1
|
Granas D, Hewa IG, White MA, Stormo GD. Autoregulation of RPL7B by inhibition of a structural splicing enhancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.14.643126. [PMID: 40236249 PMCID: PMC11996384 DOI: 10.1101/2025.03.14.643126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Yeast ribosomal protein gene RPL7B is autoregulated by inhibition of splicing. The first intron has a "zipper stem" that brings the 5' splice site near the branch point and serves as an enhancer of splicing that is required for efficient splicing because it has non-consensus branch point sequence of UGCUAAC. The intron also contains an alternative, and mutually exclusive, structure that is conserved across many yeast species. That conserved structure is a binding site for the Rpl7 protein so that when the protein is in excess over what is required for ribosomes, the protein binds to the conserved structure which eliminates the enhancer structure and represses splicing and gene expression.
Collapse
|
2
|
Milenkovic I, Novoa EM. Ribosomal protein paralogues in ribosome specialization. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230387. [PMID: 40045786 PMCID: PMC11883438 DOI: 10.1098/rstb.2023.0387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 12/28/2024] [Accepted: 01/08/2025] [Indexed: 03/09/2025] Open
Abstract
Ribosomes are macromolecular complexes responsible for protein synthesis, comprising ribosomal proteins (RPs) and ribosomal RNA. While most RPs are present as single copies in higher eukaryotes, a handful of them have paralogues that emerged through duplication events. However, it is still unclear why a small subset of RP paralogues were preserved through evolution, and whether they can endow ribosomes with specialized functions. In this review, we focus on RP paralogue pairs present in humans, providing an overview of the most recent findings on RP paralogue functions and their roles in ribosome specialization.This article is part of the discussion meeting issue 'Ribosome diversity and its impact on protein synthesis, development and disease'.
Collapse
Affiliation(s)
- Ivan Milenkovic
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona08003, Spain
| | - Eva Maria Novoa
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona08003, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona08010, Spain
| |
Collapse
|
3
|
Faucher-Giguère L, de Préval BS, Rivera A, Scott MS, Elela SA. Small nucleolar RNAs: the hidden precursors of cancer ribosomes. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230376. [PMID: 40045787 PMCID: PMC11883439 DOI: 10.1098/rstb.2023.0376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/16/2024] [Accepted: 08/28/2024] [Indexed: 03/09/2025] Open
Abstract
Ribosomes are heterogeneous in terms of their constituent proteins, structural RNAs and ribosomal RNA (rRNA) modifications, resulting in diverse potential translatomes. rRNA modifications, guided by small nucleolar RNAs (snoRNAs), enable fine-tuning of ribosome function and translation profiles. Recent studies have begun linking dysregulation of snoRNAs, via rRNA modifications, to tumourigenesis. Deciphering the specific contributions of individual rRNA modifications to cancer hallmarks and identifying snoRNAs with oncogenic potential could lead to novel therapeutic strategies. These strategies might target snoRNAs or exploit the dependence of cancer cells on specific rRNA modification sites, potentially disrupting aberrant ribosomal translation programs and hindering tumour growth. This review discusses current evidence and challenges in linking changes in snoRNA expression to rRNA modification and cancer biology.This article is part of the discussion meeting issue 'Ribosome diversity and its impact on protein synthesis, development and disease'.
Collapse
Affiliation(s)
- Laurence Faucher-Giguère
- Department of Microbiology and Infectiology, University of Sherbrooke, Sherbrooke, QuébecJ1E 4K8, Canada
| | - Baudouin S. de Préval
- Department of Biochemistry and Functional Genomics, University of Sherbrooke, Sherbrooke, QuébecJ1E 4K8, Canada
| | - Andrea Rivera
- Department of Microbiology and Infectiology, University of Sherbrooke, Sherbrooke, QuébecJ1E 4K8, Canada
| | - Michelle S. Scott
- Department of Biochemistry and Functional Genomics, University of Sherbrooke, Sherbrooke, QuébecJ1E 4K8, Canada
| | - Sherif Abou Elela
- Department of Microbiology and Infectiology, University of Sherbrooke, Sherbrooke, QuébecJ1E 4K8, Canada
| |
Collapse
|
4
|
Kyei-Baffour ES, Lin QC, Alkan F, Faller WJ. High-throughput approaches for the identification of ribosome heterogeneity. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230381. [PMID: 40045778 PMCID: PMC11883430 DOI: 10.1098/rstb.2023.0381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 03/09/2025] Open
Abstract
Recent advances in the fields of RNA translation and ribosome biology have demonstrated the heterogeneous nature of ribosomes. This manifests not only across different cellular contexts but also within the same cell. Such variations in ribosomal composition, be it in ribosomal RNAs or proteins, can significantly influence cellular processes and responses by altering the mRNAs being translated or the dynamics of ribosomes during the translation process. Therefore, identifying this heterogeneity is crucial for unravelling the complexity of gene expression across different fields of biology. Here we provide an overview of recent advances in high-throughput techniques for identifying ribosomal heterogeneity. We cover methodologies for probing both rRNA and protein components of the ribosome and encompass the most recent next-generation sequencing and computational analyses, as well as a diverse array of mass spectrometry techniques.This article is part of the discussion meeting issue 'Ribosome diversity and its impact on protein synthesis, development and disease'.
Collapse
Affiliation(s)
- Edwin S. Kyei-Baffour
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam1066CX, The Netherlands
| | - Qi Chang Lin
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Ferhat Alkan
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam1066CX, The Netherlands
| | - William J. Faller
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam1066CX, The Netherlands
| |
Collapse
|
5
|
Zhou M, Yu P, Hu C, Fang W, Jin C, Li S, Sun X. Suppressed Protein Translation Caused by MSP-8 Deficiency Determines Fungal Multidrug Resistance with Fitness Cost. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412514. [PMID: 39679802 PMCID: PMC11809369 DOI: 10.1002/advs.202412514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/02/2024] [Indexed: 12/17/2024]
Abstract
Antifungal resistance, particularly the rise of multidrug-resistance strains, poses a significant public health threat. In this study, the study identifies a novel multidrug-resistance gene, msp-8, encoding a helicase, through experimental evolution with Neurospora crassa as a model. Deletion of msp-8 conferred multidrug resistance in N. crassa, Aspergillus fumigatus, and Fusarium verticillioides. However, the transcript levels of genes encoding known drug targets or efflux pumps remain unaltered with msp-8 deletion. Interestingly, MSP-8 interacted with ribosomal proteins, and this mutant displays compromised ribosomal function, causing translational disturbance. Notably, inhibition of protein translation enhances resistance to azoles, amphotericin B, and polyoxin B. Furthermore, MSP-8 deficiency or inhibition of translation reduces intracellular ketoconazole accumulation and membrane-bound amphotericin B content, directly causing antifungal resistance. Additionaly, MSP-8 deficiency induces cell wall remodeling, and decreases intracellular ROS levels, further contributing to resistance. The findings reveal a novel multidrug resistance mechanism independent of changes in drug target or efflux pump, while MSP-8 deficiency suppresses protein translation, thereby facilitating the development of resistance with fitness cost. This study provides the first evidence that MSP-8 participates in protein translation and that translation suppression can cause multidrug resistance in fungi, offering new insights into resistance mechanisms in clinical and environmental fungal strains.
Collapse
Affiliation(s)
- Mi Zhou
- State Key Laboratory of MycologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- National Institute for Radiological ProtectionChina CDCBeijing100088China
| | - Pengju Yu
- State Key Laboratory of MycologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Chengcheng Hu
- State Key Laboratory of MycologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Wenxia Fang
- Institute of Biological Sciences and TechnologyGuangxi Academy of SciencesNanningGuangxi530007China
| | - Cheng Jin
- State Key Laboratory of MycologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Shaojie Li
- State Key Laboratory of MycologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Xianyun Sun
- State Key Laboratory of MycologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
6
|
Khalatyan N, Cornish D, Ferrell AJ, Savas JN, Shen PS, Hultquist JF, Walsh D. Ribosome customization and functional diversification among P-stalk proteins regulate late poxvirus protein synthesis. Cell Rep 2025; 44:115119. [PMID: 39786991 PMCID: PMC11834158 DOI: 10.1016/j.celrep.2024.115119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/29/2024] [Accepted: 12/05/2024] [Indexed: 01/12/2025] Open
Abstract
Growing evidence suggests that ribosomes selectively regulate translation of specific mRNA subsets. Here, quantitative proteomics and cryoelectron microscopy demonstrate that poxvirus infection does not alter ribosomal subunit protein (RP) composition but skews 40S rotation states and displaces the 40S head domain. Genetic knockout screens employing metabolic assays and a dual-reporter virus further identified two RPs that selectively regulate non-canonical translation of late poxvirus mRNAs, which contain unusual 5' poly(A) leaders: receptor of activated C kinase 1 (RACK1) and RPLP2. RACK1 is a component of the altered 40S head domain, while RPLP2 is a subunit of the P-stalk, wherein RPLP0 anchors two heterodimers of RPLP1 and RPLP2 to the large 60S subunit. RPLP0 was required for global translation, yet RPLP1 was dispensable, while RPLP2 was specifically required for non-canonical poxvirus protein synthesis. From these combined results, we demonstrate that poxviruses structurally customize ribosomes and become reliant upon traditionally non-essential RPs from both ribosomal subunits for efficient initiation on their late mRNAs.
Collapse
Affiliation(s)
- Natalia Khalatyan
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Daphne Cornish
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL 60611, USA
| | - Aaron J Ferrell
- Department of Biochemistry, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Jeffrey N Savas
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Peter S Shen
- Department of Biochemistry, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Judd F Hultquist
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL 60611, USA
| | - Derek Walsh
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
7
|
Lindahl L. Ribosome Structural Changes Dynamically Affect Ribosome Function. Int J Mol Sci 2024; 25:11186. [PMID: 39456968 PMCID: PMC11508205 DOI: 10.3390/ijms252011186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/06/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Ribosomes were known to be multicomponent complexes as early as the 1960s. Nonetheless, the prevailing view for decades considered active ribosomes to be a monolithic population, in which all ribosomes are identical in composition and function. This implied that ribosomes themselves did not actively contribute to the regulation of protein synthesis. In this perspective, I review evidence for a different model, based on results showing that ribosomes can harbor different types of ribosomal RNA (rRNA) and ribosomal proteins (r-proteins) and, furthermore, need not contain a complete set of r-proteins. I also summarize recent results favoring the notion that such distinct types of ribosomes have different affinities for specific messenger RNAs and may execute the translation process differently. Thus, ribosomes should be considered active contributors to the regulation of protein synthesis.
Collapse
Affiliation(s)
- Lasse Lindahl
- Department of Biological Sciences, University of Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250, USA
| |
Collapse
|
8
|
Yang YM, Karbstein K. The ubiquitin-proteasome system regulates the formation of specialized ribosomes during high salt stress in yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.608112. [PMID: 39185221 PMCID: PMC11343215 DOI: 10.1101/2024.08.15.608112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Rps26-deficient ribosomes are a physiologically relevant ribosome population which arises during osmotic stress to support the translation of mRNAs involved in the response to high salt in yeast. They are formed by binding of the chaperone Tsr2 to fully assembled ribosomes to release Rps26 when intracellular Na+ concentrations rise. Tsr2-mediated Rps26 release is reversible, enabling a rapid response that conserves ribosomes. However, because the concentration of Tsr2 relative to ribosomes is low, how the released Rps26•Tsr2 complex is managed to allow for accumulation of Rps26-deficient ribosomes to nearly 50% of all ribosomes remains unclear. Here we show that released Rps26 is degraded via the Pro/N-degron pathway, enabling the accumulation of Rps26-deficient ribosomes. Substitution of the N-terminal proline of Rps26 to serine increases the stability of free Rps26, limits the accumulation of Rps26-deficient ribosomes and renders yeast sensitive to high salt. The GID-complex, an E3 ubiquitin ligase, and its adaptor Gid4, mediate polyubiquitination of Rps26 at Lys66 and Lys70. Moreover, this ubiquitination event is required for Rps26 degradation, the accumulation of Rps26-deficient ribosomes and the high salt stress resistance. Together, the data show that targeted degradation of released Rps26 from the Rps26•Tsr2 complex allows Tsr2 to be recycled, thus facilitating multiple rounds of Rps26 release.
Collapse
Affiliation(s)
- Yoon-Mo Yang
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Research Innovation and Technology, Jupiter, FL, 33458, USA
- present address: Graduate School for Biomedical Science & Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Republic of Korea
| | - Katrin Karbstein
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Research Innovation and Technology, Jupiter, FL, 33458, USA
- present address: Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-0146, USA
| |
Collapse
|
9
|
Wimmer B, Schernthaner J, Edobor G, Friedrich A, Poeltner K, Temaj G, Wimmer M, Kronsteiner E, Pichler M, Gercke H, Huber R, Kaefer N, Rinnerthaler M, Karl T, Krauß J, Mohr T, Gerner C, Hintner H, Breitenbach M, Bauer JW, Rakers C, Kuhn D, von Hagen J, Müller N, Rathner A, Breitenbach-Koller H. RiboScreen TM Technology Delivers a Ribosomal Target and a Small-Molecule Ligand for Ribosome Editing to Boost the Production Levels of Tropoelastin, the Monomeric Unit of Elastin. Int J Mol Sci 2024; 25:8430. [PMID: 39125999 PMCID: PMC11312584 DOI: 10.3390/ijms25158430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Elastin, a key structural protein essential for the elasticity of the skin and elastogenic tissues, degrades with age. Replenishing elastin holds promise for anti-aging cosmetics and the supplementation of elastic activities of the cardiovascular system. We employed RiboScreenTM, a technology for identifying molecules that enhance the production of specific proteins, to target the production of tropoelastin. We make use of RiboScreenTM in two crucial steps: first, to pinpoint a target ribosomal protein (TRP), which acts as a switch to increase the production of the protein of interest (POI), and second, to identify small molecules that activate this ribosomal protein switch. Using RiboScreenTM, we identified ribosomal protein L40, henceforth eL40, as a TRP switch to boost tropoelastin production. Drug discovery identified a small-molecule hit that binds to eL40. In-cell treatment demonstrated activity of the eL40 ligand and delivered increased tropoelastin production levels in a dose-dependent manner. Thus, we demonstrate that RiboScreenTM can successfully identify a small-molecule hit capable of selectively enhancing tropoelastin production. This compound has the potential to be developed for topical or systemic applications to promote skin rejuvenation and to supplement elastic functionality within the cardiovascular system.
Collapse
Affiliation(s)
- Bjoern Wimmer
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; (B.W.); (J.S.); (G.E.); (A.F.); (K.P.); (M.W.); (E.K.); (M.P.); (H.G.); (R.H.); (M.R.); (T.K.); (J.K.); (M.B.)
| | - Jan Schernthaner
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; (B.W.); (J.S.); (G.E.); (A.F.); (K.P.); (M.W.); (E.K.); (M.P.); (H.G.); (R.H.); (M.R.); (T.K.); (J.K.); (M.B.)
| | - Genevieve Edobor
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; (B.W.); (J.S.); (G.E.); (A.F.); (K.P.); (M.W.); (E.K.); (M.P.); (H.G.); (R.H.); (M.R.); (T.K.); (J.K.); (M.B.)
| | - Andreas Friedrich
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; (B.W.); (J.S.); (G.E.); (A.F.); (K.P.); (M.W.); (E.K.); (M.P.); (H.G.); (R.H.); (M.R.); (T.K.); (J.K.); (M.B.)
| | - Katharina Poeltner
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; (B.W.); (J.S.); (G.E.); (A.F.); (K.P.); (M.W.); (E.K.); (M.P.); (H.G.); (R.H.); (M.R.); (T.K.); (J.K.); (M.B.)
| | - Gazmend Temaj
- Human Genetics, Faculty of Pharmacy, College UBT, 10000 Pristina, Kosovo;
| | - Marlies Wimmer
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; (B.W.); (J.S.); (G.E.); (A.F.); (K.P.); (M.W.); (E.K.); (M.P.); (H.G.); (R.H.); (M.R.); (T.K.); (J.K.); (M.B.)
| | - Elli Kronsteiner
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; (B.W.); (J.S.); (G.E.); (A.F.); (K.P.); (M.W.); (E.K.); (M.P.); (H.G.); (R.H.); (M.R.); (T.K.); (J.K.); (M.B.)
| | - Mara Pichler
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; (B.W.); (J.S.); (G.E.); (A.F.); (K.P.); (M.W.); (E.K.); (M.P.); (H.G.); (R.H.); (M.R.); (T.K.); (J.K.); (M.B.)
| | - Hanna Gercke
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; (B.W.); (J.S.); (G.E.); (A.F.); (K.P.); (M.W.); (E.K.); (M.P.); (H.G.); (R.H.); (M.R.); (T.K.); (J.K.); (M.B.)
| | - Ronald Huber
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; (B.W.); (J.S.); (G.E.); (A.F.); (K.P.); (M.W.); (E.K.); (M.P.); (H.G.); (R.H.); (M.R.); (T.K.); (J.K.); (M.B.)
| | - Niklas Kaefer
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; (B.W.); (J.S.); (G.E.); (A.F.); (K.P.); (M.W.); (E.K.); (M.P.); (H.G.); (R.H.); (M.R.); (T.K.); (J.K.); (M.B.)
| | - Mark Rinnerthaler
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; (B.W.); (J.S.); (G.E.); (A.F.); (K.P.); (M.W.); (E.K.); (M.P.); (H.G.); (R.H.); (M.R.); (T.K.); (J.K.); (M.B.)
| | - Thomas Karl
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; (B.W.); (J.S.); (G.E.); (A.F.); (K.P.); (M.W.); (E.K.); (M.P.); (H.G.); (R.H.); (M.R.); (T.K.); (J.K.); (M.B.)
| | - Jan Krauß
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; (B.W.); (J.S.); (G.E.); (A.F.); (K.P.); (M.W.); (E.K.); (M.P.); (H.G.); (R.H.); (M.R.); (T.K.); (J.K.); (M.B.)
| | - Thomas Mohr
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (T.M.); (C.G.)
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (T.M.); (C.G.)
- Join Metabolome Facility, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria
| | - Helmut Hintner
- Department of Dermatology and Allergology, University Hospital Salzburg, Muellner Hauptstraße 48, 5020 Salzburg, Austria; (H.H.); (J.W.B.)
| | - Michael Breitenbach
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; (B.W.); (J.S.); (G.E.); (A.F.); (K.P.); (M.W.); (E.K.); (M.P.); (H.G.); (R.H.); (M.R.); (T.K.); (J.K.); (M.B.)
| | - Johann W. Bauer
- Department of Dermatology and Allergology, University Hospital Salzburg, Muellner Hauptstraße 48, 5020 Salzburg, Austria; (H.H.); (J.W.B.)
| | - Christin Rakers
- Merck KGaA, Discovery & Development Technologies, Frankfurter Staße 250, 64293 Darmstadt, Germany (D.K.)
| | - Daniel Kuhn
- Merck KGaA, Discovery & Development Technologies, Frankfurter Staße 250, 64293 Darmstadt, Germany (D.K.)
| | - Joerg von Hagen
- Merck KGaA Healthcare, Frankfurter Straße 250, 64293 Darmstadt, Germany;
- ryon-Greentech Accelerator, Mainzer Straße 41, 64579 Gernsheim, Germany
| | - Norbert Müller
- Institute of Biochemistry, Johannes Kepler University, Altenbergerstraße 69, 4040 Linz, Austria;
- Department of Chemistry, Faculty of Science, University of South Bohemia in Českých Budějovicích, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Adriana Rathner
- Institute of Biochemistry, Johannes Kepler University, Altenbergerstraße 69, 4040 Linz, Austria;
| | - Hannelore Breitenbach-Koller
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; (B.W.); (J.S.); (G.E.); (A.F.); (K.P.); (M.W.); (E.K.); (M.P.); (H.G.); (R.H.); (M.R.); (T.K.); (J.K.); (M.B.)
| |
Collapse
|
10
|
Lin WH, Opoc FG, Liao CW, Roy K, Steinmetz L, Leu JY. Histone deacetylase Hos2 regulates protein expression noise by potentially modulating the protein translation machinery. Nucleic Acids Res 2024; 52:7556-7571. [PMID: 38783136 PMCID: PMC11260488 DOI: 10.1093/nar/gkae432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Non-genetic variations derived from expression noise at transcript or protein levels can result in cell-to-cell heterogeneity within an isogenic population. Although cells have developed strategies to reduce noise in some cellular functions, this heterogeneity can also facilitate varying levels of regulation and provide evolutionary benefits in specific environments. Despite several general characteristics of cellular noise having been revealed, the detailed molecular pathways underlying noise regulation remain elusive. Here, we established a dual-fluorescent reporter system in Saccharomyces cerevisiae and performed experimental evolution to search for mutations that increase expression noise. By analyzing evolved cells using bulk segregant analysis coupled with whole-genome sequencing, we identified the histone deacetylase Hos2 as a negative noise regulator. A hos2 mutant down-regulated multiple ribosomal protein genes and exhibited partially compromised protein translation, indicating that Hos2 may regulate protein expression noise by modulating the translation machinery. Treating cells with translation inhibitors or introducing mutations into several Hos2-regulated ribosomal protein genes-RPS9A, RPS28B and RPL42A-enhanced protein expression noise. Our study provides an effective strategy for identifying noise regulators and also sheds light on how cells regulate non-genetic variation through protein translation.
Collapse
Affiliation(s)
- Wei-Han Lin
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Florica J G Opoc
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Chia-Wei Liao
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Kevin R Roy
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lars M Steinmetz
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg 69117, Germany
| | - Jun-Yi Leu
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
11
|
Cockrell AJ, Lange JJ, Wood C, Mattingly M, McCroskey SM, Bradford WD, Conkright-Fincham J, Weems L, Guo MS, Gerton JL. Regulators of rDNA array morphology in fission yeast. PLoS Genet 2024; 20:e1011331. [PMID: 38968290 PMCID: PMC11253961 DOI: 10.1371/journal.pgen.1011331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/17/2024] [Accepted: 06/04/2024] [Indexed: 07/07/2024] Open
Abstract
Nucleolar morphology is a well-established indicator of ribosome biogenesis activity that has served as the foundation of many screens investigating ribosome production. Missing from this field of study is a broad-scale investigation of the regulation of ribosomal DNA morphology, despite the essential role of rRNA gene transcription in modulating ribosome output. We hypothesized that the morphology of rDNA arrays reflects ribosome biogenesis activity. We established GapR-GFP, a prokaryotic DNA-binding protein that recognizes transcriptionally-induced overtwisted DNA, as a live visual fluorescent marker for quantitative analysis of rDNA organization in Schizosaccharomyces pombe. We found that the morphology-which we refer to as spatial organization-of the rDNA arrays is dynamic throughout the cell cycle, under glucose starvation, RNA pol I inhibition, and TOR activation. Screening the haploid S. pombe Bioneer deletion collection for spatial organization phenotypes revealed large ribosomal protein (RPL) gene deletions that alter rDNA organization. Further work revealed RPL gene deletion mutants with altered rDNA organization also demonstrate resistance to the TOR inhibitor Torin1. A genetic analysis of signaling pathways essential for this resistance phenotype implicated many factors including a conserved MAPK, Pmk1, previously linked to extracellular stress responses. We propose RPL gene deletion triggers altered rDNA morphology due to compensatory changes in ribosome biogenesis via multiple signaling pathways, and we further suggest compensatory responses may contribute to human diseases such as ribosomopathies. Altogether, GapR-GFP is a powerful tool for live visual reporting on rDNA morphology under myriad conditions.
Collapse
Affiliation(s)
- Alexandria J. Cockrell
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Jeffrey J. Lange
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Christopher Wood
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Mark Mattingly
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Scott M. McCroskey
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - William D. Bradford
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Juliana Conkright-Fincham
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Promega Corporation, Madison, Wisconsin, United States of America
| | - Lauren Weems
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Monica S. Guo
- Department of Microbiology, University of Washington School of Medicine, Seattle, state of Washington, United States of America
| | - Jennifer L. Gerton
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| |
Collapse
|
12
|
Pietras PJ, Wasilewska-Burczyk A, Pepłowska K, Marczak Ł, Tyczewska A, Grzywacz K. Dynamic protein composition of Saccharomyces cerevisiae ribosomes in response to multiple stress conditions reflects alterations in translation activity. Int J Biol Macromol 2024; 268:132004. [PMID: 38697435 DOI: 10.1016/j.ijbiomac.2024.132004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Ribosomes, intercellular macromolecules responsible for translation in the cell, are composed of RNAs and proteins. While rRNA makes the scaffold of the ribosome and directs the catalytic steps of protein synthesis, ribosomal proteins play a role in the assembly of the subunits and are essential for the proper structure and function of the ribosome. To date researchers identified heterogeneous ribosomes in different developmental and growth stages. We hypothesized that under stress conditions the heterogeneity of the ribosomes may provide means to prepare the cells for quick recovery. Therefore the aim of the study was the identification of heterogeneity of ribosomal proteins within the ribosomes in response to eleven stress conditions in Saccharomyces cerevisiae, by means of a liquid chromatography/high resolution mass spectrometry (LC-HRMS) and translation activity tests. Out of the total of 74 distinct ribosomal proteins identified in the study 14 small ribosomal subunit (RPS) and 8 large ribosomal subunit (RPL) proteins displayed statistically significant differential abundances within the ribosomes under stress. Additionally, significant alterations in the ratios of 7 ribosomal paralog proteins were observed. Accordingly, the translational activity of yeast ribosomes was altered after UV exposure, during sugar starvation, cold shock, high salt, anaerobic conditions, and amino acid starvation.
Collapse
Affiliation(s)
- Piotr J Pietras
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznań, Poland
| | | | - Kamila Pepłowska
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznań, Poland
| | - Łukasz Marczak
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznań, Poland
| | - Agata Tyczewska
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznań, Poland
| | - Kamilla Grzywacz
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznań, Poland.
| |
Collapse
|
13
|
O'Meara MJ, Rapala JR, Nichols CB, Alexandre AC, Billmyre RB, Steenwyk JL, Alspaugh JA, O'Meara TR. CryptoCEN: A Co-Expression Network for Cryptococcus neoformans reveals novel proteins involved in DNA damage repair. PLoS Genet 2024; 20:e1011158. [PMID: 38359090 PMCID: PMC10901339 DOI: 10.1371/journal.pgen.1011158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/28/2024] [Accepted: 01/30/2024] [Indexed: 02/17/2024] Open
Abstract
Elucidating gene function is a major goal in biology, especially among non-model organisms. However, doing so is complicated by the fact that molecular conservation does not always mirror functional conservation, and that complex relationships among genes are responsible for encoding pathways and higher-order biological processes. Co-expression, a promising approach for predicting gene function, relies on the general principal that genes with similar expression patterns across multiple conditions will likely be involved in the same biological process. For Cryptococcus neoformans, a prevalent human fungal pathogen greatly diverged from model yeasts, approximately 60% of the predicted genes in the genome lack functional annotations. Here, we leveraged a large amount of publicly available transcriptomic data to generate a C. neoformans Co-Expression Network (CryptoCEN), successfully recapitulating known protein networks, predicting gene function, and enabling insights into the principles influencing co-expression. With 100% predictive accuracy, we used CryptoCEN to identify 13 new DNA damage response genes, underscoring the utility of guilt-by-association for determining gene function. Overall, co-expression is a powerful tool for uncovering gene function, and decreases the experimental tests needed to identify functions for currently under-annotated genes.
Collapse
Affiliation(s)
- Matthew J O'Meara
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jackson R Rapala
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Connie B Nichols
- Departments of Medicine and Molecular Genetics/Microbiology; and Cell Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - A Christina Alexandre
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - R Blake Billmyre
- Departments of Pharmaceutical and Biomedical Sciences/Infectious Disease, College of Pharmacy/College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Jacob L Steenwyk
- Howard Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - J Andrew Alspaugh
- Departments of Medicine and Molecular Genetics/Microbiology; and Cell Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Teresa R O'Meara
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
14
|
Machado TB, Picorelli ACR, de Azevedo BL, de Aquino ILM, Queiroz VF, Rodrigues RAL, Araújo JP, Ullmann LS, dos Santos TM, Marques RE, Guimarães SL, Andrade ACSP, Gularte JS, Demoliner M, Filippi M, Pereira VMAG, Spilki FR, Krupovic M, Aylward FO, Del-Bem LE, Abrahão JS. Gene duplication as a major force driving the genome expansion in some giant viruses. J Virol 2023; 97:e0130923. [PMID: 38092658 PMCID: PMC10734413 DOI: 10.1128/jvi.01309-23] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/26/2023] [Indexed: 12/22/2023] Open
Abstract
IMPORTANCE Giant viruses are noteworthy not only due to their enormous particles but also because of their gigantic genomes. In this context, a fundamental question has persisted: how did these genomes evolve? Here we present the discovery of cedratvirus pambiensis, featuring the largest genome ever described for a cedratvirus. Our data suggest that the larger size of the genome can be attributed to an unprecedented number of duplicated genes. Further investigation of this phenomenon in other viruses has illuminated gene duplication as a key evolutionary mechanism driving genome expansion in diverse giant viruses. Although gene duplication has been described as a recurrent event in cellular organisms, our data highlights its potential as a pivotal event in the evolution of gigantic viral genomes.
Collapse
Affiliation(s)
- Talita B. Machado
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Agnello C. R. Picorelli
- Laboratório de Genômica Evolutiva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Bruna L. de Azevedo
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Isabella L. M. de Aquino
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Victória F. Queiroz
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Rodrigo A. L. Rodrigues
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - João Pessoa Araújo
- Laboratório de Virologia, Departamento de Microbiologia e Imunologia, Instituto de Biotecnologia, Universidade Estadual Paulista (UNESP), Botucatu, Brazil
| | - Leila S. Ullmann
- Laboratório de Virologia, Departamento de Microbiologia e Imunologia, Instituto de Biotecnologia, Universidade Estadual Paulista (UNESP), Botucatu, Brazil
| | - Thiago M. dos Santos
- Del-Bem Lab, Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Rafael E. Marques
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Samuel L. Guimarães
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Ana Cláudia S. P. Andrade
- Centre de Recherche du Centre Hospitalier Universitaire de Québec- Université Laval, Laval, Québec, Canada
| | - Juliana S. Gularte
- Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, Brazil
| | - Meriane Demoliner
- Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, Brazil
| | - Micheli Filippi
- Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, Brazil
| | | | - Fernando R. Spilki
- Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, Brazil
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, Université Paris Cité, CNRS UMR6047, Paris, France
| | - Frank O. Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic, and Arthropod-Borne Infectious Disease Virginia Tech, Blacksburg, Virginia, USA
| | - Luiz-Eduardo Del-Bem
- Del-Bem Lab, Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Jônatas S. Abrahão
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
15
|
O’Meara MJ, Rapala JR, Nichols CB, Alexandre C, Billmyre RB, Steenwyk JL, Alspaugh JA, O’Meara TR. CryptoCEN: A Co-Expression Network for Cryptococcus neoformans reveals novel proteins involved in DNA damage repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.553567. [PMID: 37645941 PMCID: PMC10462067 DOI: 10.1101/2023.08.17.553567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Elucidating gene function is a major goal in biology, especially among non-model organisms. However, doing so is complicated by the fact that molecular conservation does not always mirror functional conservation, and that complex relationships among genes are responsible for encoding pathways and higher-order biological processes. Co-expression, a promising approach for predicting gene function, relies on the general principal that genes with similar expression patterns across multiple conditions will likely be involved in the same biological process. For Cryptococcus neoformans, a prevalent human fungal pathogen greatly diverged from model yeasts, approximately 60% of the predicted genes in the genome lack functional annotations. Here, we leveraged a large amount of publicly available transcriptomic data to generate a C. neoformans Co-Expression Network (CryptoCEN), successfully recapitulating known protein networks, predicting gene function, and enabling insights into the principles influencing co-expression. With 100% predictive accuracy, we used CryptoCEN to identify 13 new DNA damage response genes, underscoring the utility of guilt-by-association for determining gene function. Overall, co-expression is a powerful tool for uncovering gene function, and decreases the experimental tests needed to identify functions for currently under-annotated genes.
Collapse
Affiliation(s)
- Matthew J. O’Meara
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Jackson R. Rapala
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Connie B. Nichols
- Departments of Medicine and Molecular Genetics/Microbiology; and Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Christina Alexandre
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - R. Blake Billmyre
- Departments of Pharmaceutical and Biomedical Sciences/Infectious Disease, College of Pharmacy/College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Jacob L Steenwyk
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - J. Andrew Alspaugh
- Departments of Medicine and Molecular Genetics/Microbiology; and Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Teresa R. O’Meara
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
16
|
Islam RA, Rallis C. Ribosomal Biogenesis and Heterogeneity in Development, Disease, and Aging. EPIGENOMES 2023; 7:17. [PMID: 37606454 PMCID: PMC10443367 DOI: 10.3390/epigenomes7030017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/23/2023] Open
Abstract
Although reported in the literature, ribosome heterogeneity is a phenomenon whose extent and implications in cell and organismal biology is not fully appreciated. This has been the case due to the lack of the appropriate techniques and approaches. Heterogeneity can arise from alternative use and differential content of protein and RNA constituents, as well as from post-transcriptional and post-translational modifications. In the few examples we have, it is apparent that ribosomal heterogeneity offers an additional level and potential for gene expression regulation and might be a way towards tuning metabolism, stress, and growth programs to external and internal stimuli and needs. Here, we introduce ribosome biogenesis and discuss ribosomal heterogeneity in various reported occasions. We conclude that a systematic approach in multiple organisms will be needed to delineate this biological phenomenon and its contributions to growth, aging, and disease. Finally, we discuss ribosome mutations and their roles in disease.
Collapse
Affiliation(s)
- Rowshan Ara Islam
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK;
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Charalampos Rallis
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK;
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
17
|
Reis RS. Thermomorphogenesis: Opportunities and challenges in posttranscriptional regulation. JOURNAL OF EXPERIMENTAL BOTANY 2023:7134107. [PMID: 37082809 DOI: 10.1093/jxb/erad134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Indexed: 05/03/2023]
Abstract
Plants exposed to mildly elevated temperatures display morphological and developmental changes collectively termed thermomorphogenesis. This adaptative process has several undesirable consequences to food production, including yield reduction and increased vulnerability to pathogens. Understanding thermomorphogenesis is, thus, critical for understanding how plants will respond to increasingly warmer temperature conditions, such as those caused by climate change. Recently, we have made major advances in that direction, and it has become apparent that plants resource to a broad range of molecules and molecular mechanisms to perceive and respond to increases in environmental temperature. However, most of our efforts have been focused on regulation of transcription and protein abundance and activity, with an important gap encompassing nearly all processes involving RNA (i.e., posttranscriptional regulation). Here, I summarized our current knowledge of thermomorphogenesis involving transcriptional, posttranscriptional, and posttranslational regulation, focused on opportunities and challenges in understanding posttranscriptional regulation-a fertile field for exciting new discoveries.
Collapse
Affiliation(s)
- Rodrigo S Reis
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, Bern, Switzerland
| |
Collapse
|
18
|
Rodríguez-Almonacid CC, Kellogg MK, Karamyshev AL, Karamysheva ZN. Ribosome Specialization in Protozoa Parasites. Int J Mol Sci 2023; 24:ijms24087484. [PMID: 37108644 PMCID: PMC10138883 DOI: 10.3390/ijms24087484] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Ribosomes, in general, are viewed as constitutive macromolecular machines where protein synthesis takes place; however, this view has been recently challenged, supporting the hypothesis of ribosome specialization and opening a completely new field of research. Recent studies have demonstrated that ribosomes are heterogenous in their nature and can provide another layer of gene expression control by regulating translation. Heterogeneities in ribosomal RNA and ribosomal proteins that compose them favor the selective translation of different sub-pools of mRNAs and functional specialization. In recent years, the heterogeneity and specialization of ribosomes have been widely reported in different eukaryotic study models; however, few reports on this topic have been made on protozoa and even less on protozoa parasites of medical importance. This review analyzes heterogeneities of ribosomes in protozoa parasites highlighting the specialization in their functions and their importance in parasitism, in the transition between stages in their life cycle, in the change of host and in response to environmental conditions.
Collapse
Affiliation(s)
| | - Morgana K Kellogg
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Andrey L Karamyshev
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | |
Collapse
|
19
|
Inhibition of Ribosome Assembly and Ribosome Translation Has Distinctly Different Effects on Abundance and Paralogue Composition of Ribosomal Protein mRNAs in Saccharomyces cerevisiae. mSystems 2023; 8:e0109822. [PMID: 36651729 PMCID: PMC9948716 DOI: 10.1128/msystems.01098-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Many mutations in genes for ribosomal proteins (r-proteins) and assembly factors cause cell stress and altered cell fate, resulting in congenital diseases collectively called ribosomopathies. Even though all such mutations depress the cell's protein synthesis capacity, they generate many different phenotypes, suggesting that the diseases are not due simply to insufficient protein synthesis capacity. To learn more, we investigated how the global transcriptome in Saccharomyces cerevisiae responds to reduced protein synthesis generated in two different ways: abolishing the assembly of new ribosomes and inhibiting ribosomal function. Our results showed that the mechanism by which protein synthesis is obstructed affects the ribosomal protein transcriptome differentially: ribosomal protein mRNA abundance increases during the abolition of ribosome formation but decreases during the inhibition of ribosome function. Interestingly, the ratio between mRNAs from some, but not all, pairs of paralogous ribosomal protein genes encoding slightly different versions of a given r-protein changed differently during the two types of stress, suggesting that expression of specific ribosomal protein paralogous mRNAs may contribute to the stress response. Unexpectedly, the abundance of transcripts for ribosome assembly factors and translation factors remained relatively unaffected by the stresses. On the other hand, the state of the translation apparatus did affect cell physiology: mRNA levels for some other proteins not directly related to the translation apparatus also changed differentially, though not coordinately with the r-protein genes, in response to the stresses. IMPORTANCE Mutations in genes for ribosomal proteins or assembly factors cause a variety of diseases called ribosomopathies. These diseases are typically ascribed to a reduction in the cell's capacity for protein synthesis. Paradoxically, ribosomal mutations result in a wide variety of disease phenotypes, even though they all reduce protein synthesis. Here, we show that the transcriptome changes differently depending on how the protein synthesis capacity is reduced. Most strikingly, inhibiting ribosome formation and ribosome function had opposite effects on the abundance of mRNA for ribosomal proteins, while genes for ribosome translation and assembly factors showed no systematic responses. Thus, the process by which the protein synthesis capacity is reduced contributes decisively to global mRNA composition. This emphasis on process is a new concept in understanding ribosomopathies and other stress responses.
Collapse
|