1
|
Liu M, Xu S, Marrazza G. Assembly of adaptive engineering aptamers for Escherichia coli and their application in all-in-one rapid detection. Mikrochim Acta 2025; 192:272. [PMID: 40167799 DOI: 10.1007/s00604-025-07138-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
Multivalent engineering aptamers (multi-Apts) adaptive and specific to whole Escherichia coli (E. coli: CMCC 44102) cells based on hybridization chain reaction (HCR) were constructed for the first time. The dissociation constant (Kd) value for these multi-Apts was 48 nM, demonstrating a higher affinity than that of monovalent aptamers (mono-Apts) (Kd = 102 nM). Furthermore, the reaction equilibrium of multi-Apts was achieved within 20 min, with a reaction rate twice that of mono-Apts. To validate the exceptional performance of these multi-Apts, they were employed as recognition elements in conjunction with gold nanoparticles (AuNPs) colorimetric assays for the all-in-one rapid detection of E. coli. This method exhibited a linear detection range from 1 × 102 to 1 × 10⁷ CFU mL⁻1, achieving a limit of detection (LOD) as low as 19 CFU mL⁻1. The recovery of this method in tap water and milk were 85.7% to 101% and 81.8% to 98.2%, respectively. The results indicated that this method not only provided a wide detection range but also exhibited high sensitivity and accuracy. Additionally, this study demonstrated that multi-Apts possessed greater application potential in the detection of macromolecular substances such as bacteria. In short, this work provided a novel approach for rapid and all-in-one detection of E. coli in food.
Collapse
Affiliation(s)
- Mengyue Liu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, Shandong, China.
| | - Shicai Xu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, Shandong, China
| | - Giovanna Marrazza
- "Ugo Schiff" Chemistry Department, University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, FI, Italy
| |
Collapse
|
2
|
Huhn A, Nissley D, Wilson DB, Kutuzov MA, Donat R, Tan TK, Zhang Y, Barton MI, Liu C, Dejnirattisai W, Supasa P, Mongkolsapaya J, Townsend A, James W, Screaton G, van der Merwe PA, Deane CM, Isaacson SA, Dushek O. The molecular reach of antibodies crucially underpins their viral neutralisation capacity. Nat Commun 2025; 16:338. [PMID: 39746910 PMCID: PMC11695720 DOI: 10.1038/s41467-024-54916-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 11/22/2024] [Indexed: 01/04/2025] Open
Abstract
Key functions of antibodies, such as viral neutralisation, depend on high-affinity binding. However, viral neutralisation poorly correlates with antigen affinity for reasons that have been unclear. Here, we use a new mechanistic model of bivalent binding to study >45 patient-isolated IgG1 antibodies interacting with SARS-CoV-2 RBD surfaces. The model provides the standard monovalent affinity/kinetics and new bivalent parameters, including the molecular reach: the maximum antigen separation enabling bivalent binding. We find large variations in these parameters across antibodies, including reach variations (22-46 nm) that exceed the physical antibody size (~15 nm). By using antigens of different physical sizes, we show that these large molecular reaches are the result of both the antibody and antigen sizes. Although viral neutralisation correlates poorly with affinity, a striking correlation is observed with molecular reach. Indeed, the molecular reach explains differences in neutralisation for antibodies binding with the same affinity to the same RBD-epitope. Thus, antibodies within an isotype class binding the same antigen can display differences in molecular reach, substantially modulating their binding and functional properties.
Collapse
Affiliation(s)
- Anna Huhn
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Daniel Nissley
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, UK
| | - Daniel B Wilson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, USA
- Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Mikhail A Kutuzov
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Robert Donat
- MRC Translate Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Tiong Kit Tan
- MRC Translate Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Ying Zhang
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, USA
- Department of Mathematics and Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Michael I Barton
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Chang Liu
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
| | - Wanwisa Dejnirattisai
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Division of Emerging Infectious Disease, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkoknoi, Bangkok, Thailand
| | - Piyada Supasa
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Juthathip Mongkolsapaya
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Alain Townsend
- MRC Translate Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
| | - William James
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Gavin Screaton
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, Oxford, UK
| | | | - Charlotte M Deane
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, UK.
| | - Samuel A Isaacson
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, USA.
| | - Omer Dushek
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
3
|
Kang JJ, Ohoka A, Sarkar CA. Designing Multivalent and Multispecific Biologics. Annu Rev Chem Biomol Eng 2023; 15:293-314. [PMID: 38064501 DOI: 10.1146/annurev-chembioeng-100722-112440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
In the era of precision medicine, multivalent and multispecific therapeutics present a promising approach for targeted disease intervention. These therapeutics are designed to interact with multiple targets simultaneously, promising enhanced efficacy, reduced side effects, and resilience against drug resistance. We dissect the principles guiding the design of multivalent biologics, highlighting challenges and strategies that must be considered to maximize therapeutic effect. Engineerable elements in multivalent and multispecific biologic design-domain affinities, valency, and spatial presentation-must be considered in the context of the molecular targets as well as the balance of important properties such as target avidity and specificity. We illuminate recent applications of these principles in designing protein and cell therapies and identify exciting future directions in this field, underscored by advances in biomolecular and cellular engineering and computational approaches. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering , Volume 15 is June 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Jennifer J Kang
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA; , ,
| | - Ayako Ohoka
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA; , ,
- Present affiliation: AbbVie Inc., North Chicago, Illinois, USA
| | - Casim A Sarkar
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA; , ,
| |
Collapse
|
4
|
Ohoka A, Sarkar CA. Facile Display of Homomultivalent Proteins for In Vitro Selections. ACS Synth Biol 2023; 12:634-638. [PMID: 36655840 PMCID: PMC9985468 DOI: 10.1021/acssynbio.2c00563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Low-affinity protein binders are emerging as valuable domains for therapeutic applications because of their higher specificity when presented in multivalent ligands that increase the overall strength and selectivity of receptor binding. De novo discovery of low-affinity binders would be enhanced by the large library sizes attainable with in vitro selection systems, but these platforms generally maximize recovery of high-affinity monovalent binders. Here, we present a facile technology that uses rolling circle amplification to create homomultivalent libraries. We show proof of principle of this approach in ribosome display with off-rate selections of a bivalent ligand against monovalent and bivalent targets, thereby demonstrating high enrichment (up to 166-fold) against a low-affinity target that is bivalent but not monovalent. This approach to homomultivalent library construction can be applied to any binder tolerant of N- and C-terminal fusions and provides a platform for performing in vitro display selections with controlled protein valency and orientation.
Collapse
Affiliation(s)
| | - Casim A. Sarkar
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|