1
|
Cañizo CG, Guerrero-Ramos F, Perez Escavy M, Lodewijk I, Suárez-Cabrera C, Morales L, Nunes SP, Munera-Maravilla E, Rubio C, Sánchez R, Rodriguez-Izquierdo M, Martínez de Villarreal J, Real FX, Castellano D, Martín-Arriscado C, Lora Pablos D, Rodríguez Antolín A, Dueñas M, Paramio JM, Martínez VG. Characterisation of the tumour microenvironment and PD-L1 granularity reveals the prognostic value of cancer-associated myofibroblasts in non-invasive bladder cancer. Oncoimmunology 2025; 14:2438291. [PMID: 39698899 DOI: 10.1080/2162402x.2024.2438291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/29/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
High-risk non-muscle-invasive bladder cancer (NMIBC) presents high recurrence and progression rates. Despite the use of Bacillus Calmette-Guérin gold-standard immunotherapy and the recent irruption of anti-PD-1/PD-L1 drugs, we are missing a comprehensive understanding of the tumor microenvironment (TME) that may help us find biomarkers associated to treatment outcome. Here, we prospectively analyzed TME composition and PD-L1 expression of tumor and non-tumoral tissue biopsies from 73 NMIBC patients and used scRNA-seq, transcriptomic cohorts and tissue micro-array to validate the prognostic value of cell types of interest. Compared to non-tumoral tissue, NMIBC presented microvascular alterations, increased cancer-associated fibroblast (CAF) and myofibroblast (myoCAF) presence, and varied immune cell distribution, such as increased macrophage infiltration. Heterogeneous PD-L1 expression was observed across subsets, with macrophages showing the highest expression levels, but cancer cells as the primary potential anti-PD-L1 binding targets. Unbiased analysis revealed that myoCAF and M2-like macrophages are specifically enriched in high-grade NMIBC tumors. The topological distribution of these two cell types changed as NMIBC progresses, as shown by immunofluorescence. Only myoCAFs were associated with higher rates of progression and recurrence in three independent cohorts (888 total patients), reaching prediction values comparable to transcriptomic classes, which we further validated using tissue micro-array. Our study provides a roadmap to establish the landscape of the NMIBC TME, highlighting myoCAFs as potential prognostic markers.
Collapse
Affiliation(s)
- Carmen G Cañizo
- Urology Department, University Hospital '12 de Octubre', Madrid, Spain
| | | | - Mercedes Perez Escavy
- Molecular and Translational Oncology Division, Biomedical Innovation Unit, CIEMAT, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
| | - Iris Lodewijk
- Molecular and Translational Oncology Division, Biomedical Innovation Unit, CIEMAT, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
| | - Cristian Suárez-Cabrera
- Molecular and Translational Oncology Division, Biomedical Innovation Unit, CIEMAT, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
| | - Lucía Morales
- Molecular and Translational Oncology Division, Biomedical Innovation Unit, CIEMAT, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
| | - Sandra P Nunes
- Molecular and Translational Oncology Division, Biomedical Innovation Unit, CIEMAT, Madrid, Spain
- Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Network) Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Porto, Portugal
| | - Ester Munera-Maravilla
- Molecular and Translational Oncology Division, Biomedical Innovation Unit, CIEMAT, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
| | - Carolina Rubio
- Molecular and Translational Oncology Division, Biomedical Innovation Unit, CIEMAT, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
| | - Rebeca Sánchez
- Cell Technology Division, Biomedical Innovation Unit, CIEMAT, Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), Madrid, Spain
| | | | - Jaime Martínez de Villarreal
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Epithelial Carcinogenesis Group, Spanish National Cancer Centre-CNIO, Madrid, Spain
| | - Francisco X Real
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Epithelial Carcinogenesis Group, Spanish National Cancer Centre-CNIO, Madrid, Spain
- Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Barcelona, Spain
| | - Daniel Castellano
- Oncology Department, University Hospital '12 de Octubre', Madrid, Spain
| | | | - David Lora Pablos
- Scientific Support Unit, Research Institute I+12, University Hospital 12 de Octubre, Madrid, Spain
| | | | - Marta Dueñas
- Molecular and Translational Oncology Division, Biomedical Innovation Unit, CIEMAT, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
| | - Jesús M Paramio
- Molecular and Translational Oncology Division, Biomedical Innovation Unit, CIEMAT, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
| | - Victor G Martínez
- Molecular and Translational Oncology Division, Biomedical Innovation Unit, CIEMAT, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
| |
Collapse
|
2
|
Hordé M, Fouchard J, Palacios LG, Laffray X, Blavet C, Béréziat V, Lagathu C, Gaut L, Duprez D, Havis E. Human adipose stromal cells differentiate towards a tendon phenotype with adapted visco-elastic properties in a 3D-culture system. Biol Open 2025; 14:bio061911. [PMID: 40271554 PMCID: PMC12091229 DOI: 10.1242/bio.061911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 04/14/2025] [Indexed: 04/25/2025] Open
Abstract
Tendon cell differentiation relies on molecular and mechanical parameters that control the expression of tendon-associated transcription factors and extracellular matrix proteins. However, the minimal cues able to initiate tendon differentiation from progenitor cells remains unknown. We analysed the tendon differentiation program in human adipose stromal cells (hASCs) cultured in a minimal 3D system. We generated 3D-hASC constructs by embedding hASCs in a type-I collagen gel under a static uniaxial geometrical constraint with no additional molecular and mechanical cues, and assessed tendon-associated gene expression and mechanical properties for up to 3 weeks in culture. Analysis of tendon-associated genes revealed a molecular progression consistent with the acquisition of a tendon phenotype. The analysis of viscoelastic properties of 3D-hASC constructs by nano-indentation indicated a progressive increase in tissue stiffness up to 10 kPa, concomitant with a reduced stress relaxation indicative of solid-like mechanical properties. These changes in mechanical properties parallel the molecular change of matrix genes during the time of cultures. In summary, we have established that hASCs cultured in a minimal 3D-system progress into the tendon differentiation program associated with variations of mechanical properties.
Collapse
Affiliation(s)
- Maxime Hordé
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, F-75005 Paris, France
| | - Jonathan Fouchard
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, F-75005 Paris, France
| | - Luna Gomez Palacios
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, F-75005 Paris, France
| | - Xavier Laffray
- Université Paris Est Creteil, Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), EA 4397, F-94010 Creteil, France
| | - Cédrine Blavet
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, F-75005 Paris, France
| | - Véronique Béréziat
- Sorbonne Université, Inserm UMRS938, Centre de Recherche Saint-Antoine (CRSA), Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), F-75012 Paris, France
| | - Claire Lagathu
- Sorbonne Université, Inserm UMRS938, Centre de Recherche Saint-Antoine (CRSA), Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), F-75012 Paris, France
| | - Ludovic Gaut
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, F-75005 Paris, France
| | - Delphine Duprez
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, F-75005 Paris, France
| | - Emmanuelle Havis
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, F-75005 Paris, France
| |
Collapse
|
3
|
Scott RW. The Beauty of Fibroblasts Is Several Skin Layers Deep and Much Deeper. J Invest Dermatol 2025; 145:994-997. [PMID: 40072401 DOI: 10.1016/j.jid.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 04/25/2025]
Affiliation(s)
- R Wilder Scott
- Holland Bone and Joint Program, Sunnybrook Health Sciences Centre, Toronto, Canada; Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
| |
Collapse
|
4
|
Higaki K, Aiba S, Shimoyama T, Omatsu Y, Nagasawa T. Universal fibroblasts across tissues can differentiate into niche cells for hematopoietic stem cells. Cell Rep 2025; 44:115620. [PMID: 40315055 DOI: 10.1016/j.celrep.2025.115620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/13/2025] [Accepted: 04/04/2025] [Indexed: 05/04/2025] Open
Abstract
Hematopoietic stem cells (HSCs) generating all blood cells are maintained by their niche cells, termed CXCL12-abundant reticular (CAR) cells, which strongly overlap with leptin-receptor-expressing (LepR+) cells in the bone marrow. A meta-analysis of single-cell RNA sequencing datasets across tissues hypothesized that universal fibroblasts present in all organs give rise to distinct tissue-specific fibroblast subsets designated as specialized fibroblasts, including CAR/LepR+ cells. However, there is no direct evidence that universal fibroblasts can differentiate into specialized fibroblasts at a distant location. Here, we demonstrated that CD248+ universal fibroblasts from the lung and colon outside the skeletal system, as well as from muscle, generated CAR/LepR+ cells characterized by HSC niche functions and expression of cytokines and transcription factors essential for HSC maintenance during ectopic bone formation or after intra-bone marrow transplantation. These results demonstrate that universal fibroblasts with the potential to differentiate into bone marrow-specific HSC niche cells are scattered throughout the entire body.
Collapse
Affiliation(s)
- Kei Higaki
- Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Frontier Biosciences and Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shota Aiba
- Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Frontier Biosciences and Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takashi Shimoyama
- Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Frontier Biosciences and Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yoshiki Omatsu
- Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Frontier Biosciences and Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takashi Nagasawa
- Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Frontier Biosciences and Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
5
|
Roelofs AJ, McClure JJ, Hay EA, De Bari C. Stem and progenitor cells in the synovial joint as targets for regenerative therapy. Nat Rev Rheumatol 2025; 21:211-220. [PMID: 40045009 DOI: 10.1038/s41584-025-01222-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2025] [Indexed: 03/28/2025]
Abstract
Damage to articular cartilage, tendons, ligaments and entheses as a result of trauma, degeneration or inflammation in rheumatic diseases is prevalent. Regenerative medicine offers promising strategies for repairing damaged tissues, with the aim of restoring both their structure and function. While these strategies have traditionally relied on tissue engineering approaches using exogenous cells, interventions based on the activation of endogenous repair mechanisms are an attractive alternative. Key to advancing such approaches is a comprehensive understanding of the diversity of the stem and progenitor cells that reside in the adult synovial joint and how they function to repair damaged tissues. Advances in developmental biology have provided a lens through which to understand the origins, identities and functions of these cells, and insights into the roles of stem and progenitor cells in joint tissue repair, as well as their complex relationship with fibroblasts, have emerged. Integration of knowledge obtained through studies using advanced single-cell technologies will be crucial to establishing unified models of cell populations, lineage hierarchies and their molecular regulation. Ultimately, a more complete understanding of how cells repair tissues in adult life will guide the development of innovative pro-regenerative drugs, which are poised to enter clinical practice in musculoskeletal medicine.
Collapse
Affiliation(s)
- Anke J Roelofs
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, UK
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - Jessica J McClure
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, UK
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - Elizabeth A Hay
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - Cosimo De Bari
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, UK.
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
6
|
Coren L, Zaffryar-Eilot S, Odeh A, Kaganovsky A, Hasson P. Fibroblast diversification is an embryonic process dependent on muscle contraction. Cell Rep 2024; 43:115034. [PMID: 39636726 DOI: 10.1016/j.celrep.2024.115034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/18/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Fibroblasts, the most common cell type found in connective tissues, play major roles in development, homeostasis, regeneration, and disease. Although specific fibroblast subpopulations have been associated with different biological processes, the mechanisms and unique activities underlying their diversity have not been thoroughly examined. Here, we set out to dissect the variation in skeletal-muscle-resident fibroblasts (mrFibroblasts) during development. Our results demonstrate that mrFibroblasts diversify following the transition from embryonic to fetal myogenesis prior to birth. We find that mrFibroblasts segregate into two major subpopulations occupying distinct niches, with interstitial fibroblasts residing between the muscle fibers and delineating fibroblasts sheathing the muscle. We further show that these subpopulations entail distinct cellular dynamics and transcriptomes. Notably, we find that mrFibroblast subpopulations exert distinct regulatory roles on myoblast proliferation and differentiation. Finally, we demonstrate that this diversification depends on muscle contraction. Altogether, these findings establish that mrFibroblasts diversify in a spatiotemporal embryonic process into distinct cell types, entailing different characteristics and roles.
Collapse
Affiliation(s)
- Lavi Coren
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Shelly Zaffryar-Eilot
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Anas Odeh
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Anna Kaganovsky
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Peleg Hasson
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel.
| |
Collapse
|
7
|
Zhang B, He P, Lawrence JEG, Wang S, Tuck E, Williams BA, Roberts K, Kleshchevnikov V, Mamanova L, Bolt L, Polanski K, Li T, Elmentaite R, Fasouli ES, Prete M, He X, Yayon N, Fu Y, Yang H, Liang C, Zhang H, Blain R, Chedotal A, FitzPatrick DR, Firth H, Dean A, Bayraktar OA, Marioni JC, Barker RA, Storer MA, Wold BJ, Zhang H, Teichmann SA. A human embryonic limb cell atlas resolved in space and time. Nature 2024; 635:668-678. [PMID: 38057666 PMCID: PMC7616500 DOI: 10.1038/s41586-023-06806-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 10/31/2023] [Indexed: 12/08/2023]
Abstract
Human limbs emerge during the fourth post-conception week as mesenchymal buds, which develop into fully formed limbs over the subsequent months1. This process is orchestrated by numerous temporally and spatially restricted gene expression programmes, making congenital alterations in phenotype common2. Decades of work with model organisms have defined the fundamental mechanisms underlying vertebrate limb development, but an in-depth characterization of this process in humans has yet to be performed. Here we detail human embryonic limb development across space and time using single-cell and spatial transcriptomics. We demonstrate extensive diversification of cells from a few multipotent progenitors to myriad differentiated cell states, including several novel cell populations. We uncover two waves of human muscle development, each characterized by different cell states regulated by separate gene expression programmes, and identify musculin (MSC) as a key transcriptional repressor maintaining muscle stem cell identity. Through assembly of multiple anatomically continuous spatial transcriptomic samples using VisiumStitcher, we map cells across a sagittal section of a whole fetal hindlimb. We reveal a clear anatomical segregation between genes linked to brachydactyly and polysyndactyly, and uncover transcriptionally and spatially distinct populations of the mesenchyme in the autopod. Finally, we perform single-cell RNA sequencing on mouse embryonic limbs to facilitate cross-species developmental comparison, finding substantial homology between the two species.
Collapse
Affiliation(s)
- Bao Zhang
- The Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Peng He
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - John E G Lawrence
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Department of Trauma and Orthopaedics, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, UK
| | - Shuaiyu Wang
- The Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Obstetrics, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Elizabeth Tuck
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Brian A Williams
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Kenny Roberts
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Lira Mamanova
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Enhanc3D Genomics Ltd, Cambridge, UK
| | - Liam Bolt
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Genomics England, London, UK
| | | | - Tong Li
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Rasa Elmentaite
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Eirini S Fasouli
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Basic Research Center, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Martin Prete
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Xiaoling He
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Nadav Yayon
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Yixi Fu
- The Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hao Yang
- The Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chen Liang
- The Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hui Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Raphael Blain
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Alain Chedotal
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- Institut de pathologie, groupe hospitalier Est, hospices civils de Lyon, Lyon, France
- University Claude Bernard Lyon 1, MeLiS, CNRS UMR5284, INSERM U1314, Lyon, France
| | | | - Helen Firth
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Andrew Dean
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Foundation, Cambridge, UK
| | | | - John C Marioni
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Roger A Barker
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Mekayla A Storer
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Barbara J Wold
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Hongbo Zhang
- The Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
- Advanced Medical Technology Center, the First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
- Theory of Condensed Matter Group, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| |
Collapse
|
8
|
To K, Fei L, Pett JP, Roberts K, Blain R, Polański K, Li T, Yayon N, He P, Xu C, Cranley J, Moy M, Li R, Kanemaru K, Huang N, Megas S, Richardson L, Kapuge R, Perera S, Tuck E, Wilbrey-Clark A, Mulas I, Memi F, Cakir B, Predeus AV, Horsfall D, Murray S, Prete M, Mazin P, He X, Meyer KB, Haniffa M, Barker RA, Bayraktar O, Chédotal A, Buckley CD, Teichmann SA. A multi-omic atlas of human embryonic skeletal development. Nature 2024; 635:657-667. [PMID: 39567793 PMCID: PMC11578895 DOI: 10.1038/s41586-024-08189-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/09/2024] [Indexed: 11/22/2024]
Abstract
Human embryonic bone and joint formation is determined by coordinated differentiation of progenitors in the nascent skeleton. The cell states, epigenetic processes and key regulatory factors that underlie lineage commitment of these cells remain elusive. Here we applied paired transcriptional and epigenetic profiling of approximately 336,000 nucleus droplets and spatial transcriptomics to establish a multi-omic atlas of human embryonic joint and cranium development between 5 and 11 weeks after conception. Using combined modelling of transcriptional and epigenetic data, we characterized regionally distinct limb and cranial osteoprogenitor trajectories across the embryonic skeleton and further described regulatory networks that govern intramembranous and endochondral ossification. Spatial localization of cell clusters in our in situ sequencing data using a new tool, ISS-Patcher, revealed mechanisms of progenitor zonation during bone and joint formation. Through trajectory analysis, we predicted potential non-canonical cellular origins for human chondrocytes from Schwann cells. We also introduce SNP2Cell, a tool to link cell-type-specific regulatory networks to polygenic traits such as osteoarthritis. Using osteolineage trajectories characterized here, we simulated in silico perturbations of genes that cause monogenic craniosynostosis and implicate potential cell states and disease mechanisms. This work forms a detailed and dynamic regulatory atlas of bone and cartilage maturation and advances our fundamental understanding of cell-fate determination in human skeletal development.
Collapse
Affiliation(s)
- Ken To
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Lijiang Fei
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - J Patrick Pett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Kenny Roberts
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Raphael Blain
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Tong Li
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Nadav Yayon
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK
| | - Peng He
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Chuan Xu
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - James Cranley
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Madelyn Moy
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Ruoyan Li
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Ni Huang
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Stathis Megas
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Cambridge Centre for AI in Medicine, Department of Applied Mathematics and Theoretical Physics, Cambridge, UK
| | | | - Rakesh Kapuge
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Shani Perera
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Elizabeth Tuck
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Ilaria Mulas
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Fani Memi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Batuhan Cakir
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - David Horsfall
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Simon Murray
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Martin Prete
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Pavel Mazin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Xiaoling He
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Kerstin B Meyer
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Muzlifah Haniffa
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Newcastle University, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Roger A Barker
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Omer Bayraktar
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Alain Chédotal
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- Institut de Pathologie, Groupe Hospitalier Est, Hospices Civils de Lyon, Lyon, France
- University Claude Bernard Lyon 1, MeLiS, CNRS UMR5284, INSERM U1314, Lyon, France
| | | | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
- Department of Medicine, University of Cambridge, Cambridge, UK.
- Cambridge Centre for AI in Medicine, Department of Applied Mathematics and Theoretical Physics, Cambridge, UK.
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK.
- CIFAR Macmillan Multi-scale Human Programme, CIFAR, Toronto, Canada.
| |
Collapse
|
9
|
Yuan G, Lin X, Liu Y, Greenblatt MB, Xu R. Skeletal stem cells in bone development, homeostasis, and disease. Protein Cell 2024; 15:559-574. [PMID: 38442300 PMCID: PMC11259547 DOI: 10.1093/procel/pwae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/19/2024] [Indexed: 03/07/2024] Open
Abstract
Tissue-resident stem cells are essential for development and repair, and in the skeleton, this function is fulfilled by recently identified skeletal stem cells (SSCs). However, recent work has identified that SSCs are not monolithic, with long bones, craniofacial sites, and the spine being formed by distinct stem cells. Recent studies have utilized techniques such as fluorescence-activated cell sorting, lineage tracing, and single-cell sequencing to investigate the involvement of SSCs in bone development, homeostasis, and disease. These investigations have allowed researchers to map the lineage commitment trajectory of SSCs in different parts of the body and at different time points. Furthermore, recent studies have shed light on the characteristics of SSCs in both physiological and pathological conditions. This review focuses on discussing the spatiotemporal distribution of SSCs and enhancing our understanding of the diversity and plasticity of SSCs by summarizing recent discoveries.
Collapse
Affiliation(s)
- Guixin Yuan
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361005, China
- Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Xixi Lin
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361005, China
- Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Ying Liu
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361005, China
- Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Matthew B Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065, USA
- Research Division, Hospital for Special Surgery, New York, NY 10065, USA
| | - Ren Xu
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361005, China
- Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen 361102, China
| |
Collapse
|
10
|
McCartney EE, Chung Y, Buechler MB. Life of Pi: Exploring functions of Pi16+ fibroblasts. F1000Res 2024; 13:126. [PMID: 38919948 PMCID: PMC11196929 DOI: 10.12688/f1000research.143511.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 06/27/2024] Open
Abstract
Fibroblasts are mesenchymal cells that are responsible for creating and maintaining tissue architecture through the production of extracellular matrix. These cells also play critical roles in processes such as wound repair and immune modulation in normal tissues and various disease states including fibrosis, autoimmunity, and cancer. Fibroblasts have a complex repertoire of functions that vary by organ, inflammatory state, and the developmental stage of an organism. How fibroblasts manage so many functions in such a context-dependent manner represents a gap in our understanding of these cells. One possibility is that a tissue-resident precursor cell state exists that provides the fibroblast lineage with flexibility during growth, inflammation, or other contexts that require dynamic tissue changes. Recent work has suggested that a precursor fibroblast cell state is marked by expression of Peptidase inhibitor 16 ( Pi16). This review aims to concatenate and compare studies on fibroblasts that express Pi16 to clarify the roles of this cell state in fibroblast lineage development and other functions.
Collapse
Affiliation(s)
- Erika E. McCartney
- Department of Immunology, University of Toronto, Toronto, Ontario, M5S1A8, Canada
| | - Yein Chung
- Department of Immunology, University of Toronto, Toronto, Ontario, M5S1A8, Canada
| | - Matthew B. Buechler
- Department of Immunology, University of Toronto, Toronto, Ontario, M5S1A8, Canada
| |
Collapse
|
11
|
Bastedo WE, Scott RW, Arostegui M, Underhill TM. Single-cell analysis of mesenchymal cells in permeable neural vasculature reveals novel diverse subpopulations of fibroblasts. Fluids Barriers CNS 2024; 21:31. [PMID: 38575991 PMCID: PMC10996213 DOI: 10.1186/s12987-024-00535-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 03/25/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND In the choroid plexus and pituitary gland, vasculature is known to have a permeable, fenestrated phenotype which allows for the free passage of molecules in contrast to the blood brain barrier observed in the rest of the CNS. The endothelium of these compartments, along with secretory, neural-lineage cells (choroid epithelium and pituitary endocrine cells) have been studied in detail, but less attention has been given to the perivascular mesenchymal cells of these compartments. METHODS The Hic1CreERT2 Rosa26LSL-TdTomato mouse model was used in conjunction with a PdgfraH2B-EGFP mouse model to examine mesenchymal cells, which can be subdivided into Pdgfra+ fibroblasts and Pdgfra- pericytes within the choroid plexus (CP) and pituitary gland (PG), by histological, immunofluorescence staining and single-cell RNA-sequencing analyses. RESULTS We found that both CP and PG possess substantial populations of distinct Hic1+ mesenchymal cells, including an abundance of Pdgfra+ fibroblasts. Within the pituitary, we identified distinct subpopulations of Hic1+ fibroblasts in the glandular anterior pituitary and the neurosecretory posterior pituitary. We also identified multiple distinct markers of CP, PG, and the meningeal mesenchymal compartment, including alkaline phosphatase, indole-n-methyltransferase and CD34. CONCLUSIONS Novel, distinct subpopulations of mesenchymal cells can be found in permeable vascular interfaces, including the CP, PG, and meninges, and make distinct contributions to both organs through the production of structural proteins, enzymes, transporters, and trophic molecules.
Collapse
Affiliation(s)
- William E Bastedo
- Department of Cellular and Physiological Sciences, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - R Wilder Scott
- Department of Cellular and Physiological Sciences, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- School of Biomedical Engineering and the Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Martin Arostegui
- Department of Cellular and Physiological Sciences, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - T Michael Underhill
- Department of Cellular and Physiological Sciences, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
- School of Biomedical Engineering and the Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
12
|
Chitturi P, Leask A. The role of positional information in determining dermal fibroblast diversity. Matrix Biol 2024; 128:31-38. [PMID: 38423396 DOI: 10.1016/j.matbio.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
The largest mammalian organ, skin, consisting of a dermal connective tissue layer that underlies and supports the epidermis, acts as a protective barrier that excludes external pathogens and disseminates sensory signals emanating from the local microenvironment. Dermal connective tissue is comprised of a collagen-rich extracellular matrix (ECM) that is produced by connective tissue fibroblasts resident within the dermis. When wounded, a tissue repair program is induced whereby fibroblasts, in response to alterations in the microenvironment, produce new ECM components, resulting in the formation of a scar. Failure to terminate the normal tissue repair program causes fibrotic conditions including: hypertrophic scars, keloids, and the systemic autoimmune connective tissue disease scleroderma (systemic sclerosis, SSc). Histological and single-cell RNA sequencing (scRNAseq) studies have revealed that fibroblasts are heterogeneous and highly plastic. Understanding how this diversity contributes to dermal homeostasis, wounding, fibrosis, and cancer may ultimately result in novel anti-fibrotic therapies and personalized medicine. This review summarizes studies supporting this concept.
Collapse
Affiliation(s)
- Pratyusha Chitturi
- College of Dentistry, University of Saskatchewan, 105 Wiggins Road, Saskatoon, SK, Canada
| | - Andrew Leask
- College of Dentistry, University of Saskatchewan, 105 Wiggins Road, Saskatoon, SK, Canada.
| |
Collapse
|
13
|
Zhang X, Han P, Qiu J, Huang F, Luo Q, Cheng J, Shan K, Yang Y, Zhang C. Single-cell RNA sequencing reveals the complex cellular niche of pterygium. Ocul Surf 2024; 32:91-103. [PMID: 38290663 DOI: 10.1016/j.jtos.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/01/2024]
Abstract
PURPOSE Pterygium is a vision-threatening conjunctival fibrovascular degenerated disease with a high global prevalence up to 12 %, while no absolute pharmacotherapy has been applied in clinics. In virtue of single-cell RNA sequencing (scRNA-seq) technique, our study investigated underlying pathogeneses and potential therapeutic targets of pterygium from the cellular transcriptional level. METHODS A total of 45605 cells from pterygium of patients and conjunctiva of normal controls (NC) were conducted with scRNA-seq, and then analyzed via integrated analysis, pathway enrichment, pseudotime trajectory, and cell-cell communications. Besides, immunofluorescence and western blot were performed in vivo and in vitro to verify our findings. RESULTS In brief, 9 major cellular types were defined, according to canonical markers. Subsequently, we further determined the subgroups of each major cell lineages. Several newly identified cell sub-clusters could promote pterygium, including immuno-fibroblasts, epithelial mesenchymal transition (EMT)-epithelial cells, and activated vascular endothelial cells (activated-vEndo). Besides, we also probed the enrichment of immune cells in pterygium. Particularly, macrophages, recruited by ACKR1+activated-vEndo, might play an important role in the development of pterygium by promoting angiogenesis, immune suppression, and inflammation. CONCLUSION An intricate cellular niche was revealed in pterygium via scRNA-seq analysis and the interactions between macrophages and ACKR1+ activated-vEndo might be the key part in the development of pterygia.
Collapse
Affiliation(s)
- Xueling Zhang
- Department of Ophthalmology, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai, 200031, China; Department of Ophthalmology, Shanghai Medical College, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, China
| | - Peizhen Han
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jini Qiu
- Department of Ophthalmology, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai, 200031, China; Department of Ophthalmology, Shanghai Medical College, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, China
| | - Feifei Huang
- Department of Ophthalmology, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai, 200031, China; Department of Ophthalmology, Shanghai Medical College, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, China
| | - Qiting Luo
- Department of Ophthalmology, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai, 200031, China; Department of Ophthalmology, Shanghai Medical College, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, China
| | - Jingyi Cheng
- Department of Ophthalmology, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai, 200031, China; Department of Ophthalmology, Shanghai Medical College, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, China
| | - Kun Shan
- Department of Ophthalmology, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai, 200031, China; Department of Ophthalmology, Shanghai Medical College, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, China.
| | - Yujing Yang
- Department of Ophthalmology, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai, 200031, China; Department of Ophthalmology, Shanghai Medical College, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, China.
| | - Chaoran Zhang
- Department of Ophthalmology, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai, 200031, China; Department of Ophthalmology, Shanghai Medical College, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, China.
| |
Collapse
|
14
|
Chitturi P, Xu S, Ahmed Abdi B, Nguyen J, Carter DE, Sinha S, Arora R, Biernaskie J, Stratton RJ, Leask A. Tripterygium wilfordii derivative celastrol, a YAP inhibitor, has antifibrotic effects in systemic sclerosis. Ann Rheum Dis 2023; 82:1191-1204. [PMID: 37328193 DOI: 10.1136/ard-2023-223859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/05/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVES Systemic sclerosis (SSc) is characterised by extensive tissue fibrosis maintained by mechanotranductive/proadhesive signalling. Drugs targeting this pathway are therefore of likely therapeutic benefit. The mechanosensitive transcriptional co-activator, yes activated protein-1 (YAP1), is activated in SSc fibroblasts. The terpenoid celastrol is a YAP1 inhibitor; however, if celastrol can alleviate SSc fibrosis is unknown. Moreover, the cell niches required for skin fibrosis are unknown. METHODS Human dermal fibroblasts from healthy individuals and patients with diffuse cutaneous SSc were treated with or without transforming growth factor β1 (TGFβ1), with or without celastrol. Mice were subjected to the bleomycin-induced model of skin SSc, in the presence or absence of celastrol. Fibrosis was assessed using RNA Sequencing, real-time PCR, spatial transcriptomic analyses, Western blot, ELISA and histological analyses. RESULTS In dermal fibroblasts, celastrol impaired the ability of TGFβ1 to induce an SSc-like pattern of gene expression, including that of cellular communication network factor 2, collagen I and TGFβ1. Celastrol alleviated the persistent fibrotic phenotype of dermal fibroblasts cultured from lesions of SSc patients. In the bleomycin-induced model of skin SSc, increased expression of genes associated with reticular fibroblast and hippo/YAP clusters was observed; conversely, celastrol inhibited these bleomycin-induced changes and blocked nuclear localisation of YAP. CONCLUSIONS Our data clarify niches within the skin activated in fibrosis and suggest that compounds, such as celastrol, that antagonise the YAP pathway may be potential treatments for SSc skin fibrosis.
Collapse
Affiliation(s)
- Pratyusha Chitturi
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Shiwen Xu
- Centre for Rheumatology and Connective Tissue Diseases, UCL Medical School, Royal Free Campus, London, UK
| | - Bahja Ahmed Abdi
- Centre for Rheumatology and Connective Tissue Diseases, UCL Medical School, Royal Free Campus, London, UK
| | - John Nguyen
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | - Sartak Sinha
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Rohit Arora
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jeff Biernaskie
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Richard J Stratton
- Centre for Rheumatology and Connective Tissue Diseases, UCL Medical School, Royal Free Campus, London, UK
| | - Andrew Leask
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
15
|
Arostegui M, Scott RW, Underhill TM. Hic1 identifies a specialized mesenchymal progenitor population in the embryonic limb responsible for bone superstructure formation. Cell Rep 2023; 42:112325. [PMID: 37002923 DOI: 10.1016/j.celrep.2023.112325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/21/2022] [Accepted: 03/17/2023] [Indexed: 06/19/2023] Open
Abstract
The musculoskeletal system relies on the integration of multiple components with diverse physical properties, such as striated muscle, tendon, and bone, that enable locomotion and structural stability. This relies on the emergence of specialized, but poorly characterized, interfaces between these various elements during embryonic development. Within the appendicular skeleton, we show that a subset of mesenchymal progenitors (MPs), identified by Hic1, do not contribute to the primary cartilaginous anlagen but represent the MP population, whose progeny directly contribute to the interfaces that connect bone to tendon (entheses), tendon to muscle (myotendinous junctions), and the associated superstructures. Furthermore, deletion of Hic1 leads to skeletal defects reflective of deficient muscle-bone coupling and, consequently, perturbation of ambulation. Collectively, these findings show that Hic1 identifies a unique MP population that contributes to a secondary wave of bone sculpting critical to skeletal morphogenesis.
Collapse
Affiliation(s)
- Martin Arostegui
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - R Wilder Scott
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - T Michael Underhill
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
16
|
Lipp SN, Jacobson KR, Colling HA, Tuttle TG, Miles DT, McCreery KP, Calve S. Mechanical loading is required for initiation of extracellular matrix deposition at the developing murine myotendinous junction. Matrix Biol 2023; 116:28-48. [PMID: 36709857 PMCID: PMC10218368 DOI: 10.1016/j.matbio.2023.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
The myotendinous junction (MTJ) contributes to the generation of motion by connecting muscle to tendon. At the adult MTJ, a specialized extracellular matrix (ECM) is thought to contribute to the mechanical integrity of the muscle-tendon interface, but the factors that influence MTJ formation during mammalian development are unclear. Here, we combined 3D imaging and proteomics with murine models in which muscle contractility and patterning are disrupted to resolve morphological and compositional changes in the ECM during MTJ development. We found that MTJ-specific ECM deposition can be initiated via static loading due to growth; however, it required cyclic loading to develop a mature morphology. Furthermore, the MTJ can mature without the tendon terminating into cartilage. Based on these results, we describe a model wherein MTJ development depends on mechanical loading but not insertion into an enthesis.
Collapse
Affiliation(s)
- Sarah N Lipp
- Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907, United States; The Indiana University Medical Scientist/Engineer Training Program, Indianapolis, IN 46202, United States
| | - Kathryn R Jacobson
- Purdue University Interdisciplinary Life Science Program, 155 S. Grant Street, West Lafayette, IN 47907, United States
| | - Haley A Colling
- Department of Integrative Physiology, University of Colorado Boulder, 354 UCB, Boulder CO, 80309, United States
| | - Tyler G Tuttle
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Dr, Boulder, CO 80309, United States
| | - Dalton T Miles
- Chemical and Biological Engineering, University of Colorado Boulder, 596 UCB, CO 80309, United States
| | - Kaitlin P McCreery
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Dr, Boulder, CO 80309, United States
| | - Sarah Calve
- Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907, United States; Purdue University Interdisciplinary Life Science Program, 155 S. Grant Street, West Lafayette, IN 47907, United States; Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Dr, Boulder, CO 80309, United States.
| |
Collapse
|
17
|
Ding W, Zhou Q, Lu Y, Wei Q, Tang H, Zhang D, Liu Z, Wang G, Wu D. ROS-scavenging hydrogel as protective carrier to regulate stem cells activity and promote osteointegration of 3D printed porous titanium prosthesis in osteoporosis. Front Bioeng Biotechnol 2023; 11:1103611. [PMID: 36733970 PMCID: PMC9887181 DOI: 10.3389/fbioe.2023.1103611] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
Stem cell-based therapy has drawn attention as an alternative option for promoting prosthetic osteointegration in osteoporosis by virtue of its unique characteristics. However, estrogen deficiency is the main mechanism of postmenopausal osteoporosis. Estrogen, as an effective antioxidant, deficienncy also results in the accumulation of reactive oxygen species (ROS) in the body, affecting the osteogenic differentiation of stem cells and the bone formation i osteoporosis. In this study, we prepared a ROS-scavenging hydrogel by crosslinking of epigallocatechin-3-gallate (EGCG), 3-acrylamido phenylboronic acid (APBA) and acrylamide. The engineered hydrogel can scavenge ROS efficiently, enabling it to be a cell carrier of bone marrow-derived mesenchymal stem cells (BMSCs) to protect delivered cells from ROS-mediated death and osteogenesis inhibition, favorably enhancing the tissue repair potential of stem cells. Further in vivo investigations seriously demonstrated that this ROS-scavenging hydrogel encapsulated with BMSCs can prominently promote osteointegration of 3D printed microporous titanium alloy prosthesis in osteoporosis, including scavenging accumulated ROS, inducing macrophages to polarize toward M2 phenotype, suppressing inflammatory cytokines expression, and improving osteogenesis related markers (e.g., ALP, Runx-2, COL-1, BSP, OCN, and OPN). This work provides a novel strategy for conquering the challenge of transplanted stem cells cannot fully function in the impaired microenvironment, and enhancing prosthetic osteointegration in osteoporosis.
Collapse
Affiliation(s)
- Wenbin Ding
- Department of Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Qirong Zhou
- Department of Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yifeng Lu
- Department of Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Qiang Wei
- Department of Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Hao Tang
- Department of Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Donghua Zhang
- Department of Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zhixiao Liu
- Department of Histology and Embryology, College of Basic Medicine, Shanghai, China
| | - Guangchao Wang
- Department of Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Dajiang Wu
- Department of Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
18
|
Sun H, Tan J, Chen H, Wu N, Su B. Immune niches orchestrated by intestinal mesenchymal stromal cells lining the crypt-villus. Front Immunol 2022; 13:1057932. [PMID: 36405734 PMCID: PMC9669707 DOI: 10.3389/fimmu.2022.1057932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/20/2022] [Indexed: 07/22/2023] Open
Abstract
The mammalian intestine is an organ that can be spatially defined by two axes: longitudinal and vertical. Such anatomical structure ensures the maintenance of a relatively immuno-quiescent and proliferation-promoting crypt for intestinal stem cell differentiation while actively warding off the invading intestinal microbes at the villus tip during digestion and nutrient absorption. Such behavior is achieved by the fine coordination among intestinal epithelial cells, intestinal mesenchymal stromal cells and tissue-resident immune cells like myeloid cells and lymphocytes. Among these cell types resided in the colon, intestinal mesenchymal stromal cells are considered to be the essential link between epithelium, vasculature, neuronal system, and hematopoietic compartment. Recent advancement of single cell and spatial transcriptomics has enabled us to characterize the spatial and functional heterogeneity of intestinal mesenchymal stromal cells. These studies reveal distinctive intestinal mesenchymal stromal cells localized in different regions of the intestine with diverse functions including but not limited to providing cytokines and growth factors essential for different immune cells and epithelial cells which predict niche formation for immune function from the villus tip to the crypt bottom. In this review, we aim to provide an overall view of the heterogeneity of intestinal mesenchymal stromal cells, the spatial distribution of these cells along with their interaction with immune cells and the potential regulatory cytokine profile of these cell types. Summarization of such information may enrich our current understanding of the immuno-regulatory functions of the newly identified mesenchymal stromal cell subsets beyond their epithelial regulatory function.
Collapse
Affiliation(s)
- Hongxiang Sun
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine–Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianmei Tan
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine–Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongqian Chen
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine–Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ningbo Wu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine–Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Su
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine–Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|