1
|
Lee S, Jaseem SA, Atar N, Wang M, Kim JY, Zare M, Kim S, Bartlett MD, Jeong JW, Dickey MD. Connecting the Dots: Sintering of Liquid Metal Particles for Soft and Stretchable Conductors. Chem Rev 2025; 125:3551-3585. [PMID: 40036064 DOI: 10.1021/acs.chemrev.4c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
This review focuses on the sintering of liquid metal particles (LMPs). Here, sintering means the partial merging or connecting of particles (or droplets) to form a network of percolated and, thus, conductive electrical pathways. LMPs are attractive materials because they can be suspended in a carrier fluid to create printable inks or distributed in an elastomer to create soft, stretchable composites. However, films and traces of LMPs are not typically conductive as fabricated due to the native oxide that forms on the surface of the particles. In the case of composites, polymers can also get between particles, making sintering more challenging. Sintering can be done via a variety of ways, such as mechanical, thermal, and chemical processing. This review discusses the mechanisms to sinter these particles, patterning techniques that use sintering, unique properties of sintered LMPs, and their practical applications in fields such as stretchable electronics, soft robotics, and active materials.
Collapse
Affiliation(s)
- Simok Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Chemical and Biomolecular Engineering, North Carolina State University (NCSU), Raleigh, North Carolina 27606, United States
| | - Syed Ahmed Jaseem
- Department of Chemical and Biomolecular Engineering, North Carolina State University (NCSU), Raleigh, North Carolina 27606, United States
| | - Nurit Atar
- Department of Chemical and Biomolecular Engineering, North Carolina State University (NCSU), Raleigh, North Carolina 27606, United States
| | - Meixiang Wang
- Department of Chemical and Biomolecular Engineering, North Carolina State University (NCSU), Raleigh, North Carolina 27606, United States
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Jeong Yong Kim
- Department of Chemical and Biomolecular Engineering, North Carolina State University (NCSU), Raleigh, North Carolina 27606, United States
| | - Mohammadreza Zare
- Department of Chemical and Biomolecular Engineering, North Carolina State University (NCSU), Raleigh, North Carolina 27606, United States
| | - Sooyoung Kim
- Department of Chemical and Biomolecular Engineering, North Carolina State University (NCSU), Raleigh, North Carolina 27606, United States
| | - Michael D Bartlett
- Mechanical Engineering, Soft Materials and Structures Lab, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Jae-Woong Jeong
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, Daejeon 34141, Republic of Korea
- KAIST Institute for NanoCentury, Daejeon 34141, Republic of Korea
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University (NCSU), Raleigh, North Carolina 27606, United States
| |
Collapse
|
2
|
Li H, Zhang C, Xu H, Yang Q, Luo Z, Li C, Kai L, Meng Y, Zhang J, Liang J, Chen F. Microstructured Liquid Metal-Based Embedded-Type Sensor Array for Curved Pressure Mapping. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413233. [PMID: 39587827 PMCID: PMC11744523 DOI: 10.1002/advs.202413233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Indexed: 11/27/2024]
Abstract
Human hands can envelop the surface of an object and recognize its shape through touch. However, existing stretchable haptic sensors exhibit limited flexibility and stability to detect pressure during deformation, while also solely achieving recognition of planar objects. Inspired by the structure of skin tissue, an embedded construction-enabled liquid metal-based e-skin composed of a liquid metal microstructured electrode (LM-ME) array is fabricated for curved pressure mapping. The embedded LM-ME-based sensor elements are fabricated by using femtosecond laser-induced micro/nanostructures and water/hydrogel assisted patterning method, which enables high sensitivity (7.42 kPa-1 in the range of 0-0.1 kPa) and high stability through an interlinked support isolation structure for the sensor units. The sensor array with a high interfacial toughness of 1328 J m-2 can maintain pressure sensation under bending and stretching conditions. Additionally, the embedded construction and laser-induced bumps effectively reduce crosstalk from 58 to 7.8% compared to conventional flexible sensors with shared surfaces. The stretchable and mechanically stable sensor arrays possess shape-adaptability that enables pressure mapping on non-flat surfaces, which has great potential for object recognition in robotic skins and human-computer interaction.
Collapse
Affiliation(s)
- Haoyu Li
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for InformationSchool of Electronic Science and EngineeringXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Chengjun Zhang
- School of Instrument Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Hongyu Xu
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for InformationSchool of Electronic Science and EngineeringXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Qing Yang
- School of Instrument Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Zexiang Luo
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for InformationSchool of Electronic Science and EngineeringXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Cheng Li
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for InformationSchool of Electronic Science and EngineeringXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Lin Kai
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for InformationSchool of Electronic Science and EngineeringXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Yizhao Meng
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for InformationSchool of Electronic Science and EngineeringXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Jialiang Zhang
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for InformationSchool of Electronic Science and EngineeringXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Jie Liang
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for InformationSchool of Electronic Science and EngineeringXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Feng Chen
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for InformationSchool of Electronic Science and EngineeringXi'an Jiaotong UniversityXi'an710049P. R. China
| |
Collapse
|
3
|
Khan MAK, Zhao Y, Datta S, Paul P, Vasini S, Thundat T, Liu PQ. Deterministic Fabrication of Liquid Metal Nanopatterns for Nanophotonics Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403722. [PMID: 39308286 DOI: 10.1002/smll.202403722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/03/2024] [Indexed: 12/13/2024]
Abstract
Gallium-based liquid metals (LMs) are widely used for stretchable and reconfigurable electronics thanks to their fluidic nature and excellent conductivity. These LMs possess attractive optical properties for photonics applications as well. However, due to the high surface tension of the LMs, it is challenging to form LM nanostructures with arbitrary shapes using conventional nanofabrication techniques. As a result, LM-based nanophotonics has not been extensively explored. Here, a simple yet effective technique is demonstrated to deterministically fabricate LM nanopatterns with high yield over a large area. This technique demonstrates for the first time the capability to fabricate LM nanophotonic structures of various precisely defined shapes and sizes using two different LMs, that is, liquid gallium and liquid eutectic gallium-indium alloy. High-density arrays of LM nanopatterns with critical feature sizes down to ≈100 nm and inter-pattern spacings down to ≈100 nm are achieved, corresponding to the highest resolution of any LM fabrication technique developed to date. Additionally, the LM nanopatterns demonstrate excellent long-term stability under ambient conditions. This work paves the way toward further development of a wide range of LM nanophotonics technologies and applications.
Collapse
Affiliation(s)
- Md Abdul Kaium Khan
- Department of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Yaoli Zhao
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Shreyan Datta
- Department of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Puspita Paul
- Department of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Shoaib Vasini
- Department of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Thomas Thundat
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Peter Q Liu
- Department of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| |
Collapse
|
4
|
Zhan F, Li N, Wang L, Wang S, Liu J, Song G. Instantaneous Tiltmeter Triggered by Dynamic Wetting Behavior. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409182. [PMID: 39444074 DOI: 10.1002/adma.202409182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/02/2024] [Indexed: 10/25/2024]
Abstract
A novel instantaneous tiltmeter with dynamic and static monitoring functions is reported that is based on liquid metal dynamic wetting behavior in a bio-fabricated anisotropic microchannel. The proposed system achieves instantaneous tiltmeter functionality, offering a broad detection range (-90°-90°) with high precision (0.05°), a rapid reaction time (0.11 s), and enhanced durability. Moreover, a seamless integration has enabled water wave detection, language programming, and human limb monitoring. Especially, the integration of tiltmeter and a 3D motion platform results in a surface structure scanning system capable of effectively performing large area (>200 cm2) and height difference scanning functions. This innovative approach holds great potential for transformative changes in the fields of advanced manufacturing, flexible robotics, and the flexible sensing, further facilitating widespread adoption.
Collapse
Affiliation(s)
- Fei Zhan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China
| | - Nan Li
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lei Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China
| | - Shuizhong Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China
| | - Jing Liu
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Guoyong Song
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
5
|
Chen Z, Peng H, Peng Y, Zhang Y, Zhang J. Controllable and Facile Metallization of Polymer Surface with Biphasic Liquid Metals toward Soft Circuits. ACS APPLIED MATERIALS & INTERFACES 2024; 16:65328-65339. [PMID: 39556461 DOI: 10.1021/acsami.4c15030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Chemical metallization (e.g., chemical/electrical plating) of the polymer surface is an extremely important, convenient, cost-effective, and broadly applied strategy to realize combined advantages of functional metals and polymers for today's industry. However, traditional chemical and electrical metallization of polymer surfaces requires the participation of physical methods, which greatly constrains the utilization of versatile metals in modern electronics. This work successfully utilized a traditional chemical strategy to address the challenging preliminary conductivity and subsequent liquid metal (LM) metallization of insulated polymer surfaces. Through the facile strategy, an ultrathin (6 μm) LM film could be conveniently coated on both the external and internal surface of polymers to fabricate large-area flexible circuits with fine line width (15 μm) at low-cost (9.5 $·dm-2). A detailed reaction mechanism of the LMs was reported, and various chemical parameters of the metallization were thoroughly investigated. Interestingly, the metallized polymer surface showed a distinguished CuGa2/Ga biphasic structure of the LMs, which enabled the polymer as an extraordinarily soft conductor with ultrahigh uniaxial strain (>1200%), extremely low resistance variation (R/R0 < 7), strong metal-polymer adhesion (1.5 N·mm-1), and excellent electrical durability. Furthermore, with the benefit of the photolithography technique, precisely designed circuits could be achieved, and wireless transmission/control soft electronic devices were easily fabricated.
Collapse
Affiliation(s)
- Zixun Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
- National Graduate College for Elite Engineers, Southeast University, Wuxi Campus, Wuxi 214061, PR China
| | - Hao Peng
- School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, PR China
| | - Yan Peng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
- National Graduate College for Elite Engineers, Southeast University, Wuxi Campus, Wuxi 214061, PR China
| | - Yue Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
- National Graduate College for Elite Engineers, Southeast University, Wuxi Campus, Wuxi 214061, PR China
| | - Jiuyang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
- National Graduate College for Elite Engineers, Southeast University, Wuxi Campus, Wuxi 214061, PR China
| |
Collapse
|
6
|
Kim JH, So JH, Koo HJ. Facile Formation of Metallic Surface with Microroughness via Spray-Coating of Copper Nanoparticles for Enhanced Liquid Metal Wetting. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5299. [PMID: 39517572 PMCID: PMC11548000 DOI: 10.3390/ma17215299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/18/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
This paper presents a simple, fast, and cost-effective method for creating metallic microstructured surfaces by spray-coating a dispersion of copper nanoparticles (CuNPs) onto polymethyl methacrylate (PMMA) substrates, enabling the imbibition-induced wetting of liquid metal. The formation of these microstructured patterns is crucial for the spontaneous wetting of gallium-based liquid metals. Traditional techniques for producing such microstructures often involve complex and costly lithography and vacuum deposition methods. In contrast, this study demonstrates that liquid metal wetting can occur with metal microstructures formed through a straightforward spray-coating process. To immobilize the CuNPs on the polymer substrate, an organic solvent that dissolves the polymer surface was employed as the dispersion medium. The effects of various spray-coating parameters, including distance and time, on the uniformity and immobilization of CuNP films were systematically investigated. Under optimal conditions (120 s of spray time and 10 cm spray distance), CuNPs dispersed in dichloromethane (DCM) yielded uniform and stable microstructured surfaces. The spontaneous wetting of gallium-based liquid metal was observed on the fabricated CuNP film. Additionally, liquid metal selectively wet the CuNP patterns formed by stencil techniques, establishing electrical connections between electrodes. These findings underscore the potential of spray-coating for fabricating metallic surfaces to drive the formation of liquid metal patterns in flexible electronics applications.
Collapse
Affiliation(s)
- Ji-Hye Kim
- Department of Chemical & Biomolecular Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea;
| | - Ju-Hee So
- Material & Component Convergence R&D Department, Korea Institute of Industrial Technology, Ansan-si 15588, Republic of Korea
| | - Hyung-Jun Koo
- Department of Chemical & Biomolecular Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea;
| |
Collapse
|
7
|
Wu H, Luo R, Li Z, Tian Y, Yuan J, Su B, Zhou K, Yan C, Shi Y. Additively Manufactured Flexible Liquid Metal-Coated Self-Powered Magnetoelectric Sensors with High Design Freedom. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307546. [PMID: 38145802 DOI: 10.1002/adma.202307546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/19/2023] [Indexed: 12/27/2023]
Abstract
Although additive manufacturing enables controllable structural design and customized performance for magnetoelectric sensors, their design and fabrication still require careful matching of the size and modulus between the magnetic and conductive components. Achieving magnetoelectric integration remains challenging, and the rigid coils limit the flexibility of the sensors. To overcome these obstacles, this study proposes a composite process combining selective laser sintering (SLS) and 3D transfer printing for fabricating flexible liquid metal-coated magnetoelectric sensors. The liquid metal forms a conformal conductive network on the SLS-printed magnetic lattice structure. Deformation of the structure alters the magnetic flux passing through it, thereby generating voltage. A reverse model segmentation and summation method is established to calculate the theoretical magnetic flux. The impact of the volume fraction, unit size, and height of the sensors on the voltage is studied, and optimization of these factors yields a maximum voltage of 45.6 µV. The sensor has excellent sensing performance with a sensitivity of 10.9 kPa-1 and a minimum detection pressure of 0.1 kPa. The voltage can be generated through various external forces. This work presents a significant advancement in fabricating liquid metal-based magnetoelectric sensors by improving their structural flexibility, magnetoelectric integration, and design freedom.
Collapse
Affiliation(s)
- Hongzhi Wu
- State Key Laboratory of Material Processing and Die and Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ruiying Luo
- State Key Laboratory of Material Processing and Die and Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Zhuofan Li
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Yujia Tian
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jiayi Yuan
- State Key Laboratory of Material Processing and Die and Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Bin Su
- State Key Laboratory of Material Processing and Die and Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Kun Zhou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Chunze Yan
- State Key Laboratory of Material Processing and Die and Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Yusheng Shi
- State Key Laboratory of Material Processing and Die and Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| |
Collapse
|
8
|
Chohan IM, Ahmad A, Sallih N, Bheel N, Salilew WM, Almaliki AH. Effect of seawater salinity, pH, and temperature on external corrosion behavior and microhardness of offshore oil and gas pipeline: RSM modelling and optimization. Sci Rep 2024; 14:16543. [PMID: 39019941 PMCID: PMC11255295 DOI: 10.1038/s41598-024-67463-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024] Open
Abstract
This research aims to investigate the effects of seawater parameters like salinity, pH, and temperature on the external corrosion behaviour and microhardness of offshore oil and gas carbon steel pipes. The immersion tests were performed for 28 days following ASTM G-1 standards, simulating controlled artificial marine environments with varying pH levels, salinities, and temperatures. Besides, Field emission scanning electron microscopy (FESEM) analysis is performed to study the corrosion morphology. Additionally, a Vickers microhardness tester was used for microhardness analysis. The results revealed that an increase in salinity from 33.18 to 61.10 ppt can reduce the corrosion rate by 28%. In contrast, variations in seawater pH have a significant effect on corrosion rate, with a pH decrease from 8.50 to 7 causing a 42.54% increase in corrosion rate. However, the temperature of seawater was found to be the most prominent parameter, resulting in a 76.13% increase in corrosion rate and a 10.99% reduction in the microhardness of offshore pipelines. Moreover, the response surface methodology (RSM) modelling is used to determine the optimal seawater parameters for carbon steel pipes. Furthermore, the desirability factor for these parameters was 0.999, and the experimental validation displays a good agreement with predicted model values, with around 4.65% error for corrosion rate and 1.36% error for microhardness.
Collapse
Affiliation(s)
- Imran Mir Chohan
- Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Tronoh, Bandar, 32610, Seri Iskandar, Perak, Malaysia.
| | - Azlan Ahmad
- Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Tronoh, Bandar, 32610, Seri Iskandar, Perak, Malaysia
| | - Nabihah Sallih
- Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Tronoh, Bandar, 32610, Seri Iskandar, Perak, Malaysia
| | - Naraindas Bheel
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, Tronoh, Bandar, 32610, Seri Iskandar, Perak, Malaysia
| | - Waleligne Molla Salilew
- Mechanical Engineering Department, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia.
| | - Abdulrazak H Almaliki
- Department of Civil Engineering, College of Engineering, Taif University, 21944, Taif, Saudi Arabia
| |
Collapse
|
9
|
Kim JH, Kim S, Dickey MD, So JH, Koo HJ. Interface of gallium-based liquid metals: oxide skin, wetting, and applications. NANOSCALE HORIZONS 2024; 9:1099-1119. [PMID: 38716614 DOI: 10.1039/d4nh00067f] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Gallium-based liquid metals (GaLMs) are promising for a variety of applications-especially as a component material for soft devices-due to their fluidic nature, low toxicity and reactivity, and high electrical and thermal conductivity comparable to solid counterparts. Understanding the interfacial properties and behaviors of GaLMs in different environments is crucial for most applications. When exposed to air or water, GaLMs form a gallium oxide layer with nanoscale thickness. This "oxide nano-skin" passivates the metal surface and allows for the formation of stable microstructures and films despite the high-surface tension of liquid metal. The oxide skin easily adheres to most smooth surfaces. While it enables effective printing and patterning of the GaLMs, it can also make the metals challenging to handle because it adheres to most surfaces. The oxide also affects the interfacial electrical resistance of the metals. Its formation, thickness, and composition can be chemically or electrochemically controlled, altering the physical, chemical, and electrical properties of the metal interface. Without the oxide, GaLMs wet metallic surfaces but do not wet non-metallic substrates such as polymers. The topography of the underlying surface further influences the wetting characteristics of the metals. This review outlines the interfacial attributes of GaLMs in air, water, and other environments and discusses relevant applications based on interfacial engineering. The effect of surface topography on the wetting behaviors of the GaLMs is also discussed. Finally, we suggest important research topics for a better understanding of the GaLMs interface.
Collapse
Affiliation(s)
- Ji-Hye Kim
- Department of Energy and Chemical Engineering, Seoul National University of Science & Technology, 232 Gongneung-ro, Nowon-gu, Seoul, 01811, Republic of Korea
| | - Sooyoung Kim
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Ju-Hee So
- Material & Component Convergence R&D Department, Korea Institute of Industrial Technology, Ansan-si, 15588, Republic of Korea.
| | - Hyung-Jun Koo
- Department of Chemical & Biomolecular Engineering, Seoul National University of Science & Technology, 232 Gongneung-ro, Nowon-gu, Seoul, 01811, Republic of Korea.
| |
Collapse
|
10
|
Yang X, Huang X, Qiu X, Guo Q, Zhang X. Supramolecular metallic foams with ultrahigh specific strength and sustainable recyclability. Nat Commun 2024; 15:4553. [PMID: 38811594 PMCID: PMC11137098 DOI: 10.1038/s41467-024-49091-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/21/2024] [Indexed: 05/31/2024] Open
Abstract
Porous materials with ultrahigh specific strength are highly desirable for aerospace, automotive and construction applications. However, because of the harsh processing of metal foams and intrinsic low strength of polymer foams, both are difficult to meet the demand for scalable development of structural foams. Herein, we present a supramolecular metallic foam (SMF) enabled by core-shell nanostructured liquid metals connected with high-density metal-ligand coordination and hydrogen bonding interactions, which maintain fluid to avoid stress concentration during foam processing at subzero temperatures. The resulted SMFs exhibit ultrahigh specific strength of 489.68 kN m kg-1 (about 5 times and 56 times higher than aluminum foams and polyurethane foams) and specific modulus of 281.23 kN m kg-1 to withstand the repeated loading of a car, overturning the previous understanding of the difficulty to achieve ultrahigh mechanical properties in traditional polymeric or organic foams. More importantly, end-of-life SMFs can be reprocessed into value-added products (e.g., fibers and films) by facile water reprocessing due to the high-density interfacial supramolecular bonding. We envisage this work will not only pave the way for porous structural materials design but also show the sustainable solution to plastic environmental risks.
Collapse
Affiliation(s)
- Xin Yang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Xin Huang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Xiaoyan Qiu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Quanquan Guo
- Max Planck Institute of Microstructure Physics, Halle (Saale), 06120, Germany
| | - Xinxing Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
11
|
Lee W, Shin MJ, Kim S, Lee CE, Choi J, Koo HJ, Choi MJ, Kim JH, Kim K. Injectable composite hydrogels embedded with gallium-based liquid metal particles for solid breast cancer treatment via chemo-photothermal combination. Acta Biomater 2024; 180:140-153. [PMID: 38604467 DOI: 10.1016/j.actbio.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/20/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
Photothermal therapy (PTT) holds great promise as a cancer treatment modality by generating localized heat at the tumor site. Among various photothermal agents, gallium-based liquid metal (LM) has been widely used as a new photothermal-inducible metallic compound due to its structural transformability. To overcome limitations of random aggregation and dissipation of administrated LM particles into a human body, we developed LM-containing injectable composite hydrogel platforms capable of achieving spatiotemporal PTT and chemotherapy. Eutectic gallium-indium LM particles were first stabilized with 1,2-Distearoyl-sn‑glycero-3-phosphoethanolamine (DSPE) lipids. They were then incorporated into an interpenetrating hydrogel network composed of thiolated gelatin conjugated with 6-mercaptopurine (MP) chemodrug and poly(ethylene glycol)-diacrylate. The resulted composite hydrogel exhibited sufficient capability to induce MDA-MB-231 breast cancer cell death through a multi-step mechanism: (1) hyperthermic cancer cell death due to temperature elevation by near-infrared laser irradiation via LM particles, (2) leakage of glutathione (GSH) and cleavage of disulfide bonds due to destruction of cancer cells. As a consequence, additional chemotherapy was facilitated by GSH, leading to accelerated release of MP within the tumor microenvironment. The effectiveness of our composite hydrogel system was evaluated both in vitro and in vivo, demonstrating significant tumor suppression and killing. These results demonstrate the potential of this injectable composite hydrogel for spatiotemporal cancer treatment. In conclusion, integration of PTT and chemotherapy within our hydrogel platform offers enhanced therapeutic efficacy, suggesting promising prospects for future clinical applications. STATEMENT OF SIGNIFICANCE: Our research pioneers a breakthrough in cancer treatments by developing an injectable hydrogel platform incorporating liquid metal (LM) particle-mediated photothermal therapy and 6-mercaptopurine (MP)-based chemotherapy. The combination of gallium-based LM and MP achieves synergistic anticancer effects, and our injectable composite hydrogel acts as a localized reservoir for specific delivery of both therapeutic agents. This platform induces a multi-step anticancer mechanism, combining NIR-mediated hyperthermic tumor death and drug release triggered by released glutathione from damaged cancer populations. The synergistic efficacy validated in vitro and in vivo studies highlights significant tumor suppression. This injectable composite hydrogel with synergistic therapeutic efficacy holds immense promise for biomaterial-mediated spatiotemporal treatment of solid tumors, offering a potent targeted therapy for triple negative breast cancers.
Collapse
Affiliation(s)
- Wonjeong Lee
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Min Joo Shin
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Sungjun Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Chae Eun Lee
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyung-Jun Koo
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Min-Jae Choi
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Jae Ho Kim
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea.
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea.
| |
Collapse
|
12
|
Sun L, Wang J, Matsui H, Lee S, Wang W, Guo S, Chen H, Fang K, Ito Y, Inoue D, Hashizume D, Mori K, Takakuwa M, Lee S, Zhou Y, Yokota T, Fukuda K, Someya T. All-solution-processed ultraflexible wearable sensor enabled with universal trilayer structure for organic optoelectronic devices. SCIENCE ADVANCES 2024; 10:eadk9460. [PMID: 38598623 PMCID: PMC11006222 DOI: 10.1126/sciadv.adk9460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/06/2024] [Indexed: 04/12/2024]
Abstract
All-solution-processed organic optoelectronic devices can enable the large-scale manufacture of ultrathin wearable electronics with integrated diverse functions. However, the complex multilayer-stacking device structure of organic optoelectronics poses challenges for scalable production. Here, we establish all-solution processes to fabricate a wearable, self-powered photoplethysmogram (PPG) sensor. We achieve comparable performance and improved stability compared to complex reference devices with evaporated electrodes by using a trilayer device structure applicable to organic photovoltaics, photodetectors, and light-emitting diodes. The PPG sensor array based on all-solution-processed organic light-emitting diodes and photodetectors can be fabricated on a large-area ultrathin substrate to achieve long storage stability. We integrate it with a large-area, all-solution-processed organic solar module to realize a self-powered health monitoring system. We fabricate high-throughput wearable electronic devices with complex functions on large-area ultrathin substrates based on organic optoelectronics. Our findings can advance the high-throughput manufacture of ultrathin electronic devices integrating complex functions.
Collapse
Affiliation(s)
- Lulu Sun
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Jiachen Wang
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroyuki Matsui
- Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Shinyoung Lee
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Wenqing Wang
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shuyang Guo
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hongting Chen
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kun Fang
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshihiro Ito
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Daishi Inoue
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kazuma Mori
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Masahito Takakuwa
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Institute of Engineering Innovation, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Sunghoon Lee
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yinhua Zhou
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tomoyuki Yokota
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Institute of Engineering Innovation, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kenjiro Fukuda
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takao Someya
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
13
|
Qi J, Yang S, Jiang Y, Cheng J, Wang S, Rao Q, Jiang X. Liquid Metal-Polymer Conductor-Based Conformal Cyborg Devices. Chem Rev 2024; 124:2081-2137. [PMID: 38393351 DOI: 10.1021/acs.chemrev.3c00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Gallium-based liquid metal (LM) exhibits exceptional properties such as high conductivity and biocompatibility, rendering it highly valuable for the development of conformal bioelectronics. When combined with polymers, liquid metal-polymer conductors (MPC) offer a versatile platform for fabricating conformal cyborg devices, enabling functions such as sensing, restoration, and augmentation within the human body. This review focuses on the synthesis, fabrication, and application of MPC-based cyborg devices. The synthesis of functional materials based on LM and the fabrication techniques for MPC-based devices are elucidated. The review provides a comprehensive overview of MPC-based cyborg devices, encompassing their applications in sensing diverse signals, therapeutic interventions, and augmentation. The objective of this review is to serve as a valuable resource that bridges the gap between the fabrication of MPC-based conformal devices and their potential biomedical applications.
Collapse
Affiliation(s)
- Jie Qi
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China
| | - Shuaijian Yang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Yizhou Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, P. R. China
| | - Jinhao Cheng
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Saijie Wang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Qingyan Rao
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
14
|
Lu G, Ni E, Jiang Y, Wu W, Li H. Room-Temperature Liquid Metals for Flexible Electronic Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304147. [PMID: 37875665 DOI: 10.1002/smll.202304147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/26/2023] [Indexed: 10/26/2023]
Abstract
Room-temperature gallium-based liquid metals (RT-GaLMs) have garnered significant interest recently owing to their extraordinary combination of fluidity, conductivity, stretchability, self-healing performance, and biocompatibility. They are ideal materials for the manufacture of flexible electronics. By changing the composition and oxidation of RT-GaLMs, physicochemical characteristics of the liquid metal can be adjusted, especially the regulation of rheological, wetting, and adhesion properties. This review highlights the advancements in the liquid metals used in flexible electronics. Meanwhile related characteristics of RT-GaLMs and underlying principles governing their processing and applications for flexible electronics are elucidated. Finally, the diverse applications of RT-GaLMs in self-healing circuits, flexible sensors, energy harvesting devices, and epidermal electronics, are explored. Additionally, the challenges hindering the progress of RT-GaLMs are discussed, while proposing future research directions and potential applications in this emerging field. By presenting a concise and critical analysis, this paper contributes to the advancement of RT-GaLMs as an advanced material applicable for the new generation of flexible electronics.
Collapse
Affiliation(s)
- Guixuan Lu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Erli Ni
- The Institute for Advanced Studies of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, China
| | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Weikang Wu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Hui Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| |
Collapse
|
15
|
Ali MS, Cui J. Geometrically Amplified Wetting of Silver Nanosolder on a Rough Diamond Surface. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9371-9379. [PMID: 38214215 DOI: 10.1021/acsami.3c14948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
The wetting behavior of silver at the nanoscale on a textured diamond substrate is not absolutely roughness-dependent in printing diamond chips, tough bioimplant coating, and joining for cutting tool industries. This study uses a molecular dynamics simulation to capture the stochastic wetting behavior toward precision for given geometries. It is deduced that the metalophilic character of molten silver is increased with an increase in roughness on sinusoidal contoured diamond substrates rather than orthogonal pillars of the same roughness until an equilibration time of 210 ps at a temperature of 950 K. Increasing the roughness after the equilibrium time causes a supermetalophilic angle of 13° for the sinusoid at 500 ps, and the orthogonal design causes the Wenzel state. Therefore, wetting states are metastable and ultimately depend upon the wetting time and geometry rather than the roughness only. A high joining strength creates a long-lasting coating, owing to the high surface energy of the textured surface. This study presents effective thin seam development in the least possible time of 230 ps and silver consumption at the nanoscale for supermetalophilic and metalophobic coatings in electronic packaging.
Collapse
Affiliation(s)
- Muhammad Saad Ali
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
- Shaanxi Key Laboratory of Intelligent Robots, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| | - Jianlei Cui
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
- Shaanxi Key Laboratory of Intelligent Robots, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| |
Collapse
|
16
|
Wei W, Ai L, Li M, Hou F, Xiong C, Li Y, Wei A. Liquid Metal Encased in Biomimic Polydopamine Armor to Reinforce Photothermal Conversion and Photothermal Stability. Chem Asian J 2024:e202301038. [PMID: 38311860 DOI: 10.1002/asia.202301038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 02/06/2024]
Abstract
Liquid metal (LM) faces numerous obstacles like spontaneous coalescence, prone oxidizability, and deterioration in photothermal conversion, impeding the potential application as photothermal agent. To tackle these issues, several studies have focused on surface engineering strategy. Developing a feasible and efficient surface engineering strategy is crucial to prevent the aggregation and coalescence of LM, while also ensuring exceptional photothermal conversion and biosecurity. In order to achieve these goals in this work, the biomimetic polydopamine (PDA) armor was chosen to encase a typical LM (eutectic gallium-indium-tin alloy) via self-polymerization. Characterization results showed that the PDA encased LM nanoparticle exhibited enhanced photothermal stability, photothermal conversion, and biosecurity, which could be derived from the following factors: (1) The PDA protective shell acted as an "armor", isolating LM from dissolved oxygen and water, inhibiting heating-accelerated oxidation and shape morphing. (2) The exceptional near-infrared absorption of PDA was conducive to the photothermal conversion. (3) The biomimetic characteristic of polydopamine (PDA) was advantageous for improving the biosecurity. Hence, this work presented a new surface engineering strategy to reinforce LM for photothermal conversion application.
Collapse
Affiliation(s)
- Wei Wei
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), College of Chemistry and Life Science, Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Libang Ai
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), College of Chemistry and Life Science, Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
- Kunshan Innovation Institute of Xidian University, Suzhou, 215316, P. R. China
| | - Minhao Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), College of Chemistry and Life Science, Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Fengming Hou
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), College of Chemistry and Life Science, Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Can Xiong
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), College of Chemistry and Life Science, Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
- Nantong Institute of Nanjing University of Posts and Telecommunications Co. Ltd., Nantong, 226001, P. R. China
| | - Yihang Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), College of Chemistry and Life Science, Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Ang Wei
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), College of Chemistry and Life Science, Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| |
Collapse
|
17
|
Lee Y, Akyildiz K, Kang C, So JH, Koo HJ. The Dielectrophoretic Alignment of Biphasic Metal Fillers for Thermal Interface Materials. Polymers (Basel) 2023; 15:4653. [PMID: 38139905 PMCID: PMC10747968 DOI: 10.3390/polym15244653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Pad-type thermal interface materials (TIMs) with composite structures are required to exhibit high thermal conductivity while maintaining conformal contact with the heat sink, which is strongly influenced by the type and content of the thermally conductive filler. This study presents that biphasic metal particles can be effectively aligned using the dielectrophoretic chaining (DEP-C) mechanism, thereby enhancing the thermal conductivity of a pad-type TIM. A eutectic gallium-indium (EGaIn) alloy liquid metal and solid copper were used as the filler materials with two different phases. The biphasic metal particle mixture of EGaIn and Cu (EGaIn-Cu) were better aligned by DEP-C than when they presented individually because fusion between the two particles increased the effective size. As expected, the thermal conductivity of the TIM composites increased when DEP-C aligned the filler. Notably, TIMs with both EGaIn-Cu fillers showed the largest increase in thermal conductivity, of up to 64.6%, and the highest thermal conductivity values after DEP-C application compared to TIMs with only the EGaIn or Cu filler. Finally, the heat dissipation performance of the TIM composite on a lit light-emitting diode is shown, where the TIM with DEP-C-aligned fillers exhibits improved performance.
Collapse
Affiliation(s)
- Yangwoo Lee
- Department of Chemical & Biomolecular Engineering, Seoul National University of Science & Technology, Seoul 01811, Republic of Korea; (Y.L.)
| | - Kubra Akyildiz
- Department of Chemical & Biomolecular Engineering, Seoul National University of Science & Technology, Seoul 01811, Republic of Korea; (Y.L.)
| | - Chanmi Kang
- Department of Chemical & Biomolecular Engineering, Seoul National University of Science & Technology, Seoul 01811, Republic of Korea; (Y.L.)
| | - Ju-Hee So
- Material & Component Convergence R&D Department, Korea Institute of Industrial Technology, Ansan 15588, Republic of Korea
| | - Hyung-Jun Koo
- Department of Chemical & Biomolecular Engineering, Seoul National University of Science & Technology, Seoul 01811, Republic of Korea; (Y.L.)
| |
Collapse
|
18
|
Ricard A, Restagno F, Jang YH, Lansac Y, Raspaud E. Corrosion-driven droplet wetting on iron nanolayers. Sci Rep 2023; 13:18288. [PMID: 37880431 PMCID: PMC10600194 DOI: 10.1038/s41598-023-45547-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023] Open
Abstract
The classical Evans' drop describes a drop of aqueous salt solution, placed on a bulk metal surface where it displays a corrosion pit that grows over time producing further oxide deposits from the metal dissolution. We focus here on the corrosion-induced droplet spreading using iron nanolayers whose semi-transparency allowed us to monitor both iron corrosion propagation and electrolyte droplet behavior by simple optical means. We thus observed that pits grow under the droplet and merge into a corrosion front. This front reached the triple contact line and drove a non radial spreading, until it propagated outside the immobile droplet. Such chemically-active wetting is only observed in the presence of a conductive substrate that provides strong adhesion of the iron nanofilm to the substrate. By revisiting the classic Evan's drop experiment on thick iron film, a weaker corrosion-driven droplet spreading is also identified. These results require further investigations, but they clearly open up new perspectives on substrate wetting by corrosion-like electrochemical reactions at the nanometer scale.
Collapse
Affiliation(s)
- Aurelien Ricard
- Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, 91405, Orsay Cedex, France
| | - Frederic Restagno
- Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, 91405, Orsay Cedex, France
| | - Yun Hee Jang
- Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, 91405, Orsay Cedex, France
- GREMAN UMR 7347, CNRS, INSA CVL, Université de Tours, 37200, Tours, France
- Department of Energy Science and Engineering, DGIST, Daegu, 42988, Korea
| | - Yves Lansac
- Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, 91405, Orsay Cedex, France
- GREMAN UMR 7347, CNRS, INSA CVL, Université de Tours, 37200, Tours, France
- Department of Energy Science and Engineering, DGIST, Daegu, 42988, Korea
| | - Eric Raspaud
- Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, 91405, Orsay Cedex, France.
| |
Collapse
|
19
|
Chen Y, Ma B, Chen G, Zhang J, Feng D, Tian W, Zhang T, Zhao C, Rong F, Liu H. Breakup-Free and Colorful Liquid Metal Thin Films via Electrochemical Oxidation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37874892 DOI: 10.1021/acsami.3c11966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Thin-film metal conductors featuring high conductivity and stretchability are basic building blocks for high-performance conformable electronics. Gallium-based liquid metals are attractive candidates for thin-film conductors due to their intrinsic stretchability and ease of processing. Moreover, the phase change nature of liquid metal provides an opportunity to create conformal electronics in a substrate-free manner. However, thin liquid metal films tend to break during the solid-to-liquid transition due to the high surface tension of liquid metal. Here, we created breakup-free liquid metal thin films by the electrochemical oxidation of solid gallium films. We show that electrochemical oxidation can enhance the mechanical strength of the gallium oxide layer and its interfacial adhesion to the gallium core. When heated to the liquid state, the oxidized gallium films can maintain their structural integrity on various solid substrates, hydrogels, and even the water surface. The solid-liquid phase change-induced stiffness decrease allowed the gallium films to be conformably attached to various nonplanar surfaces upon heating or water transfer printing. Moreover, we also found that enhanced electrochemical oxidation can result in the formation of structure color due to nanoporous structures on the film surface. We also demonstrate the applications of oxidized liquid metal films in functional electronics, electrophysiological monitoring, and tattoo art.
Collapse
Affiliation(s)
- Yi Chen
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Biao Ma
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Gangsheng Chen
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jin Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Dezhi Feng
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Wei Tian
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Taiming Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Chao Zhao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Fei Rong
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hong Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
20
|
Ahn S, Kang SH, Woo H, Kim K, Koo HJ, Lee HY, Choi Y, Kang SH, Choi J. Liquid-Metal Core-Shell Particles Coated with Folate and Phospholipids for Targeted Drug Delivery and Photothermal Treatment of Cancer Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2017. [PMID: 37446533 DOI: 10.3390/nano13132017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
Recently, several methods have been used for cancer treatment. Among them, chemotherapy is generally used, but general anticancer drugs may affect normal cells and tissues, causing various side effects. To reduce the side effects and increase the efficacy of anticancer drugs, a folate-based liquid-metal drug nanodelivery system was used to target the folate receptor, which is highly expressed in cancer cells. A phospholipid-based surface coating was formed on the surface of liquid-metal nanoparticles to increase their stability, and doxorubicin was loaded as a drug delivery system. Folate on the lipid shell surface increased the efficiency of targeting cancer cells. The photothermal properties of liquid metal were confirmed by near-infrared (NIR) laser irradiation. After treating cancerous and normal cells with liquid-metal particles and NIR irradiation, the particles were specifically bound to cancer cells for drug uptake, confirming photothermal therapy as a drug delivery system that is expected to induce cancer cell death through comprehensive effects such as vascular embolization in addition to targeting cancer cells.
Collapse
Affiliation(s)
- Suyeon Ahn
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Seung Hyun Kang
- Departments of Plastic and Reconstructive Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul 06973, Republic of Korea
| | - Hyunjeong Woo
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Hyung-Jun Koo
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Hee-Young Lee
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi-si 39177, Republic of Korea
| | - Yonghyun Choi
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
- Feynman Institute of Technology, Nanomedicine Corporation, Seoul 06974, Republic of Korea
| | - Shin Hyuk Kang
- Departments of Plastic and Reconstructive Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul 06973, Republic of Korea
| | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
- Feynman Institute of Technology, Nanomedicine Corporation, Seoul 06974, Republic of Korea
| |
Collapse
|
21
|
Hossain KZ, Monwar M, Khan MR. Reactive etching of gallium oxide on eutectic gallium indium (eGaIn) with chlorosilane vapor to induce differential wetting. SOFT MATTER 2023; 19:3199-3206. [PMID: 37073821 DOI: 10.1039/d3sm00258f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Differentially wettable surfaces are well sought after in energy, water, health care, separation science, self-cleaning, biology, and other lab-on-chip applications-however, most demonstrations of realizing differential wettability demand complex processes. Herein, we chemically etch gallium oxide (Ga2O3) from in-plane patterns (2D) of eutectic gallium indium (eGaIn) to demonstrate a differentially wettable interface using chlorosilane vapor. We produce 2D patterns of eGaIn on bare glass slides in native air using cotton swabs as paint brushes. Exposing the entire system to chlorosilane vapor induces chemical etching of the oxide layer, which recovers the high-surface energy of eGaIn, to produce nano-to-mm droplets on the pre-patterned area. We rinse the entire system with deionized (DI) water to achieve differentially wettable surfaces. Measurements of contact angles using a goniometer confirmed hydrophobic and hydrophilic interfaces. Scanning electron microscopy (SEM) images confirmed the distribution and energy dispersive spectra (EDS) exhibited the elemental compositions of the micro-to-nano droplets after silanization (silane treatment). Also, we demonstrated two proofs of concept, i.e., open-ended microfluidics and differential wettability on curved interfaces, to demonstrate the advanced applications of the current work. This straightforward approach using two soft materials (silane and eGaIn) to achieve differential wettability on laboratory-grade glass slides and other surfaces has future implications for nature-inspired self-cleaning surfaces in nanotechnologies, bioinspired and biomimetic open-channel microfluidics, coatings, and fluid-structure interactions.
Collapse
Affiliation(s)
- Kazi Zihan Hossain
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada 89557, USA.
| | - Momena Monwar
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada 89557, USA.
| | - M Rashed Khan
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada 89557, USA.
| |
Collapse
|
22
|
Lee W, Lee CE, Kim HJ, Kim K. Current Progress in Gallium-based Liquid Metals for Combinatory Phototherapeutic Anticancer Applications. Colloids Surf B Biointerfaces 2023; 226:113294. [PMID: 37043951 DOI: 10.1016/j.colsurfb.2023.113294] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/29/2023] [Accepted: 04/05/2023] [Indexed: 04/09/2023]
Abstract
A variety of therapeutic approaches using liquid metal (LM) have been intensively investigated, due to its unique physico-chemical properties that include high surface tension, fluidity, shape deformability, thermal conductivity, and electrical conductivity. Among a series of LMs, the relatively lower toxicity and minimal volatility of gallium (Ga)-based LMs (GaLMs) enables their usage in a series of potential biomedical applications, especially implantable platforms, to treat multiple diseases. In addition, the highly efficient conversion of light energy into thermal or chemical energy via GaLMs has led to recent developments in photothermal and photodynamic applications for anticancer treatments. As attractive photothermal agents or photosensitizers, a systematic interpretation of the structural characteristics and photo-responsive behaviors of GaLMs is necessary to develop effective anticancer engineering applications. Therefore, the aim of this review is to provide a comprehensive summary of currently suggested GaLM-mediated photo-therapeutic cancer treatments. In particular, the review summarizes (1) surface coating techniques to form stable and multifunctional GaLM particulates, (2) currently investigated GaLM-mediated photothermal and photodynamic anticancer therapies, (3) synergistic efficacies with the aid of additional interventions, and (4) 3D composite gels embedded with GaLMs particles, to convey the potential technological advances of LM in this field.
Collapse
|
23
|
Liu PQ, Miao X, Datta S. Recent Advances in Liquid Metal Photonics: Technologies and Applications. OPTICAL MATERIALS EXPRESS 2023; 13:699-727. [PMID: 38249122 PMCID: PMC10798671 DOI: 10.1364/ome.484236] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/09/2023] [Indexed: 01/23/2024]
Abstract
Near-room-temperature liquid metals offer unique and crucial advantages over solid metals for a broad range of applications which require soft, stretchable and/or reconfigurable structures and devices. In particular, gallium-based liquid metals are the most suitable for a wide range of applications, not only owing to their low melting points, but also thanks to their low toxicity and negligible vapor pressure. In addition, gallium-based liquid metals exhibit attractive optical properties which make them highly suitable for a variety of photonics applications. This review summarizes the material properties of gallium-based liquid metals, highlights several effective techniques for fabricating liquid-metal-based structures and devices, and then focuses on the various photonics applications of these liquid metals in different spectral regions, following with a discussion on the challenges and opportunities for future research in this relatively nascent field.
Collapse
Affiliation(s)
- Peter Q. Liu
- Department of Electrical Engineering, University at Buffalo, the State University of New York, Buffalo, NY 14260, USA
| | - Xianglong Miao
- Department of Electrical Engineering, University at Buffalo, the State University of New York, Buffalo, NY 14260, USA
| | - Shreyan Datta
- Department of Electrical Engineering, University at Buffalo, the State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
24
|
Kim M, Lim H, Ko SH. Liquid Metal Patterning and Unique Properties for Next-Generation Soft Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205795. [PMID: 36642850 PMCID: PMC9951389 DOI: 10.1002/advs.202205795] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/27/2022] [Indexed: 05/28/2023]
Abstract
Room-temperature liquid metal (LM)-based electronics is expected to bring advancements in future soft electronics owing to its conductivity, conformability, stretchability, and biocompatibility. However, various difficulties arise when patterning LM because of its rheological features such as fluidity and surface tension. Numerous attempts are made to overcome these difficulties, resulting in various LM-patterning methods. An appropriate choice of patterning method based on comprehensive understanding is necessary to fully utilize the unique properties. Therefore, the authors aim to provide thorough knowledge about patterning methods and unique properties for LM-based future soft electronics. First, essential considerations for LM-patterning are investigated. Then, LM-patterning methods-serial-patterning, parallel-patterning, intermetallic bond-assisted patterning, and molding/microfluidic injection-are categorized and investigated. Finally, perspectives on LM-based soft electronics with unique properties are provided. They include outstanding features of LM such as conformability, biocompatibility, permeability, restorability, and recyclability. Also, they include perspectives on future LM-based soft electronics in various areas such as radio frequency electronics, soft robots, and heterogeneous catalyst. LM-based soft devices are expected to permeate the daily lives if patterning methods and the aforementioned features are analyzed and utilized.
Collapse
Affiliation(s)
- Minwoo Kim
- Applied Nano and Thermal Science LabDepartment of Mechanical EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826South Korea
| | - Hyungjun Lim
- Applied Nano and Thermal Science LabDepartment of Mechanical EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826South Korea
- Department of Mechanical EngineeringPohang University of Science and Technology77 Chungam‐ro, Nam‐guPohang37673South Korea
| | - Seung Hwan Ko
- Applied Nano and Thermal Science LabDepartment of Mechanical EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826South Korea
- Institute of Advanced Machinery and Design/Institute of Engineering ResearchSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826South Korea
| |
Collapse
|
25
|
Gan T, Xiao Q, Handschuh-Wang S, Huang X, Wang H, Deng X, Hu S, Wang B, Wu Q, Zhou X. Conformally Adhesive, Large-Area, Solidlike, yet Transient Liquid Metal Thin Films and Patterns via Gelatin-Regulated Droplet Deposition and Sintering. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42744-42756. [PMID: 36068651 DOI: 10.1021/acsami.2c12880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Adhesion and spreading of liquid metals (LMs) on substrates are essential steps for the generation of flexible electronics and thermal management devices. However, the controlled deposition is limited by the high surface tension and peculiar wetting and adhesion behavior of LMs. Herein, we introduce gelatin-regulated LM droplet deposition and sintering (GLMDDS), for the upscalable production of conformally adhesive, solidlike, yet transient LM thin films and patterns on diverse substrates. This method involves four steps: homogeneous deposition of LM microdroplets, gelation of the LM-gelatin solution, toughening of the gelatin hydrogel by solvent displacement, and peeling-induced sintering of LM microdroplets. The LM thin film exhibits a three-layer structure, comprising an LM microdroplet-embedded tough organohydrogel adhesion layer, a continuous LM layer, and an oxide skin. The composite exhibits high stretchability and mechanical robustness, conformal adhesion to various substrates, high conductivity (4.35 × 105 S·m-1), and transience (86% LM recycled). Large-scale deposition (i.e., 5.6 dm2) and the potential for patterns on diverse substrates demonstrate its upscalability and broad suitability. Finally, the LM thin films and patterns are applied for flexible and wearable devices, i.e., pressure sensors, heaters, human motion tracking devices, and thermal management devices, illustrating the broad applicability of this strategy.
Collapse
Affiliation(s)
- Tiansheng Gan
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Qi Xiao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Stephan Handschuh-Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Xiaoqin Huang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Haifei Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Xiaobo Deng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Shuangyan Hu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Ben Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Qixing Wu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Xuechang Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|