1
|
Qiu B, Boudker O. Structural basis of excitatory amino acid transporter 3 substrate recognition. Proc Natl Acad Sci U S A 2025; 122:e2501627122. [PMID: 40249774 DOI: 10.1073/pnas.2501627122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 02/28/2025] [Indexed: 04/20/2025] Open
Abstract
Excitatory amino acid transporters (EAATs) reside on cell surfaces and uptake substrates, including L-glutamate, L-aspartate, and D-aspartate, using ion gradients. Among five EAATs, EAAT3 is the only isoform that can efficiently transport L-cysteine, a substrate for glutathione synthesis. Recent studies suggest that EAAT3 also transports the oncometabolite R-2-hydroxyglutarate (R-2HG). Here, we examined the structural basis of substrate recognition by determining the cryogenic electron microscopy (cryo-EM) structures of EAAT3 bound to different substrates. We found that L-cysteine binds to EAAT3 in thiolate form, and EAAT3 recognizes different substrates by fine-tuning local conformations of the coordinating residues. However, using purified human EAAT3, we could not observe R-2HG binding or transport. Imaging of EAAT3 bound to L-cysteine revealed several conformational states, including an outward-facing state with a semi-open gate and a disrupted sodium-binding site. These structures demonstrate that the full gate closure, coupled with the binding of the last sodium ion, occurs after substrate binding. Furthermore, we observed that different substrates affect how the transporter distributes between a fully outward-facing conformation and intermediate occluded states on a path to the inward-facing conformation, suggesting that translocation rates are substrate-dependent.
Collapse
Affiliation(s)
- Biao Qiu
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, NY 10021
- HHMI, Weill Cornell Medicine, New York, NY 10021
| | - Olga Boudker
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, NY 10021
- HHMI, Weill Cornell Medicine, New York, NY 10021
| |
Collapse
|
2
|
Jiang H, Zhou F, Guo L, Gao Y, Kong N, Xu M, Zhang F. Implications of hippocampal excitatory amino acid transporter 2 in modulating anxiety and visceral pain in a mouse model of inflammatory bowel disease. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167832. [PMID: 40203955 DOI: 10.1016/j.bbadis.2025.167832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/22/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
Inflammatory bowel disease (IBD) is characterized by chronic inflammation and significantly impairs quality of life through anxiety-like behaviors and visceral pain. Early evaluation of the risk of anxiety-like behaviors and visceral pain in IBD patients, along with targeted treatment, may benefit disease management. Visceral pain and anxiety-like behavior are often accompanied by neurological damage. Previous studies have shown that abnormal accumulation of glutamate can cause excitatory neurotoxic effects, leading to central nervous system (CNS) damage. Excitatory amino acid transporters (EAATs), particularly EAAT2, are known to regulate glutamate levels. The impact of hippocampal EAAT2 modulation on these clinical features in IBD is yet to be evaluated. Therefore, we designed this experiment to test this hypothesis. This study aimed to investigate the impact of altered levels of hippocampal EAAT2 on anxiety-like behaviors and visceral pain in mice with IBD. We observed reduced EAAT2 expression, increased glutamate levels, elevated N-methyl-d-aspartate receptors (NMDAR) expression, and obvious glutamate toxicity in the hippocampus of dextran sulfate sodium (DSS) induced IBD model mice. These mice exhibited significant visceral pain and anxiety-like behaviors. In summary, the reduced expression of EAAT2 in the hippocampus of individuals with IBD leads to elevated glutamate levels, resulting in neuronal damage and ultimately contributing to visceral pain and anxiety-like behaviors. These findings suggest that EAAT2 could serve as a therapeutic target for neurologically derived IBD symptoms.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China; Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310024, China; Key Laboratory of Digestive Pathophysiology of Zhejiang Province, Hangzhou 310006, China
| | - Feini Zhou
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China; Key Laboratory of Digestive Pathophysiology of Zhejiang Province, Hangzhou 310006, China
| | - Lingnan Guo
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China; Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310024, China; Key Laboratory of Digestive Pathophysiology of Zhejiang Province, Hangzhou 310006, China
| | - Yiyuan Gao
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China; Key Laboratory of Digestive Pathophysiology of Zhejiang Province, Hangzhou 310006, China
| | - Ning Kong
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China; Key Laboratory of Digestive Pathophysiology of Zhejiang Province, Hangzhou 310006, China
| | - Maosheng Xu
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China; Key Laboratory of Digestive Pathophysiology of Zhejiang Province, Hangzhou 310006, China.
| | - Fan Zhang
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China; Key Laboratory of Digestive Pathophysiology of Zhejiang Province, Hangzhou 310006, China.
| |
Collapse
|
3
|
Kovermann P, Bayat A, Fenger CD, Leeuwen L, Borovikov A, Sharkov A, Levrat V, Lesca G, Perrin L, Levy J, Fahlke C, Møller RS, Jensen AA. The severity of SLC1A2-associated neurodevelopmental disorders correlates with transporter dysfunction. EBioMedicine 2025; 114:105648. [PMID: 40174554 PMCID: PMC11999296 DOI: 10.1016/j.ebiom.2025.105648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 03/01/2025] [Accepted: 03/02/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Excitatory amino acid transporter 2 (EAAT2) is the predominant glutamate transporter and a key mediator of excitatory neurotransmission in the human brain. Here we present a cohort of 18 individuals harbouring 13 different SLC1A2 variants, who all present with neurodevelopmental impairment with variable symptoms and disease severities, and we delineate the impact of these variants on EAAT2 function. METHODS The consequences of nine novel missense SLC1A2 variants for expression, transport and anion channel properties of EAAT2 expressed in mammalian cells were characterized by confocal microscopy, enzyme-linked immunosorbent and [3H]-D-aspartate uptake assays, and electrophysiological recordings. FINDINGS Ten of the 13 SLC1A2 variants mediated significant changes to EAAT2 expression and/or function. These molecular phenotypes were classified into three categories: overall loss-of-function (F249Sfs∗17, A432D, A439V, c.1421+1G>C), mild gain-of-anion-channel function (I276S, G360A), and mixed loss-of-transport/gain-of-anion-channel function (G82R, L85R, L85P, P289R). In contrast, L37P, H542R and I546T did not mediate significant changes to EAAT2 expression or function. Although specific clinical outcomes in individuals carrying variants within each category varied somewhat, the three categories overall translated into distinct clinical phenotypes in terms of phenotypic traits and severity. INTERPRETATION The observed associations between functional effects and clinical phenotypes produced by these variants offer valuable insights for future predictions of progression and severity of SLC1A2-associated neurodevelopmental disorders. Furthermore, these associations between variant-induced changes in EAAT2 function and phenotypic traits could assist in tailoring personalized treatments of these disorders. FUNDING This work was funded by the German Ministry of Education and Research and by the Lundbeck Foundation.
Collapse
Affiliation(s)
- Peter Kovermann
- Forschungszentrum Jülich GmbH, Institute of Biological Information Processing 1 (IBI-1), Molekular- und Zellphysiologie, Jülich D-52428, Germany
| | - Allan Bayat
- Department of Regional Health Research, University of Southern Denmark, Odense M DK-5230, Denmark; Department of Pediatrics, Danish Epilepsy Centre Filadelfia (member of ERN EpiCARE), Dianalund DK-4293, Denmark; Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre Filadelfia (member of ERN EpiCARE), Dianalund DK-4293, Denmark
| | - Christina D Fenger
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre Filadelfia (member of ERN EpiCARE), Dianalund DK-4293, Denmark; Amplexa Genetics, Odense C DK-5000, Denmark
| | - Lisette Leeuwen
- Department of Genetics, University Medical Center Groningen, Groningen, the Netherlands
| | | | - Artem Sharkov
- Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University, Moscow, Russia; Genomed Ltd., Moscow, Russia
| | - Virginie Levrat
- Service de Pédiatrie, Centre Hospitalier Annecy Genevois, Pringy, France
| | - Gaetan Lesca
- Department of Medical Genetics, University Hospital of Lyon and Claude Bernard Lyon University, Lyon, France; Pathophysiology and Genetics of Neuron and Muscle (PNMG), UCBL, CNRS UMR5261 - INSERM U1315, Lyon, France
| | - Laurence Perrin
- Department of Genetics, APHP Nord, Robert Debré University Hospital, Paris 75019, France
| | - Jonathan Levy
- Department of Genetics, APHP Nord, Robert Debré University Hospital, Paris 75019, France; Multi-site Medical Biology Laboratory SeqOIA-FMG2025, Paris 75014, France
| | - Christoph Fahlke
- Forschungszentrum Jülich GmbH, Institute of Biological Information Processing 1 (IBI-1), Molekular- und Zellphysiologie, Jülich D-52428, Germany
| | - Rikke S Møller
- Department of Regional Health Research, University of Southern Denmark, Odense M DK-5230, Denmark; Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre Filadelfia (member of ERN EpiCARE), Dianalund DK-4293, Denmark
| | - Anders A Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen Ø DK-2100, Denmark.
| |
Collapse
|
4
|
Han Z, Shen Y, Yan Y, Bin P, Zhang M, Gan Z. Metabolic reprogramming shapes post-translational modification in macrophages. Mol Aspects Med 2025; 102:101338. [PMID: 39977975 DOI: 10.1016/j.mam.2025.101338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/10/2024] [Accepted: 01/11/2025] [Indexed: 02/22/2025]
Abstract
Polarized macrophages undergo metabolic reprogramming, as well as extensive epigenetic and post-translational modifications (PTMs) switch. Metabolic remodeling and dynamic changes of PTMs lead to timely macrophage response to infection or antigenic stimulation, as well as its transition from a pro-inflammatory to a reparative phenotype. The transformation of metabolites in the microenvironment also determines the PTMs of macrophages. Here we reviewed the current understanding of the altered metabolites of glucose, lipids and amino acids in macrophages shape signaling and metabolism pathway during macrophage polarization via PTMs, and how these metabolites in some macrophage-associated diseases affect disease progression by shaping macrophage PTMs.
Collapse
Affiliation(s)
- Ziyi Han
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yinhao Shen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yuqi Yan
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Peng Bin
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Meimei Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Zhending Gan
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
5
|
Gadde RSK, Devaguptam S, Ren F, Mittal R, Dong L, Wang Y, Liu F. Chatbot-assisted quantum chemistry for explicitly solvated molecules. Chem Sci 2025; 16:3852-3864. [PMID: 39886429 PMCID: PMC11775654 DOI: 10.1039/d4sc08677e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 01/19/2025] [Indexed: 02/01/2025] Open
Abstract
Advanced computational chemistry software packages have transformed chemical research by leveraging quantum chemistry and molecular simulations. Despite their capabilities, the complicated design and the requirement for specialized computing hardware hinder their applications in the broad chemistry community. Here, we introduce AutoSolvateWeb, a chatbot-assisted computational platform that addresses both challenges simultaneously. This platform employs a user-friendly chatbot interface to guide non-experts through a multistep procedure involving various computational packages, enabling them to configure and execute complex quantum mechanical/molecular mechanical (QM/MM) simulations of explicitly solvated molecules. Moreover, this platform operates on cloud infrastructure, allowing researchers to run simulations without hardware configuration challenges. As a proof of concept, AutoSolvateWeb demonstrates that combining virtual agents with cloud computing can democratize access to sophisticated computational research tools.
Collapse
Affiliation(s)
- Rohit S K Gadde
- Department of Chemistry, Emory University Atlanta GA 30322 USA
| | | | - Fangning Ren
- Department of Chemistry, Emory University Atlanta GA 30322 USA
| | - Rajat Mittal
- Department of Physics and Astronomy, Clemson University Clemson SC 29631 USA
| | - Lechen Dong
- Department of Chemistry, Emory University Atlanta GA 30322 USA
| | - Yao Wang
- Department of Chemistry, Emory University Atlanta GA 30322 USA
| | - Fang Liu
- Department of Chemistry, Emory University Atlanta GA 30322 USA
| |
Collapse
|
6
|
Karagöl A, Karagöl T, Li M, Zhang S. Inhibitory Potential of the Truncated Isoforms on Glutamate Transporter Oligomerization Identified by Computational Analysis of Gene-Centric Isoform Maps. Pharm Res 2024; 41:2173-2187. [PMID: 39487385 PMCID: PMC11599315 DOI: 10.1007/s11095-024-03786-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/14/2024] [Indexed: 11/04/2024]
Abstract
OBJECTIVE Glutamate transporters play a key role in central nervous system physiology by maintaining excitatory neurotransmitter homeostasis. Biological assemblies of the transporters, consisting of cyclic homotrimers, emerge as a crucial aspect of glutamate transporter modulation. Hence targeting heteromerization promises an effective approach for modulator design. On the other hand, the dynamic nature of transcription allows for the generation of transporter isoforms in structurally distinct manners. METHODS The potential isoforms were identified through the analysis of computationally generated gene-centric isoform maps. The conserved features of isoform sequences were revealed by computational chemistry methods and subsequent structural analysis of AlphaFold2 predictions. Truncated isoforms were further subjected to a wide range of docking analyses, 50ns molecular dynamics simulations, and evolutionary coupling analyses. RESULTS Energetic landscapes of isoform-canonical transporter complexes suggested an inhibitory potential of truncated isoforms on glutamate transporter bio-assembly. Moreover, isoforms that mimic the trimerization domain (in particular, TM2 helices) exhibited stronger interactions with canonical transporters, underscoring the role of transmembrane helices in isoform interactions. Additionally, self-assembly dynamics observed in truncated isoforms mimicking canonical TM5 helices indicate a potential protective role against unwanted interactions with canonical transporters. CONCLUSION Our computational studies on glutamate transporters offer insights into the roles of alternative splicing on protein interactions and identifies potential drug targets for physiological or pathological processes.
Collapse
Affiliation(s)
- Alper Karagöl
- Istanbul University Istanbul Medical Faculty, Istanbul, Turkey
| | - Taner Karagöl
- Istanbul University Istanbul Medical Faculty, Istanbul, Turkey
| | - Mengke Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuguang Zhang
- Laboratory of Molecular Architecture, Media Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
| |
Collapse
|
7
|
Perrin F, Anderson LC, Mitchell SPC, Sinha P, Turchyna Y, Maesako M, Houser MCQ, Zhang C, Wagner SL, Tanzi RE, Berezovska O. PS1/gamma-secretase acts as rogue chaperone of glutamate transporter EAAT2/GLT-1 in Alzheimer's disease. Acta Neuropathol Commun 2024; 12:166. [PMID: 39434170 PMCID: PMC11492509 DOI: 10.1186/s40478-024-01876-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 10/13/2024] [Indexed: 10/23/2024] Open
Abstract
The recently discovered interaction between presenilin 1 (PS1), a subunit of γ-secretase involved in amyloid-β (Aβ) peptide production, and GLT-1, the major brain glutamate transporter (EAAT2 in the human), may link two pathological aspects of Alzheimer's disease: abnormal Aβ occurrence and neuronal network hyperactivity. In the current study, we employed a FRET-based fluorescence lifetime imaging microscopy (FLIM) to characterize the PS1/GLT-1 interaction in brain tissue from sporadic AD (sAD) patients. sAD brains showed significantly less PS1/GLT-1 interaction than those with frontotemporal lobar degeneration or non-demented controls. Familial AD (fAD) PS1 mutations, inducing a "closed" PS1 conformation similar to that in sAD brain, and gamma-secretase modulators (GSMs), inducing a "relaxed" conformation, respectively reduced and increased the interaction. Furthermore, PS1 influences GLT-1 cell surface expression and homomultimer formation, acting as a chaperone but not affecting GLT-1 stability. The diminished PS1/GLT-1 interaction suggests that these functions may not work properly in AD.
Collapse
Affiliation(s)
- Florian Perrin
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| | - Lauren C Anderson
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Shane P C Mitchell
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Priyanka Sinha
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Yuliia Turchyna
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Masato Maesako
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Mei C Q Houser
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Can Zhang
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
| | - Steven L Wagner
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
- VA San Diego Healthcare System, La Jolla, CA, 92161, USA
| | - Rudolph E Tanzi
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
| | - Oksana Berezovska
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| |
Collapse
|
8
|
Karagöl A, Karagöl T, Zhang S. Molecular Dynamic Simulations Reveal that Water-Soluble QTY-Variants of Glutamate Transporters EAA1, EAA2 and EAA3 Retain the Conformational Characteristics of Native Transporters. Pharm Res 2024; 41:1965-1977. [PMID: 39322794 PMCID: PMC11530497 DOI: 10.1007/s11095-024-03769-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024]
Abstract
OBJECTIVE Glutamate transporters play a crucial role in neurotransmitter homeostasis, but studying their structure and function is challenging due to their membrane-bound nature. This study aims to investigate whether water-soluble QTY-variants of glutamate transporters EAA1, EAA2 and EAA3 retain the conformational characteristics and dynamics of native membrane-bound transporters. METHODS Molecular dynamics simulations and comparative genomics were used to analyze the structural dynamics of both native transporters and their QTY-variants. Native transporters were simulated in lipid bilayers, while QTY-variants were simulated in aqueous solution. Lipid distortions, relative solvent accessibilities, and conformational changes were examined. Evolutionary conservation profiles were correlated with structural dynamics. Statistical analyses included multivariate analysis to account for confounding variables. RESULTS QTY-variants exhibited similar residue-wise conformational dynamics to their native counterparts, with correlation coefficients of 0.73 and 0.56 for EAA1 and EAA3, respectively (p < 0.001). Hydrophobic interactions of native helices correlated with water interactions of QTY- helices (rs = 0.4753, p < 0.001 for EAA1). QTY-variants underwent conformational changes resembling the outward-to-inward transition of native transporters. CONCLUSIONS Water-soluble QTY-variants retain key structural properties of native glutamate transporters and mimic aspects of native lipid interactions, including conformational flexibility. This research provides valuable insights into the conformational changes and molecular mechanisms of glutamate transport, potentially offering a new approach for studying membrane protein dynamics and drug interactions.
Collapse
Affiliation(s)
- Alper Karagöl
- Istanbul University Istanbul Medical Faculty, Istanbul, Turkey
| | - Taner Karagöl
- Istanbul University Istanbul Medical Faculty, Istanbul, Turkey
| | - Shuguang Zhang
- Laboratory of Molecular Architecture, Media Lab, Massachusetts Institute of Technology, Massachusetts Avenue, Cambridge, MA, 02139, USA.
| |
Collapse
|
9
|
Qiu B, Boudker O. Structural basis of the excitatory amino acid transporter 3 substrate recognition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611541. [PMID: 39282329 PMCID: PMC11398500 DOI: 10.1101/2024.09.05.611541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Excitatory amino acid transporters (EAATs) reside on cell surfaces and uptake substrates, including L-glutamate, L-aspartate, and D-aspartate, using ion gradients. Among five EAATs, EAAT3 is the only isoform that can efficiently transport L-cysteine, a substrate for glutathione synthesis. Recent work suggests that EAAT3 also transports the oncometabolite R-2-hydroxyglutarate (R-2HG). Here, we examined the structural basis of substrate promiscuity by determining the cryo-EM structures of EAAT3 bound to different substrates. We found that L-cysteine binds to EAAT3 in thiolate form, and EAAT3 recognizes different substrates by fine-tuning local conformations of the coordinating residues. However, using purified human EAAT3, we could not observe R-2HG binding or transport. Imaging of EAAT3 bound to L-cysteine revealed several conformational states, including an outward-facing state with a semi-open gate and a disrupted sodium-binding site. These structures illustrate that the full gate closure, coupled with the binding of the last sodium ion, occurs after substrate binding. Furthermore, we observed that different substrates affect how the transporter distributes between a fully outward-facing conformation and intermediate occluded states on a path to the inward-facing conformation, suggesting that translocation rates are substrate-dependent.
Collapse
Affiliation(s)
- Biao Qiu
- Department of Physiology & Biophysics, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021, USA
- Howard Hughes Medical Institute, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021, USA
| | - Olga Boudker
- Department of Physiology & Biophysics, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021, USA
- Howard Hughes Medical Institute, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021, USA
| |
Collapse
|
10
|
Gan Z, Guo Y, Zhao M, Ye Y, Liao Y, Liu B, Yin J, Zhou X, Yan Y, Yin Y, Ren W. Excitatory amino acid transporter supports inflammatory macrophage responses. Sci Bull (Beijing) 2024; 69:2405-2419. [PMID: 38614854 DOI: 10.1016/j.scib.2024.03.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/28/2024] [Accepted: 03/25/2024] [Indexed: 04/15/2024]
Abstract
Excitatory amino acid transporters (EAATs) are responsible for excitatory amino acid transportation and are associated with auto-immune diseases in the central nervous system and peripheral tissues. However, the subcellular location and function of EAAT2 in macrophages are still obscure. In this study, we demonstrated that LPS stimulation increases expression of EAAT2 (coded by Slc1a2) via NF-κB signaling. EAAT2 is necessary for inflammatory macrophage polarization through sustaining mTORC1 activation. Mechanistically, lysosomal EAAT2 mediates lysosomal glutamate and aspartate efflux to maintain V-ATPase activation, which sustains macropinocytosis and mTORC1. We also found that mice with myeloid depletion of Slc1a2 show alleviated inflammatory responses in LPS-induced systemic inflammation and high-fat diet induced obesity. Notably, patients with type II diabetes (T2D) have a higher level of expression of lysosomal EAAT2 and activation of mTORC1 in blood macrophages. Taken together, our study links the subcellular location of amino acid transporters with the fate decision of immune cells, which provides potential therapeutic targets for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Zhending Gan
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yan Guo
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Muyang Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuyi Ye
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuexia Liao
- School of Nursing & School of Public Health, Yangzhou University, Yangzhou 225009, China
| | - Bingnan Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xihong Zhou
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Yuqi Yan
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yulong Yin
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Wenkai Ren
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
11
|
Borowska AM, Chiariello MG, Garaeva AA, Rheinberger J, Marrink SJ, Paulino C, Slotboom DJ. Structural basis of the obligatory exchange mode of human neutral amino acid transporter ASCT2. Nat Commun 2024; 15:6570. [PMID: 39095408 PMCID: PMC11297037 DOI: 10.1038/s41467-024-50888-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
ASCT2 is an obligate exchanger of neutral amino acids, contributing to cellular amino acid homeostasis. ASCT2 belongs to the same family (SLC1) as Excitatory Amino Acid Transporters (EAATs) that concentrate glutamate in the cytosol. The mechanism that makes ASCT2 an exchanger rather than a concentrator remains enigmatic. Here, we employ cryo-electron microscopy and molecular dynamics simulations to elucidate the structural basis of the exchange mechanism of ASCT2. We establish that ASCT2 binds three Na+ ions per transported substrate and visits a state that likely acts as checkpoint in preventing Na+ ion leakage, both features shared with EAATs. However, in contrast to EAATs, ASCT2 retains one Na+ ion even under Na+-depleted conditions. We demonstrate that ASCT2 cannot undergo the structural transition in TM7 that is essential for the concentrative transport cycle of EAATs. This structural rigidity and the high-affinity Na+ binding site effectively confine ASCT2 to an exchange mode.
Collapse
Affiliation(s)
- Anna M Borowska
- Faculty of Science and Engineering, Groningen Biomolecular Sciences and Biotechnology, Membrane Enzymology Group, University of Groningen, Groningen, the Netherlands
| | - Maria Gabriella Chiariello
- Faculty of Science and Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, Molecular Dynamics Group, University of Groningen, Groningen, the Netherlands
| | - Alisa A Garaeva
- Faculty of Science and Engineering, Groningen Biomolecular Sciences and Biotechnology, Membrane Enzymology Group, University of Groningen, Groningen, the Netherlands
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Jan Rheinberger
- Faculty of Science and Engineering, Groningen Biomolecular Sciences and Biotechnology, Membrane Enzymology Group, University of Groningen, Groningen, the Netherlands
- Biochemistry Center Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Siewert J Marrink
- Faculty of Science and Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, Molecular Dynamics Group, University of Groningen, Groningen, the Netherlands
| | - Cristina Paulino
- Faculty of Science and Engineering, Groningen Biomolecular Sciences and Biotechnology, Membrane Enzymology Group, University of Groningen, Groningen, the Netherlands.
- Biochemistry Center Heidelberg, Heidelberg University, Heidelberg, Germany.
| | - Dirk J Slotboom
- Faculty of Science and Engineering, Groningen Biomolecular Sciences and Biotechnology, Membrane Enzymology Group, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
12
|
van Veggel L, Mocking TA, Sijben HJ, Liu R, Gorostiola González M, Dilweg MA, Royakkers J, Li A, Kumar V, Dong YY, Bullock A, Sauer DB, Diliën H, van Westen GJ, Schreiber R, Heitman LH, Vanmierlo T. Still in Search for an EAAT Activator: GT949 Does Not Activate EAAT2, nor EAAT3 in Impedance and Radioligand Uptake Assays. ACS Chem Neurosci 2024; 15:1424-1431. [PMID: 38478848 PMCID: PMC10995951 DOI: 10.1021/acschemneuro.3c00731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Excitatory amino acid transporters (EAATs) are important regulators of amino acid transport and in particular glutamate. Recently, more interest has arisen in these transporters in the context of neurodegenerative diseases. This calls for ways to modulate these targets to drive glutamate transport, EAAT2 and EAAT3 in particular. Several inhibitors (competitive and noncompetitive) exist to block glutamate transport; however, activators remain scarce. Recently, GT949 was proposed as a selective activator of EAAT2, as tested in a radioligand uptake assay. In the presented research, we aimed to validate the use of GT949 to activate EAAT2-driven glutamate transport by applying an innovative, impedance-based, whole-cell assay (xCELLigence). A broad range of GT949 concentrations in a variety of cellular environments were tested in this assay. As expected, no activation of EAAT3 could be detected. Yet, surprisingly, no biological activation of GT949 on EAAT2 could be observed in this assay either. To validate whether the impedance-based assay was not suited to pick up increased glutamate uptake or if the compound might not induce activation in this setup, we performed radioligand uptake assays. Two setups were utilized; a novel method compared to previously published research, and in a reproducible fashion copying the methods used in the existing literature. Nonetheless, activation of neither EAAT2 nor EAAT3 could be observed in these assays. Furthermore, no evidence of GT949 binding or stabilization of purified EAAT2 could be observed in a thermal shift assay. To conclude, based on experimental evidence in the present study GT949 requires specific assay conditions, which are difficult to reproduce, and the compound cannot simply be classified as an activator of EAAT2 based on the presented evidence. Hence, further research is required to develop the tools needed to identify new EAAT modulators and use their potential as a therapeutic target.
Collapse
Affiliation(s)
- Lieve van Veggel
- Department
of Neuroscience, BIOMED Biomedical Research Institute, Faculty of
Medicine and Life Sciences, Hasselt University, 3590 Hasselt, Belgium
- Department
of Psychiatry and Neuropsychology, Division of Translational Neuroscience,
European Graduate School of Neuroscience, School for Mental Health
and Neuroscience, Maastricht University, 6200 Maastricht, The Netherlands
- University
MS Center (UMSC), 3900 Hasselt-Pelt, Belgium
| | - Tamara A.M. Mocking
- Leiden
Academic Centre for Drug Research (LACDR), Division of Drug Discovery
and Safety, Leiden University, 2333 Leiden, The Netherlands
| | - Hubert J. Sijben
- Leiden
Academic Centre for Drug Research (LACDR), Division of Drug Discovery
and Safety, Leiden University, 2333 Leiden, The Netherlands
| | - Rongfang Liu
- Leiden
Academic Centre for Drug Research (LACDR), Division of Drug Discovery
and Safety, Leiden University, 2333 Leiden, The Netherlands
| | - Marina Gorostiola González
- Leiden
Academic Centre for Drug Research (LACDR), Division of Drug Discovery
and Safety, Leiden University, 2333 Leiden, The Netherlands
| | - Majlen A. Dilweg
- Leiden
Academic Centre for Drug Research (LACDR), Division of Drug Discovery
and Safety, Leiden University, 2333 Leiden, The Netherlands
| | - Jeroen Royakkers
- Sensor
Engineering
Department, Faculty of Science and Engineering, Maastricht University, 6200 Maastricht, The Netherlands
| | - Anna Li
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, OX3 7BN Oxford, U.K.
| | - Vijay Kumar
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, OX3 7BN Oxford, U.K.
| | - Yin Yao Dong
- Nuffield
Department of Clinical Neurosciences, Weatherall Institute of Molecular
Medicine, University of Oxford, OX3 7BN Oxford, U.K.
| | - Alex Bullock
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, OX3 7BN Oxford, U.K.
| | - David B. Sauer
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, OX3 7BN Oxford, U.K.
| | - Hanne Diliën
- Sensor
Engineering
Department, Faculty of Science and Engineering, Maastricht University, 6200 Maastricht, The Netherlands
| | - Gerard J.P. van Westen
- Leiden
Academic Centre for Drug Research (LACDR), Division of Drug Discovery
and Safety, Leiden University, 2333 Leiden, The Netherlands
| | - Rudy Schreiber
- Section
of Psychopharmacology, Neuropsychology and Psychopharmacology, Faculty
of Psychology and Neuroscience, Maastricht
University, 6200 Maastricht, The Netherlands
| | - Laura H. Heitman
- Leiden
Academic Centre for Drug Research (LACDR), Division of Drug Discovery
and Safety, Leiden University, 2333 Leiden, The Netherlands
- Oncode
Institute, Einsteinweg
55, 2333 Leiden, The Netherlands
| | - Tim Vanmierlo
- Department
of Neuroscience, BIOMED Biomedical Research Institute, Faculty of
Medicine and Life Sciences, Hasselt University, 3590 Hasselt, Belgium
- Department
of Psychiatry and Neuropsychology, Division of Translational Neuroscience,
European Graduate School of Neuroscience, School for Mental Health
and Neuroscience, Maastricht University, 6200 Maastricht, The Netherlands
- University
MS Center (UMSC), 3900 Hasselt-Pelt, Belgium
| |
Collapse
|
13
|
Perrin F, Sinha P, Mitchell SPC, Sadek M, Maesako M, Berezovska O. Identification of PS1/gamma-secretase and glutamate transporter GLT-1 interaction sites. J Biol Chem 2024; 300:107172. [PMID: 38499151 PMCID: PMC11015137 DOI: 10.1016/j.jbc.2024.107172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 02/02/2024] [Accepted: 03/05/2024] [Indexed: 03/20/2024] Open
Abstract
The recently discovered interaction between Presenilin 1 (PS1), a catalytic subunit of γ-secretase responsible for generating amyloid-β peptides, and GLT-1, a major glutamate transporter in the brain (EAAT2), provides a mechanistic link between these two key factors involved in Alzheimer's disease (AD) pathology. Modulating this interaction can be crucial to understand the consequence of such crosstalk in AD context and beyond. However, the interaction sites between these two proteins are unknown. Herein, we utilized an alanine scanning approach coupled with FRET-based fluorescence lifetime imaging microscopy to identify the interaction sites between PS1 and GLT-1 in their native environment within intact cells. We found that GLT-1 residues at position 276 to 279 (TM5) and PS1 residues at position 249 to 252 (TM6) are crucial for GLT-1-PS1 interaction. These results have been cross validated using AlphaFold Multimer prediction. To further investigate whether this interaction of endogenously expressed GLT-1 and PS1 can be prevented in primary neurons, we designed PS1/GLT-1 cell-permeable peptides (CPPs) targeting the PS1 or GLT-1 binding site. We used HIV TAT domain to allow for cell penetration which was assayed in neurons. First, we assessed the toxicity and penetration of CPPs by confocal microscopy. Next, to ensure the efficiency of CPPs, we monitored the modulation of GLT-1-PS1 interaction in intact neurons by fluorescence lifetime imaging microscopy. We saw significantly less interaction between PS1 and GLT-1 with both CPPs. Our study establishes a new tool to study the functional aspect of GLT-1-PS1 interaction and its relevance in normal physiology and AD models.
Collapse
Affiliation(s)
- Florian Perrin
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Priyanka Sinha
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Shane Patrick Clancy Mitchell
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Michael Sadek
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Masato Maesako
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Oksana Berezovska
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.
| |
Collapse
|
14
|
Takahashi K, Sato K. The Conventional and Breakthrough Tool for the Study of L-Glutamate Transporters. MEMBRANES 2024; 14:77. [PMID: 38668105 PMCID: PMC11052088 DOI: 10.3390/membranes14040077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/26/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024]
Abstract
In our recent report, we clarified the direct interaction between the excitatory amino acid transporter (EAAT) 1/2 and polyunsaturated fatty acids (PUFAs) by applying electrophysiological and molecular biological techniques to Xenopus oocytes. Xenopus oocytes have a long history of use in the scientific field, but they are still attractive experimental systems for neuropharmacological studies. We will therefore summarize the pharmacological significance, advantages (especially in the study of EAAT2), and experimental techniques that can be applied to Xenopus oocytes; our new findings concerning L-glutamate (L-Glu) transporters and PUFAs; and the significant outcomes of our data. The data obtained from electrophysiological and molecular biological studies of Xenopus oocytes have provided us with further important questions, such as whether or not some PUFAs can modulate EAATs as allosteric modulators and to what extent docosahexaenoic acid (DHA) affects neurotransmission and thereby affects brain functions. Xenopus oocytes have great advantages in the studies about the interactions between molecules and functional proteins, especially in the case when the expression levels of the proteins are small in cell culture systems without transfections. These are also proper to study the mechanisms underlying the interactions. Based on the data collected in Xenopus oocyte experiments, we can proceed to the next step, i.e., the physiological roles of the compounds and their significances. In the case of EAAT2, the effects on the neurotransmission should be examined by electrophysiological approach using acute brain slices. For new drug development, pharmacokinetics pharmacodynamics (PKPD) data and blood brain barrier (BBB) penetration data are also necessary. In order not to miss the promising candidate compounds at the primary stages of drug development, we should reconsider using Xenopus oocytes in the early phase of drug development.
Collapse
Grants
- a Research Grant on Regulatory Harmonization and Evaluation of Pharmaceuticals, Medical Devices, Regenerative and Cellular Therapy Products, Gene Therapy Products, and Cosmetics from AMED, Japan Japan Agency for Medical Research and Development
- KAKENHI 18700373, 21700422, 17K08330 Ministry of Education, Culture, Sports, Science and Technology
- a Grant for the Program for Promotion of Fundamental Studies in Health Sciences of NIBIO National Institute of Biomedical Innovation, Health and Nutrition
- a grant for Research on Risks of Chemicals, a Labor Science Research Grant for Research on New Drug Development MHLW
- a Grant-in-Aid from Hoansha Foundation Hoansha Foundation
Collapse
Affiliation(s)
| | - Kaoru Sato
- Laboratory of Neuropharmacology, Division of Pharmacology, National Institute of Health Sciences, Kanagawa 210-9501, Japan;
| |
Collapse
|
15
|
Cao W, Xiong S, Ji W, Wei H, Ma F, Mao L. Neuroprotection Role of Vitamin C by Upregulating Glutamate Transporter-1 in Auditory Cortex of Noise-Induced Tinnitus Animal Model. ACS Chem Neurosci 2024; 15:1197-1205. [PMID: 38451201 DOI: 10.1021/acschemneuro.3c00765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
Vitamin C (Vc) plays a pivotal role in a series of pathological processes, such as tumors, immune diseases, and neurological disorders. However, its therapeutic potential for tinnitus management remains unclear. In this study, we find that Vc relieves tinnitus in noise-exposed rats. In the 7-day therapy groups, spontaneous firing rate (SFR) increases from 1.17 ± 0.10 Hz to 1.77 ± 0.15 Hz after noise exposure. Vc effectively reduces the elevated SFR to 0.99 ± 0.07 and 0.55 ± 0.05 Hz at different doses. The glutamate level in auditory cortex of noise-exposed rats (3.78 ± 0.42 μM) increases relative to that in the control group (1.34 ± 0.22 μM). High doses of Vc (500 mg/kg/day) effectively reduce the elevated glutamate levels (1.49 ± 0.28 μM). Mechanistic studies show that the expression of glutamate transporter 1 (GLT-1) is impaired following noise exposure and that Vc treatment effectively restores GLT-1 expression in the auditory cortex. Meanwhile, the GLT-1 inhibitor, dl-threo-beta-benzyloxyaspartic acid (dl-TBOA), invalidates the protection role of Vc. Our finding shows that Vc substantially enhances glutamate clearance by upregulating GLT-1 and consequently alleviates noise-induced tinnitus. This study provides valuable insight into a novel biological target for the development of therapeutic interventions that may prevent the onset of tinnitus.
Collapse
Affiliation(s)
- Wanxin Cao
- Department of Otolaryngology-Head and Neck Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Shan Xiong
- Department of Otolaryngology-Head and Neck Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Wenliang Ji
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Huan Wei
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Furong Ma
- Department of Otolaryngology-Head and Neck Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
16
|
Tu G, Fu T, Zheng G, Xu B, Gou R, Luo D, Wang P, Xue W. Computational Chemistry in Structure-Based Solute Carrier Transporter Drug Design: Recent Advances and Future Perspectives. J Chem Inf Model 2024; 64:1433-1455. [PMID: 38294194 DOI: 10.1021/acs.jcim.3c01736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Solute carrier transporters (SLCs) are a class of important transmembrane proteins that are involved in the transportation of diverse solute ions and small molecules into cells. There are approximately 450 SLCs within the human body, and more than a quarter of them are emerging as attractive therapeutic targets for multiple complex diseases, e.g., depression, cancer, and diabetes. However, only 44 unique transporters (∼9.8% of the SLC superfamily) with 3D structures and specific binding sites have been reported. To design innovative and effective drugs targeting diverse SLCs, there are a number of obstacles that need to be overcome. However, computational chemistry, including physics-based molecular modeling and machine learning- and deep learning-based artificial intelligence (AI), provides an alternative and complementary way to the classical drug discovery approach. Here, we present a comprehensive overview on recent advances and existing challenges of the computational techniques in structure-based drug design of SLCs from three main aspects: (i) characterizing multiple conformations of the proteins during the functional process of transportation, (ii) identifying druggability sites especially the cryptic allosteric ones on the transporters for substrates and drugs binding, and (iii) discovering diverse small molecules or synthetic protein binders targeting the binding sites. This work is expected to provide guidelines for a deep understanding of the structure and function of the SLC superfamily to facilitate rational design of novel modulators of the transporters with the aid of state-of-the-art computational chemistry technologies including artificial intelligence.
Collapse
Affiliation(s)
- Gao Tu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Tingting Fu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | | | - Binbin Xu
- Chengdu Sintanovo Biotechnology Co., Ltd., Chengdu 610200, China
| | - Rongpei Gou
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Ding Luo
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Panpan Wang
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China
| | - Weiwei Xue
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
17
|
Xia R, Peng HF, Zhang X, Zhang HS. Comprehensive review of amino acid transporters as therapeutic targets. Int J Biol Macromol 2024; 260:129646. [PMID: 38272411 DOI: 10.1016/j.ijbiomac.2024.129646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
The solute carrier (SLC) family, with more than 400 membrane-bound proteins, facilitates the transport of a wide array of substrates such as nutrients, ions, metabolites, and drugs across biological membranes. Amino acid transporters (AATs) are membrane transport proteins that mediate transfer of amino acids into and out of cells or cellular organelles. AATs participate in many important physiological functions including nutrient supply, metabolic transformation, energy homeostasis, redox regulation, and neurological regulation. Several AATs have been found to significantly impact the progression of human malignancies, and dysregulation of AATs results in metabolic reprogramming affecting tumor growth and progression. However, current clinical therapies that directly target AATs have not been developed. The purpose of this review is to highlight the structural and functional diversity of AATs, the molecular mechanisms in human diseases such as tumors, kidney diseases, and emerging therapeutic strategies for targeting AATs.
Collapse
Affiliation(s)
- Ran Xia
- College of Chemistry and Life Science, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing 100124, China
| | - Hai-Feng Peng
- College of Chemistry and Life Science, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing 100124, China
| | - Xing Zhang
- College of Chemistry and Life Science, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing 100124, China
| | - Hong-Sheng Zhang
- College of Chemistry and Life Science, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing 100124, China.
| |
Collapse
|
18
|
Zhang W, Miura A, Abu Saleh MM, Shimizu K, Mita Y, Tanida R, Hirako S, Shioda S, Gmyr V, Kerr-Conte J, Pattou F, Jin C, Kanai Y, Sasaki K, Minamino N, Sakoda H, Nakazato M. The NERP-4-SNAT2 axis regulates pancreatic β-cell maintenance and function. Nat Commun 2023; 14:8158. [PMID: 38071217 PMCID: PMC10710447 DOI: 10.1038/s41467-023-43976-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Insulin secretion from pancreatic β cells is regulated by multiple stimuli, including nutrients, hormones, neuronal inputs, and local signalling. Amino acids modulate insulin secretion via amino acid transporters expressed on β cells. The granin protein VGF has dual roles in β cells: regulating secretory granule formation and functioning as a multiple peptide precursor. A VGF-derived peptide, neuroendocrine regulatory peptide-4 (NERP-4), increases Ca2+ influx in the pancreata of transgenic mice expressing apoaequorin, a Ca2+-induced bioluminescent protein complex. NERP-4 enhances glucose-stimulated insulin secretion from isolated human and mouse islets and β-cell-derived MIN6-K8 cells. NERP-4 administration reverses the impairment of β-cell maintenance and function in db/db mice by enhancing mitochondrial function and reducing metabolic stress. NERP-4 acts on sodium-coupled neutral amino acid transporter 2 (SNAT2), thereby increasing glutamine, alanine, and proline uptake into β cells and stimulating insulin secretion. SNAT2 deletion and inhibition abolish the protective effects of NERP-4 on β-cell maintenance. These findings demonstrate a novel autocrine mechanism of β-cell maintenance and function that is mediated by the peptide-amino acid transporter axis.
Collapse
Affiliation(s)
- Weidong Zhang
- Department of Bioregulatory Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Ayako Miura
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
- Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Md Moin Abu Saleh
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
- Department of Postgraduate Studies and Research, Royal College of Surgeons in Ireland - Bahrain, Busaiteen, Bahrain
| | - Koichiro Shimizu
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yuichiro Mita
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Ryota Tanida
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Satoshi Hirako
- Department of Health and Nutrition, University of Human Arts and Sciences, Saitama, Japan
| | - Seiji Shioda
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Shonan University of Medical Sciences, Yokohama, Japan
| | - Valery Gmyr
- Université de Lille, Inserm, Campus Hospitalo-Universitaire de Lille, Institut Pasteur de Lille, U1190-EGID, F-59000, Lille, France
| | - Julie Kerr-Conte
- Université de Lille, Inserm, Campus Hospitalo-Universitaire de Lille, Institut Pasteur de Lille, U1190-EGID, F-59000, Lille, France
| | - Francois Pattou
- Université de Lille, Inserm, Campus Hospitalo-Universitaire de Lille, Institut Pasteur de Lille, U1190-EGID, F-59000, Lille, France
| | - Chunhuan Jin
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoshikatsu Kanai
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kazuki Sasaki
- Department of Peptidomics, Sasaki Foundation, Tokyo, Japan
| | - Naoto Minamino
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center Research, Suita, Japan
| | - Hideyuki Sakoda
- Department of Bioregulatory Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Masamitsu Nakazato
- Department of Bioregulatory Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.
- Institute for Protein Research, Osaka University, Osaka, Japan.
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan.
| |
Collapse
|
19
|
Gorostiola González M, Sijben HJ, Dall’ Acqua L, Liu R, IJzerman AP, Heitman LH, van Westen GJP. Molecular insights into disease-associated glutamate transporter (EAAT1 / SLC1A3) variants using in silico and in vitro approaches. Front Mol Biosci 2023; 10:1286673. [PMID: 38074092 PMCID: PMC10702391 DOI: 10.3389/fmolb.2023.1286673] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/26/2023] [Indexed: 03/15/2025] Open
Abstract
Glutamate is an essential excitatory neurotransmitter and an intermediate for energy metabolism. Depending on the tumor site, cancer cells have increased or decreased expression of excitatory amino acid transporter 1 or 2 (EAAT1/2, SLC1A3/2) to regulate glutamate uptake for the benefit of tumor growth. Thus, EAAT1/2 may be an attractive target for therapeutic intervention in oncology. Genetic variation of EAAT1 has been associated with rare cases of episodic ataxia, but the occurrence and functional contribution of EAAT1 mutants in other diseases, such as cancer, is poorly understood. Here, 105 unique somatic EAAT1 mutations were identified in cancer patients from the Genomic Data Commons dataset. Using EAAT1 crystal structures and in silico studies, eight mutations were selected based on their close proximity to the orthosteric or allosteric ligand binding sites and the predicted change in ligand binding affinity. In vitro functional assessment in a live-cell, impedance-based phenotypic assay demonstrated that these mutants differentially affect L-glutamate and L-aspartate transport, as well as the inhibitory potency of an orthosteric (TFB-TBOA) and allosteric (UCPH-101) inhibitor. Moreover, two episodic ataxia-related mutants displayed functional responses that were in line with literature, which confirmed the validity of our assay. Of note, ataxia-related mutant M128R displayed inhibitor-induced functional responses never described before. Finally, molecular dynamics (MD) simulations were performed to gain mechanistic insights into the observed functional effects. Taken together, the results in this work demonstrate 1) the suitability of the label-free phenotypic method to assess functional variation of EAAT1 mutants and 2) the opportunity and challenges of using in silico techniques to rationalize the in vitro phenotype of disease-relevant mutants.
Collapse
Affiliation(s)
- Marina Gorostiola González
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
- Oncode Institute, Leiden, Netherlands
| | - Hubert J. Sijben
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Laura Dall’ Acqua
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Rongfang Liu
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Adriaan P. IJzerman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Laura H. Heitman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
- Oncode Institute, Leiden, Netherlands
| | - Gerard J. P. van Westen
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| |
Collapse
|
20
|
Perrin F, Anderson LC, Mitchell SPC, Sinha P, Turchyna Y, Maesako M, Houser MCQ, Zhang C, Wagner SL, Tanzi RE, Berezovska O. PS1/gamma-secretase acts as rogue chaperone of glutamate transporter EAAT2/GLT-1 in Alzheimer's disease. RESEARCH SQUARE 2023:rs.3.rs-3495211. [PMID: 37986905 PMCID: PMC10659539 DOI: 10.21203/rs.3.rs-3495211/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The recently discovered interaction between presenilin 1 (PS1), a catalytic subunit of γ-secretase responsible for the generation of amyloid-β(Aβ) peptides, and GLT-1, the major glutamate transporter in the brain (EAAT2 in the human) may provide a mechanistic link between two important pathological aspects of Alzheimer's disease (AD): abnormal Aβoccurrence and neuronal network hyperactivity. In the current study, we employed a FRET-based approach, fluorescence lifetime imaging microscopy (FLIM), to characterize the PS1/GLT-1 interaction in its native environment in the brain tissue of sporadic AD (sAD) patients. There was significantly less interaction between PS1 and GLT-1 in sAD brains, compared to tissue from patients with frontotemporal lobar degeneration (FTLD), or non-demented age-matched controls. Since PS1 has been shown to adopt pathogenic "closed" conformation in sAD but not in FTLD, we assessed the impact of changes in PS1 conformation on the interaction. Familial AD (fAD) PS1 mutations which induce a "closed" PS1 conformation similar to that in sAD brain and gamma-secretase modulators (GSMs) which induce a "relaxed" conformation, reduced and increased the interaction, respectively. This indicates that PS1 conformation seems to have a direct effect on the interaction with GLT-1. Furthermore, using biotinylation/streptavidin pull-down, western blotting, and cycloheximide chase assays, we determined that the presence of PS1 increased GLT-1 cell surface expression and GLT-1 homomultimer formation, but did not impact GLT-1 protein stability. Together, the current findings suggest that the newly described PS1/GLT-1 interaction endows PS1 with chaperone activity, modulating GLT-1 transport to the cell surface and stabilizing the dimeric-trimeric states of the protein. The diminished PS1/GLT-1 interaction suggests that these functions of the interaction may not work properly in AD.
Collapse
|
21
|
Dvorak V, Superti-Furga G. Structural and functional annotation of solute carrier transporters: implication for drug discovery. Expert Opin Drug Discov 2023; 18:1099-1115. [PMID: 37563933 DOI: 10.1080/17460441.2023.2244760] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
INTRODUCTION Solute carriers (SLCs) represent the largest group of membrane transporters in the human genome. They play a central role in controlling the compartmentalization of metabolism and most of this superfamily is linked to human disease. Despite being in general considered druggable and attractive therapeutic targets, many SLCs remain poorly annotated, both functionally and structurally. AREAS COVERED The aim of this review is to provide an overview of functional and structural parameters of SLCs that play important roles in their druggability. To do this, the authors provide an overview of experimentally solved structures of human SLCs, with emphasis on structures solved in complex with chemical modulators. From the functional annotations, the authors focus on SLC localization and SLC substrate annotations. EXPERT OPINION Recent progress in the structural and functional annotations allows to refine the SLC druggability index. Particularly the increasing number of experimentally solved structures of SLCs provides insights into mode-of-action of a significant number of chemical modulators of SLCs.
Collapse
Affiliation(s)
- Vojtech Dvorak
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
22
|
Perrin F, Sinha P, Mitchell S, Maesako M, Berezovska O. Identification of PS1/gamma-secretase and glutamate transporter GLT-1 interaction sites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542955. [PMID: 37398024 PMCID: PMC10312500 DOI: 10.1101/2023.05.30.542955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The recently discovered interaction between Presenilin 1 (PS1), a catalytic subunit of γ-secretase responsible for generating amyloid-β (Aβ) peptides, and GLT-1, a major glutamate transporter in the brain (EAAT2) provides a mechanistic link between these two key factors involved in Alzheimer's disease (AD) pathology. Modulating this interaction can be crucial to understand the consequence of such crosstalk in AD context and beyond. However, the interaction sites between these two proteins are unknown. Herein, we utilized an alanine scanning approach coupled with FRET-based fluorescence lifetime imaging microscopy (FLIM) to identify the interaction sites between PS1 and GLT-1 in their native environment within intact cells. We found that GLT-1 residues at position 276 to 279 (TM5) and PS1 residues at position 249 to 252 (TM6) are crucial for GLT-1/PS1 interaction. These results have been cross validated using AlphaFold Multimer prediction. To further investigate whether this interaction of endogenously expressed GLT-1 and PS1 can be prevented in primary neurons, we designed PS1/GLT-1 cell-permeable peptides (CPPs) targeting the PS1 or GLT-1 binding site. We used HIV TAT domain to allow for cell penetration which was assayed in neurons. First, we assessed the toxicity and penetration of CPPs by confocal microscopy. Next, to ensure the efficiency of CPPs, we monitored the modulation of GLT-1/PS1 interaction in intact neurons by FLIM. We saw significantly less interaction between PS1 and GLT-1 with both CPPs. Our study establishes a new tool to study the functional aspect of GLT-1/PS1 interaction and its relevance in normal physiology and AD models.
Collapse
|
23
|
Qiu B, Boudker O. Symport and antiport mechanisms of human glutamate transporters. Nat Commun 2023; 14:2579. [PMID: 37142617 PMCID: PMC10160106 DOI: 10.1038/s41467-023-38120-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/17/2023] [Indexed: 05/06/2023] Open
Abstract
Excitatory amino acid transporters (EAATs) uptake glutamate into glial cells and neurons. EAATs achieve million-fold transmitter gradients by symporting it with three sodium ions and a proton, and countertransporting a potassium ion via an elevator mechanism. Despite the availability of structures, the symport and antiport mechanisms still need to be clarified. We report high-resolution cryo-EM structures of human EAAT3 bound to the neurotransmitter glutamate with symported ions, potassium ions, sodium ions alone, or without ligands. We show that an evolutionarily conserved occluded translocation intermediate has a dramatically higher affinity for the neurotransmitter and the countertransported potassium ion than outward- or inward-facing transporters and plays a crucial role in ion coupling. We propose a comprehensive ion coupling mechanism involving a choreographed interplay between bound solutes, conformations of conserved amino acid motifs, and movements of the gating hairpin and the substrate-binding domain.
Collapse
Affiliation(s)
- Biao Qiu
- Department of Physiology & Biophysics, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10021, USA.
| | - Olga Boudker
- Department of Physiology & Biophysics, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10021, USA.
- Howard Hughes Medical Institute, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10021, USA.
| |
Collapse
|
24
|
Fontana IC, Souza DG, Souza DO, Gee A, Zimmer ER, Bongarzone S. A Medicinal Chemistry Perspective on Excitatory Amino Acid Transporter 2 Dysfunction in Neurodegenerative Diseases. J Med Chem 2023; 66:2330-2346. [PMID: 36787643 PMCID: PMC9969404 DOI: 10.1021/acs.jmedchem.2c01572] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The excitatory amino acid transporter 2 (EAAT2) plays a key role in the clearance and recycling of glutamate - the major excitatory neurotransmitter in the mammalian brain. EAAT2 loss/dysfunction triggers a cascade of neurodegenerative events, comprising glutamatergic excitotoxicity and neuronal death. Nevertheless, our current knowledge regarding EAAT2 in neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD), is restricted to post-mortem analysis of brain tissue and experimental models. Thus, detecting EAAT2 in the living human brain might be crucial to improve diagnosis/therapy for ALS and AD. This perspective article describes the role of EAAT2 in physio/pathological processes and provides a structure-activity relationship of EAAT2-binders, bringing two perspectives: therapy (activators) and diagnosis (molecular imaging tools).
Collapse
Affiliation(s)
- Igor C Fontana
- School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London, London SE1 7EH, United Kingdom.,Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, 90035-003 Porto Alegre, Brazil.,Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Blickagången 16 - Neo floor seventh, 141 83 Stockholm, Sweden
| | - Débora G Souza
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, 90035-003 Porto Alegre, Brazil.,Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, Av. Ipiranga, 6681 Porto Alegre, Brazil
| | - Diogo O Souza
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, 90035-003 Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, 90035-003 Porto Alegre, Brazil
| | - Antony Gee
- School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London, London SE1 7EH, United Kingdom
| | - Eduardo R Zimmer
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, 90035-003 Porto Alegre, Brazil.,Department of Pharmacology, Universidade Federal do Rio Grande do Sul, Av. Sarmento Leite 500, sala, 90035-003 Porto Alegre, Brazil.,Graduate Program in Biological Sciences: Biochemistry (PPGBioq), and Pharmacology and Therapeutics (PPGFT), Universidade Federal do Rio Grande do Sul, Av. Sarmento Leite 500, sala, 305 Porto Alegre, Brazil.,Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, Av. Ipiranga, 6681 Porto Alegre, Brazil.,McGill University Research Centre for Studies in Aging, McGill University, Montreal, Quebec H4H 1R3, Canada
| | - Salvatore Bongarzone
- School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London, London SE1 7EH, United Kingdom
| |
Collapse
|