cell transcription factor STAT6. To test the role of STAT6 in vivo, we infected wild-type (WT) and STAT6KO mice, finding that, compared to WT mice, STAT6KO mice have a decrease in CNS cyst burden but not overall parasite burden or dissemination to the CNS. Finally, we found a similar ROP16-dependent encystment defect in human pluripotent stem cell-derived neurons. Together, these findings identify a host cell factor (STAT6) that T. gondii manipulates in a strain-specific manner to generate a favorable encystment environment.
Collapse
Affiliation(s)
- Joshua A. Kochanowsky
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | | | - Jacqueline R. Sanchez
- Postbaccalaureate Research Education Program, University of Arizona, Tucson, Arizona, United States of America
| | - Kaitlin K. Thomas
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Anita A. Koshy
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
- Department of Neurology, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
17
|
Li Y, Yan L, Ci D, Li R, Li W, Xia T, Shi H, Ayaz M, Zheng Y, Wang P. Analysis of sheep peripheral blood mononuclear cells in response to Echinococcus granulosus microRNA-71 overexpression. Mol Biochem Parasitol 2023; 254:111556. [PMID: 36739092 DOI: 10.1016/j.molbiopara.2023.111556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Cyst echinococcosis, caused by Echinococcus granulosus, remains a zoonotic disease posing a great threat to public health and meat production industry. Sheep infected with E. granulosus show relatively high abundance of egr-miR-71 in the sera, but its role is unknown. Using bioinformatics and cell migration and Transwell assays, we comparatively analyzed the proteomes and cell invasion of sheep PBMCs in response to egr-miR-71 overexpression. The results showed that the egr-miR-71 induced a total of 157 proteins being differentially expressed and mainly involved in immune responses. In sheep PBMCs, egr-miRNA-71 overexpression induced significant downregulation of macrophage migration inhibitory factor (MIF) and accordingly promoted cell migration and invasion compared with the control. The results will provide a clue for further investigation of a role of circulating egr-miR-71 in immune responses during E. granulosus infection.
Collapse
Affiliation(s)
- Yating Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou 311300, China
| | - Lujun Yan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou 311300, China
| | - Duojie Ci
- NHC Key Laboratory of Echinococcosis Prevention and Control, Tibet Center for Disease Control and Prevention, Lhasa 850000, Tibet Autonomous Region, China
| | - Rui Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou 311300, China
| | - Wanjing Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou 311300, China
| | - Tianqi Xia
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou 311300, China
| | - Hengzhi Shi
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou 311300, China
| | - Mazhar Ayaz
- Cholistan University of Veterinary and Animal Sciences, Bahawalpur 73000, Pakistan
| | - Yadong Zheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou 311300, China.
| | - Pu Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
18
|
Figueiredo CA, Dunay IR. IFN-γ-mediated neuronal defense mechanism targets Toxoplasma. Trends Parasitol 2022; 38:1023-1025. [PMID: 36280528 DOI: 10.1016/j.pt.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022]
Abstract
Toxoplasma gondii encysts preferentially within neurons in the central nervous system, establishing lifelong persistence. Despite recent discoveries, this neuronal preference was thought, in part, to be secondary to a lack of neuronal cell-autonomous immunity. By showing that neurons can mount interferon-gamma (IFN-γ)-mediated cell-autonomous anti-T. gondii defenses, Chandrasekaran et al. have challenged long held assumptions.
Collapse
Affiliation(s)
- Caio Andreeta Figueiredo
- Institute of Inflammation and Neurodegeneration, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-von-Guericke University, Magdeburg, Germany
| | - Ildiko Rita Dunay
- Institute of Inflammation and Neurodegeneration, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.
| |
Collapse
|
19
|
Pan M, Ge CC, Fan YM, Jin QW, Shen B, Huang SY. The determinants regulating Toxoplasma gondii bradyzoite development. Front Microbiol 2022; 13:1027073. [PMID: 36439853 PMCID: PMC9691885 DOI: 10.3389/fmicb.2022.1027073] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/24/2022] [Indexed: 11/04/2023] Open
Abstract
Toxoplasma gondii is an obligate intracellular zoonotic pathogen capable of infecting almost all cells of warm-blooded vertebrates. In intermediate hosts, this parasite reproduces asexually in two forms, the tachyzoite form during acute infection that proliferates rapidly and the bradyzoite form during chronic infection that grows slowly. Depending on the growth condition, the two forms can interconvert. The conversion of tachyzoites to bradyzoites is critical for T. gondii transmission, and the reactivation of persistent bradyzoites in intermediate hosts may lead to symptomatic toxoplasmosis. However, the mechanisms that control bradyzoite differentiation have not been well studied. Here, we review recent advances in the study of bradyzoite biology and stage conversion, aiming to highlight the determinants associated with bradyzoite development and provide insights to design better strategies for controlling toxoplasmosis.
Collapse
Affiliation(s)
- Ming Pan
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Ceng-Ceng Ge
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yi-Min Fan
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Qi-Wang Jin
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Bang Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Si-Yang Huang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
20
|
Johnson HJ, Koshy AA. Understanding neuroinflammation through central nervous system infections. Curr Opin Neurobiol 2022; 76:102619. [PMID: 35985075 PMCID: PMC10147316 DOI: 10.1016/j.conb.2022.102619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/09/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022]
Abstract
Neuroinflammation is now recognized to compound many central nervous system (CNS) pathologies, from stroke to dementia. As immune responses evolved to handle infections, studying CNS infections can offer unique insights into the CNS immune response and address questions such as: What defenses and strategies do CNS parenchymal cells deploy in response to a dangerous pathogen? How do CNS cells interact with each other and infiltrating immune cells to control microbes? What pathways are beneficial for the host or for the pathogen? Here, we review recent studies that use CNS-tropic infections in combination with cutting-edge techniques to delve into the complex relationships between microbes, immune cells, and cells of the CNS.
Collapse
Affiliation(s)
- Hannah J Johnson
- Neuroscience Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA
| | - Anita A Koshy
- Neuroscience Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA; Department of Neurology, University of Arizona, Tucson, AZ, USA; BIO5 Institute, University of Arizona, Tucson, AZ, USA; Department of Immunobiology, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|