1
|
Park S, Jeon WJ, Lee Y, Lim CL, Lee E, Oh HB, Lee GS, Kwon OH, Ryu B, Cho YJ, Kim CS, Yoon SI, Chung JM, Cho H. A periplasmic protein modulates the proteolysis of peptidoglycan hydrolases to maintain cell wall homeostasis in Escherichia coli. Proc Natl Acad Sci U S A 2025; 122:e2418854122. [PMID: 39841140 PMCID: PMC11789061 DOI: 10.1073/pnas.2418854122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/06/2024] [Indexed: 01/30/2025] Open
Abstract
Bacterial cell wall assembly and remodeling require activities of peptidoglycan (PG) hydrolases as well as PG synthases. In particular, the activity of DD-endopeptidases, which cleave the 4-3 peptide crosslinks in PG, is essential for PG expansion in gram-negative bacteria. Maintaining optimal levels of DD-endopeptidases is critical for expanding PG without compromising its integrity. In Escherichia coli, the levels of major DD-endopeptidases, MepS and MepH, along with the lytic transglycosylase MltD, are controlled by the periplasmic protease Prc and its outer membrane adaptor NlpI. However, the mechanisms regulating the turnover of these PG hydrolases have remained unclear. In this study, we identified a periplasmic protein, BipP (formerly YhjJ), that negatively controls the NlpI-Prc system. Further analyses indicate that BipP exerts this control by interacting with NlpI and inhibiting its substrate recognition in response to low DD-endopeptidase activity, providing insight into the homeostatic control of PG hydrolysis and cell wall expansion.
Collapse
Affiliation(s)
- Sohee Park
- Department of Biological Sciences, College of Natural Sciences, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Wook-Jong Jeon
- Department of Biological Sciences, College of Natural Sciences, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Yeseul Lee
- Department of Biotechnology, The Catholic University of Korea, Bucheon14662, Republic of Korea
| | - Chae Lim Lim
- Department of Biological Sciences, College of Natural Sciences, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Eunyeong Lee
- Department of Biological Sciences, College of Natural Sciences, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Han Byeol Oh
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon24341, Republic of Korea
| | - Gyu Sung Lee
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Oh Hyun Kwon
- Department of Biological Sciences, College of Natural Sciences, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Bumhan Ryu
- Research Solution Center, Institute for Basic Science, Daejeon34126, Republic of Korea
| | - Yong-Joon Cho
- Department of Molecular Bioscience, Kangwon National University, Chuncheon24341, Republic of Korea
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon24341, Republic of Korea
| | - Chung Sub Kim
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon16419, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Sung-il Yoon
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon24341, Republic of Korea
| | - Jeong Min Chung
- Department of Biotechnology, The Catholic University of Korea, Bucheon14662, Republic of Korea
| | - Hongbaek Cho
- Department of Biological Sciences, College of Natural Sciences, Sungkyunkwan University, Suwon16419, Republic of Korea
| |
Collapse
|
2
|
Li G, Pu S, You L, Gao Y, Zhong Y, Zhao H, Fan D, Lu X. Innovative Strategies in Oncology: Bacterial Membrane Vesicle-Based Drug Delivery Systems for Cancer Diagnosis and Therapy. Pharmaceutics 2025; 17:58. [PMID: 39861706 PMCID: PMC11768367 DOI: 10.3390/pharmaceutics17010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/18/2024] [Accepted: 12/25/2024] [Indexed: 01/27/2025] Open
Abstract
Outer membrane vesicles (OMVs) are double-layered structures of nanoscale lipids released by gram-negative bacteria. They have the same membrane composition and characteristics as primitive cells, which enables them to penetrate cells and tissues efficiently. These OMVs exhibit excellent membrane stability, immunogenicity, safety, and permeability (which makes it easier for them to penetrate into tumour tissue), making them suitable for developing cancer vaccines and drug delivery systems. Recent studies have focused on engineering OMVs to enhance tumour-targeting capabilities, reduce toxicity, and extend circulation time in vivo. This article reviews the latest progress in OMV engineering for tumour treatment and discusses the challenges associated with the use of OMV-based antitumour therapy in clinical practice.
Collapse
Affiliation(s)
- Guodong Li
- College of Life Sciences, Northwest University, Xi’an 710069, China; (G.L.)
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi’an 710032, China
| | - Shuangpeng Pu
- College of Life Sciences, Northwest University, Xi’an 710069, China; (G.L.)
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi’an 710032, China
| | - Lisiyao You
- College of Life Sciences, Northwest University, Xi’an 710069, China; (G.L.)
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi’an 710032, China
| | - Yuan Gao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi’an 710032, China
| | - Yuexia Zhong
- Outpatient Department of the Second Affiliated Hospital of the Fourth Military Medical University, Xi’an 710032, China
| | - Huadong Zhao
- Department of General Surgery, Tangdu Hospital, Air Force Medical University, Xi’an 710038, China;
| | - Dong Fan
- Department of General Surgery, Tangdu Hospital, Air Force Medical University, Xi’an 710038, China;
| | - Xiyan Lu
- Outpatient Department of the Second Affiliated Hospital of the Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
3
|
Huang Y, Cao L, Chen T, Chang X, Fang Y, Wu L. Genome-wide identification of the ATP-dependent zinc metalloprotease (FtsH) in Triticeae species reveals that TaFtsH-1 regulates cadmium tolerance in Triticum aestivum. PLoS One 2024; 19:e0316486. [PMID: 39739686 DOI: 10.1371/journal.pone.0316486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/11/2024] [Indexed: 01/02/2025] Open
Abstract
The ATP-dependent zinc metalloprotease (FtsH) protein gene family is essential for plant growth, development, and stress responses. Although FtsH genes have been identified in various plant species, the FtsH gene family in wheat (Triticum aestivum) remains unstudied. In this study, we identified 11 TaFtsH genes with uneven chromosomal distribution, significant variations in gene sequence length, and differing intron numbers among individual members. Additionally, these proteins exhibit similar physicochemical characteristics as well as secondary and tertiary structures. The FtsH genes can be classified into eight groups, each characterized by similar structures and conserved motifs. Intraspecific and interspecific comparisons further revealed extensive gene duplications within the TaFtsH gene family, indicating a closer relationship to maize. Analysis of cis-acting elements in the promoter regions of TaFtsH genes revealed developmental and stress-responsive elements in most of the genes. Expression pattern analysis showed that TaFtsH genes are expressed in all wheat tissues, though with varying patterns. TaFtsH genes displayed differential responses to CdCl2, ZnSO4, and MnSO4 stress treatments. Gene Ontology (GO) enrichment analysis indicated that TaFtsH genes are involved in protein hydrolysis. Barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) technology confirmed the function of TaFtsH-1, indicating that silencing TaFtsH-1 enhances common wheat's resistance to cadmium (Cd) toxicity. In summary, this study offers an in-depth understanding of the FtsH gene family in wheat, establishing a solid basis for comprehending its functions, genetic mechanisms, and improving wheat's tolerance to heavy metal contamination.
Collapse
Affiliation(s)
- Yuxi Huang
- Henan Academy of Sciences, Zhengzhou, China
| | - Lifan Cao
- Henan Academy of Sciences, Zhengzhou, China
| | | | | | - Yumei Fang
- Henan Academy of Sciences, Zhengzhou, China
| | - Liuliu Wu
- College of Agriculture, Xinyang Agriculture and Forestry University, Xinyang, China
| |
Collapse
|
4
|
Dewachter L, Deckers B, Mares-Mejía I, Louwagie E, Vercauteren S, Matthay P, Brückner S, Möller AM, Narberhaus F, Vonesch SC, Versées W, Michiels J. The role of the essential GTPase ObgE in regulating lipopolysaccharide synthesis in Escherichia coli. Nat Commun 2024; 15:9684. [PMID: 39516202 PMCID: PMC11549432 DOI: 10.1038/s41467-024-53980-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
During growth, cells need to synthesize and expand their envelope, a process that requires careful regulation. Here, we show that the GTPase ObgE of E. coli contributes to the regulation of lipopolysaccharide (LPS) synthesis, an essential component of the Gram-negative outer membrane. Using a dominant-negative mutant (named 'ObgE*'), we show a direct interaction between ObgE and LpxA, which catalyzes the first step in LPS synthesis. This interaction is enhanced by the mutation in ObgE* which, when bound to GTP, leads to inhibition of LpxA, decreased LPS synthesis, and cell death. Although wild-type ObgE does not exert the same strong effects as ObgE* on LpxA or LPS synthesis, our data indicate that ObgE participates in the regulation of cell envelope synthesis in E. coli. Because ObgE also influences other cellular functions (i.e., ribosome assembly, DNA replication, etc.), it seems increasingly plausible that this GTPase coordinates several processes to finetune cell growth.
Collapse
Affiliation(s)
- Liselot Dewachter
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium.
| | - Babette Deckers
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
- Eurofins Amatsigroup NV, Industriepark Zwijnaarde 7B, Ghent, Belgium
| | - Israel Mares-Mejía
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Elen Louwagie
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Silke Vercauteren
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Paul Matthay
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Simon Brückner
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Anna-Maria Möller
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Franz Narberhaus
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Sibylle C Vonesch
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Wim Versées
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Jan Michiels
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| |
Collapse
|
5
|
Castro D, Podshivalov A, Ponomareva A, Zhilenkov A. Study of the Reinforcing Effect and Antibacterial Activity of Edible Films Based on a Mixture of Chitosan/Cassava Starch Filled with Bentonite Particles with Intercalated Ginger Essential Oil. Polymers (Basel) 2024; 16:2531. [PMID: 39274163 PMCID: PMC11397879 DOI: 10.3390/polym16172531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024] Open
Abstract
Edible films based on biopolymers are used to protect food from adverse environmental factors. However, their ample use may be hindered by some challenges to their mechanical and antimicrobial properties. Despite this, in most cases, increasing their mechanical properties and antibacterial activity remains a relevant challenge. To solve this problem, a possible option is to fill the biopolymer matrix of films with a functional filler that combines high reinforcing and antibacterial properties. In this work, biocomposite films based on a mixture of chitosan and cassava starch were filled with a hybrid filler in the form of bentonite clay particles loaded with ginger essential oil (GEO) in their structure with varied concentrations. For this purpose, GEO components were intercalated into bentonite clay interlayer space using a mechanical capture approach without using surface-active and toxic agents. The structure and loading efficiency of the essential oil in the obtained hybrid filler were analyzed by lyophilization and laser analysis of dispersions, ATR-FTIR spectroscopy, thermogravimetry, and X-ray diffraction analysis. The filled biocomposite films were analyzed using ATR-FTIR spectroscopy, optical and scanning electron spectroscopy, energy dispersive spectroscopy, mechanical analysis under tension, and the disk diffusion method for antibacterial activity. The results demonstrated that the tensile strength, Young's modulus, elongation at the break, and the antibacterial effect of the films increased by 40%, 19%, 44%, and 23%, respectively, compared to unfilled film when the filler concentration was 0.5-1 wt.%.
Collapse
Affiliation(s)
- David Castro
- Center for Chemical Engineering, ITMO University, Kronverkskiy Prospekt, 49, 197101 Saint-Petersburg, Russia
| | - Aleksandr Podshivalov
- Center for Chemical Engineering, ITMO University, Kronverkskiy Prospekt, 49, 197101 Saint-Petersburg, Russia
| | - Alina Ponomareva
- Center for Chemical Engineering, ITMO University, Kronverkskiy Prospekt, 49, 197101 Saint-Petersburg, Russia
| | - Anton Zhilenkov
- Institute of Robotics and Intelligent Systems, Saint-Petersburg State Marine Technical University, Lotsmanskaya Str., 3, 190121 Saint-Petersburg, Russia
| |
Collapse
|
6
|
Watanabe N, Savchenko A. Molecular insights into the initiation step of the Rcs signaling pathway. Structure 2024; 32:1381-1393.e4. [PMID: 38964336 DOI: 10.1016/j.str.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/05/2024] [Accepted: 06/07/2024] [Indexed: 07/06/2024]
Abstract
The Rcs pathway is repressed by the inner membrane protein IgaA under non-stressed conditions. This repression is hypothesized to be relieved by the binding of the outer membrane-anchored RcsF to IgaA. However, the precise mechanism by which RcsF binding triggers the signaling remains unclear. Here, we present the 1.8 Å resolution crystal structure capturing the interaction between IgaA and RcsF. Our comparative structural analysis, examining both the bound and unbound states of the periplasmic domain of IgaA (IgaAp), highlights rotational flexibility within IgaAp. Conversely, the conformation of RcsF remains unchanged upon binding. Our in vivo and in vitro studies do not support the model of a stable complex involving RcsF, IgaAp, and RcsDp. Instead, we demonstrate that the elements beyond IgaAp play a role in the interaction between IgaA and RcsD. These findings collectively allow us to propose a potential mechanism for the signaling across the inner membrane through IgaA.
Collapse
Affiliation(s)
- Nobuhiko Watanabe
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada; Center for Structural Biology for Infectious Diseases (CSBID) Chicago, IL, USA
| | - Alexei Savchenko
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada; Center for Structural Biology for Infectious Diseases (CSBID) Chicago, IL, USA.
| |
Collapse
|
7
|
Xiao N, Zhang X, Xi Y, Li Z, Wei Y, Shen J, Wang L, Qin D, Xie Z, Li Z. Study on the effects of intestinal flora on gouty arthritis. Front Cell Infect Microbiol 2024; 14:1341953. [PMID: 39176260 PMCID: PMC11339034 DOI: 10.3389/fcimb.2024.1341953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 07/22/2024] [Indexed: 08/24/2024] Open
Abstract
Gouty arthritis (GA), a metabolic and immunologic disease, primarily affects joints. Dysbiosis of intestinal flora is an important cause of GA. The metabolic disorders of intestinal flora leading to GA and immune disorders might play an important role in patients with hyperuricemia and established GA. However, the exact mechanisms, through which the dysbiosis of intestinal flora causes the development of GA, are not fully understood yet. Moreover, several therapies commonly used to treat GA might alter the intestinal flora, suggesting that modulation of the intestinal flora might help prevent or treat GA. Therefore, a better understanding of the changes in the intestinal flora of GA patients might facilitate the discovery of new diagnostic and therapeutic approaches. The current review article discusses the effects of intestinal flora dysbiosis on the pathogenesis of GA and the cross-regulatory effects between gut flora and drugs for treating GA. This article also highlights the modulatory effects of gut flora by traditional Chinese medicine (TCM) to lower uric acid levels and relieve joint pain as well as provides a summary and outlook, which might help guide future research efforts.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dongdong Qin
- Yunnan University of Chinese Medicine, Kunming, China
| | - Zhaohu Xie
- Yunnan University of Chinese Medicine, Kunming, China
| | - Zhaofu Li
- Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
8
|
Muner JJ, de Oliveira PAA, Baboghlian J, Moura SC, de Andrade AG, de Oliveira MM, Campos YFD, Mançano ASF, Siqueira NMG, Pacheco T, Ferraz LFC. The transcriptional regulator Fur modulates the expression of uge, a gene essential for the core lipopolysaccharide biosynthesis in Klebsiella pneumoniae. BMC Microbiol 2024; 24:279. [PMID: 39061004 PMCID: PMC11282780 DOI: 10.1186/s12866-024-03418-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Klebsiella pneumoniae is a Gram-negative pathogen that has become a threat to public health worldwide due to the emergence of hypervirulent and multidrug-resistant strains. Cell-surface components, such as polysaccharide capsules, fimbriae, and lipopolysaccharides (LPS), are among the major virulence factors for K. pneumoniae. One of the genes involved in LPS biosynthesis is the uge gene, which encodes the uridine diphosphate galacturonate 4-epimerase enzyme. Although essential for the LPS formation in K. pneumoniae, little is known about the mechanisms that regulate the expression of uge. Ferric uptake regulator (Fur) is an iron-responsive transcription factor that modulates the expression of capsular and fimbrial genes, but its role in LPS expression has not yet been identified. This work aimed to investigate the role of the Fur regulator in the expression of the K. pneumoniae uge gene and to determine whether the production of LPS by K. pneumoniae is modulated by the iron levels available to the bacterium. RESULTS Using bioinformatic analyses, a Fur-binding site was identified on the promoter region of the uge gene; this binding site was validated experimentally through Fur Titration Assay (FURTA) and DNA Electrophoretic Mobility Shift Assay (EMSA) techniques. RT-qPCR analyses were used to evaluate the expression of uge according to the iron levels available to the bacterium. The iron-rich condition led to a down-regulation of uge, while the iron-restricted condition resulted in up-regulation. In addition, LPS was extracted and quantified on K. pneumoniae cells subjected to iron-replete and iron-limited conditions. The iron-limited condition increased the amount of LPS produced by K. pneumoniae. Finally, the expression levels of uge and the amount of the LPS were evaluated on a K. pneumoniae strain mutant for the fur gene. Compared to the wild-type, the strain with the fur gene knocked out presented a lower LPS amount and an unchanged expression of uge, regardless of the iron levels. CONCLUSIONS Here, we show that iron deprivation led the K. pneumoniae cells to produce higher amount of LPS and that the Fur regulator modulates the expression of uge, a gene essential for LPS biosynthesis. Thus, our results indicate that iron availability modulates the LPS biosynthesis in K. pneumoniae through a Fur-dependent mechanism.
Collapse
Affiliation(s)
- José Júlio Muner
- Laboratório de Microbiologia Molecular e Clínica, Universidade São Francisco, Bragança Paulista, SP, Brazil
| | - Paloma Aparecida Alves de Oliveira
- Laboratório de Microbiologia Molecular e Clínica, Universidade São Francisco, Bragança Paulista, SP, Brazil
- Central Multiusuária de Análises Genômica e Transcriptômica (CmAGT), Universidade São Francisco, Bragança Paulista, SP, Brazil
| | - Juliana Baboghlian
- Laboratório de Microbiologia Molecular e Clínica, Universidade São Francisco, Bragança Paulista, SP, Brazil
| | - Stefany Casarin Moura
- Laboratório de Microbiologia Molecular e Clínica, Universidade São Francisco, Bragança Paulista, SP, Brazil
| | | | | | - Yasmin Ferreira de Campos
- Laboratório de Microbiologia Molecular e Clínica, Universidade São Francisco, Bragança Paulista, SP, Brazil
| | | | | | - Thaisy Pacheco
- Laboratório de Microbiologia Molecular e Clínica, Universidade São Francisco, Bragança Paulista, SP, Brazil
| | - Lúcio Fábio Caldas Ferraz
- Laboratório de Microbiologia Molecular e Clínica, Universidade São Francisco, Bragança Paulista, SP, Brazil.
- Central Multiusuária de Análises Genômica e Transcriptômica (CmAGT), Universidade São Francisco, Bragança Paulista, SP, Brazil.
| |
Collapse
|
9
|
Batacan R, Briskey D, Bajagai YS, Smith C, Stanley D, Rao A. Effect of Palmitoylethanolamide Compared to a Placebo on the Gut Microbiome and Biochemistry in an Overweight Adult Population: A Randomised, Placebo Controlled, Double-Blind Study. Biomedicines 2024; 12:1620. [PMID: 39062193 PMCID: PMC11274356 DOI: 10.3390/biomedicines12071620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
This study investigates the effects of palmitoylethanolamide (PEA) on the gut microbiome of overweight adults. Fifty-eight participants (twenty males, thirty-eight females) aged 18-65 years with a BMI range of 30-40 kg/m2 were recruited. Participants were randomised to receive PEA (n = 36) or a placebo (n = 22) for 12 weeks. Microbiota composition, richness, diversity, and metabolic functions, faecal short chain fatty acids and calprotectin, pathology markers, and health-related questionnaires were analysed throughout the 12 weeks of supplementation. PEA supplementation significantly reduced triglyceride levels and IL-2 concentrations. No significant differences were found in the overall microbiota composition between the groups, and microbiota richness and diversity remained consistent for both groups. Functional analysis demonstrated no differences in functional richness and diversity, but specific pathways were modified. PEA supplementation resulted in a decrease in the abundance of pathways related to aromatic compound degradation, NAD interconversion, and L-glutamate degradation, while pathways associated with molybdopterin biosynthesis and O-antigen building blocks exhibited increased abundance. Increased production of O-antigen results in smooth LPS associated with reduced pathogenic stealth and persistence. PEA supplementation may influence specific microbial species, metabolic pathways, and reduce serum triglyceride and IL-2 concentration, shedding light on the intricate relationship between PEA, the microbiome, and host health.
Collapse
Affiliation(s)
- Romeo Batacan
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4701, Australia (Y.S.B.); (D.S.)
| | - David Briskey
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD 4006, Australia;
- RDC Clinical, Brisbane, QLD 4006, Australia;
| | - Yadav Sharma Bajagai
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4701, Australia (Y.S.B.); (D.S.)
| | - Chelsie Smith
- RDC Clinical, Brisbane, QLD 4006, Australia;
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Dana Stanley
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4701, Australia (Y.S.B.); (D.S.)
| | - Amanda Rao
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD 4006, Australia;
- RDC Clinical, Brisbane, QLD 4006, Australia;
| |
Collapse
|
10
|
Huang X, Xing Y, Jiang H, Pu Y, Yang S, Kang Z, Cai L. Nonphytotoxic and pH-responsive ZnO-ZIF‑8 loaded with honokiol as a "nanoweapon" effectively controls the soil-borne bacterial pathogen Ralstonia solanacearum. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134502. [PMID: 38743980 DOI: 10.1016/j.jhazmat.2024.134502] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/15/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024]
Abstract
The development of intelligently released and environmentally safe nanocarriers not only aligns with the sustainable agricultural strategy but also offers a potential solution for controlling severe soil-borne bacterial diseases. Herein, the core-shell structured nanocarrier loaded with honokiol bactericide (honokiol@ZnO-ZIF-8) was synthesized via a one-pot method for the targeted control of Ralstonia solanacearum, the causative agent of tobacco bacterial wilt disease. Results indicated that honokiol@ZnO-ZIF-8 nanoparticles induced bacterial cell membrane and DNA damage through the production of excessive reactive oxygen species (ROS), thereby reducing bacterial cell viability and ultimately leading to bacterial death. Additionally, the dissociation mechanism of the nanocarriers was elucidated for the first time through thermodynamic computational simulation. The nanocarriers dissociate primarily due to H+ attacking the N atom on imidazole, causing the rupture of the Zn-N bond under acidic conditions and at room temperature. Furthermore, honokiol@ZnO-ZIF-8 exhibited potent inhibitory effects against other prominent Solanaceae pathogenic bacteria (Pseudomonas syringae pv. tabaci), demonstrating its broad-spectrum antibacterial activity. Biosafety assessment results indicated that honokiol@ZnO-ZIF-8 exhibited non-phytotoxicity towards tobacco and tomato plants, with its predominant accumulation in the roots and no translocation to aboveground tissues within a short period. This study provides potential application value for the intelligent release of green pesticides. ENVIRONMENT IMPLICATION: The indiscriminate use of agrochemicals poses a significant threat to environmental, ecological security, and sustainable development. Slow-release pesticides offer a green and durable strategy for crop disease control. In this study, we developed a non-phytotoxic and pH-responsive honokiol@ZnO-ZIF-8 nano-bactericide based on the pathogenesis of Ralstonia solanacearum. Thermodynamic simulation revealed the dissociation mechanism of ZIF-8, with different acidity controlling the dissociation rate. This provides a theoretical basis for on-demand pesticide release while reducing residue in the. Our findings provide strong evidence for effective soil-borne bacterial disease control and on-demand pesticide release.
Collapse
Affiliation(s)
- Xunliang Huang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China; College of Tobacco Science of Guizhou University, Guizhou Key Laboratory for Tobacco Quality, Guiyang 550025, China
| | - Yue Xing
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hao Jiang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Ya Pu
- College of Tobacco Science of Guizhou University, Guizhou Key Laboratory for Tobacco Quality, Guiyang 550025, China
| | - Song Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling 712100, China.
| | - Lin Cai
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China; College of Tobacco Science of Guizhou University, Guizhou Key Laboratory for Tobacco Quality, Guiyang 550025, China; State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
11
|
Fivenson EM, Dubois L, Bernhardt TG. Co-ordinated assembly of the multilayered cell envelope of Gram-negative bacteria. Curr Opin Microbiol 2024; 79:102479. [PMID: 38718542 PMCID: PMC11695049 DOI: 10.1016/j.mib.2024.102479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 06/11/2024]
Abstract
Bacteria surround themselves with complex cell envelopes to maintain their integrity and protect against external insults. The envelope of Gram-negative organisms is multilayered, with two membranes sandwiching the periplasmic space that contains the peptidoglycan cell wall. Understanding how this complicated surface architecture is assembled during cell growth and division is a major fundamental problem in microbiology. Additionally, because the envelope is an important antibiotic target and determinant of intrinsic antibiotic resistance, understanding the mechanisms governing its assembly is relevant to therapeutic development. In the last several decades, most of the factors required to build the Gram-negative envelope have been identified. However, surprisingly, little is known about how the biogenesis of the different cell surface layers is co-ordinated. Here, we provide an overview of recent work that is beginning to uncover the links connecting the different envelope biosynthetic pathways and assembly machines to ensure uniform envelope growth.
Collapse
Affiliation(s)
- Elayne M Fivenson
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, United States
| | - Laurent Dubois
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, United States
| | - Thomas G Bernhardt
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, United States; Howard Hughes Medical Institute, Boston, United States.
| |
Collapse
|
12
|
Shu S, Tsutsui Y, Nathawat R, Mi W. Dual function of LapB (YciM) in regulating Escherichia coli lipopolysaccharide synthesis. Proc Natl Acad Sci U S A 2024; 121:e2321510121. [PMID: 38635633 PMCID: PMC11046580 DOI: 10.1073/pnas.2321510121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/21/2024] [Indexed: 04/20/2024] Open
Abstract
Levels of lipopolysaccharide (LPS), an essential glycolipid on the surface of most gram-negative bacteria, are tightly controlled-making LPS synthesis a promising target for developing new antibiotics. Escherichia coli adaptor protein LapB (YciM) plays an important role in regulating LPS synthesis by promoting degradation of LpxC, a deacetylase that catalyzes the first committed step in LPS synthesis. Under conditions where LPS is abundant, LapB recruits LpxC to the AAA+ protease FtsH for degradation. LapB achieves this by simultaneously interacting with FtsH through its transmembrane helix and LpxC through its cytoplasmic domain. Here, we describe a cryo-EM structure of the complex formed between LpxC and the cytoplasmic domain of LapB (LapBcyto). The structure reveals how LapB exploits both its tetratricopeptide repeat (TPR) motifs and rubredoxin domain to interact with LpxC. Through both in vitro and in vivo analysis, we show that mutations at the LapBcyto/LpxC interface prevent LpxC degradation. Unexpectedly, binding to LapBcyto also inhibits the enzymatic activity of LpxC through allosteric effects reminiscent of LpxC activation by MurA in Pseudomonas aeruginosa. Our findings argue that LapB regulates LPS synthesis in two steps: In the first step, LapB inhibits the activity of LpxC, and in the second step, it commits LpxC to degradation by FtsH.
Collapse
Affiliation(s)
- Sheng Shu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT06520
| | - Yuko Tsutsui
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT06520
- Cancer Biology Institute, Yale University, West Haven, CT06516
| | - Rajkanwar Nathawat
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT06520
| | - Wei Mi
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT06520
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06520
| |
Collapse
|
13
|
Mettlach JA, Cian MB, Chakraborty M, Dalebroux ZD. Signaling through the Salmonella PbgA-LapB regulatory complex activates LpxC proteolysis and limits lipopolysaccharide biogenesis during stationary-phase growth. J Bacteriol 2024; 206:e0030823. [PMID: 38534107 PMCID: PMC11025326 DOI: 10.1128/jb.00308-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/27/2024] [Indexed: 03/28/2024] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) controls lipopolysaccharide (LPS) biosynthesis by regulating proteolysis of LpxC, the rate-limiting enzyme and target of preclinical antibiotics. PbgA/YejM/LapC regulates LpxC levels and controls outer membrane (OM) LPS composition at the log-to-stationary phase transition. Suppressor substitutions in LPS assembly protein B (LapB/YciM) rescue the LPS and OM integrity defects of pbgA-mutant S. Typhimurium. We hypothesized that PbgA regulates LpxC proteolysis by controlling LapB's ability to bind LpxC as a function of the growth phase. According to existing models, when nutrients are abundant, PbgA binds and restricts LapB from interacting with LpxC and FtsH, which limits LpxC proteolysis. However, when nutrients are limited, there is debate whether LapB dissociates from PbgA to bind LpxC and FtsH to enhance degradation. We sought to examine these models and investigate how the structure of LapB enables salmonellae to control LpxC proteolysis and LPS biosynthesis. Salmonellae increase LapB levels during the stationary phase to promote LpxC degradation, which limits lipid A-core production and increases their survival. The deletion of lapB, resulting in unregulated lipid A-core production and LpxC overabundance, leads to bacterial growth retardation. Tetratricopeptide repeats near the cytosol-inner membrane interface are sufficient for LapB to bind LpxC, and remarkably, LapB and PbgA interact in both growth phases, yet LpxC only associates with LapB in the stationary phase. Our findings support that PbgA-LapB exists as a constitutive complex in S. Typhimurium, which differentially binds LpxC to control LpxC proteolysis and limit lipid A-core biosynthesis in response to changes in the environment.IMPORTANCEAntimicrobial resistance has been a costly setback for human health and agriculture. Continued pursuit of new antibiotics and targets is imperative, and an improved understanding of existing ones is necessary. LpxC is an essential target of preclinical trial antibiotics that can eliminate multidrug-resistant Gram-negative bacterial infections. LapB is a natural LpxC inhibitor that targets LpxC for degradation and limits lipopolysaccharide production in Enterobacteriaceae. Contrary to some studies, findings herein support that LapB remains in complex instead of dissociating from its presumed negative regulator, PbgA/YejM/LapC, under conditions where LpxC proteolysis is enhanced. Advanced comprehension of this critical protein-lipid signaling network will lead to future development and refinement of small molecules that can specifically interfere.
Collapse
Affiliation(s)
- Joshua A. Mettlach
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Melina B. Cian
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Medha Chakraborty
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Zachary D. Dalebroux
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
14
|
Möller AM, Vázquez-Hernández M, Kutscher B, Brysch R, Brückner S, Marino EC, Kleetz J, Senges CHR, Schäkermann S, Bandow JE, Narberhaus F. Common and varied molecular responses of Escherichia coli to five different inhibitors of the lipopolysaccharide biosynthetic enzyme LpxC. J Biol Chem 2024; 300:107143. [PMID: 38458396 PMCID: PMC10998244 DOI: 10.1016/j.jbc.2024.107143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/10/2024] Open
Abstract
A promising yet clinically unexploited antibiotic target in difficult-to-treat Gram-negative bacteria is LpxC, the key enzyme in the biosynthesis of lipopolysaccharides, which are the major constituents of the outer membrane. Despite the development of dozens of chemically diverse LpxC inhibitor molecules, it is essentially unknown how bacteria counteract LpxC inhibition. Our study provides comprehensive insights into the response against five different LpxC inhibitors. All compounds bound to purified LpxC from Escherichia coli. Treatment of E. coli with these compounds changed the cell shape and stabilized LpxC suggesting that FtsH-mediated proteolysis of the inactivated enzyme is impaired. LpxC inhibition sensitized E. coli to vancomycin and rifampin, which poorly cross the outer membrane of intact cells. Four of the five compounds led to an accumulation of lyso-phosphatidylethanolamine, a cleavage product of phosphatidylethanolamine, generated by the phospholipase PldA. The combined results suggested an imbalance in lipopolysaccharides and phospholipid biosynthesis, which was corroborated by the global proteome response to treatment with the LpxC inhibitors. Apart from LpxC itself, FabA and FabB responsible for the biosynthesis of unsaturated fatty acids were consistently induced. Upregulated compound-specific proteins are involved in various functional categories, such as stress reactions, nucleotide, or amino acid metabolism and quorum sensing. Our work shows that antibiotics targeting the same enzyme do not necessarily elicit identical cellular responses. Moreover, we find that the response of E. coli to LpxC inhibition is distinct from the previously reported response in Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Anna-Maria Möller
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | | | - Blanka Kutscher
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Raffael Brysch
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Simon Brückner
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Emily C Marino
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Julia Kleetz
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Christoph H R Senges
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Sina Schäkermann
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Julia E Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Franz Narberhaus
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
15
|
Janata M, Gupta S, Čadová E, Angelisová P, Krishnarjuna B, Ramamoorthy A, Hořejší V, Raus V. Sulfonated polystyrenes: pH and Mg 2+-insensitive amphiphilic copolymers for detergent-free membrane protein isolation. Eur Polym J 2023; 198:112412. [PMID: 37780808 PMCID: PMC10538444 DOI: 10.1016/j.eurpolymj.2023.112412] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Amphiphilic polymers are increasingly applied in the detergent-free isolation and functional studies of membrane proteins. However, the carboxylate group present in the structure of many popular variants, such as styrene-maleic acid (SMA) copolymers, brings limitations in terms of polymer sensitivity to precipitation at acidic pH or in the presence of divalent metal cations. Herein, we addressed this problem by replacing carboxylate with the more acidic sulfonate groups. To this end, we synthesized a library of amphiphilic poly[styrene-co-(sodium 4-styrene sulfonate)] copolymers (termed SSS), differing in their molecular weight and overall polarity. Using model cell membranes (Jurkat), we identified two copolymer compositions (SSS-L30 and SSS-L36) that solubilized membranes to an extent similar to SMA. Interestingly, the density gradient ultracentrifugation/SDS-PAGE/Western blotting analysis of cell lysates revealed a distribution of studied membrane proteins in the gradient fractions that was different than for SMA-solubilized membranes. Importantly, unlike SMA, the SSS copolymers remained soluble at low pH and in the presence of Mg2+ ions. Additionally, the solubilization of DMPC liposomes by the lead materials was studied by turbidimetry, DLS, SEC, and high-resolution NMR, revealing, for SSS-L36, the formation of stable particles (nanodiscs), facilitated by the direct hydrophobic interaction of the copolymer phenyls with lipid acyl chains.
Collapse
Affiliation(s)
- Miroslav Janata
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Sachin Gupta
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Eva Čadová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Pavla Angelisová
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Bankala Krishnarjuna
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Václav Hořejší
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Vladimír Raus
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| |
Collapse
|
16
|
Maniyeri A, Wieczorek A, Ayyolath A, Sugalska W, Klein G, Raina S. Suppressors of lapC Mutation Identify New Regulators of LpxC, Which Mediates the First Committed Step in Lipopolysaccharide Biosynthesis. Int J Mol Sci 2023; 24:15174. [PMID: 37894855 PMCID: PMC10607373 DOI: 10.3390/ijms242015174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Gram-negative bacteria, such as Escherichia coli, are characterized by an asymmetric outer membrane (OM) with lipopolysaccharide (LPS) located in the outer leaflet and phospholipids facing the inner leaflet. E. coli recruits LPS assembly proteins LapB, LapC and LapD in concert with FtsH protease to ensure a balanced biosynthesis of LPS and phospholipids. We recently reported that bacteria either lacking the periplasmic domain of the essential LapC protein (lapC190) or in the absence of LapD exhibit an elevated degradation of LpxC, which catalyzes the first committed step in LPS biosynthesis. To further understand the functions of LapC and LapD in regulating LPS biosynthesis, we show that the overproduction of the intact LapD suppresses the temperature sensitivity (Ts) of lapC190, but not when either its N-terminal transmembrane anchor or specific conserved amino acids in the C-terminal domain are mutated. Moreover, overexpression of srrA, marA, yceJ and yfgM genes can rescue the Ts phenotype of lapC190 bacteria by restoring LpxC amounts. We further show that MarA-mediated suppression requires the expression of mla genes, whose products participate in the maintenance of OM asymmetry, and the SrrA-mediated suppression requires the presence of cardiolipin synthase A.
Collapse
Affiliation(s)
| | | | | | | | - Gracjana Klein
- Laboratory of Bacterial Genetics, Gdansk University of Technology, 80-233 Gdansk, Poland; (A.M.); (A.W.); (A.A.); (W.S.)
| | - Satish Raina
- Laboratory of Bacterial Genetics, Gdansk University of Technology, 80-233 Gdansk, Poland; (A.M.); (A.W.); (A.A.); (W.S.)
| |
Collapse
|
17
|
Fivenson EM, Rohs PDA, Vettiger A, Sardis MF, Torres G, Forchoh A, Bernhardt TG. A role for the Gram-negative outer membrane in bacterial shape determination. Proc Natl Acad Sci U S A 2023; 120:e2301987120. [PMID: 37607228 PMCID: PMC10469335 DOI: 10.1073/pnas.2301987120] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/21/2023] [Indexed: 08/24/2023] Open
Abstract
The cell envelope of Gram-negative bacteria consists of three distinct layers: the cytoplasmic membrane, a cell wall made of peptidoglycan (PG), and an asymmetric outer membrane (OM) composed of phospholipid in the inner leaflet and lipopolysaccharide (LPS) glycolipid in the outer leaflet. The PG layer has long been thought to be the major structural component of the envelope protecting cells from osmotic lysis and providing them with their characteristic shape. In recent years, the OM has also been shown to be a load-bearing layer of the cell surface that fortifies cells against internal turgor pressure. However, whether the OM also plays a role in morphogenesis has remained unclear. Here, we report that changes in LPS synthesis or modification predicted to strengthen the OM can suppress the growth and shape defects of Escherichia coli mutants with reduced activity in a conserved PG synthesis machine called the Rod complex (elongasome) that is responsible for cell elongation and shape determination. Evidence is presented that OM fortification in the shape mutants restores the ability of MreB cytoskeletal filaments to properly orient the synthesis of new cell wall material by the Rod complex. Our results are therefore consistent with a role for the OM in the propagation of rod shape during growth in addition to its well-known function as a diffusion barrier promoting the intrinsic antibiotic resistance of Gram-negative bacteria.
Collapse
Affiliation(s)
- Elayne M. Fivenson
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Patricia D. A. Rohs
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Andrea Vettiger
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Marios F. Sardis
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Grasiela Torres
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Alison Forchoh
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Thomas G. Bernhardt
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
- HHMI, Chevy Chase, MD20815
| |
Collapse
|
18
|
Brückner S, Müller F, Schadowski L, Kalle T, Weber S, Marino EC, Kutscher B, Möller AM, Adler S, Begerow D, Steinchen W, Bange G, Narberhaus F. (p)ppGpp and moonlighting RNases influence the first step of lipopolysaccharide biosynthesis in Escherichia coli. MICROLIFE 2023; 4:uqad031. [PMID: 37426605 PMCID: PMC10326835 DOI: 10.1093/femsml/uqad031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/12/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023]
Abstract
The outer membrane (OM) protects Gram-negative bacteria from harsh environmental conditions and provides intrinsic resistance to many antimicrobial compounds. The asymmetric OM is characterized by phospholipids in the inner leaflet and lipopolysaccharides (LPS) in the outer leaflet. Previous reports suggested an involvement of the signaling nucleotide ppGpp in cell envelope homeostasis in Escherichia coli. Here, we investigated the effect of ppGpp on OM biosynthesis. We found that ppGpp inhibits the activity of LpxA, the first enzyme of LPS biosynthesis, in a fluorometric in vitro assay. Moreover, overproduction of LpxA resulted in elongated cells and shedding of outer membrane vesicles (OMVs) with altered LPS content. These effects were markedly stronger in a ppGpp-deficient background. We further show that RnhB, an RNase H isoenzyme, binds ppGpp, interacts with LpxA, and modulates its activity. Overall, our study uncovered new regulatory players in the early steps of LPS biosynthesis, an essential process with many implications in the physiology and susceptibility to antibiotics of Gram-negative commensals and pathogens.
Collapse
Affiliation(s)
- Simon Brückner
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstrasse 150, Bochum, Germany
| | - Fabian Müller
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstrasse 150, Bochum, Germany
| | - Laura Schadowski
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstrasse 150, Bochum, Germany
| | - Tyll Kalle
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstrasse 150, Bochum, Germany
| | - Sophia Weber
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstrasse 150, Bochum, Germany
| | - Emily C Marino
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstrasse 150, Bochum, Germany
| | - Blanka Kutscher
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstrasse 150, Bochum, Germany
| | - Anna-Maria Möller
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstrasse 150, Bochum, Germany
| | - Sabine Adler
- Evolution of Plants and Fungi, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstrasse 150, Bochum, Germany
| | - Dominik Begerow
- Evolution of Plants and Fungi, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstrasse 150, Bochum, Germany
- Organismische Botanik und Mykologie, Institut für Planzenwissenschaften und Mikrobiologie, Fachbereich Biologie, Universität Hamburg,Ohnhorststrasse 18, Hamburg, Germany
| | - Wieland Steinchen
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, Philipps-University Marburg, Karl-von-Frisch-Strasse 14, Marburg, Germany
| | - Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, Philipps-University Marburg, Karl-von-Frisch-Strasse 14, Marburg, Germany
| | - Franz Narberhaus
- Corresponding author. Faculty of Biology and Biotechnology, Microbial Biology, Ruhr University Bochum, Universitätsstrasse 150, NDEF 06/784, 44780 Bochum, Germany. Tel: +492343223100; Fax: +492343214620; E-mail:
| |
Collapse
|
19
|
Zou S, Li X, Huang Y, Zhang B, Tang H, Xue Y, Zheng Y. Properties and biotechnological applications of microbial deacetylase. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12613-1. [PMID: 37326683 DOI: 10.1007/s00253-023-12613-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
Deacetylases, a class of enzymes that can catalyze the hydrolysis of acetylated substrates to remove the acetyl group, used in producing various products with high qualities, are one of the most influential industrial enzymes. These enzymes are highly specific, non-toxic, sustainable, and eco-friendly biocatalysts. Deacetylases and deacetylated compounds have been widely applicated in pharmaceuticals, medicine, food, and the environment. This review synthetically summarizes deacetylases' sources, characterizations, classifications, and applications. Moreover, the typical structural characteristics of deacetylases from different microbial sources are summarized. We also reviewed the deacetylase-catalyzed reactions for producing various deacetylated compounds, such as chitosan-oligosaccharide (COS), mycothiol, 7-aminocephalosporanic acid (7-ACA), glucosamines, amino acids, and polyamines. It is aimed to expound on the advantages and challenges of deacetylases in industrial applications. Moreover, it also serves perspectives on obtaining promising and innovative biocatalysts for enzymatic deacetylation. KEYPOINTS: • The fundamental properties of microbial deacetylases of various microorganisms are presented. • The biochemical characterizations, structures, and catalyzation mechanisms of microbial deacetylases are summarized. • The applications of microbial deacetylases in food, pharmaceutical, medicine, and the environment were discussed.
Collapse
Affiliation(s)
- Shuping Zou
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xia Li
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yinfeng Huang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Bing Zhang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Heng Tang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yaping Xue
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yuguo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
20
|
Raina S. Lipopolysaccharides: Regulated Biosynthesis and Structural Diversity. Int J Mol Sci 2023; 24:7498. [PMID: 37108660 PMCID: PMC10145120 DOI: 10.3390/ijms24087498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The cell envelope of Gram-negative bacteria contains two distinct membranes, an inner (IM) and an outer (OM) membrane, separated by the periplasm, a hydrophilic compartment that includes a thin layer of peptidoglycan [...].
Collapse
Affiliation(s)
- Satish Raina
- Laboratory of Bacterial Genetics, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
21
|
Gao Z, Jiang S, Zhong W, Liu T, Guo J. Linalool controls the viability of Escherichia coli by regulating the synthesis and modification of lipopolysaccharide, the assembly of ribosome, and the expression of substrate transporting proteins. Food Res Int 2023; 164:112337. [PMID: 36737930 DOI: 10.1016/j.foodres.2022.112337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/08/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Escherichia coli (E. coli) is a Gram-negative bacterium and some pathogenic types may cause serious diseases, foods or food environments were the primary routes for its infection. Citrus aurantium L. var. amara Engl., a variety of sour orange, were used as a kind of non-conventional edible plant in China, but its antimicrobial activity and mechanisms were not well studied. Thus, in this study, EO from the flower of Citrus aurantium L. var. amara Engl. (CAEO) were studied as a kind of natural antimicrobial agent to control E. coli, our results showed that both of CAEO and its main component (linalool) exhibited strong antibacterial efficacy. Further, transcriptomic and proteomic analysis were carried out to explore cell response under linalool treatment and the main results included: (1) The synthesis and modification of lipopolysaccharide (LPS) was significantly influenced. (2) Ribosomal assembly and protein synthesis were significantly inhibited. (3) The expression of proteins related to the uptake of several essential substances was significantly changed. In all, our results would supply a theoretical basis for the proper use of CAEO and linalool as a promising antimicrobial agent to prevent and control E. coli infection in the future.
Collapse
Affiliation(s)
- Zhipeng Gao
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, Hunan Province, China.
| | - Sifan Jiang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, Hunan Province, China
| | - Weiming Zhong
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, Hunan Province, China
| | - Ting Liu
- Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, Hunan Province, China
| | - Jiajing Guo
- Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, Hunan Province, China.
| |
Collapse
|
22
|
Yang M, Su Y, Jiang Y, Huang X, Liu Q, Kong Q. Reducing the endotoxic activity or enhancing the vaccine immunogenicity by altering the length of lipid A acyl chain in Salmonella. Int Immunopharmacol 2023; 114:109575. [PMID: 36700768 DOI: 10.1016/j.intimp.2022.109575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
The balance of the attenuation and reactogenicity is an issue in the development of recombinant attenuated Salmonella vaccines (RASV). Some reactogenic strains produced side effects are partially induced by lipid A. As reported, the number of lipid A acyl chains influence the strength and outcome of immune responses. However, there is rarely any study to investigate the modifications of acyl chain length on the effect of the toxicity and immunogenicity in Salmonella. In this study, foreign acyltransferase genes lpxA and lpxD were introduced into S. Typhimurium, which produced the S006 (ΔaraBAD::PlppCtlpxAC10) or S007 (ΔproBA::PlppSslpxDC16) strains with C10 or C16 acyl chains respectively. The results showed that the increased polymyxin B susceptibility, reduced swimming and invasion capabilities were observed in the S006. In addition, it also exhibited a lower endotoxicity and colonization ability compared to the parent strain. The result indicated the introduction of C10 acyl chains could be as a candidate choice for lipid A detoxifying strategy in engineering bacteria. However, the longer acyl chain modification didn't obviously change these abilities. Parallelly, these modifications were introduced into a Salmonella vaccine strain to determine their influences on the immune responses against Pneumonia. After inoculation by the strain V003 (ΔaraBAD ΔproBA::PlppSslpxDC16 χ9241), the mice produced robust levels of anti-PspA IgG, and a balanced Th1/Th2 immunity, which resulted in a significant survival improvement of mice with challenging against Streptococcus pneumonia. Therefore, the combination of lipid A modification with C16 acyl chain may be a better strategy for the development of ideal RASVs.
Collapse
Affiliation(s)
- Ming Yang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province 130021, China
| | - Yingying Su
- Department of Anatomy, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province 130021, China
| | - Yanlong Jiang
- College of Animal Medicine, Jilin Agricultural University, Changchun, Jilin Province, China
| | - Xin Huang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province 130021, China
| | - Qing Liu
- College of Animal Science and technology, Southwest University, Chongqing 400715, China.
| | - Qingke Kong
- College of veterinary medicine, Southwest University, Chongqing 400715, China.
| |
Collapse
|