1
|
Yudkina AV, Zharkov DO. The hidden elephant: Modified abasic sites and their consequences. DNA Repair (Amst) 2025; 148:103823. [PMID: 40056494 DOI: 10.1016/j.dnarep.2025.103823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/06/2025] [Accepted: 02/26/2025] [Indexed: 03/10/2025]
Abstract
Abasic, or apurinic/apyrimidinic sites (AP sites) are among the most abundant DNA lesions, appearing in DNA both through spontaneous base loss and as intermediates of base excision DNA repair. Natural aldehydic AP sites have been known for decades and their interaction with the cellular replication, transcription and repair machinery has been investigated in detail. Oxidized AP sites, produced by free radical attack on intact nucleotides, received much attention recently due to their ability to trap DNA repair enzymes and chromatin structural proteins such as histones. In the past few years, it became clear that the reactive nature of aldehydic and oxidized AP sites produces a variety of modifications, including AP site-protein and AP site-peptide cross-links, adducts with small molecules of metabolic or xenobiotic origin, and AP site-mediated interstrand DNA cross-links. The diverse chemical nature of these common-origin lesions is reflected in the wide range of their biological consequences. In this review, we summarize the data on the mechanisms of modified AP sites generation, their abundance, the ability to block DNA polymerases or cause nucleotide misincorporation, and the pathways of their repair.
Collapse
Affiliation(s)
- Anna V Yudkina
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave, Novosibirsk 630090, Russia.
| | - Dmitry O Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave, Novosibirsk 630090, Russia; Novosibirsk State University, 2 Pirogova St, Novosibirsk 630090, Russia.
| |
Collapse
|
2
|
Iliushchenko D, Efimenko B, Mikhailova AG, Shamanskiy V, Saparbaev MK, Matkarimov BT, Mazunin I, Voronka A, Knorre D, Kunz WS, Kapranov P, Denisov S, Fellay J, Khrapko K, Gunbin K, Popadin K. Deciphering the Foundations of Mitochondrial Mutational Spectra: Replication-Driven and Damage-Induced Signatures Across Chordate Classes. Mol Biol Evol 2025; 42:msae261. [PMID: 39903101 PMCID: PMC11792237 DOI: 10.1093/molbev/msae261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 11/08/2024] [Accepted: 12/04/2024] [Indexed: 02/06/2025] Open
Abstract
Mitochondrial DNA (mtDNA) mutagenesis remains poorly understood despite its crucial role in disease, aging, and evolutionary tracing. In this study, we reconstructed a comprehensive 192-component mtDNA mutational spectrum for chordates by analyzing 118,397 synonymous mutations in the CytB gene across 1,697 species and five classes. This analysis revealed three primary forces shaping mtDNA mutagenesis: (i) symmetrical, replication-driven errors by mitochondrial polymerase (POLG), resulting in C > T and A > G mutations that are highly conserved across classes; (ii) asymmetrical, damage-driven C > T mutations on the single-stranded heavy strand with clock-like dynamics; and (iii) asymmetrical A > G mutations on the heavy strand, with dynamics suggesting sensitivity to oxidative damage. The third component, sensitive to oxidative damage, positions mtDNA mutagenesis as a promising marker for metabolic and physiological processes across various classes, species, organisms, tissues, and cells. The deconvolution of the mutational spectra into mutational signatures uncovered deficiencies in both base excision repair (BER) and mismatch repair (MMR) pathways. Further analysis of mutation hotspots, abasic sites, and mutational asymmetries underscores the critical role of single-stranded DNA damage (components ii and iii), which, uncorrected due to BER and MMR deficiencies, contributes roughly as many mutations as POLG-induced errors (component i).
Collapse
Affiliation(s)
- Dmitrii Iliushchenko
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Bogdan Efimenko
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Alina G Mikhailova
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Victor Shamanskiy
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Murat K Saparbaev
- Groupe “Mechanisms of DNA Repair and Carcinogenesis”, CNRS UMR9019, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Bakhyt T Matkarimov
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- Faculty of Information Technologies, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
| | - Ilya Mazunin
- Department of Biology and Genetics, Petrovsky Medical University, Moscow, Russian Federation
- Research Centre for Medical Genetics, Moscow, Russian Federation
| | - Alexandr Voronka
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Dmitry Knorre
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Wolfram S Kunz
- Department of Epileptology and Institute of Experimental Epileptology and Cognition Research, University Bonn Medical Center, Bonn, Germany
| | | | - Stepan Denisov
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Jacques Fellay
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Konstantin Gunbin
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russian Federation
| | - Konstantin Popadin
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
Tripathi D, Gupta T, Pandey P. Exploring Piperine: Unleashing the multifaceted potential of a phytochemical in cancer therapy. Mol Biol Rep 2024; 51:1050. [PMID: 39395120 DOI: 10.1007/s11033-024-09978-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/30/2024] [Indexed: 10/14/2024]
Abstract
Radiotherapy is a cornerstone in the treatment of solid tumors, with extensive Phase III trials confirming its effectiveness. As advancements in treatment technologies and our understanding of tumor resistance mechanisms continue, the role of radiation oncology is set to become even more pivotal. Addressing the global challenge of lethal cancers demands innovative strategies, particularly in minimizing the side effects associated with traditional chemotherapy and ionizing radiation (IR). Recently, there has been growing interest in natural compounds for radioprotection, aiming to prevent tumor development and metastasis. Piperine, a compound found in black and long pepper, has emerged as a promising chemopreventive agent that works effectively without harming normal cells. Mechanistically, piperine modulates key signaling pathways, inhibits cancer cell migration and invasion, and enhances sensitivity to IR. Combining piperine with radiotherapy offers a compelling approach, boosting treatment efficacy while protecting healthy tissues from radiation damage. Piperine's versatile role goes beyond radiosensitization to include radioprotection by inhibiting NF-κB activation, reducing autophagy, and promoting apoptosis in cancer cells. This dual action makes it a promising candidate for personalized cancer care. As research advances, the therapeutic potential of piperine may drive new frontiers in cancer treatment strategies.
Collapse
Affiliation(s)
- Devika Tripathi
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Kanpur, Uttar Pradesh, 209305, India.
| | - Tanya Gupta
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Kanpur, Uttar Pradesh, 209305, India
| | - Prashant Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, 226025, India
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| |
Collapse
|
4
|
Hanthi YW, Ramirez-Otero MA, Appleby R, De Antoni A, Joudeh L, Sannino V, Waked S, Ardizzoia A, Barra V, Fachinetti D, Pellegrini L, Costanzo V. RAD51 protects abasic sites to prevent replication fork breakage. Mol Cell 2024; 84:3026-3043.e11. [PMID: 39178838 DOI: 10.1016/j.molcel.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/03/2024] [Accepted: 07/08/2024] [Indexed: 08/26/2024]
Abstract
Abasic sites are DNA lesions repaired by base excision repair. Cleavage of unrepaired abasic sites in single-stranded DNA (ssDNA) can lead to chromosomal breakage during DNA replication. How rupture of abasic DNA is prevented remains poorly understood. Here, using cryoelectron microscopy (cryo-EM), Xenopus laevis egg extracts, and human cells, we show that RAD51 nucleofilaments specifically recognize and protect abasic sites, which increase RAD51 association rate to DNA. In the absence of BRCA2 or RAD51, abasic sites accumulate as a result of DNA base methylation, oxidation, and deamination, inducing abasic ssDNA gaps that make replicating DNA fibers sensitive to APE1. RAD51 assembled on abasic DNA prevents abasic site cleavage by the MRE11-RAD50 complex, suppressing replication fork breakage triggered by an excess of abasic sites or POLθ polymerase inhibition. Our study highlights the critical role of BRCA2 and RAD51 in safeguarding against unrepaired abasic sites in DNA templates stemming from base alterations, ensuring genomic stability.
Collapse
Affiliation(s)
| | | | - Robert Appleby
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Anna De Antoni
- IFOM, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Luay Joudeh
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | | | - Salli Waked
- IFOM, The AIRC Institute of Molecular Oncology, Milan, Italy
| | | | - Viviana Barra
- Institute Curie, PSL Research University, CNRS, UMR 144, 26 Rue d'Ulm, 75005 Paris, France
| | - Daniele Fachinetti
- Institute Curie, PSL Research University, CNRS, UMR 144, 26 Rue d'Ulm, 75005 Paris, France
| | - Luca Pellegrini
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK.
| | - Vincenzo Costanzo
- IFOM, The AIRC Institute of Molecular Oncology, Milan, Italy; Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy.
| |
Collapse
|
5
|
Islam T, Shim G, Melton D, Lewis CD, Lei Z, Gates KS. Ultrafast Reaction of the Drug Hydralazine with Apurinic/Apyrimidinic Sites in DNA Gives Rise to a Stable Triazolo[3,4- a]phthalazine Adduct. Chem Res Toxicol 2024; 37:1023-1034. [PMID: 38743824 DOI: 10.1021/acs.chemrestox.4c00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The clinically used antihypertensive agent hydralazine rapidly generates hydrazone-derived adducts by reaction with apurinic/apyrimidinic (also known as abasic or AP) sites in many different sequences of duplex DNA. The reaction rates are comparable to those of some AP-trapping reagents previously described as "ultrafast." Initially, reversible formation of a hydrazone adduct is followed by an oxidative cyclization reaction that generates a chemically stable triazolo[3,4-a]phthalazine adduct. The net result is that the reaction of hydralazine with AP sites in duplex DNA yields a rapid and irreversible adduct formation. Although the hydrazone and triazolo[3,4-a]phthalazine adducts differ by only two mass units, it was possible to use MALDI-TOF-MS and ESI-QTOF-nanospray-MS to quantitatively characterize mixtures of these adducts by deconvolution of overlapping isotope envelopes. Reactions of hydralazine with the endogenous ketone pyruvate do not prevent the formation of the hydralazine-AP adducts, providing further evidence that these adducts have the potential to form in cellular DNA. AP sites are ubiquitous in cellular DNA, and rapid, irreversible adduct formation by hydralazine could be relevant to the pathogenesis of systemic drug-induced lupus erythematosus experienced by some patients. Finally, hydralazine might be developed as a probe for the detection of AP sites, the study of cellular BER, and marking the location of AP sites in DNA-sequencing analyses.
Collapse
Affiliation(s)
- Tanhaul Islam
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
| | - Garam Shim
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
| | - Douglas Melton
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
| | - Calvin D Lewis
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
| | - Zhentian Lei
- University of Missouri, MU Metabolomics Center, 240f Christopher S. Bond Life Science Center, Columbia, Missouri 65211, United States
| | - Kent S Gates
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
- Department of Biochemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
| |
Collapse
|
6
|
Kaltsas A, Zikopoulos A, Vrachnis D, Skentou C, Symeonidis EN, Dimitriadis F, Stavros S, Chrisofos M, Sofikitis N, Vrachnis N, Zachariou A. Advanced Paternal Age in Focus: Unraveling Its Influence on Assisted Reproductive Technology Outcomes. J Clin Med 2024; 13:2731. [PMID: 38792276 PMCID: PMC11122544 DOI: 10.3390/jcm13102731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/28/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
As global demographics shift toward increasing paternal age, the realm of assisted reproductive technologies (ARTs), particularly in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI), faces new challenges and opportunities. This study provides a comprehensive exploration of the implications of advanced paternal age on ART outcomes. Background research highlights the social, cultural, and economic factors driving men toward later fatherhood, with a focus on the impact of delayed paternity on reproductive outcomes. Methods involve a thorough review of existing literature, centering on changes in testicular function, semen quality, and genetic and epigenetic shifts associated with advancing age. Study results point to intricate associations between the father's age and ART outcomes, with older age being linked to diminished semen quality, potential genetic risks, and varied impacts on embryo quality, implantation rates, and birth outcomes. The conclusions drawn from the current study suggest that while advanced paternal age presents certain risks and challenges, understanding and mitigating these through strategies such as sperm cryopreservation, lifestyle modifications, and preimplantation genetic testing can optimize ART outcomes. Future research directions are identified to further comprehend the epigenetic mechanisms and long-term effects of the older father on offspring health. This study underscores the need for a comprehensive approach in navigating the intricacies of delayed fatherhood within the context of ART, aiming for the best possible outcomes for couples and their children.
Collapse
Affiliation(s)
- Aris Kaltsas
- Third Department of Urology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.K.); (M.C.)
- Laboratory of Spermatology, Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Athanasios Zikopoulos
- Department of Obstetrics and Gynecology, Royal Cornwall Hospital, Truro TR1 3LJ, UK;
| | - Dionysios Vrachnis
- Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Chara Skentou
- Department of Obstetrics and Gynaecology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Evangelos N. Symeonidis
- Department of Urology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.N.S.); (F.D.)
| | - Fotios Dimitriadis
- Department of Urology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.N.S.); (F.D.)
| | - Sofoklis Stavros
- Third Department of Obstetrics and Gynecology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.S.)
| | - Michael Chrisofos
- Third Department of Urology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.K.); (M.C.)
| | - Nikolaos Sofikitis
- Laboratory of Spermatology, Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Nikolaos Vrachnis
- Third Department of Obstetrics and Gynecology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.S.)
- Vascular Biology, Molecular and Clinical Sciences Research Institute, St George’s University of London, London SW17 0RE, UK
| | - Athanasios Zachariou
- Laboratory of Spermatology, Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| |
Collapse
|
7
|
Cao H, Deng B, Song T, Lian J, Xia L, Chu X, Zhang Y, Yang F, Wang C, Cai Y, Diao Y, Kapranov P. Genome-wide profiles of DNA damage represent highly accurate predictors of mammalian age. Aging Cell 2024; 23:e14122. [PMID: 38391092 PMCID: PMC11113270 DOI: 10.1111/acel.14122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/18/2024] [Accepted: 02/11/2024] [Indexed: 02/24/2024] Open
Abstract
The identification of novel age-related biomarkers represents an area of intense research interest. Despite multiple studies associating DNA damage with aging, there is a glaring paucity of DNA damage-based biomarkers of age, mainly due to the lack of precise methods for genome-wide surveys of different types of DNA damage. Recently, we developed two techniques for genome-wide mapping of the most prevalent types of DNA damage, single-strand breaks and abasic sites, with nucleotide-level resolution. Herein, we explored the potential of genomic patterns of DNA damage identified by these methods as a source of novel age-related biomarkers using mice as a model system. Strikingly, we found that models based on genomic patterns of either DNA lesion could accurately predict age with higher precision than the commonly used transcriptome analysis. Interestingly, the informative patterns were limited to relatively few genes and the DNA damage levels were positively or negatively correlated with age. These findings show that previously unexplored high-resolution genomic patterns of DNA damage contain useful information that can contribute significantly to both practical applications and basic science.
Collapse
Affiliation(s)
- Huifen Cao
- Institute of Genomics, School of MedicineHuaqiao UniversityXiamenChina
| | - Bolin Deng
- Institute of Genomics, School of MedicineHuaqiao UniversityXiamenChina
| | - Tianrong Song
- Institute of Genomics, School of MedicineHuaqiao UniversityXiamenChina
| | - Jiabian Lian
- Department of Clinical Laboratorythe First Affiliated Hospital of Xiamen UniversityXiamenChina
| | - Lu Xia
- Xiamen Cell Therapy Research Centerthe First Affiliated Hospital of Xiamen UniversityXiamenChina
| | | | - Yufei Zhang
- Institute of Genomics, School of MedicineHuaqiao UniversityXiamenChina
| | - Fujian Yang
- Institute of Genomics, School of MedicineHuaqiao UniversityXiamenChina
| | - Chunlian Wang
- Institute of Genomics, School of MedicineHuaqiao UniversityXiamenChina
| | - Ye Cai
- Institute of Genomics, School of MedicineHuaqiao UniversityXiamenChina
| | - Yong Diao
- Institute of Genomics, School of MedicineHuaqiao UniversityXiamenChina
| | - Philipp Kapranov
- State Key Laboratory of Cellular Stress Biology, School of Life SciencesXiamen UniversityXiamenChina
| |
Collapse
|
8
|
Cao H, Zhang Y, Song T, Xia L, Cai Y, Kapranov P. Common occurrence of hotspots of single strand DNA breaks at transcriptional start sites. BMC Genomics 2024; 25:368. [PMID: 38622509 PMCID: PMC11017599 DOI: 10.1186/s12864-024-10284-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/03/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND We recently developed two high-resolution methods for genome-wide mapping of two prominent types of DNA damage, single-strand DNA breaks (SSBs) and abasic (AP) sites and found highly complex and non-random patterns of these lesions in mammalian genomes. One salient feature of SSB and AP sites was the existence of single-nucleotide hotspots for both lesions. RESULTS In this work, we show that SSB hotspots are enriched in the immediate vicinity of transcriptional start sites (TSSs) in multiple normal mammalian tissues, however the magnitude of enrichment varies significantly with tissue type and appears to be limited to a subset of genes. SSB hotspots around TSSs are enriched on the template strand and associate with higher expression of the corresponding genes. Interestingly, SSB hotspots appear to be at least in part generated by the base-excision repair (BER) pathway from the AP sites. CONCLUSIONS Our results highlight complex relationship between DNA damage and regulation of gene expression and suggest an exciting possibility that SSBs at TSSs might function as sensors of DNA damage to activate genes important for DNA damage response.
Collapse
Affiliation(s)
- Huifen Cao
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, 361021, Xiamen, China
| | - Yufei Zhang
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, 361021, Xiamen, China
| | - Tianrong Song
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, 361021, Xiamen, China
| | - Lu Xia
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, 361000, Xiamen, China
| | - Ye Cai
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, 361021, Xiamen, China
| | - Philipp Kapranov
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Xiamen, China.
| |
Collapse
|
9
|
Gomina A, Islam T, Shim G, Lei Z, Gates KS. Formation and Properties of DNA Adducts Generated by Reactions of Abasic Sites with 1,2-Aminothiols Including Cysteamine, Cysteine Methyl Ester, and Peptides Containing N-Terminal Cysteine Residues. Chem Res Toxicol 2024; 37:395-406. [PMID: 38181204 DOI: 10.1021/acs.chemrestox.3c00344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
The reaction of 1,2-aminothiol groups with aldehyde residues in aqueous solution generates thiazolidine products, and this process has been developed as a catalyst-free click reaction for bioconjugation. The work reported here characterized reactions of the biologically relevant 1,2-aminothiols including cysteamine, cysteine methyl ester, and peptides containing N-terminal cysteine residues with the aldehyde residue of apurinic/apyrimidinic (AP) sites in DNA oligomers. These 1,2-aminothiol-containing compounds rapidly generated adducts with AP sites in single-stranded and double-stranded DNA. NMR and MALDI-TOF-MS analyses provided evidence that the reaction generated a thiazolidine product. Conversion of an AP site to a thiazolidine-AP adduct protected against the rapid cleavage normally induced at AP sites by the endonuclease action of the enzyme APE1 and the AP-lyase activity of the biogenic amine spermine. In the presence of excess 1,2-aminothiols, the thiazolidine-AP adducts underwent slow strand cleavage via a β-lyase reaction that generated products with 1,2-aminothiol-modified sugar residues on the 3'-end of the strand break. In the absence of excess 1,2-aminothiols, the thiazolidine-AP adducts dissociated to release the parent AP-containing oligonucleotide. The properties of the thiazolidine-AP adducts described here mirror critical properties of SRAP proteins HMCES and YedK that capture AP sites in single-stranded regions of cellular DNA and protect them from cleavage.
Collapse
Affiliation(s)
- Anuoluwapo Gomina
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
| | - Tanhaul Islam
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
| | - Garam Shim
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
| | - Zhentian Lei
- MU Metabolomics Center, University of Missouri, 240F Christopher S. Bond Life Science Center, Columbia, Missouri 65211, United States
| | - Kent S Gates
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
- Department of Biochemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
| |
Collapse
|
10
|
Liang Y, Yuan Q, Zheng Q, Mei Z, Song Y, Yan H, Yang J, Wu S, Yuan J, Wu W. DNA Damage Atlas: an atlas of DNA damage and repair. Nucleic Acids Res 2024; 52:D1218-D1226. [PMID: 37831087 PMCID: PMC10767978 DOI: 10.1093/nar/gkad845] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/06/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023] Open
Abstract
DNA damage and its improper repair are the major source of genomic alterations responsible for many human diseases, particularly cancer. To aid researchers in understanding the underlying mechanisms of genome instability, a number of genome-wide profiling approaches have been developed to monitor DNA damage and repair events. The rapid accumulation of published datasets underscores the critical necessity of a comprehensive database to curate sequencing data on DNA damage and repair intermediates. Here, we present DNA Damage Atlas (DDA, http://www.bioinformaticspa.com/DDA/), the first large-scale repository of DNA damage and repair information. Currently, DDA comprises 6,030 samples from 262 datasets by 59 technologies, covering 16 species, 10 types of damage and 135 treatments. Data collected in DDA was processed through a standardized workflow, including quality checks, hotspots identification and a series of feature characterization for the hotspots. Notably, DDA encompasses analyses of highly repetitive regions, ribosomal DNA and telomere. DDA offers a user-friendly interface that facilitates browsing, searching, genome browser visualization, hotspots comparison and data downloading, enabling convenient and thorough exploration for datasets of interest. In summary, DDA will stand as a valuable resource for research in genome instability and its association with diseases.
Collapse
Affiliation(s)
- Yu Liang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Qingqing Yuan
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Qijie Zheng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Zilv Mei
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Yawei Song
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Huan Yan
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Jiajie Yang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Shuheng Wu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Jiao Yuan
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Wei Wu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| |
Collapse
|
11
|
Liu C, Le BH, Xu W, Yang CH, Chen YH, Zhao L. Dual chemical labeling enables nucleotide-resolution mapping of DNA abasic sites and common alkylation damage in human mitochondrial DNA. Nucleic Acids Res 2023; 51:e73. [PMID: 37293974 PMCID: PMC10359467 DOI: 10.1093/nar/gkad502] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/01/2023] [Accepted: 05/26/2023] [Indexed: 06/10/2023] Open
Abstract
Mitochondrial DNA (mtDNA) modifications play an emerging role in innate immunity and inflammatory diseases. Nonetheless, relatively little is known regarding the locations of mtDNA modifications. Such information is critically important for deciphering their roles in mtDNA instability, mtDNA-mediated immune and inflammatory responses, and mitochondrial disorders. The affinity probe-based enrichment of lesion-containing DNA represents a key strategy for sequencing DNA modifications. Existing methods are limited in the enrichment specificity of abasic (AP) sites, a prevalent DNA modification and repair intermediate. Herein, we devise a novel approach, termed dual chemical labeling-assisted sequencing (DCL-seq), for mapping AP sites. DCL-seq features two designer compounds for enriching and mapping AP sites specifically at single-nucleotide resolution. For proof of principle, we mapped AP sites in mtDNA from HeLa cells under different biological conditions. The resulting AP site maps coincide with mtDNA regions with low TFAM (mitochondrial transcription factor A) coverage and with potential G-quadruplex-forming sequences. In addition, we demonstrated the broader applicability of the method in sequencing other DNA modifications in mtDNA, such as N7-methyl-2'-deoxyguanosine and N3-methyl-2'-deoxyadenosine, when coupled with a lesion-specific repair enzyme. Together, DCL-seq holds the promise to sequence multiple DNA modifications in various biological samples.
Collapse
Affiliation(s)
- Chaoxing Liu
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Brandon H Le
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Wenyan Xu
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Ching-Hsin Yang
- Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, CA 92521, USA
| | - Yu Hsuan Chen
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Linlin Zhao
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
- Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
12
|
Flasz B, Dziewięcka M, Ajay AK, Tarnawska M, Babczyńska A, Kędziorski A, Napora-Rutkowski Ł, Ziętara P, Świerczek E, Augustyniak M. Age- and Lifespan-Dependent Differences in GO Caused DNA Damage in Acheta domesticus. Int J Mol Sci 2022; 24:ijms24010290. [PMID: 36613733 PMCID: PMC9820743 DOI: 10.3390/ijms24010290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
The rising applicability of graphene oxide (GO) should be preceded by detailed tests confirming its safety and lack of toxicity. Sensitivity to GO of immature, or with different survival strategy, individuals has not been studied so far. Therefore, in the present research, we focused on the GO genotoxic effects, examining selected parameters of DNA damage (total DNA damage, double-strand breaks-DSB, 8-hydroxy-2'-deoxyguanosine-8-OHdG, abasic site-AP sites), DNA damage response parameters, and global methylation in the model organism Acheta domesticus. Special attention was paid to various life stages and lifespans, using wild (H), and selected for longevity (D) strains. DNA damage was significantly affected by stage and/or strain and GO exposure. Larvae and young imago were generally more sensitive than adults, revealing more severe DNA damage. Especially in the earlier life stages, the D strain reacted more intensely/inversely than the H strain. In contrast, DNA damage response parameters were not significantly related to stage and/or strain and GO exposure. Stage-dependent DNA damage, especially DSB and 8-OHdG, with the simultaneous lack or subtle activation of DNA damage response parameters, may result from the general life strategy of insects. Predominantly fast-living and fast-breeding organisms can minimize energy-demanding repair mechanisms.
Collapse
Affiliation(s)
- Barbara Flasz
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Marta Dziewięcka
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Amrendra K. Ajay
- Department of Medicine, Division of Renal Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Monika Tarnawska
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Agnieszka Babczyńska
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Andrzej Kędziorski
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Łukasz Napora-Rutkowski
- Polish Academy of Sciences, Institute of Ichthyobiology and Aquaculture in Gołysz, 43-520 Chybie, Poland
| | - Patrycja Ziętara
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Ewa Świerczek
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
- Correspondence: ; Tel.: +48-32-359-1235
| |
Collapse
|