1
|
Song K, Ji H, Lee J, Yoon Y. Microbial Transcription Factor-Based Biosensors: Innovations from Design to Applications in Synthetic Biology. BIOSENSORS 2025; 15:221. [PMID: 40277535 PMCID: PMC12024804 DOI: 10.3390/bios15040221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/26/2025]
Abstract
Transcription factor-based biosensors (TFBs) are powerful tools in microbial biosensor applications, enabling dynamic control of metabolic pathways, real-time monitoring of intracellular metabolites, and high-throughput screening (HTS) for strain engineering. These systems use transcription factors (TFs) to convert metabolite concentrations into quantifiable outputs, enabling precise regulation of metabolic fluxes and biosynthetic efficiency in microbial cell factories. Recent advancements in TFB, including improved sensitivity, specificity, and dynamic range, have broadened their applications in synthetic biology and industrial biotechnology. Computational tools such as Cello have further revolutionized TFB design, enabling in silico optimization and construction of complex genetic circuits for integrating multiple signals and achieving precise gene regulation. This review explores innovations in TFB systems for microbial biosensors, their role in metabolic engineering and adaptive evolution, and their future integration with artificial intelligence and advanced screening technologies to overcome critical challenges in synthetic biology and industrial bioproduction.
Collapse
Affiliation(s)
| | | | | | - Youngdae Yoon
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea; (K.S.); (H.J.)
| |
Collapse
|
2
|
Fu ZH, Cheng S, Li JW, Zhang N, Wu Y, Zhao GR. Synthetic tunable promoters for flexible control of multi-gene expression in mammalian cells. J Adv Res 2025:S2090-1232(25)00106-7. [PMID: 39938795 DOI: 10.1016/j.jare.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/14/2025] Open
Abstract
INTRODUCTION Synthetic biology revolutionizes our ability to decode and recode genetic systems. The capability to reconstruct and flexibly manipulate multi-gene systems is critical for understanding cellular behaviors and has significant applications in therapeutics. OBJECTIVES This study aims to construct a diverse library of synthetic tunable promoters (STPs) to enable flexible control of multi-gene expression in mammalian cells. METHODS We designed and constructed synthetic tunable promoters (STPs) that incorporate both a universal activation site (UAS) and a specific activation site (SAS), enabling multi-level expression control via the CRISPR activation (CRISPRa) system. To evaluate promoter activity, we utilized Massively Parallel Reporter Assays (MPRA) to assess the basal strengths of the STPs and their activation responses. Next, we constructed a three-gene reporter system to assess the capacity of the synthetic promoters for achieving multilevel control of single-gene expression within multi-gene systems. RESULTS The promoter library contains 24,960 unique non-redundant promoters with distinct sequence characteristics. MPRA revealed a wide range of promoter activities, showing different basal strengths and distinct activation levels when activated by the CRISPRa system. When regulated by targeting the SAS, the STPs exhibited orthogonality, allowing multilevel control of single-gene expression within multi-gene systems without cross-interference. Furthermore, the combinatorial activation of STPs in a multi-gene system enlarged the scope of expression levels achievable, providing fine-tuned control over gene expression. CONCLUSION We provide a diverse collection of synthetic tunable promoters, offering a valuable toolkit for the construction and manipulation of multi-gene systems in mammalian cells, with applications in gene therapy and biotechnology.
Collapse
Affiliation(s)
- Zong-Heng Fu
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin 300072, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, 300072, China
| | - Si Cheng
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin 300072, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, 300072, China
| | - Jia-Wei Li
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin 300072, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, 300072, China
| | - Nan Zhang
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin 300072, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, 300072, China
| | - Yi Wu
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin 300072, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, 300072, China.
| | - Guang-Rong Zhao
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin 300072, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
3
|
Yu G, Duan Q, Cui T, Jiang C, Li X, Li Y, Fu J, Zhang Y, Wang H, Luan J. Development of a bacterial gene transcription activating strategy based on transcriptional activator positive feedback. J Adv Res 2024; 66:155-164. [PMID: 38123018 PMCID: PMC11674765 DOI: 10.1016/j.jare.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/26/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023] Open
Abstract
INTRODUCTION Transcription of biological nitrogen fixation (nif) genes is activated by the NifA protein which recognizes specific activating sequences upstream of σ54-dependent nif promoters. The large quantities of nitrogenase which can make up 20% of the total proteins in the cell indicates high transcription activating efficiency of NifA and high transcription level of nifHDK nitrogenase genes. OBJECTIVES Development of an efficient gene transcription activating strategy in bacteria based on positive transcription regulatory proteins and their regulating DNA sequences. METHODS We designed a highly efficient gene transcription activating strategy in which the nifA gene was placed directly downstream of its regulating sequences. The NifA protein binds its regulating sequences and stimulates transcription of itself and downstream genes. Overexpressed NifA causes transcription activation by positive reinforcement. RESULTS When this gene transcription activating strategy was used to overexpress NifA in Pseudomonas stutzeri DSM4166 containing the nif gene cluster, the nitrogenase activity was increased by 368 folds which was 16 times higher than that obtained by nifA driven by the strongest endogenous constitutive promoter. When this strategy was used to activate transcription of exogenous biosynthetic genes for the plant auxin indole-3-acetic acid and the antitumor alkaloid pigment prodigiosin in DSM4166, both of them resulted in better performance than the strongest endogenous constitutive promoter and the highest reported productions in heterologous hosts to date. Finally, we demonstrated the universality of this strategy using the positive transcriptional regulator of the psp operon, PspF, in E. coli and the pathway-specific positive transcription regulator of the polyene antibiotic salinomycin biosynthesis, SlnR, in Streptomyces albus. CONCLUSION Many positive transcription regulatory proteins and their regulating DNA sequences have been identified in bacteria. The gene transcription activating strategy developed in this study will have broad applications in molecular biology and biotechnology.
Collapse
Affiliation(s)
- Guangle Yu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, 266237, Qingdao, Shandong, China
| | - Qiuyue Duan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, 266237, Qingdao, Shandong, China
| | - Tianqi Cui
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, 266237, Qingdao, Shandong, China
| | - Chanjuan Jiang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, 266237, Qingdao, Shandong, China
| | - Xiaochen Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, 266237, Qingdao, Shandong, China
| | - Yutong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, 266237, Qingdao, Shandong, China
| | - Jun Fu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, 266237, Qingdao, Shandong, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, 266237, Qingdao, Shandong, China
| | - Hailong Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, 266237, Qingdao, Shandong, China.
| | - Ji Luan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, 266237, Qingdao, Shandong, China.
| |
Collapse
|
4
|
Cui W, Lin X, Hu R, Chen H, Xiao P, Tao M, Suo F, Han L, Zhou Z. Creation of an orthogonal and universal auto-inducible gene expression platform by reprogramming a two-component signal circuit for efficient production of industrial enzymes. Int J Biol Macromol 2024; 283:137781. [PMID: 39566785 DOI: 10.1016/j.ijbiomac.2024.137781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/05/2024] [Accepted: 11/15/2024] [Indexed: 11/22/2024]
Abstract
Bacterial gene expression systems play a crucial role in producing valuable biological macromolecules, such as recombinant proteins and polysaccharides. However, traditional inducible gene systems have limitations that need costly chemical inducers that can harm the host. To address these challenges, a novel peptide-activated auto-inducible gene expression system was developed in Bacillus subtilis, leveraging Accessory gene regulatory system (Agr), a two-component signal system, from Staphylococcus aureus to trigger gene expression in response to an auto-inducible peptide (AIP). This system mimics a cell density-dependent regulatory mechanism, allowing for the intuitive activation of gene expression as accumulation of AIP. By precisely tuning the level of AIP, the auto-induction time was successfully delayed, however, at the expense of slightly reducing the strength of effector promoter P3, thus decreasing level of output expression. Furthermore, modulation of the stoichiometry of sensor protein AgrC allowed for fine-tuning of the auto-induction time, temporal dynamics, and expression levels. The robustness of the system was improved by strengthening P3 while maintaining the delayed auto-induction time. The versatility and efficacy of the system was demonstrated by the efficient production of various industrial enzymes. This study paves the way for the application of bacterial two-component signal systems to design synthetic gene circuits.
Collapse
Affiliation(s)
- Wenjing Cui
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (MOE), Jiangnan University, China.
| | - Xinyu Lin
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (MOE), Jiangnan University, China
| | - Ruichun Hu
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (MOE), Jiangnan University, China
| | - Huating Chen
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (MOE), Jiangnan University, China
| | - Peiyuan Xiao
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (MOE), Jiangnan University, China
| | - Mengrui Tao
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (MOE), Jiangnan University, China
| | - Feiya Suo
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (MOE), Jiangnan University, China
| | - Laichuang Han
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (MOE), Jiangnan University, China
| | - Zhemin Zhou
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (MOE), Jiangnan University, China.
| |
Collapse
|
5
|
Li Z, Zhang Y, Peng B, Qin S, Zhang Q, Chen Y, Chen C, Bao Y, Zhu Y, Hong Y, Liu B, Liu Q, Xu L, Chen X, Ma X, Wang H, Xie L, Yao Y, Deng B, Li J, De B, Chen Y, Wang J, Li T, Liu R, Tang Z, Cao J, Zuo E, Mei C, Zhu F, Shao C, Wang G, Sun T, Wang N, Liu G, Ni JQ, Liu Y. A novel interpretable deep learning-based computational framework designed synthetic enhancers with broad cross-species activity. Nucleic Acids Res 2024; 52:13447-13468. [PMID: 39420601 PMCID: PMC11602155 DOI: 10.1093/nar/gkae912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Enhancers play a critical role in dynamically regulating spatial-temporal gene expression and establishing cell identity, underscoring the significance of designing them with specific properties for applications in biosynthetic engineering and gene therapy. Despite numerous high-throughput methods facilitating genome-wide enhancer identification, deciphering the sequence determinants of their activity remains challenging. Here, we present the DREAM (DNA cis-Regulatory Elements with controllable Activity design platforM) framework, a novel deep learning-based approach for synthetic enhancer design. Proficient in uncovering subtle and intricate patterns within extensive enhancer screening data, DREAM achieves cutting-edge sequence-based enhancer activity prediction and highlights critical sequence features implicating strong enhancer activity. Leveraging DREAM, we have engineered enhancers that surpass the potency of the strongest enhancer within the Drosophila genome by approximately 3.6-fold. Remarkably, these synthetic enhancers exhibited conserved functionality across species that have diverged more than billion years, indicating that DREAM was able to learn highly conserved enhancer regulatory grammar. Additionally, we designed silencers and cell line-specific enhancers using DREAM, demonstrating its versatility. Overall, our study not only introduces an interpretable approach for enhancer design but also lays out a general framework applicable to the design of other types of cis-regulatory elements.
Collapse
Affiliation(s)
- Zhaohong Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Buxin Road NO. 97, Dapeng District, Shenzhen 518124, China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Buxin Road NO. 97, Dapeng District, Shenzhen 518124, China
| | - Yuanyuan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Buxin Road NO. 97, Dapeng District, Shenzhen 518124, China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Buxin Road NO. 97, Dapeng District, Shenzhen 518124, China
| | - Bo Peng
- Gene Regulatory Lab, School of Basic Medical Sciences, Tsinghua University, NO. 30 Shuangqing road, Haidian district, Beijing 100084, China
- State Key Laboratory of Molecular Oncology, Tsinghua University, NO. 30 Shuangqing road, Haidian district, Beijing 100084, China
| | - Shenghua Qin
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Buxin Road NO. 97, Dapeng District, Shenzhen 518124, China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Buxin Road NO. 97, Dapeng District, Shenzhen 518124, China
| | - Qian Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, NO.1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Yun Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Buxin Road NO. 97, Dapeng District, Shenzhen 518124, China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Buxin Road NO. 97, Dapeng District, Shenzhen 518124, China
| | - Choulin Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Buxin Road NO. 97, Dapeng District, Shenzhen 518124, China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Buxin Road NO. 97, Dapeng District, Shenzhen 518124, China
| | - Yongzhou Bao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Buxin Road NO. 97, Dapeng District, Shenzhen 518124, China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Buxin Road NO. 97, Dapeng District, Shenzhen 518124, China
| | - Yuqi Zhu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, NO. 7 Pengfei Road, Dapeng District, Shenzhen 518124, China
| | - Yi Hong
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, NO. 7 Pengfei Road, Dapeng District, Shenzhen 518124, China
| | - Binghua Liu
- State Key Laboratory of Maricultural Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, NO.106 Nanjing Road, Shinan District, Qingdao, Shandong 266071, China
| | - Qian Liu
- State Key Laboratory of Maricultural Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, NO.106 Nanjing Road, Shinan District, Qingdao, Shandong 266071, China
| | - Lingna Xu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Buxin Road NO. 97, Dapeng District, Shenzhen 518124, China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Buxin Road NO. 97, Dapeng District, Shenzhen 518124, China
| | - Xi Chen
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Buxin Road NO. 97, Dapeng District, Shenzhen 518124, China
| | - Xinhao Ma
- College of Grassland Agriculture, National Beef Cattle Improvement Center, College of Animal Science and Technology, Northwest A&F University, NO. 3 Taicheng Road, Yangling District, Yangling, Shaanxi 712100, China
| | - Hongyan Wang
- State Key Laboratory of Maricultural Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, NO.106 Nanjing Road, Shinan District, Qingdao, Shandong 266071, China
| | - Long Xie
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Buxin Road NO. 97, Dapeng District, Shenzhen 518124, China
| | - Yilong Yao
- Green Healthy Aquaculture Research Center, Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, Building 26 Lihe Technology Park, Auxiliary Road of Xinxi Avenue South, Nanhai District, Foshan 528226, China
| | - Biao Deng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Buxin Road NO. 97, Dapeng District, Shenzhen 518124, China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Buxin Road NO. 97, Dapeng District, Shenzhen 518124, China
| | - Jiaying Li
- Department of Ophthalmology, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Dongjiaomin lane No1, Dongcheng District, Beijing 100101, China
| | - Baojun De
- College of Life Sciences, Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Inner Mongolia Agricultural University, NO. 306 Zhaowuda Road, Saihan District, Hohhot 010018, China
| | - Yuting Chen
- College of Life Sciences, Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Inner Mongolia Agricultural University, NO. 306 Zhaowuda Road, Saihan District, Hohhot 010018, China
| | - Jing Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Buxin Road NO. 97, Dapeng District, Shenzhen 518124, China
| | - Tian Li
- College of JUNCAO Science and Ecology, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University (FAFU), NO.15 Shangxiadian Road, Cangshan District, Fuzhou 0350002, China
| | - Ranran Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road NO. 2, Haidian District, Beijing 100193, China
| | - Zhonglin Tang
- Green Healthy Aquaculture Research Center, Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, Building 26 Lihe Technology Park, Auxiliary Road of Xinxi Avenue South, Nanhai District, Foshan 528226, China
| | - Junwei Cao
- College of Life Sciences, Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Inner Mongolia Agricultural University, NO. 306 Zhaowuda Road, Saihan District, Hohhot 010018, China
| | - Erwei Zuo
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Buxin Road NO. 97, Dapeng District, Shenzhen 518124, China
| | - Chugang Mei
- College of Grassland Agriculture, National Beef Cattle Improvement Center, College of Animal Science and Technology, Northwest A&F University, NO. 3 Taicheng Road, Yangling District, Yangling, Shaanxi 712100, China
| | - Fangjie Zhu
- College of JUNCAO Science and Ecology, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University (FAFU), NO.15 Shangxiadian Road, Cangshan District, Fuzhou 0350002, China
| | - Changwei Shao
- State Key Laboratory of Maricultural Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, NO.106 Nanjing Road, Shinan District, Qingdao, Shandong 266071, China
| | - Guirong Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Buxin Road NO. 97, Dapeng District, Shenzhen 518124, China
| | - Tongjun Sun
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, NO. 7 Pengfei Road, Dapeng District, Shenzhen 518124, China
| | - Ningli Wang
- Department of Ophthalmology, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Dongjiaomin lane No1, Dongcheng District, Beijing 100101, China
| | - Gang Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, NO.1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Jian-Quan Ni
- Gene Regulatory Lab, School of Basic Medical Sciences, Tsinghua University, NO. 30 Shuangqing road, Haidian district, Beijing 100084, China
- State Key Laboratory of Molecular Oncology, Tsinghua University, NO. 30 Shuangqing road, Haidian district, Beijing 100084, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, NO. 56 Xinjian South Road, Yingze District, Taiyuan 030001, China
| | - Yuwen Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Buxin Road NO. 97, Dapeng District, Shenzhen 518124, China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Buxin Road NO. 97, Dapeng District, Shenzhen 518124, China
- Green Healthy Aquaculture Research Center, Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, Building 26 Lihe Technology Park, Auxiliary Road of Xinxi Avenue South, Nanhai District, Foshan 528226, China
| |
Collapse
|
6
|
Shin SW, Min H, Kim J, Lee JS. A precise and sustainable doxycycline-inducible cell line development platform for reliable mammalian cell engineering with gain-of-function mutations. Metab Eng 2024; 86:12-28. [PMID: 39242074 DOI: 10.1016/j.ymben.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
For mammalian synthetic biology research, multiple orthogonal and tunable gene expression systems have been developed, among which the tetracycline (Tet)-inducible system is a key tool for gain-of-function mutations. Precise and long-lasting regulation of genetic circuits is necessary for the effective use of these systems in genetically engineered stable cell lines. However, current cell line development strategies, which depend on either random or site-specific integration along with antibiotic selection, are unpredictable and unsustainable, limiting their widespread use. To overcome these issues, we aimed to establish a Robust Overexpression via Site-specific integration of Effector (ROSE) system, a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9-mediated streamlined Tet-On3G-inducible master cell line (MCL) development platform. ROSE MCLs equipped with a landing pad facilitated the transcriptional regulation of various effector genes via recombinase-mediated cassette exchange. Long-term investigation revealed that the modular design of genetic payloads and integration sites significantly affected the induction capacity and stability, with ROSE MCLs exhibiting exceptional induction performance. To demonstrate the versatility of our platform, we explored its efficiency for the precise regulation of selection stringency, manufacturing of therapeutic antibodies with tunable expression levels and timing, and transcription factor engineering. Overall, this study demonstrated the effectiveness and reliability of the ROSE platform, highlighting its potential for various biological and biotechnological applications.
Collapse
Affiliation(s)
- Sung Wook Shin
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Honggi Min
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Jiwon Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Jae Seong Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea; Advanced College of Bio-convergence Engineering, Ajou University, Suwon, 16499, Republic of Korea.
| |
Collapse
|
7
|
Liu B, Zhou H, Tan L, Siu KTH, Guan XY. Exploring treatment options in cancer: Tumor treatment strategies. Signal Transduct Target Ther 2024; 9:175. [PMID: 39013849 PMCID: PMC11252281 DOI: 10.1038/s41392-024-01856-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 07/18/2024] Open
Abstract
Traditional therapeutic approaches such as chemotherapy and radiation therapy have burdened cancer patients with onerous physical and psychological challenges. Encouragingly, the landscape of tumor treatment has undergone a comprehensive and remarkable transformation. Emerging as fervently pursued modalities are small molecule targeted agents, antibody-drug conjugates (ADCs), cell-based therapies, and gene therapy. These cutting-edge treatment modalities not only afford personalized and precise tumor targeting, but also provide patients with enhanced therapeutic comfort and the potential to impede disease progression. Nonetheless, it is acknowledged that these therapeutic strategies still harbour untapped potential for further advancement. Gaining a comprehensive understanding of the merits and limitations of these treatment modalities holds the promise of offering novel perspectives for clinical practice and foundational research endeavours. In this review, we discussed the different treatment modalities, including small molecule targeted drugs, peptide drugs, antibody drugs, cell therapy, and gene therapy. It will provide a detailed explanation of each method, addressing their status of development, clinical challenges, and potential solutions. The aim is to assist clinicians and researchers in gaining a deeper understanding of these diverse treatment options, enabling them to carry out effective treatment and advance their research more efficiently.
Collapse
Affiliation(s)
- Beilei Liu
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China
| | - Hongyu Zhou
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Licheng Tan
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Kin To Hugo Siu
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China.
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China.
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China.
| |
Collapse
|
8
|
Lam C. Mathematical and In Silico Analysis of Synthetic Inhibitory Circuits That Program Self-Organizing Multicellular Structures. ACS Synth Biol 2024; 13:1925-1940. [PMID: 38781040 DOI: 10.1021/acssynbio.4c00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Bottom-up approaches are becoming increasingly popular for studying multicellular self-organization and development. In contrast to the classic top-down approach, where parts of the organization/developmental process are broken to understand the process, the goal is to build the process to understand it. For example, synthetic circuits have been built to understand how cell-cell communication and differential adhesion can drive multicellular development. The majority of current bottom-up efforts focus on using activatory circuits to engineer and understand development, but efforts with inhibitory circuits have been minimal. Yet, inhibitory circuits are ubiquitous and vital to native developmental processes. Thus, inhibitory circuits are a crucial yet poorly studied facet of bottom-up multicellular development. To demonstrate the potential of inhibitory circuits for building and developing multicellular structures, several synthetic inhibitory circuits that combine engineered cell-cell communication and differential adhesion were designed, and then examined for synthetic development capability using a previously validated in silico framework. These designed inhibitory circuits can build a variety of patterned, self-organized structures and even morphological oscillations. These results support that inhibitory circuits can be powerful tools for building, studying, and understanding developmental processes.
Collapse
Affiliation(s)
- Calvin Lam
- Independent Investigator, Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
9
|
Bhatt B, García-Díaz P, Foight GW. Synthetic transcription factor engineering for cell and gene therapy. Trends Biotechnol 2024; 42:449-463. [PMID: 37865540 DOI: 10.1016/j.tibtech.2023.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/23/2023]
Abstract
Synthetic transcription factors (synTFs) that control beneficial transgene expression are an important method to increase the safety and efficacy of cell and gene therapy. Reliance on synTF components from non-human sources has slowed progress in the field because of concerns about immunogenicity and inducer drug properties. Recent advances in human-derived DNA-binding domains (DBDs) and transcriptional activation domains (TADs) paired with novel control modules responsive to clinically approved small molecules have poised the synTF field to overcome these hurdles. Advances include controllers inducible by autonomous signaling inputs and more complex, multi-input synTF circuits. Demonstrations of advanced control strategies with human-derived transcription factor components in clinically relevant vectors and in vivo models will facilitate progression into the clinic.
Collapse
Affiliation(s)
- Bhoomi Bhatt
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, and Baylor College of Medicine, Houston, TX, USA
| | - Pablo García-Díaz
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, and Baylor College of Medicine, Houston, TX, USA
| | - Glenna Wink Foight
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, and Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
10
|
Mock M, Langmead CJ, Grandsard P, Edavettal S, Russell A. Recent advances in generative biology for biotherapeutic discovery. Trends Pharmacol Sci 2024; 45:255-267. [PMID: 38378385 DOI: 10.1016/j.tips.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/22/2023] [Accepted: 01/05/2024] [Indexed: 02/22/2024]
Abstract
Generative biology combines artificial intelligence (AI), advanced life sciences technologies, and automation to revolutionize the process of designing novel biomolecules with prescribed properties, giving drug discoverers the ability to escape the limitations of biology during the design of next-generation protein therapeutics. Significant hurdles remain, namely: (i) the inherently complex nature of drug discovery, (ii) the bewildering number of promising computational and experimental techniques that have emerged in the past several years, and (iii) the limited availability of relevant protein sequence-function data for drug-like molecules. There is a need to focus on computational methods that will be most practically effective for protein drug discovery and on building experimental platforms to generate the data most appropriate for these methods. Here, we discuss recent advances in computational and experimental life sciences that are most crucial for impacting the pace and success of protein drug discovery.
Collapse
Affiliation(s)
- Marissa Mock
- Amgen Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | | | - Peter Grandsard
- Amgen Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Suzanne Edavettal
- Amgen Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Alan Russell
- Amgen Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA.
| |
Collapse
|
11
|
Glinšek K, Bozovičar K, Bratkovič T. CRISPR Technologies in Chinese Hamster Ovary Cell Line Engineering. Int J Mol Sci 2023; 24:ijms24098144. [PMID: 37175850 PMCID: PMC10179654 DOI: 10.3390/ijms24098144] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
The Chinese hamster ovary (CHO) cell line is a well-established platform for the production of biopharmaceuticals due to its ability to express complex therapeutic proteins with human-like glycopatterns in high amounts. The advent of CRISPR technology has opened up new avenues for the engineering of CHO cell lines for improved protein production and enhanced product quality. This review summarizes recent advances in the application of CRISPR technology for CHO cell line engineering with a particular focus on glycosylation modulation, productivity enhancement, tackling adventitious agents, elimination of problematic host cell proteins, development of antibiotic-free selection systems, site-specific transgene integration, and CRISPR-mediated gene activation and repression. The review highlights the potential of CRISPR technology in CHO cell line genome editing and epigenetic engineering for the more efficient and cost-effective development of biopharmaceuticals while ensuring the safety and quality of the final product.
Collapse
Affiliation(s)
- Katja Glinšek
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Krištof Bozovičar
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Tomaž Bratkovič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| |
Collapse
|
12
|
El-Baba T, Lutomski CA, Burnap SA, Bolla JR, Baker LA, Baldwin AJ, Struwe WB, Robinson CV. Uncovering the Role of N-Glycan Occupancy on the Cooperative Assembly of Spike and Angiotensin Converting Enzyme 2 Complexes: Insights from Glycoengineering and Native Mass Spectrometry. J Am Chem Soc 2023; 145:8021-8032. [PMID: 37000485 PMCID: PMC10103161 DOI: 10.1021/jacs.3c00291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Indexed: 04/01/2023]
Abstract
Interactions between the SARS-CoV-2 Spike protein and ACE2 are one of the most scrutinized reactions of our time. Yet, questions remain as to the impact of glycans on mediating ACE2 dimerization and downstream interactions with Spike. Here, we address these unanswered questions by combining a glycoengineering strategy with high-resolution native mass spectrometry (MS) to investigate the impact of N-glycan occupancy on the assembly of multiple Spike-ACE2 complexes. We confirmed that intact Spike trimers have all 66 N-linked sites occupied. For monomeric ACE2, all seven N-linked glycan sites are occupied to various degrees; six sites have >90% occupancy, while the seventh site (Asn690) is only partially occupied (∼30%). By resolving the glycoforms on ACE2, we deciphered the influence of each N-glycan on ACE2 dimerization. Unexpectedly, we found that Asn432 plays a role in mediating dimerization, a result confirmed by site-directed mutagenesis. We also found that glycosylated dimeric ACE2 and Spike trimers form complexes with multiple stoichiometries (Spike-ACE2 and Spike2-ACE2) with dissociation constants (Kds) of ∼500 and <100 nM, respectively. Comparing these values indicates that positive cooperativity may drive ACE2 dimers to complex with multiple Spike trimers. Overall, our results show that occupancy has a key regulatory role in mediating interactions between ACE2 dimers and Spike trimers. More generally, since soluble ACE2 (sACE2) retains an intact SARS-CoV-2 interaction site, the importance of glycosylation in ACE2 dimerization and the propensity for Spike and ACE2 to assemble into higher oligomers are molecular details important for developing strategies for neutralizing the virus.
Collapse
Affiliation(s)
- Tarick
J. El-Baba
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3TA, U.K.
- The
Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, South Parks
Road, Oxford OX1 3QU, U.K.
| | - Corinne A. Lutomski
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3TA, U.K.
- The
Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, South Parks
Road, Oxford OX1 3QU, U.K.
| | - Sean A. Burnap
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3TA, U.K.
- The
Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, South Parks
Road, Oxford OX1 3QU, U.K.
| | - Jani R. Bolla
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3TA, U.K.
- The
Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, South Parks
Road, Oxford OX1 3QU, U.K.
| | - Lindsay A. Baker
- The
Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, South Parks
Road, Oxford OX1 3QU, U.K.
- Department
of Biochemistry, University of Oxford, Oxford, OX1 3QU, U.K.
| | - Andrew J. Baldwin
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3TA, U.K.
- The
Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, South Parks
Road, Oxford OX1 3QU, U.K.
| | - Weston B. Struwe
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3TA, U.K.
- The
Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, South Parks
Road, Oxford OX1 3QU, U.K.
| | - Carol V. Robinson
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3TA, U.K.
- The
Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, South Parks
Road, Oxford OX1 3QU, U.K.
| |
Collapse
|
13
|
Ma D, Yuan Q, Peng F, Paredes V, Zeng H, Yang Q, Peddi A, Patel A, Liu MS, Sun Z, Gao X. Engineered PROTAC-CID Systems for Mammalian Inducible Gene Regulation. J Am Chem Soc 2023; 145:1593-1606. [PMID: 36626587 PMCID: PMC10162582 DOI: 10.1021/jacs.2c09129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Gene regulation via chemically induced dimerization (CID) is useful for biomedical research. However, the number, type, versatility, and in vivo applications of CID tools remain limited. Here, we demonstrate the development of proteolysis-targeting chimera-based scalable CID (PROTAC-CID) platforms by systematically engineering the available PROTAC systems for inducible gene regulation and gene editing. Further, we show orthogonal PROTAC-CIDs that can fine-tune gene expression at gradient levels or multiplex biological signals with different logic gating operations. Coupling the PROTAC-CID platform with genetic circuits, we achieve digitally inducible expression of DNA recombinases, base- and prime-editors for transient genome manipulation. Finally, we package a compact PROTAC-CID system into adeno-associated viral vectors for inducible and reversible gene activation in vivo. This work provides a versatile molecular toolbox that expands the scope of chemically inducible gene regulation in human cells and mice.
Collapse
Affiliation(s)
- Dacheng Ma
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
| | - Qichen Yuan
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
| | - Fei Peng
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Victor Paredes
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
| | - Hongzhi Zeng
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
| | - Qiaochu Yang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
| | - Advaith Peddi
- Department of Biosciences, Rice University, Houston, Texas 77005, USA
| | - Anika Patel
- Department of Computer Sciences, Rice University, Houston, Texas 77005, USA
| | - Megan S. Liu
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
| | - Zheng Sun
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Xue Gao
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| |
Collapse
|