1
|
Gutierrez-Rodrigues F, Groarke EM, Thongon N, Rodriguez-Sevilla JJ, Catto LFB, Niewisch MR, Shalhoub R, McReynolds LJ, Clé DV, Patel BA, Ma X, Hironaka D, Donaires FS, Spitofsky N, Santana BA, Lai TP, Alemu L, Kajigaya S, Darden I, Zhou W, Browne PV, Paul S, Lack J, Young DJ, DiNardo CD, Aviv A, Ma F, De Oliveira MM, de Azambuja AP, Dunbar CE, Olszewska M, Olivier E, Papapetrou EP, Giri N, Alter BP, Bonfim C, Wu CO, Garcia-Manero G, Savage SA, Young NS, Colla S, Calado RT. Clonal landscape and clinical outcomes of telomere biology disorders: somatic rescue and cancer mutations. Blood 2024; 144:2402-2416. [PMID: 39316766 PMCID: PMC11862815 DOI: 10.1182/blood.2024025023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/19/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024] Open
Abstract
ABSTRACT Telomere biology disorders (TBDs), caused by pathogenic germ line variants in telomere-related genes, present with multiorgan disease and a predisposition to cancer. Clonal hematopoiesis (CH) as a marker of cancer development and survival in TBDs is poorly understood. Here, we characterized the clonal landscape of a large cohort of 207 patients with TBD with a broad range of age and phenotype. CH occurred predominantly in symptomatic patients and in signature genes typically associated with cancers: PPM1D, POT1, TERT promoter (TERTp), U2AF1S34, and/or TP53. Chromosome 1q gain (Chr1q+) was the commonest karyotypic abnormality. Clinically, multiorgan involvement and CH in TERTp, TP53, and splicing factor genes were associated with poorer overall survival. Chr1q+ and splicing factor or TP53 mutations significantly increased the risk of hematologic malignancies, regardless of clonal burden. Chr1q+ and U2AF1S34 mutated clones were premalignant events associated with the secondary acquisition of mutations in genes related to hematologic malignancies. Similar to the known effects of Chr1q+ and TP53-CH, functional studies demonstrated that U2AF1S34 mutations primarily compensated for aberrant upregulation of TP53 and interferon pathways in telomere-dysfunctional hematopoietic stem cells, highlighting the TP53 pathway as a canonical route of malignancy in TBD. In contrast, somatic POT1/PPM1D/TERTp mutations had distinct trajectories unrelated to cancer development. With implications beyond TBD, our data show that telomere dysfunction is a strong selective pressure for CH. In TBD, CH is a poor prognostic marker associated with worse overall survival. The identification of key regulatory pathways that drive clonal transformation in TBD allows for the identification of patients at a higher risk of cancer development.
Collapse
Affiliation(s)
| | - Emma M. Groarke
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Natthakan Thongon
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Luiz Fernando B. Catto
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marena R. Niewisch
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Ruba Shalhoub
- Office of Biostatistics Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Lisa J. McReynolds
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Diego V. Clé
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Bhavisha A. Patel
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Xiaoyang Ma
- Office of Biostatistics Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Dalton Hironaka
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Flávia S. Donaires
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Nina Spitofsky
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Barbara A. Santana
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Tsung-Po Lai
- Center of Human Development and Aging, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, New Jersey
| | - Lemlem Alemu
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Sachiko Kajigaya
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Ivana Darden
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Weiyin Zhou
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Paul V. Browne
- Department of Haematology, Trinity College Dublin, Dublin, Ireland
| | - Subrata Paul
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Justin Lack
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - David J. Young
- Translational Stem Cell Biology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Courtney D. DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Abraham Aviv
- Center of Human Development and Aging, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, New Jersey
| | - Feiyang Ma
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | | | | | - Cynthia E. Dunbar
- Translational Stem Cell Biology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Malgorzata Olszewska
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Emmanuel Olivier
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Eirini P. Papapetrou
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Neelam Giri
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Blanche P. Alter
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Carmem Bonfim
- Bone Marrow Transplantation Unit, Federal University of Parana, Curitiba, Brazil
- Pediatric Blood and Marrow Transplantation Program, Pequeno Principe Hospital, Curitiba, Brazil
| | - Colin O. Wu
- Office of Biostatistics Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | | | - Sharon A. Savage
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Neal S. Young
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Simona Colla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Rodrigo T. Calado
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
2
|
Lim J, Ross DM, Brown AL, Scott HS, Hahn CN. Germline genetic variants that predispose to myeloproliferative neoplasms and hereditary myeloproliferative phenotypes. Leuk Res 2024; 146:107566. [PMID: 39316992 DOI: 10.1016/j.leukres.2024.107566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 09/26/2024]
Abstract
Epidemiological evidence of familial predispositions to myeloid malignancies and myeloproliferative neoplasms (MPN) has long been recognised, but recent studies have added to knowledge of specific germline variants in multiple genes that contribute to the familial risk. These variants may be common risk alleles in the general population but have low penetrance and cause sporadic MPN, such as the JAK2 46/1 haplotype, the variant most strongly associated with MPN. Association studies are increasingly identifying other MPN susceptibility genes such as TERT, MECOM, and SH2B3, while some common variants in DDX41 and RUNX1 appear to lead to a spectrum of myeloid malignancies. RBBP6 and ATM variants have been identified in familial MPN clusters and very rare germline variants such as chromosome 14q duplication cause hereditary MPN with high penetrance. Rarely, there are hereditary non-malignant diseases with an MPN-like phenotype. Knowledge of those genes and germline genetic changes which lead to MPN or diseases that mimic MPN helps to improve accuracy of diagnosis, aids with counselling regarding familial risk, and may contribute to clinical decision-making. Large scale population exome and genome sequencing studies will improve our knowledge of both common and rare germline genetic contributions to MPN.
Collapse
Affiliation(s)
- Jonathan Lim
- Department of Haematology and Bone Marrow Transplantation, Royal Adelaide Hospital, Adelaide, Australia; Haematology Directorate, SA Pathology, Adelaide, Australia.
| | - David M Ross
- Department of Haematology and Bone Marrow Transplantation, Royal Adelaide Hospital, Adelaide, Australia; Haematology Directorate, SA Pathology, Adelaide, Australia; Department of Haematology and Genetic Pathology, Flinders University and Medical Centre, Adelaide, Australia; Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, Australia; Centre for Cancer Biology, Alliance between SA Pathology and University of South Australia, Adelaide, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
| | - Anna L Brown
- Centre for Cancer Biology, Alliance between SA Pathology and University of South Australia, Adelaide, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia; Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, Australia
| | - Hamish S Scott
- Centre for Cancer Biology, Alliance between SA Pathology and University of South Australia, Adelaide, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia; Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, Australia
| | - Christopher N Hahn
- Centre for Cancer Biology, Alliance between SA Pathology and University of South Australia, Adelaide, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia; Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, Australia
| |
Collapse
|
3
|
Strauss JD, Brown DW, Zhou W, Dagnall C, Yuan JM, Im A, Savage SA, Wang Y, Rafati M, Spellman SR, Gadalla SM. Telomere length and clonal chromosomal alterations in peripheral blood of patients with severe aplastic anaemia. Br J Haematol 2024; 205:1180-1187. [PMID: 39103182 PMCID: PMC11499016 DOI: 10.1111/bjh.19681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/21/2024] [Indexed: 08/07/2024]
Abstract
Severe aplastic anaemia (SAA) is a rare and life-threatening bone marrow failure disorder. We used data from the transplant outcomes in aplastic anaemia study to characterize mosaic chromosomal alterations (mCAs) in the peripheral blood of 738 patients with acquired SAA and evaluate their associations with telomere length (TL) and survival post-haematopoietic cell transplant (HCT). The median age at HCT was 20.4 years (range = 0.2-77.4). Patients with SAA had shorter TL than expected for their age (median TL percentile for age: 35.7th; range <1-99.99). mCAs were detected in 211 patients (28.6%), with chr6p copy-neutral loss of heterozygosity (6p-CNLOH) in 15.9% and chr7 loss in 3.0% of the patients; chrX loss was detected in 4.1% of female patients. Negative correlations between mCA cell fraction and measured TL (r = -0.14, p = 0.0002), and possibly genetically predicted TL (r = -0.07, p = 0.06) were noted. The post-HCT 3-year survival probability was low in patients with chr7 loss (39% vs. 72% in patients with chr6-CNLOH, 60% in patients with other mCAs and 70% in patients with no mCAs; p-log rank = 0.001). In multivariable analysis, short TL (p = 0.01), but not chr7 loss (p = 0.29), was associated with worse post-HCT survival. TL may guide clinical decisions in patients with SAA.
Collapse
Affiliation(s)
- Joshua D Strauss
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Derek W Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Weiyin Zhou
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
- Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Casey Dagnall
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
- Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jian-Min Yuan
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Cancer Epidemiology and Prevention Program, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Annie Im
- Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sharon A Savage
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Youjin Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Maryam Rafati
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Stephen R Spellman
- Center for International Blood and Marrow Transplant Research, NMDP, Minneapolis, Minnesota, USA
| | - Shahinaz M Gadalla
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
4
|
Savage SA. Telomere length and cancer risk: finding Goldilocks. Biogerontology 2024; 25:265-278. [PMID: 38109000 DOI: 10.1007/s10522-023-10080-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023]
Abstract
Telomeres are the nucleoprotein complex at chromosome ends essential in genomic stability. Baseline telomere length (TL) is determined by rare and common germline genetic variants but shortens with age and is susceptible to certain environmental exposures. Cellular senescence or apoptosis are normally triggered when telomeres reach a critically short length, but cancer cells overcome these protective mechanisms and continue to divide despite chromosomal instability. Rare germline variants in telomere maintenance genes cause exceedingly short telomeres for age (< 1st percentile) and the telomere biology disorders, which are associated with elevated risks of bone marrow failure, myelodysplastic syndrome, acute myeloid leukemia, and squamous cell carcinoma of the head/neck and anogenital regions. Long telomeres due to rare germline variants in the same or different telomere maintenance genes are associated with elevated risks of other cancers, such as chronic lymphocytic leukemia or sarcoma. Early epidemiology studies of TL in the general population lacked reproducibility but new methods, including creation of a TL polygenic score using common variants, have found longer telomeres associated with excess risks of renal cell carcinoma, glioma, lung cancer, and others. It has become clear that when it comes to TL and cancer etiology, not too short, not too long, but "just right" telomeres are important in minimizing cancer risk.
Collapse
Affiliation(s)
- Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, 6E456, Bethesda, MD, 20892-6772, USA.
| |
Collapse
|
5
|
Rafati M, Brown DW, Zhou W, Jones K, Luo W, St. Martin A, Wang Y, He M, Spellman SR, Wang T, Deeg HJ, Gupta V, Lee SJ, Bolon YT, Chanock SJ, Machiela MJ, Saber W, Gadalla SM. JAK2 V617F mutation and associated chromosomal alterations in primary and secondary myelofibrosis and post-HCT outcomes. Blood Adv 2023; 7:7506-7515. [PMID: 38011490 PMCID: PMC10758737 DOI: 10.1182/bloodadvances.2023010882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 11/29/2023] Open
Abstract
JAK2 V617F is the most common driver mutation in primary or secondary myelofibrosis for which allogeneic hematopoietic cell transplantation (HCT) is the only curative treatment. Knowledge of the prognostic utility of JAK2 alterations in the HCT setting is limited. We identified all patients with MF who received HCT between 2000 and 2016 and had a pre-HCT blood sample (N = 973) available at the Center of International Blood and Marrow Transplant Research biorepository. PacBio sequencing and single nucleotide polymorphism-array genotyping were used to identify JAK2V617F mutation and associated mosaic chromosomal alterations (mCAs), respectively. Cox proportional hazard models were used for HCT outcome analyses. Genomic testing was complete for 924 patients with MF (634 primary MF [PMF], 135 postpolycythemia vera [PPV-MF], and 155 postessential thrombocytopenia [PET-MF]). JAK2V617F affected 562 patients (57.6% of PMF, 97% of PPV-MF, and 42.6% of PET-MF). Almost all patients with mCAs involving the JAK2 region (97.9%) were JAK2V617-positive. In PMF, JAK2V617F mutation status, allele burden, or identified mCAs were not associated with disease progression/relapse, nonrelapse mortality (NRM), or overall survival. Almost all PPV-MF were JAK2V617F-positive (97%), with no association between HCT outcomes and mutation allele burden or mCAs. In PET-MF, JAK2V617F high mutation allele burden (≥60%) was associated with excess risk of NRM, restricted to transplants received in the era of JAK inhibitors (2013-2016; hazard ratio = 7.65; 95% confidence interval = 2.10-27.82; P = .002). However, allele burden was not associated with post-HCT disease progression/relapse or survival. Our findings support the concept that HCT can mitigate the known negative effect of JAK2V617F in patients with MF, particularly for PMF and PPV-MF.
Collapse
Affiliation(s)
- Maryam Rafati
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Derek W. Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Weiyin Zhou
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Kristine Jones
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Wen Luo
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Andrew St. Martin
- Center for International Blood and Marrow Transplant Research, Minneapolis, MN
| | - Youjin Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Meilun He
- Center for International Blood and Marrow Transplant Research, Minneapolis, MN
| | - Stephen R. Spellman
- Center for International Blood and Marrow Transplant Research, Minneapolis, MN
| | - Tao Wang
- Center for International Blood and Marrow Transplant Research, Milwaukee, WI
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI
| | - H. Joachim Deeg
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Vikas Gupta
- MPN Program, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Stephanie J. Lee
- Center for International Blood and Marrow Transplant Research, Milwaukee, WI
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Yung-Tsi Bolon
- Center for International Blood and Marrow Transplant Research, Minneapolis, MN
| | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Mitchell J. Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Wael Saber
- Center for International Blood and Marrow Transplant Research, Milwaukee, WI
| | - Shahinaz M. Gadalla
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
6
|
Brown DW, Cato LD, Zhao Y, Nandakumar SK, Bao EL, Gardner EJ, Hubbard AK, DePaulis A, Rehling T, Song L, Yu K, Chanock SJ, Perry JRB, Sankaran VG, Machiela MJ. Shared and distinct genetic etiologies for different types of clonal hematopoiesis. Nat Commun 2023; 14:5536. [PMID: 37684235 PMCID: PMC10491829 DOI: 10.1038/s41467-023-41315-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Clonal hematopoiesis (CH)-age-related expansion of mutated hematopoietic clones-can differ in frequency and cellular fitness by CH type (e.g., mutations in driver genes (CHIP), gains/losses and copy-neutral loss of chromosomal segments (mCAs), and loss of sex chromosomes). Co-occurring CH raises questions as to their origin, selection, and impact. We integrate sequence and genotype array data in up to 482,378 UK Biobank participants to demonstrate shared genetic architecture across CH types. Our analysis suggests a cellular evolutionary trade-off between different types of CH, with LOY occurring at lower rates in individuals carrying mutations in established CHIP genes. We observed co-occurrence of CHIP and mCAs with overlap at TET2, DNMT3A, and JAK2, in which CHIP precedes mCA acquisition. Furthermore, individuals carrying overlapping CH had high risk of future lymphoid and myeloid malignancies. Finally, we leverage shared genetic architecture of CH traits to identify 15 novel loci associated with leukemia risk.
Collapse
Affiliation(s)
- Derek W Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Cancer Prevention Fellowship Program, Division of Cancer Prevention, National Cancer Institute, Rockville, MD, USA
| | - Liam D Cato
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Yajie Zhao
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | - Satish K Nandakumar
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Albert Einstein Cancer Center, Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Bronx, NY, 10461, USA
| | - Erik L Bao
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Eugene J Gardner
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | - Aubrey K Hubbard
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Alexander DePaulis
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Thomas Rehling
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Lei Song
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Kai Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - John R B Perry
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK.
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK.
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| | - Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA.
| |
Collapse
|
7
|
Hubbard AK, Brown DW, Machiela MJ. Clonal hematopoiesis due to mosaic chromosomal alterations: Impact on disease risk and mortality. Leuk Res 2023; 126:107022. [PMID: 36706615 PMCID: PMC9974917 DOI: 10.1016/j.leukres.2023.107022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/28/2022] [Accepted: 01/22/2023] [Indexed: 01/25/2023]
Abstract
Mosaic chromosomal alterations (mCAs) are the clonal expansion of large somatically acquired structural chromosomal changes present on the autosomes and sex chromosomes. Most studies of mCAs use existing genotype array intensity data from large populations to investigate potential risk factors and disease outcomes associated with mCAs. In this review, we perform a comprehensive examination of existing evidence for mCA disease and mortality associations and provide a framework for interpreting these associations in the context of important biases specific to mCA studies. Our goal is to motivate well-designed mCA studies to assist in unlocking the potential of mCAs to improve understanding of the effects of ageing and accelerate translational applications for improving public health.
Collapse
Affiliation(s)
- Aubrey K Hubbard
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Derek W Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA; Cancer Prevention Fellowship Program, Division of Cancer Prevention, National Cancer Institute, Rockville, MD, USA
| | - Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA.
| |
Collapse
|