1
|
Chaudhuri E, Jang S, Chakraborty R, Radhakrishnan R, Arnarson B, Prakash P, Cornish D, Rohlfes N, Singh PK, Shi J, Aiken C, Campbell E, Hultquist J, Balsubramaniam M, Engelman AN, Dash C. CPSF6 promotes HIV-1 preintegration complex function. J Virol 2025; 99:e0049025. [PMID: 40202316 PMCID: PMC12090733 DOI: 10.1128/jvi.00490-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Accepted: 03/25/2025] [Indexed: 04/10/2025] Open
Abstract
Cleavage and polyadenylation specificity factor 6 (CPSF6) is part of the cellular cleavage factor I mammalian (CFIm) complex that regulates mRNA processing and polyadenylation. CPSF6 also functions as an HIV-1 capsid (CA) binding host factor to promote viral DNA integration targeting into gene-dense regions of the host genome. However, the effects of CPSF6 on the activity of the HIV-1 preintegration complex (PIC)-the sub-viral machinery that carries out viral DNA integration-are unknown. To study CPSF6's role in HIV-1 PIC function, we extracted PICs from cells that are either depleted of CPSF6 or express a mutant form that cannot bind to CA. These PICs exhibited significantly lower viral DNA integration activity when compared to the control PICs. The addition of purified recombinant CPSF6 restored the integration activity of PICs extracted from the CPSF6-mutant cells, suggesting a direct role of CPSF6 in PIC function. To solidify CPSF6's role in PIC function, we inoculated CPSF6-depleted and CPSF6-mutant cells with HIV-1 particles and measured viral DNA integration into the host genome. A significant reduction in integration in these cells was detected, and this reduction was not a consequence of lower reverse transcription or nuclear entry. Additionally, mutant viruses deficient in CA-CPSF6 binding showed no integration defect in CPSF6-mutant cells. Finally, sequencing analysis revealed that HIV-1 integration into CPSF6-mutant cell genomes was significantly redirected away from gene-dense regions of chromatin compared to the control cells. Collectively, these results suggest that the CPSF6-CA interaction promotes PIC function both in vitro and in infected cells.IMPORTANCEHIV-1 infection is dependent on the interaction of the virus with cellular host factors. However, the molecular details of HIV-host factor interactions are not fully understood. For instance, the HIV-1 capsid provides binding interfaces for several host factors. CPSF6 is one such capsid-binding host factor, whose cellular function is to regulate mRNA processing and polyadenylation. Initial work identified a truncated cytosolic form of CPSF6 to restrict HIV infection by blocking viral nuclear entry. However, it is now established that the full-length CPSF6 primarily promotes HIV-1 integration targeting into gene-dense regions of the host genome. Here, we provide evidence that CPSF6-CA interaction stimulates the activity of HIV-1 preintegration complexes (PICs). We also describe that disruption of CPSF6-CA binding in target cells significantly reduces viral DNA integration and redirects integration targeting away from gene-dense regions into regions of low transcriptional activity. These findings identify a critical role for the CPSF6-CA interaction in PIC function and integration targeting.
Collapse
Affiliation(s)
- Evan Chaudhuri
- Center for AIDS Health Disparities Research, Nashville, Tennessee, USA
- Department of Biochemistry, Cancer Biology, Pharmacology, and Neuroscience, Meharry Medical College, Nashville, Tennessee, USA
- School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
| | - Sooin Jang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Rajasree Chakraborty
- Center for AIDS Health Disparities Research, Nashville, Tennessee, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
| | - Rajalingam Radhakrishnan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Bjarki Arnarson
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Prem Prakash
- Center for AIDS Health Disparities Research, Nashville, Tennessee, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
| | - Daphne Cornish
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nicholas Rohlfes
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Parmit K. Singh
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Jiong Shi
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Christopher Aiken
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Edward Campbell
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Judd Hultquist
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Muthukumar Balsubramaniam
- Center for AIDS Health Disparities Research, Nashville, Tennessee, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
| | - Alan N. Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Chandravanu Dash
- Center for AIDS Health Disparities Research, Nashville, Tennessee, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
| |
Collapse
|
2
|
Briganti L, Annamalai AS, Bester SM, Wei G, Andino-Moncada JR, Singh SP, Kleinpeter AB, Tripathi M, Nguyen B, Radhakrishnan R, Singh PK, Greenwood J, Schope LI, Haney R, Huang SW, Freed EO, Engelman AN, Francis AC, Kvaratskhelia M. Structural and mechanistic bases for resistance of the M66I capsid variant to lenacapavir. mBio 2025; 16:e0361324. [PMID: 40231850 PMCID: PMC12077090 DOI: 10.1128/mbio.03613-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 03/13/2025] [Indexed: 04/16/2025] Open
Abstract
Lenacapavir (LEN) is the first-in-class viral capsid protein (CA) targeting antiretroviral for treating multi-drug-resistant HIV-1 infection. Clinical trials and cell culture experiments have identified resistance-associated mutations (RAMs) in the vicinity of the hydrophobic CA pocket targeted by LEN. The M66I substitution conferred by far the highest level of resistance to the inhibitor compared to other RAMs. Here we investigated structural and mechanistic bases for how the M66I change affects LEN binding to CA and viral replication. The high-resolution X-ray structure of the CA(M66I) hexamer revealed that the β-branched side chain of Ile66 induces steric hindrance specifically to LEN, thereby markedly reducing the inhibitor binding affinity. By contrast, the M66I substitution did not affect the binding of Phe-Gly (FG)-motif-containing cellular cofactors CPSF6, NUP153, or SEC24C, which engage the same hydrophobic pocket of CA. In cell culture, the M66I variant did not acquire compensatory mutations. Analysis of viral replication intermediates revealed that HIV-1(M66I CA) predominantly formed correctly matured viral cores, which were more stable than their wild-type counterparts. The mutant cores stably bound to the nuclear envelope but failed to penetrate inside the nucleus. Furthermore, the M66I substitution markedly altered HIV-1 integration targeting. Taken together, our findings elucidate mechanistic insights into how the M66I change confers remarkable resistance to LEN and affects HIV-1 replication. Moreover, our structural findings provide a powerful means for future medicinal chemistry efforts to rationally develop second-generation inhibitors with a higher barrier to resistance.IMPORTANCELenacapavir (LEN) is a highly potent and long-acting antiretroviral that works by a unique mechanism of targeting the viral capsid protein. The inhibitor is used in combination with other antiretrovirals to treat multi-drug-resistant HIV-1 infection in heavily treatment-experienced adults. Furthermore, LEN is in clinical trials for preexposure prophylaxis (PrEP) with interim results indicating 100% efficacy to prevent HIV-1 infections. However, one notable shortcoming is a relatively low barrier of viral resistance to LEN. Clinical trials and cell culture experiments identified emergent resistance mutations near the inhibitor binding site on capsid. The M66I variant was the most prevalent capsid substitution identified in patients receiving LEN to treat multi-drug-resistant HIV-1 infections. The studies described here elucidate the underlying mechanism by which the M66I substitution confers a marked resistance to the inhibitor. Furthermore, our structural findings will aid future efforts to develop the next generation of capsid inhibitors with enhanced barriers to resistance.
Collapse
Affiliation(s)
- Lorenzo Briganti
- Division of Infectious Diseases, University of Colorado – Anschutz Medical Campus, Aurora, Colorado, USA
| | - Arun S. Annamalai
- Division of Infectious Diseases, University of Colorado – Anschutz Medical Campus, Aurora, Colorado, USA
| | - Stephanie M. Bester
- Division of Infectious Diseases, University of Colorado – Anschutz Medical Campus, Aurora, Colorado, USA
| | - Guochao Wei
- Division of Infectious Diseases, University of Colorado – Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jonathan R. Andino-Moncada
- Department of Biological Science and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, USA
| | - Satya P. Singh
- Department of Biological Science and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, USA
| | - Alex B. Kleinpeter
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Meghna Tripathi
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Binh Nguyen
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Rajalingam Radhakrishnan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Parmit K. Singh
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Juliet Greenwood
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Lauren I. Schope
- Division of Infectious Diseases, University of Colorado – Anschutz Medical Campus, Aurora, Colorado, USA
| | - Reed Haney
- Division of Infectious Diseases, University of Colorado – Anschutz Medical Campus, Aurora, Colorado, USA
| | - Szu-Wei Huang
- Division of Infectious Diseases, University of Colorado – Anschutz Medical Campus, Aurora, Colorado, USA
| | - Eric O. Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Alan N. Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Ashwanth C. Francis
- Department of Biological Science and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, USA
| | - Mamuka Kvaratskhelia
- Division of Infectious Diseases, University of Colorado – Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
3
|
Hansen D, Hendricks MR, Chang S, Cai A, Perry JK, Aeschbacher T, Martin R, Cihlar T, Yant SR. Impact of HIV-1 capsid polymorphisms on viral infectivity and susceptibility to lenacapavir. mBio 2025; 16:e0018725. [PMID: 40243329 PMCID: PMC12077089 DOI: 10.1128/mbio.00187-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Lenacapavir (LEN) is a first-in-class capsid (CA) inhibitor for the treatment and prevention of HIV-1 infection. While LEN has shown potent antiviral activity across all major HIV-1 subtypes, the impact of existing HIV-1 CA sequence diversity on the activity of LEN remains to be determined. Here, we identified natural polymorphisms within the LEN-binding site and assessed each for their impact on viral infectivity and susceptibility to LEN. Using a co-crystal structure of LEN in complex with a CA hexamer, we identified 29 binding site residues within five angstroms of LEN and analyzed each for naturally occurring polymorphisms across a multiclade collection of >10,000 unique HIV-1 gag sequences. Eleven of these CA residues, including five (M66, Q67, K70, N74, and A105) previously associated with LEN resistance when mutated, were invariant across these sequences. The remaining 18 residues showed one or more substitutions with a ≥0.5% prevalence for a total of 54 CA polymorphisms. When introduced as site-directed mutants (SDMs) in an NL4.3-based reporter virus and evaluated for infectivity and drug susceptibility in MT-4 cells, 74% (40/54) showed impaired infectivity (0.01%-77% of wild type), with 96% (46/48) exhibiting minimal change (less than threefold) in susceptibility to LEN. While CA substitutions L56V and N57H conferred high-level resistance to LEN (72- and 4,890-fold, respectively), both variants showed diminished replication capacity in primary T-cells relative to the wild-type virus. Collectively, these results indicate that existing CA natural HIV-1 sequence diversity within the LEN-binding site is rare and should minimally impact LEN efficacy in treatment-naïve individuals.IMPORTANCEHIV-1 capsid protein mediates multiple essential functions throughout the viral replication cycle, making it an attractive target for therapeutic intervention. Lenacapavir (LEN), a first-in-class HIV-1 capsid inhibitor, is being evaluated as a long-acting option in multiple ongoing clinical studies for HIV treatment and prevention. Twice-yearly lenacapavir is approved in multiple countries for the treatment of adults with multi-drug-resistant HIV-1 in combination with other antiretrovirals, and its investigational use for pre-exposure prophylaxis has shown 99.9%-100% efficacy in preventing HIV infection among a broad and geographically diverse range of study participants. In this report, we investigated how HIV-1 sequence diversity within the LEN binding site may impact virus replication capacity and sensitivity to LEN. Our data demonstrate high capsid sequence conservation across a large and diverse collection of HIV-1 variants, with the majority of naturally occurring capsid polymorphisms having a detrimental effect on viral infectivity and minimal impact on susceptibility to LEN.
Collapse
Affiliation(s)
- Derek Hansen
- Department of Research Discovery Virology, Gilead Sciences, Inc., Foster City, California, USA
| | - Matthew R. Hendricks
- Department of Research Clinical Virology, Gilead Sciences, Inc., Foster City, California, USA
| | - Silvia Chang
- Department of Research Clinical Virology, Gilead Sciences, Inc., Foster City, California, USA
| | - Arthur Cai
- Department of Research Clinical Virology, Gilead Sciences, Inc., Foster City, California, USA
| | - Jason K. Perry
- Department of Research Structural Biology and Chemistry, Gilead Sciences, Inc., Foster City, California, USA
| | - Thomas Aeschbacher
- Department of Research Clinical Virology, Gilead Sciences, Inc., Foster City, California, USA
| | - Ross Martin
- Department of Research Clinical Virology, Gilead Sciences, Inc., Foster City, California, USA
| | - Tomas Cihlar
- Department of Research Discovery Virology, Gilead Sciences, Inc., Foster City, California, USA
- Department of Research Clinical Virology, Gilead Sciences, Inc., Foster City, California, USA
| | - Stephen R. Yant
- Department of Research Discovery Virology, Gilead Sciences, Inc., Foster City, California, USA
| |
Collapse
|
4
|
Li S, Lund-Andersen P, Wang SH, Ytreberg FM, Naik MT, Patel JS, Rowley PA. The identification of a novel interaction site for the human immunodeficiency virus capsid on nucleoporin 153. J Gen Virol 2025; 106:002104. [PMID: 40366356 PMCID: PMC12078792 DOI: 10.1099/jgv.0.002104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 04/17/2025] [Indexed: 05/15/2025] Open
Abstract
Human immunodeficiency virus type-1 (HIV-1) can infect non-dividing cells by passing through the selective permeability barrier of the nuclear pore complex. The viral capsid is essential for successfully delivering the HIV-1 genome into the nucleus. Nucleoporin 153 (NUP153) interacts with the HIV-1 capsid via a C-terminal capsid-binding motif (hereafter named CbM.1) to licence HIV-1 nuclear ingress. Deletion or mutation of CbM.1 in NUP153 causes a reduction in capsid interaction but does not prevent HIV-1 nuclear ingress or completely block capsid interaction. This paper combines molecular modelling with biochemical and HIV infection assays to identify capsid-binding motif 2 (CbM.2) in the C-terminus of NUP153 that is similar in sequence to CbM.1. CbM.2 has an FG dipeptide motif predicted to interact with a hydrophobic pocket in capsid protein (CA) hexamers similar to CbM.1. CA hexamers can interact with CbM.2, and the deletion of both CbM.1 and CbM.2 results in a lower capsid interaction than a single CbM.1 deletion. The loss of CbM.1 is complemented by CbM.2, an interaction dependent on the FG motif. In the context of the nuclear pore complex, a loss-of-function mutation in CbM.1 reduces HIV nuclear ingress as measured by transduction and 2-LTR circles, whereas the mutation of CbM.2 causes a large increase in 2-LTR circles. Our results highlighted a previously unidentified FG dipeptide-containing motif (CbM.2) in NUP153 that binds the HIV-1 capsid at the common hydrophobic pocket on CA hexamers.
Collapse
Affiliation(s)
- Shunji Li
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Peik Lund-Andersen
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID 83844, USA
| | - Szu-Huan Wang
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | - F. Marty Ytreberg
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID 83844, USA
- Department of Physics, University of Idaho, Moscow, ID 83844, USA
| | - Mandar T. Naik
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Jagdish Suresh Patel
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, ID 83844, USA
| | - Paul Andrew Rowley
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| |
Collapse
|
5
|
Ingram Z, Kline C, Hughson AK, Singh PK, Fischer HL, Radhakrishnan R, Sowd GA, Dos Santos NFB, Ganser-Pornillos BK, Watkins SC, Kane M, Engelman AN, Ambrose Z. Spatiotemporal binding of cyclophilin A and CPSF6 to capsid regulates HIV-1 nuclear entry and integration. mBio 2025; 16:e0016925. [PMID: 40013779 PMCID: PMC11980554 DOI: 10.1128/mbio.00169-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 01/30/2025] [Indexed: 02/28/2025] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) capsid, which is the target of the antiviral lenacapavir, protects the viral genome and binds multiple host proteins to influence intracellular trafficking, nuclear import, and integration. Previously, we showed that capsid binding to cleavage and polyadenylation specificity factor 6 (CPSF6) in the cytoplasm is competitively inhibited by cyclophilin A (CypA) binding and regulates capsid trafficking, nuclear import, and infection. Here, we determined that a capsid mutant with increased CypA binding affinity had significantly reduced nuclear entry and mislocalized integration. However, disruption of CypA binding to the mutant capsid restored nuclear entry, integration, and infection in a CPSF6-dependent manner. Furthermore, relocalization of CypA expression from the cell cytoplasm to the nucleus failed to restore mutant HIV-1 infection. Our results clarify that sequential binding of CypA and CPSF6 to HIV-1 capsid is required for optimal nuclear entry and integration targeting, providing insights for the development of antiretroviral therapies, such as lenacapavir. IMPORTANCE Human immunodeficiency virus (HIV) encodes a protein that forms a conical shell, called a capsid, that surrounds its genome. The capsid has been shown to protect the viral genome from innate immune sensors in the cell, to help transport the genome toward and into the nucleus, to keep the components of reverse transcription together for conversion of the RNA genome into DNA, and to target viral DNA integration into specific regions of the host genome. In this study, we show that HIV hijacks two host proteins to bind to capsid sequentially in order to choreograph the precise order and timing of these virus replication steps. Disruption of binding of these proteins to capsid or their location in the cell leads to defective HIV nuclear import, integration, and infection. Mutations that exist in the capsid protein of HIV in infected individuals may reduce the efficacy of antiretroviral drugs that target capsid.
Collapse
Affiliation(s)
- Zachary Ingram
- Department of Microbiology and Molecular Genetics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh Center for HIV Protein Interactions, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Christopher Kline
- Department of Microbiology and Molecular Genetics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh Center for HIV Protein Interactions, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Alexandra K. Hughson
- Department of Microbiology and Molecular Genetics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh Center for HIV Protein Interactions, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Parmit K. Singh
- Pittsburgh Center for HIV Protein Interactions, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Hannah L. Fischer
- Department of Microbiology and Molecular Genetics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh Center for HIV Protein Interactions, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rajalingham Radhakrishnan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Gregory A. Sowd
- Pittsburgh Center for HIV Protein Interactions, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Nayara F. B. Dos Santos
- Pittsburgh Center for HIV Protein Interactions, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Biochemistry, University of Utah, Salt Lake City, Utah, USA
| | - Barbie K. Ganser-Pornillos
- Pittsburgh Center for HIV Protein Interactions, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Biochemistry, University of Utah, Salt Lake City, Utah, USA
| | - Simon C. Watkins
- Pittsburgh Center for HIV Protein Interactions, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Melissa Kane
- Pittsburgh Center for HIV Protein Interactions, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Alan N. Engelman
- Pittsburgh Center for HIV Protein Interactions, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Zandrea Ambrose
- Department of Microbiology and Molecular Genetics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh Center for HIV Protein Interactions, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Li C, Burdick RC, Siddiqui R, Janaka SK, Hsia RC, Hu WS, Pathak VK. Lenacapavir disrupts HIV-1 core integrity while stabilizing the capsid lattice. Proc Natl Acad Sci U S A 2025; 122:e2420497122. [PMID: 40168125 PMCID: PMC12002175 DOI: 10.1073/pnas.2420497122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 02/19/2025] [Indexed: 04/03/2025] Open
Abstract
Lenacapavir (GS-6207; LEN) is a potent HIV-1 capsid inhibitor approved for treating multidrug-resistant infection. LEN binds to a hydrophobic pocket between neighboring capsid (CA) proteins in hexamers and stabilizes the capsid lattice, but its effect on HIV-1 capsids is not fully understood. Here, we labeled HIV-1 capsids with green fluorescent protein fused to CA (GFP-CA) or a fluid-phase GFP content marker (cmGFP) to assess LEN's impact on HIV-1 capsids. HIV-1 cores labeled with GFP-CA, but not cmGFP, could be immunostained with an anti-GFP antibody and were less sensitive to the capsid-binding host restriction factor MX2, demonstrating that GFP-CA is incorporated into the capsid lattice and is a marker for capsid lattice stability, whereas cmGFP is an indicator of core integrity. LEN treatment of isolated HIV-1 cores resulted in a dose-dependent loss of cmGFP signal while preserving the GFP-CA signal, indicating that LEN disrupts core integrity but stabilizes the capsid lattice. In contrast, capsid inhibitor PF-3450074 (PF74) induced loss of core integrity and the capsid lattice. Electron microscopy of LEN- or PF74-treated viral cores revealed frequent breakage at the narrow end of the capsid and other morphological changes. Our results suggest that LEN treatment does not prevent nuclear envelope docking but inhibits nuclear import of cores with or without loss of core integrity. In contrast, PF74 treatment blocks nuclear import by inhibiting the nuclear envelope docking of viral cores, highlighting their different mechanisms of nuclear import inhibition.
Collapse
Affiliation(s)
- Chenglei Li
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD21702
| | - Ryan C. Burdick
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD21702
| | - Rokeya Siddiqui
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD21702
| | - Sanath Kumar Janaka
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD21702
| | - Ru-ching Hsia
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD21701
| | - Wei-Shau Hu
- Viral Recombination Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD21702
| | - Vinay K. Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD21702
| |
Collapse
|
7
|
Cook M, Freniere C, Wu C, Lozano F, Xiong Y. Structural insights into HIV-2 CA lattice formation and FG-pocket binding revealed by single-particle cryo-EM. Cell Rep 2025; 44:115245. [PMID: 39864060 PMCID: PMC11912512 DOI: 10.1016/j.celrep.2025.115245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/20/2024] [Accepted: 01/09/2025] [Indexed: 01/28/2025] Open
Abstract
One of the striking features of human immunodeficiency virus (HIV) is the capsid, a fullerene cone comprised of pleomorphic capsid protein (CA) that shields the viral genome and recruits cofactors. Despite significant advances in understanding the mechanisms of HIV-1 CA assembly and host factor interactions, HIV-2 CA assembly remains poorly understood. By templating the assembly of HIV-2 CA on functionalized liposomes, we report high-resolution structures of the HIV-2 CA lattice, including both CA hexamers and pentamers, alone and with peptides of host phenylalanine-glycine (FG)-motif proteins Nup153 and CPSF6. While the overall fold and mode of FG-peptide binding is conserved with HIV-1, this study reveals distinctive features of the HIV-2 CA lattice, including differing structural character at regions of host factor interactions and divergence in the mechanism of formation of CA hexamers and pentamers. This study extends our understanding of HIV capsids and highlights an approach facilitating the study of lentiviral capsid biology.
Collapse
Affiliation(s)
- Matthew Cook
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Christian Freniere
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Chunxiang Wu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Faith Lozano
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
8
|
Garza CM, Holcomb M, Santos-Martins D, Torbett BE, Forli S. IP6, PF74 affect HIV-1 capsid stability through modulation of hexamer-hexamer tilt angle preference. Biophys J 2025; 124:417-427. [PMID: 39690744 PMCID: PMC11788498 DOI: 10.1016/j.bpj.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/22/2024] [Accepted: 12/11/2024] [Indexed: 12/19/2024] Open
Abstract
The HIV-1 capsid is an irregularly shaped protein complex containing the viral genome and several proteins needed for integration into the host cell genome. Small molecules, such as the drug-like compound PF-3450074 (PF74) and the anionic sugar inositolhexakisphosphate (IP6), are known to impact capsid stability, although the mechanisms through which they do so remain unknown. In this study, we employed atomistic molecular dynamics simulations to study the impact of molecules bound to hexamers at the central pore (IP6) and the FG-binding site (PF74) on the interface between capsid oligomers. We found that the IP6 cofactor stabilizes a pair of neighboring hexamers in their flattest configurations, whereas PF74 introduces a strong preference for intermediate tilt angles. These results suggest that the tilt angle between neighboring hexamers is a primary mechanism for the modulation of capsid stability. In addition, hexamer-pentamer interfaces were highly stable, suggesting that pentamers are likely not the locus of disassembly.
Collapse
Affiliation(s)
- Chris M Garza
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California; University of California San Diego School of Medicine, La Jolla, California
| | - Matthew Holcomb
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California
| | - Diogo Santos-Martins
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California
| | - Bruce E Torbett
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington; Department of Pediatrics, School of Medicine, University of Washington, Seattle, Washington
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California.
| |
Collapse
|
9
|
Wang T, Becker D, Twizerimana AP, Luedde T, Gohlke H, Münk C. Cyclophilin A Regulates Tripartite Motif 5 Alpha Restriction of HIV-1. Int J Mol Sci 2025; 26:495. [PMID: 39859212 PMCID: PMC11764967 DOI: 10.3390/ijms26020495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
The peptidyl-prolyl isomerase A (PPIA), also known as cyclophilin A (CYPA), is involved in multiple steps of the HIV-1 replication cycle. CYPA regulates the restriction of many host factors by interacting with the CYPA-binding loop on the HIV-1 capsid (CA) surface. TRIM5 (tripartite motif protein 5) in primates is a key species-specific restriction factor defining the HIV-1 pandemic. The incomplete adaptation of HIV-1 to humans is due to the different utilization of CYPA by pandemic and non-pandemic HIV-1. The enzymatic activity of CYPA on the viral core is likely an important reason for regulating the TRIM5 restriction activity. Thus, the HIV-1 capsid and its CYPA interaction may serve as new targets for future anti-AIDS therapeutic agents. This article will describe the species-specificity of the restriction factor TRIM5, understand the role of CYPA in regulating restriction factors in retroviral infection, and discuss important future research issues.
Collapse
Affiliation(s)
- Tingting Wang
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (T.W.); (A.P.T.); (T.L.)
| | - Daniel Becker
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Augustin Penda Twizerimana
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (T.W.); (A.P.T.); (T.L.)
| | - Tom Luedde
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (T.W.); (A.P.T.); (T.L.)
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
- Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Carsten Münk
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (T.W.); (A.P.T.); (T.L.)
| |
Collapse
|
10
|
Ay S, Burlaud-Gaillard J, Gazi A, Tatirovsky Y, Cuche C, Diana JS, Scoca V, Di Santo JP, Roingeard P, Mammano F, Di Nunzio F. In vivo HIV-1 nuclear condensates safeguard against cGAS and license reverse transcription. EMBO J 2025; 44:166-199. [PMID: 39623137 PMCID: PMC11697293 DOI: 10.1038/s44318-024-00316-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 01/04/2025] Open
Abstract
Entry of viral capsids into the nucleus induces the formation of biomolecular condensates called HIV-1 membraneless organelles (HIV-1-MLOs). Several questions remain about their persistence, in vivo formation, composition, and function. Our study reveals that HIV-1-MLOs persisted for several weeks in infected cells, and their abundance correlated with viral infectivity. Using an appropriate animal model, we show that HIV-1-MLOs were formed in vivo during acute infection. To explore the viral structures present within these biomolecular condensates, we used a combination of double immunogold labeling, electron microscopy and tomography, and unveiled a diverse array of viral core structures. Our functional analyses showed that HIV-1-MLOs remained stable during treatment with a reverse transcriptase inhibitor, maintaining the virus in a dormant state. Drug withdrawal restored reverse transcription, promoting efficient virus replication akin to that observed in latently infected patients on antiretroviral therapy. However, when HIV-1 MLOs were deliberately disassembled by pharmacological treatment, we observed a complete loss of viral infectivity. Our findings show that HIV-1 MLOs shield the final reverse transcription product from host immune detection.
Collapse
Affiliation(s)
- Selen Ay
- Institut Pasteur, Advanced Molecular Virology Unit, Department of Virology, Université Paris Cité, 75015, Paris, France
| | - Julien Burlaud-Gaillard
- Inserm U1259 MAVIVHe, Université de Tours and CHRU de Tours, Tours, France
- Plate-Forme IBiSA de Microscopie Electronique, Université de Tours and CHRU de Tours, Tours, France
| | - Anastasia Gazi
- Institut Pasteur, Université Paris Cité, Ultrastructural BioImaging Facility, 75015, Paris, France
| | - Yevgeniy Tatirovsky
- Innate Immunity Unit, Institut Pasteur, Université Paris Cité, Inserm U1223, Paris, France
- Vaccine Research Institute, Université Paris Est, Inserm U955, Créteil, France
| | - Celine Cuche
- Institut Pasteur, Advanced Molecular Virology Unit, Department of Virology, Université Paris Cité, 75015, Paris, France
| | - Jean-Sebastien Diana
- Institut Pasteur, Advanced Molecular Virology Unit, Department of Virology, Université Paris Cité, 75015, Paris, France
| | - Viviana Scoca
- Institut Pasteur, Advanced Molecular Virology Unit, Department of Virology, Université Paris Cité, 75015, Paris, France
| | - James P Di Santo
- Innate Immunity Unit, Institut Pasteur, Université Paris Cité, Inserm U1223, Paris, France
| | - Philippe Roingeard
- Inserm U1259 MAVIVHe, Université de Tours and CHRU de Tours, Tours, France
- Plate-Forme IBiSA de Microscopie Electronique, Université de Tours and CHRU de Tours, Tours, France
| | - Fabrizio Mammano
- Inserm U1259 MAVIVHe, Université de Tours and CHRU de Tours, Tours, France
| | - Francesca Di Nunzio
- Institut Pasteur, Advanced Molecular Virology Unit, Department of Virology, Université Paris Cité, 75015, Paris, France.
| |
Collapse
|
11
|
Morling KL, ElGhazaly M, Milne RSB, Towers GJ. HIV capsids: orchestrators of innate immune evasion, pathogenesis and pandemicity. J Gen Virol 2025; 106. [PMID: 39804283 DOI: 10.1099/jgv.0.002057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Human immunodeficiency virus (HIV) is an exemplar virus, still the most studied and best understood and a model for mechanisms of viral replication, immune evasion and pathogenesis. In this review, we consider the earliest stages of HIV infection from transport of the virion contents through the cytoplasm to integration of the viral genome into host chromatin. We present a holistic model for the virus-host interaction during this pivotal stage of infection. Central to this process is the HIV capsid. The last 10 years have seen a transformation in the way we understand HIV capsid structure and function. We review key discoveries and present our latest thoughts on the capsid as a dynamic regulator of innate immune evasion and chromatin targeting. We also consider the accessory proteins Vpr and Vpx because they are incorporated into particles where they collaborate with capsids to manipulate defensive cellular responses to infection. We argue that effective regulation of capsid uncoating and evasion of innate immunity define pandemic potential and viral pathogenesis, and we review how comparison of different HIV lineages can reveal what makes pandemic lentiviruses special.
Collapse
Affiliation(s)
- Kate L Morling
- Division of Infection and Immunity, UCL, London, WC1E 6BT, UK
| | | | | | - Greg J Towers
- Division of Infection and Immunity, UCL, London, WC1E 6BT, UK
| |
Collapse
|
12
|
Rohlfes N, Radhakrishnan R, Singh PK, Bedwell GJ, Engelman AN, Dharan A, Campbell EM. The nuclear localization signal of CPSF6 governs post-nuclear import steps of HIV-1 infection. PLoS Pathog 2025; 21:e1012354. [PMID: 39823525 PMCID: PMC11844840 DOI: 10.1371/journal.ppat.1012354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 02/21/2025] [Accepted: 01/05/2025] [Indexed: 01/19/2025] Open
Abstract
The early stages of HIV-1 infection include the trafficking of the viral core into the nucleus of infected cells. However, much remains to be understood about how HIV-1 accomplishes nuclear import and the consequences of the import pathways utilized on nuclear events. The host factor cleavage and polyadenylation specificity factor 6 (CPSF6) assists HIV-1 nuclear localization and post-entry integration targeting. Here, we used a CPSF6 truncation mutant lacking a functional nuclear localization signal (NLS), CPSF6-358, and appended heterologous NLSs to rescue nuclear localization. We show that some, but not all, NLSs drive CPSF6-358 into the nucleus. Interestingly, we found that some nuclear localized CPSF6-NLS chimeras supported inefficient HIV-1 infection. We found that HIV-1 still enters the nucleus in these cell lines but fails to traffic to speckle-associated domains (SPADs). Additionally, we show that HIV-1 fails to efficiently integrate in these cell lines. Collectively, our results demonstrate that the NLS of CPSF6 facilitates steps of HIV-1 infection subsequent to nuclear import and additionally identify the ability of canonical NLS sequences to influence cargo localization in the nucleus following nuclear import.
Collapse
Affiliation(s)
- Nicholas Rohlfes
- Integrative Cell Biology Graduate Program, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Rajalingam Radhakrishnan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Parmit K. Singh
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gregory J. Bedwell
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alan N. Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Adarsh Dharan
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Edward M. Campbell
- Integrative Cell Biology Graduate Program, Loyola University Chicago, Maywood, Illinois, United States of America
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, United States of America
| |
Collapse
|
13
|
Huang SW, Briganti L, Annamalai AS, Greenwood J, Shkriabai N, Haney R, Armstrong ML, Wempe MF, Singh SP, Francis AC, Engelman AN, Kvaratskhelia M. The primary mechanism for highly potent inhibition of HIV-1 maturation by lenacapavir. PLoS Pathog 2025; 21:e1012862. [PMID: 39869652 PMCID: PMC11892807 DOI: 10.1371/journal.ppat.1012862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 03/10/2025] [Accepted: 12/27/2024] [Indexed: 01/29/2025] Open
Abstract
Lenacapavir (LEN) is a highly potent, long-acting antiretroviral medication for treating people infected with muti-drug-resistant HIV-1 phenotypes. The inhibitor targets multifaceted functions of the viral capsid protein (CA) during HIV-1 replication. Previous studies have mainly focused on elucidating LEN's mode of action during viral ingress. Additionally, the inhibitor has been shown to interfere with mature capsid assembly during viral egress. However, the mechanism for how LEN affects HIV-1 maturation is unknown. Here, we show that pharmacologically relevant LEN concentrations do not impair proteolytic processing of Gag in virions. Instead, we have elucidated the primary mechanism for highly potent inhibition of HIV-1 maturation by sub-stoichiometric LEN:CA ratios. The inhibitor exerts opposing effects on formation of CA pentamers versus hexamers, the key capsomere intermediates in mature capsid assembly. LEN impairs formation of pentamers, whereas it induces assembly of hexameric lattices by imposing an opened CA conformation and stabilizing a dimeric form of CA. Consequently, LEN treatment results in morphologically atypical virus particles containing malformed, hyper-stable CA assemblies, which fail to infect target cells. Moreover, we have uncovered an inverse correlation between inhibitor potency and CA levels in cell culture assays, which accounts for LEN's ability to potently (with picomolar EC50 values) inhibit HIV-1 maturation at clinically relevant drug concentrations.
Collapse
Affiliation(s)
- Szu-Wei Huang
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, Colorado, United States of America
| | - Lorenzo Briganti
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, Colorado, United States of America
| | - Arun S. Annamalai
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, Colorado, United States of America
| | - Juliet Greenwood
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Nikoloz Shkriabai
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, Colorado, United States of America
| | - Reed Haney
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, Colorado, United States of America
| | - Michael L. Armstrong
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, United States of America
| | - Michael F. Wempe
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, United States of America
| | - Satya Prakash Singh
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Ashwanth C. Francis
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Alan N. Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mamuka Kvaratskhelia
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, Colorado, United States of America
| |
Collapse
|
14
|
Huang SW, Briganti L, Annamalai AS, Greenwood J, Shkriabai N, Haney R, Armstrong ML, Wempe MF, Singh SP, Francis AC, Engelman AN, Kvaratskhelia M. The primary mechanism for highly potent inhibition of HIV-1 maturation by lenacapavir. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.627250. [PMID: 39677622 PMCID: PMC11643057 DOI: 10.1101/2024.12.06.627250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Lenacapavir (LEN) is a highly potent, long-acting antiretroviral medication for treating people infected with muti-drug-resistant HIV-1 phenotypes. The inhibitor targets multifaceted functions of the viral capsid protein (CA) during HIV-1 replication. Previous studies have mainly focused on elucidating LEN's mode of action during viral ingress. Additionally, the inhibitor has been shown to interfere with mature capsid assembly during viral egress. However, the mechanism for how LEN affects HIV-1 maturation is unknown. Here, we show that pharmacologically relevant LEN concentrations do not impair proteolytic processing of Gag in virions. Instead, we have elucidated the primary mechanism for highly potent inhibition of HIV-1 maturation by sub-stoichiometric LEN:CA ratios. The inhibitor exerts opposing effects on formation of CA pentamers versus hexamers, the key capsomere intermediates in mature capsid assembly. LEN impairs formation of pentamers, whereas it induces assembly of hexameric lattices by imposing an opened CA conformation and stabilizing a dimeric form of CA. Consequently, LEN treatment results in morphologically atypical virus particles containing malformed, hyper-stable CA assemblies, which fail to infect target cells. Moreover, we have uncovered an inverse correlation between inhibitor potency and CA levels in cell culture assays, which accounts for LEN's ability to potently (with pM EC 50 values) inhibit HIV-1 maturation at clinically relevant drug concentrations. Author Summary Lenacapavir (LEN) is the first-in-class HIV-1 capsid targeting antiretroviral that exhibits multimodal modality to inhibit both early and late steps of viral replication. Our studies here have elucidated previously undescribed structural and mechanistic bases for a highly potent antiviral activity of LEN during viral egress. These findings will inform clinical applications of LEN as a potent HIV-1 maturation inhibitor and aid the development of second-generation inhibitors targeting assembly of the mature viral capsid.
Collapse
|
15
|
Tomasini C, Cuche C, Ay S, Collard M, Cui B, Rashid M, Bhattacharjee S, Buchrieser J, Luchsinger C, Bertelli C, Uversky VN, Diaz-Griffero F, Di Nunzio F. Decoding the biogenesis of HIV-induced CPSF6 puncta and their fusion with the nuclear speckle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.06.616889. [PMID: 39677677 PMCID: PMC11642789 DOI: 10.1101/2024.10.06.616889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Viruses rely on host cellular machinery for replication. After entering the nucleus, the HIV genome accumulates in nuclear niches where it undergoes reverse transcription and integrates into neighboring chromatin, promoting high transcription rates and new virus progeny. Despite anti-retroviral treatment, viral genomes can persist in these nuclear niches and reactivate if treatment is interrupted, likely contributing to the formation of viral reservoirs. The post-nuclear entry dynamics of HIV remain unclear, and understanding these steps is critical for revealing how viral reservoirs are established. In this study, we elucidate the formation of HIV-induced CPSF6 puncta and the domains of CPSF6 essential for this process. We also explore the roles of nuclear speckle scaffold factors, SON and SRRM2, in the biogenesis of these puncta. Through genetic manipulation and depletion experiments, we demonstrate the key role of the intrinsically disordered region of SRRM2 in enlarging nuclear speckles in the presence of the HIV capsid. We identify the FG domain of CPSF6 as essential for both puncta formation and binding to the viral core, which serves as the scaffold for CPSF6 puncta. While the low-complexity regions (LCRs) modulate CPSF6 binding to the viral capsid, they do not contribute to puncta formation, nor do the disordered mixed charge domains (MCDs) of CPSF6. These results demonstrate how HIV evolved to hijack host nuclear factors, enabling its persistence in the host. Of note, this study provides new insights into the underlying interactions between host factors and viral components, advancing our understanding of HIV nuclear dynamics and offering potential therapeutic targets for preventing viral persistence.
Collapse
Affiliation(s)
- Chiara Tomasini
- Institut Pasteur, Advanced Molecular Virology Unit, Department of Virology, Université Paris Cité, 75015 Paris, France
| | - Celine Cuche
- Institut Pasteur, Advanced Molecular Virology Unit, Department of Virology, Université Paris Cité, 75015 Paris, France
| | - Selen Ay
- Institut Pasteur, Advanced Molecular Virology Unit, Department of Virology, Université Paris Cité, 75015 Paris, France
| | - Maxence Collard
- Institut Pasteur, Advanced Molecular Virology Unit, Department of Virology, Université Paris Cité, 75015 Paris, France
| | - Bin Cui
- Albert Einstein College of Medicine, Department of Immunology and Microbiology, New York 10461, USA
| | - Mohammad Rashid
- Albert Einstein College of Medicine, Department of Immunology and Microbiology, New York 10461, USA
| | - Shaoni Bhattacharjee
- Institut Pasteur, Advanced Molecular Virology Unit, Department of Virology, Université Paris Cité, 75015 Paris, France
| | - Julian Buchrieser
- Institut Pasteur, Virus and Immunity Unit, Department of Virology, Université Paris Cité, 75015 Paris, France
| | - Charlotte Luchsinger
- Albert Einstein College of Medicine, Department of Immunology and Microbiology, New York 10461, USA
| | - Cinzia Bertelli
- Albert Einstein College of Medicine, Department of Immunology and Microbiology, New York 10461, USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Felipe Diaz-Griffero
- Albert Einstein College of Medicine, Department of Immunology and Microbiology, New York 10461, USA
| | - Francesca Di Nunzio
- Institut Pasteur, Advanced Molecular Virology Unit, Department of Virology, Université Paris Cité, 75015 Paris, France
| |
Collapse
|
16
|
Briganti L, Annamalai AS, Bester SM, Wei G, Andino-Moncada JR, Singh SP, Kleinpeter AB, Tripathi M, Nguyen B, Radhakrishnan R, Singh PK, Greenwood J, Schope LI, Haney R, Huang SW, Freed EO, Engelman AN, Francis AC, Kvaratskhelia M. Structural and Mechanistic Bases for Resistance of the M66I Capsid Variant to Lenacapavir. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.625199. [PMID: 39651162 PMCID: PMC11623492 DOI: 10.1101/2024.11.25.625199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Lenacapavir (LEN) is the first in class viral capsid protein (CA) targeting antiretroviral for treating multi-drug-resistant HIV-1 infection. Clinical trials and cell culture experiments have identified resistance associated mutations (RAMs) in the vicinity of the hydrophobic CA pocket targeted by LEN. The M66I substitution conferred by far the highest level of resistance to the inhibitor compared to other RAMs. Here we investigated structural and mechanistic bases for how the M66I change affects LEN binding to CA and viral replication. The high-resolution X-ray structure of the CA(M66I) hexamer revealed that the β-branched side chain of Ile66 induces steric hindrance specifically to LEN thereby markedly reducing the inhibitor binding affinity. By contrast, the M66I substitution did not affect binding of Phe-Gly (FG)-motif-containing cellular cofactors CPSF6, NUP153, or SEC24C, which engage the same hydrophobic pocket of CA. In cell culture the M66I variant did not acquire compensatory mutations or replicate in the presence of LEN. Analysis of viral replication intermediates revealed that HIV-1 (M66I CA) predominantly formed correctly matured viral cores, which were more stable than their wildtype counterparts. The mutant cores stably bound to the nuclear envelope but failed to penetrate inside the nucleus. Furthermore, the M66I substitution markedly altered HIV-1 integration targeting. Taken together, our findings elucidate mechanistic insights for how the M66I change confers remarkable resistance to LEN and affects HIV-1 replication. Moreover, our structural findings provide powerful means for future medicinal chemistry efforts to rationally develop second generation inhibitors with a higher barrier to resistance. IMPORTANCE Lenacapavir (LEN) is a highly potent and long-acting antiretroviral that works by a unique mechanism of targeting the viral capsid protein. The inhibitor is used in combination with other antiretrovirals to treat multi-drug-resistant HIV-1 infection in heavily treatment-experienced adults. Furthermore, LEN is in clinical trials for preexposure prophylaxis (PrEP) with interim results indicating 100 % efficacy to prevent HIV-1 infections. However, one notable shortcoming is a relatively low barrier of viral resistance to LEN. Clinical trials and cell culture experiments identified emergent resistance mutations near the inhibitor binding site on capsid. The M66I variant was the most prevalent capsid substitution identified in patients receiving LEN to treat muti-drug resistant HIV-1 infections. The studies described here elucidate the underlying mechanism by which the M66I substitution confers a marked resistance to the inhibitor. Furthermore, our structural findings will aid future efforts to develop the next generation of capsid inhibitors with enhanced barriers to resistance.
Collapse
|
17
|
Bai YR, Yang X, Chen KT, Cuan XD, Zhang YD, Zhou L, Yang L, Liu HM, Yuan S. A comprehensive review of new small molecule drugs approved by the FDA in 2022: Advance and prospect. Eur J Med Chem 2024; 277:116759. [PMID: 39137454 DOI: 10.1016/j.ejmech.2024.116759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
In 2022, the U.S. Food and Drug Administration approved a total of 16 marketing applications for small molecule drugs, which not only provided dominant scaffolds but also introduced novel mechanisms of action and clinical indications. The successful cases provide valuable information for optimizing efficacy and enhancing pharmacokinetic properties through strategies like macrocyclization, bioequivalent group utilization, prodrug synthesis, and conformation restriction. Therefore, gaining an in-depth understanding of the design principles and strategies underlying these drugs will greatly facilitate the development of new therapeutic agents. This review focuses on the research and development process of these newly approved small molecule drugs including drug design, structural modification, and improvement of pharmacokinetic properties to inspire future research in this field.
Collapse
Affiliation(s)
- Yi-Ru Bai
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China; School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou, 450001, China
| | - Xin Yang
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Ke-Tong Chen
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Xiao-Dan Cuan
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Yao-Dong Zhang
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Li Zhou
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Li Yang
- Department of Obstetrics and Gynecology, Zhengzhou Key Laboratory of Endometrial Disease Prevention and Treatment Zhengzhou China, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Hong-Min Liu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou, 450001, China.
| | - Shuo Yuan
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China; School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
18
|
Jang S, Bedwell G, Singh S, Yu H, Arnarson B, Singh P, Radhakrishnan R, Douglas A, Ingram Z, Freniere C, Akkermans O, Sarafianos S, Ambrose Z, Xiong Y, Anekal P, Montero Llopis P, KewalRamani V, Francis A, Engelman A. HIV-1 usurps mixed-charge domain-dependent CPSF6 phase separation for higher-order capsid binding, nuclear entry and viral DNA integration. Nucleic Acids Res 2024; 52:11060-11082. [PMID: 39258548 PMCID: PMC11472059 DOI: 10.1093/nar/gkae769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/13/2024] [Accepted: 08/25/2024] [Indexed: 09/12/2024] Open
Abstract
HIV-1 integration favors nuclear speckle (NS)-proximal chromatin and viral infection induces the formation of capsid-dependent CPSF6 condensates that colocalize with nuclear speckles (NSs). Although CPSF6 displays liquid-liquid phase separation (LLPS) activity in vitro, the contributions of its different intrinsically disordered regions, which includes a central prion-like domain (PrLD) with capsid binding FG motif and C-terminal mixed-charge domain (MCD), to LLPS activity and to HIV-1 infection remain unclear. Herein, we determined that the PrLD and MCD both contribute to CPSF6 LLPS activity in vitro. Akin to FG mutant CPSF6, infection of cells expressing MCD-deleted CPSF6 uncharacteristically arrested at the nuclear rim. While heterologous MCDs effectively substituted for CPSF6 MCD function during HIV-1 infection, Arg-Ser domains from related SR proteins were largely ineffective. While MCD-deleted and wildtype CPSF6 proteins displayed similar capsid binding affinities, the MCD imparted LLPS-dependent higher-order binding and co-aggregation with capsids in vitro and in cellulo. NS depletion reduced CPSF6 puncta formation without significantly affecting integration into NS-proximal chromatin, and appending the MCD onto a heterologous capsid binding protein partially restored virus nuclear penetration and integration targeting in CPSF6 knockout cells. We conclude that MCD-dependent CPSF6 condensation with capsids underlies post-nuclear incursion for viral DNA integration and HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Sooin Jang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Gregory J Bedwell
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Satya P Singh
- Institute of Molecular Biophysics, Department of Biological Sciences, Florida State University, Tallahassee, FL 32304, USA
| | - Hyun Jae Yu
- Model Development Section, Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Bjarki Arnarson
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Parmit K Singh
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Rajalingam Radhakrishnan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - AidanDarian W Douglas
- Institute of Molecular Biophysics, Department of Biological Sciences, Florida State University, Tallahassee, FL 32304, USA
| | - Zachary M Ingram
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Christian Freniere
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Onno Akkermans
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Stefan G Sarafianos
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Zandrea Ambrose
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Praju V Anekal
- MicRoN Core, Harvard Medical School, Boston, MA 02215, USA
| | | | - Vineet N KewalRamani
- Model Development Section, Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Ashwanth C Francis
- Institute of Molecular Biophysics, Department of Biological Sciences, Florida State University, Tallahassee, FL 32304, USA
| | - Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
19
|
Cook M, Freniere C, Wu C, Lozano F, Xiong Y. Structural insights into HIV-2 CA lattice formation and FG-pocket binding revealed by single particle cryo-EM. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617312. [PMID: 39416035 PMCID: PMC11482794 DOI: 10.1101/2024.10.09.617312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
One of the most striking features of HIV is the capsid; a fullerene cone comprised of the pleomorphic capsid protein (CA) which shields the viral genome from cellular defense mechanisms and recruits cellular cofactors to the virus. Despite significant advances in understanding the mechanisms of HIV-1 CA assembly and host factor interaction, HIV-2 CA remains poorly understood. By templating the assembly of HIV-2 CA on functionalized liposomes, we were able to determine high resolution structures of the HIV-2 CA lattice, including both CA hexamers and pentamers, alone and in complexes with peptides of host phenylalanine-glycine (FG)-motif proteins Nup153 and CPSF6. While the overall fold and mode of binding the FG-peptides are conserved with HIV-1, this study reveals distinctive structural features that define the HIV-2 CA lattice, potential differences in interactions with other host factors such as CypA, and divergence in the mechanism of formation of hexameric and pentameric CA assemblies. This study extends our understanding of HIV capsids and highlights an approach with significant potential to facilitate the study of lentiviral capsid biology.
Collapse
Affiliation(s)
- Matthew Cook
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Christian Freniere
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Chunxiang Wu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Faith Lozano
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Lead Contact
| |
Collapse
|
20
|
McGraw A, Hillmer G, Medehincu SM, Hikichi Y, Gagliardi S, Narayan K, Tibebe H, Marquez D, Mei Bose L, Keating A, Izumi C, Peese K, Joshi S, Krystal M, DeCicco-Skinner KL, Freed EO, Sardo L, Izumi T. Exploring HIV-1 Maturation: A New Frontier in Antiviral Development. Viruses 2024; 16:1423. [PMID: 39339899 PMCID: PMC11437483 DOI: 10.3390/v16091423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
HIV-1 virion maturation is an essential step in the viral replication cycle to produce infectious virus particles. Gag and Gag-Pol polyproteins are assembled at the plasma membrane of the virus-producer cells and bud from it to the extracellular compartment. The newly released progeny virions are initially immature and noninfectious. However, once the Gag polyprotein is cleaved by the viral protease in progeny virions, the mature capsid proteins assemble to form the fullerene core. This core, harboring two copies of viral genomic RNA, transforms the virion morphology into infectious virus particles. This morphological transformation is referred to as maturation. Virion maturation influences the distribution of the Env glycoprotein on the virion surface and induces conformational changes necessary for the subsequent interaction with the CD4 receptor. Several host factors, including proteins like cyclophilin A, metabolites such as IP6, and lipid rafts containing sphingomyelins, have been demonstrated to have an influence on virion maturation. This review article delves into the processes of virus maturation and Env glycoprotein recruitment, with an emphasis on the role of host cell factors and environmental conditions. Additionally, we discuss microscopic technologies for assessing virion maturation and the development of current antivirals specifically targeting this critical step in viral replication, offering long-acting therapeutic options.
Collapse
Affiliation(s)
- Aidan McGraw
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Grace Hillmer
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Stefania M. Medehincu
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Yuta Hikichi
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MS 21702, USA; (Y.H.); (E.O.F.)
| | - Sophia Gagliardi
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Kedhar Narayan
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Hasset Tibebe
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Dacia Marquez
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Lilia Mei Bose
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Adleigh Keating
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Coco Izumi
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Kevin Peese
- ViiV Healthcare, 36 E. Industrial Road, Branford, CT 06405, USA; (K.P.) (S.J.); (M.K.)
| | - Samit Joshi
- ViiV Healthcare, 36 E. Industrial Road, Branford, CT 06405, USA; (K.P.) (S.J.); (M.K.)
| | - Mark Krystal
- ViiV Healthcare, 36 E. Industrial Road, Branford, CT 06405, USA; (K.P.) (S.J.); (M.K.)
| | - Kathleen L. DeCicco-Skinner
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Eric O. Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MS 21702, USA; (Y.H.); (E.O.F.)
| | - Luca Sardo
- ViiV Healthcare, 36 E. Industrial Road, Branford, CT 06405, USA; (K.P.) (S.J.); (M.K.)
| | - Taisuke Izumi
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
- District of Columbia Center for AIDS Research, Washington, DC 20052, USA
| |
Collapse
|
21
|
Bialas K, Diaz-Griffero F. HIV-1-induced translocation of CPSF6 to biomolecular condensates. Trends Microbiol 2024; 32:781-790. [PMID: 38267295 PMCID: PMC11263504 DOI: 10.1016/j.tim.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/26/2024]
Abstract
Cleavage and polyadenylation specificity factor subunit 6 (CPSF6, also known as CFIm68) is a 68 kDa component of the mammalian cleavage factor I (CFIm) complex that modulates mRNA alternative polyadenylation (APA) and determines 3' untranslated region (UTR) length, an important gene expression control mechanism. CPSF6 directly interacts with the HIV-1 core during infection, suggesting involvement in HIV-1 replication. Here, we review the contributions of CPSF6 to every stage of the HIV-1 replication cycle. Recently, several groups described the ability of HIV-1 infection to induce CPSF6 translocation to nuclear speckles, which are biomolecular condensates. We discuss the implications for CPSF6 localization in condensates and the potential role of condensate-localized CPSF6 in the ability of HIV-1 to control the protein expression pattern of the cell.
Collapse
Affiliation(s)
- Katarzyna Bialas
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Felipe Diaz-Griffero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
22
|
Rohlfes N, Radhakrishnan R, Singh PK, Bedwell GJ, Engelman AN, Dharan A, Campbell EM. The nuclear localization signal of CPSF6 governs post-nuclear import steps of HIV-1 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599834. [PMID: 38979149 PMCID: PMC11230232 DOI: 10.1101/2024.06.20.599834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The early stages of HIV-1 infection include the trafficking of the viral core into the nucleus of infected cells. However, much remains to be understood about how HIV-1 accomplishes nuclear import and the consequences of the import pathways utilized on nuclear events. The host factor cleavage and polyadenylation specificity factor 6 (CPSF6) assists HIV-1 nuclear localization and post-entry integration targeting. Here, we used a CPSF6 truncation mutant lacking a functional nuclear localization signal (NLS), CPSF6-358, and appended heterologous NLSs to rescue nuclear localization. We show that some, but not all, NLSs drive CPSF6-358 into the nucleus. Interestingly, we found that some nuclear localized CPSF6-NLS chimeras supported inefficient HIV-1 infection. We found that HIV-1 still enters the nucleus in these cell lines but fails to traffic to speckle-associated domains (SPADs). Additionally, we show that HIV-1 fails to efficiently integrate in these cell lines. Collectively, our results demonstrate that the NLS of CPSF6 facilitates steps of HIV-1 infection subsequent to nuclear import and additionally identify the ability of canonical NLS sequences to influence cargo localization in the nucleus following nuclear import.
Collapse
Affiliation(s)
- Nicholas Rohlfes
- Integrative Cell Biology Graduate Program, Loyola University Chicago, Maywood, IL, USA
| | - Rajalingam Radhakrishnan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Parmit K. Singh
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Gregory J. Bedwell
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Alan N. Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Adarsh Dharan
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Edward M. Campbell
- Integrative Cell Biology Graduate Program, Loyola University Chicago, Maywood, IL, USA
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
23
|
Kizito F, Nguyen K, Mbonye U, Shukla M, Luttge B, Checkley MA, Agaponova A, Leskov K, Karn J. Structural rearrangements in the nucleus localize latent HIV proviruses to a perinucleolar compartment supportive of reactivation. Proc Natl Acad Sci U S A 2024; 121:e2202003121. [PMID: 38669184 PMCID: PMC11067448 DOI: 10.1073/pnas.2202003121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/12/2024] [Indexed: 04/28/2024] Open
Abstract
Using an immunofluorescence assay based on CRISPR-dCas9-gRNA complexes that selectively bind to the HIV LTR (HIV Cas-FISH), we traced changes in HIV DNA localization in primary effector T cells from early infection until the cells become quiescent as they transition to memory cells. Unintegrated HIV DNA colocalized with CPSF6 and HIV capsid (CA, p24) was found in the cytoplasm and nuclear periphery at days 1 and 3 post infection. From days 3 to 7, most HIV DNA was distributed primarily in the nuclear intermediate euchromatic compartment and was transcribed. By day 21, the cells had entered quiescence, and HIV DNA accumulated in the perinucleolar compartment (PNC). The localization of proviruses to the PNC was blocked by integrase inhibitor Raltegravir, suggesting it was due to chromosomal rearrangements. During the reactivation of latently infected cells through the T cell receptor (TCR), nascent viral mRNA transcripts associated with HIV DNA in the PNC were detected. The viral trans-activator Tat and its regulatory partners, P-TEFb and 7SK snRNA, assembled in large interchromatin granule clusters near the provirus within 2 h of TCR activation. As T cell activation progressed, the HIV DNA shifted away from the PNC. HIV DNA in latently infected memory T cells from patients also accumulated in the PNC and showed identical patterns of nuclear rearrangements after cellular reactivation. Thus, in contrast to transformed cells where proviruses are found primarily at the nuclear periphery, in primary memory T cells, the nuclear architecture undergoes rearrangements that shape the transcriptional silencing and reactivation of proviral HIV.
Collapse
Affiliation(s)
- Fredrick Kizito
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH44106
| | - Kien Nguyen
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH44106
| | - Uri Mbonye
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH44106
| | - Meenakshi Shukla
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH44106
| | - Benjamin Luttge
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH44106
| | - Mary Ann Checkley
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH44106
| | - Anna Agaponova
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH44106
| | - Konstantin Leskov
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH44106
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH44106
| |
Collapse
|
24
|
Burdick RC, Morse M, Rouzina I, Williams MC, Hu WS, Pathak VK. HIV-1 uncoating requires long double-stranded reverse transcription products. SCIENCE ADVANCES 2024; 10:eadn7033. [PMID: 38657061 PMCID: PMC11042746 DOI: 10.1126/sciadv.adn7033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/21/2024] [Indexed: 04/26/2024]
Abstract
HIV-1 cores, which contain the viral genome and replication machinery, must disassemble (uncoat) during viral replication. However, the viral and host factors that trigger uncoating remain unidentified. Recent studies show that infectious cores enter the nucleus and uncoat near the site of integration. Here, we show that efficient uncoating of nuclear cores requires synthesis of a double-stranded DNA (dsDNA) genome >3.5 kb and that the efficiency of uncoating correlates with genome size. Core disruption by capsid inhibitors releases viral DNA, some of which integrates. However, most of the viral DNA is degraded, indicating that the intact core safeguards viral DNA. Atomic force microscopy and core content estimation reveal that synthesis of full-length genomic dsDNA induces substantial internal strain on the core to promote uncoating. We conclude that HIV-1 cores protect viral DNA from degradation by host factors and that synthesis of long double-stranded reverse transcription products is required to trigger efficient HIV-1 uncoating.
Collapse
Affiliation(s)
- Ryan C. Burdick
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Michael Morse
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Ioulia Rouzina
- Department of Chemistry and Biochemistry, Center for Retroviral Research and Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | - Mark C. Williams
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Wei-Shau Hu
- Viral Recombination Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Vinay K. Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| |
Collapse
|
25
|
Guedán A, Burley M, Caroe ER, Bishop KN. HIV-1 Capsid Rapidly Induces Long-Lived CPSF6 Puncta in Non-Dividing Cells, but Similar Puncta Already Exist in Uninfected T-Cells. Viruses 2024; 16:670. [PMID: 38793552 PMCID: PMC11125723 DOI: 10.3390/v16050670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
The HIV-1 capsid (CA) protein forms the outer shell of the viral core that is released into the cytoplasm upon infection. CA binds various cellular proteins, including CPSF6, that direct HIV-1 integration into speckle-associated domains in host chromatin. Upon HIV-1 infection, CPSF6 forms puncta in the nucleus. Here, we characterised these CPSF6 puncta further in HeLa cells, T-cells and macrophages and confirmed that integration and reverse transcription are not required for puncta formation. Indeed, we found that puncta formed very rapidly after infection, correlating with the time that CA entered the nucleus. In aphidicolin-treated HeLa cells and macrophages, puncta were detected for the length of the experiment, suggesting that puncta are only lost upon cell division. CA still co-localised with CPSF6 puncta at the latest time points, considerably after the peak of reverse transcription and integration. Intriguingly, the number of puncta induced in macrophages did not correlate with the MOI or the total number of nuclear speckles present in each cell, suggesting that CA/CPSF6 is only directed to a few nuclear speckles. Furthermore, we found that CPSF6 already co-localised with nuclear speckles in uninfected T-cells, suggesting that HIV-1 promotes a natural behaviour of CPSF6.
Collapse
Affiliation(s)
| | | | | | - Kate N. Bishop
- Retroviral Replication Laboratory, The Francis Crick Institute, London NW1 1AT, UK; (A.G.); (M.B.); (E.R.C.)
| |
Collapse
|
26
|
Taylor IA, Fassati A. The capsid revolution. J Mol Cell Biol 2024; 15:mjad076. [PMID: 38037430 PMCID: PMC11193064 DOI: 10.1093/jmcb/mjad076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/02/2023] Open
Abstract
Lenacapavir, targeting the human immunodeficiency virus type-1 (HIV-1) capsid, is the first-in-class antiretroviral drug recently approved for clinical use. The development of Lenacapavir is attributed to the remarkable progress in our understanding of the capsid protein made during the last few years. Considered little more than a component of the virus shell to be shed early during infection, the capsid has been found to be a key player in the HIV-1 life cycle by interacting with multiple host factors, entering the nucleus, and directing integration. Here, we describe the key advances that led to this 'capsid revolution'.
Collapse
Affiliation(s)
- Ian A Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Ariberto Fassati
- Division of Infection and Immunity, University College London, London WC1E 6JF, UK
- Institute of Immunity and Transplantation, University College London, London NW3 2PP, UK
| |
Collapse
|
27
|
Ingram Z, Kline C, Hughson AK, Singh PK, Fischer HL, Sowd GA, Watkins SC, Kane M, Engelman AN, Ambrose Z. Spatiotemporal binding of cyclophilin A and CPSF6 to capsid regulates HIV-1 nuclear entry and integration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.08.588584. [PMID: 38645162 PMCID: PMC11030324 DOI: 10.1101/2024.04.08.588584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Human immunodeficiency virus type 1 (HIV-1) capsid, which is the target of the antiviral lenacapavir, protects the viral genome and binds multiple host proteins to influence intracellular trafficking, nuclear import, and integration. Previously, we showed that capsid binding to cleavage and polyadenylation specificity factor 6 (CPSF6) in the cytoplasm is competitively inhibited by cyclophilin A (CypA) binding and regulates capsid trafficking, nuclear import, and infection. Here we determined that a capsid mutant with increased CypA binding affinity had significantly reduced nuclear entry and mislocalized integration. However, disruption of CypA binding to the mutant capsid restored nuclear entry, integration, and infection in a CPSF6-dependent manner. Furthermore, relocalization of CypA expression from the cell cytoplasm to the nucleus failed to restore mutant HIV-1 infection. Our results clarify that sequential binding of CypA and CPSF6 to HIV-1 capsid is required for optimal nuclear entry and integration targeting, informing antiretroviral therapies that contain lenacapavir.
Collapse
Affiliation(s)
- Zachary Ingram
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Christopher Kline
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Alexandra K. Hughson
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA
| | - Parmit K. Singh
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Hannah L. Fischer
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Gregory A. Sowd
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Simon C. Watkins
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Melissa Kane
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Alan N. Engelman
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Zandrea Ambrose
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA
| |
Collapse
|
28
|
Garza CM, Holcomb M, Santos-Martins D, Torbett BE, Forli S. IP6 and PF74 affect HIV-1 Capsid Stability through Modulation of Hexamer-Hexamer Tilt Angle Preference. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584513. [PMID: 38559213 PMCID: PMC10979974 DOI: 10.1101/2024.03.11.584513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The HIV-1 capsid is an irregularly shaped complex of about 1200 protein chains containing the viral genome and several viral proteins. Together, these components are the key to unlocking passage into the nucleus, allowing for permanent integration of the viral genome into the host cell genome. Recent interest into the role of the capsid in viral replication has been driven by the approval of the first-in-class drug lenacapavir, which marks the first drug approved to target a non-enzymatic HIV-1 viral protein. In addition to lenacapavir, other small molecules such as the drug-like compound PF74, and the anionic sugar inositolhexakisphosphate (IP6), are known to impact capsid stability, and although this is widely accepted as a therapeutic effect, the mechanisms through which they do so remain unknown. In this study, we employed a systematic atomistic simulation approach to study the impact of molecules bound to hexamers at the central pore (IP6) and the FG-binding site (PF74) on capsid oligomer dynamics, compared to apo hexamers and pentamers. We found that neither small molecule had a sizeable impact on the free energy of binding of the interface between neighboring hexamers but that both had impacts on the free energy profiles of performing angular deformations to the pair of oligomers akin to the variations in curvature along the irregular surface of the capsid. The IP6 cofactor, on one hand, stabilizes a pair of neighboring hexamers in their flattest configurations, whereas without IP6, the hexamers prefer a high tilt angle between them. On the other hand, having PF74 bound introduces a strong preference for intermediate tilt angles. These results suggest that structural instability is a natural feature of the HIV-1 capsid which is modulated by molecules bound in either the central pore or the FG-binding site. Such modulators, despite sharing many of the same effects on non-bonded interactions at the various protein-protein interfaces, have decidedly different effects on the flexibility of the complex. This study provides a detailed model of the HIV-1 capsid and its interactions with small molecules, informing structure-based drug design, as well as experimental design and interpretation.
Collapse
|
29
|
Piacentini J, Allen DS, Ganser-Pornillos BK, Chanda SK, Yoh SM, Pornillos O. Molecular Determinants of PQBP1 Binding to the HIV-1 Capsid Lattice. J Mol Biol 2024; 436:168409. [PMID: 38128824 PMCID: PMC10885737 DOI: 10.1016/j.jmb.2023.168409] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) stimulates innate immune responses upon infection, including cyclic GMP-AMP synthase (cGAS) signaling that results in type I interferon production. HIV-1-induced activation of cGAS requires the host cell factor polyglutamine binding protein 1 (PQBP1), an intrinsically disordered protein that bridges capsid recognition and cGAS recruitment. However, the molecular details of PQBP1 interactions with the HIV-1 capsid and their functional implications remain poorly understood. Here, we show that PQBP1 binds to HIV-1 capsids through charge complementing contacts between acidic residues in the N-terminal region of PQBP1 and an arginine ring in the central channel of the HIV-1 CA hexamer that makes up the viral capsid. These studies reveal the molecular details of PQBP1's primary interaction with the HIV-1 capsid and suggest that additional elements are likely to contribute to stable capsid binding.
Collapse
Affiliation(s)
- Juliana Piacentini
- University of Virginia, Department of Molecular Physiology & Biological Physics, Charlottesville, VA, USA
| | - Dale S Allen
- The Scripps Research Institute, Department of Immunology and Microbiology, La Jolla, CA, USA
| | - Barbie K Ganser-Pornillos
- University of Virginia, Department of Molecular Physiology & Biological Physics, Charlottesville, VA, USA; University of Utah, Department of Biochemistry, Salt Lake City, UT, USA
| | - Sumit K Chanda
- The Scripps Research Institute, Department of Immunology and Microbiology, La Jolla, CA, USA
| | - Sunnie M Yoh
- The Scripps Research Institute, Department of Immunology and Microbiology, La Jolla, CA, USA.
| | - Owen Pornillos
- University of Virginia, Department of Molecular Physiology & Biological Physics, Charlottesville, VA, USA; University of Utah, Department of Biochemistry, Salt Lake City, UT, USA.
| |
Collapse
|
30
|
Faysal KMR, Walsh JC, Renner N, Márquez CL, Shah VB, Tuckwell AJ, Christie MP, Parker MW, Turville SG, Towers GJ, James LC, Jacques DA, Böcking T. Pharmacologic hyperstabilisation of the HIV-1 capsid lattice induces capsid failure. eLife 2024; 13:e83605. [PMID: 38347802 PMCID: PMC10863983 DOI: 10.7554/elife.83605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/12/2024] [Indexed: 02/15/2024] Open
Abstract
The HIV-1 capsid has emerged as a tractable target for antiretroviral therapy. Lenacapavir, developed by Gilead Sciences, is the first capsid-targeting drug approved for medical use. Here, we investigate the effect of lenacapavir on HIV capsid stability and uncoating. We employ a single particle approach that simultaneously measures capsid content release and lattice persistence. We demonstrate that lenacapavir's potent antiviral activity is predominantly due to lethal hyperstabilisation of the capsid lattice and resultant loss of compartmentalisation. This study highlights that disrupting capsid metastability is a powerful strategy for the development of novel antivirals.
Collapse
Affiliation(s)
- KM Rifat Faysal
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, UNSWSydneyAustralia
| | - James C Walsh
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, UNSWSydneyAustralia
| | - Nadine Renner
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Chantal L Márquez
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, UNSWSydneyAustralia
| | - Vaibhav B Shah
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, UNSWSydneyAustralia
| | - Andrew J Tuckwell
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, UNSWSydneyAustralia
| | - Michelle P Christie
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of MelbourneMelbourneAustralia
| | - Michael W Parker
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of MelbourneMelbourneAustralia
- Structural Biology Unit, St. Vincent’s Institute of Medical ResearchFitzroyAustralia
| | | | - Greg J Towers
- Division of Infection and Immunity, University College LondonLondonUnited Kingdom
| | - Leo C James
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - David A Jacques
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, UNSWSydneyAustralia
| | - Till Böcking
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, UNSWSydneyAustralia
| |
Collapse
|
31
|
Fu L, Weiskopf EN, Akkermans O, Swanson NA, Cheng S, Schwartz TU, Görlich D. HIV-1 capsids enter the FG phase of nuclear pores like a transport receptor. Nature 2024; 626:843-851. [PMID: 38267583 PMCID: PMC10881386 DOI: 10.1038/s41586-023-06966-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024]
Abstract
HIV-1 infection requires nuclear entry of the viral genome. Previous evidence suggests that this entry proceeds through nuclear pore complexes (NPCs), with the 120 × 60 nm capsid squeezing through an approximately 60-nm-wide central channel1 and crossing the permeability barrier of the NPC. This barrier can be described as an FG phase2 that is assembled from cohesively interacting phenylalanine-glycine (FG) repeats3 and is selectively permeable to cargo captured by nuclear transport receptors (NTRs). Here we show that HIV-1 capsid assemblies can target NPCs efficiently in an NTR-independent manner and bind directly to several types of FG repeats, including barrier-forming cohesive repeats. Like NTRs, the capsid readily partitions into an in vitro assembled cohesive FG phase that can serve as an NPC mimic and excludes much smaller inert probes such as mCherry. Indeed, entry of the capsid protein into such an FG phase is greatly enhanced by capsid assembly, which also allows the encapsulated clients to enter. Thus, our data indicate that the HIV-1 capsid behaves like an NTR, with its interior serving as a cargo container. Because capsid-coating with trans-acting NTRs would increase the diameter by 10 nm or more, we suggest that such a 'self-translocating' capsid undermines the size restrictions imposed by the NPC scaffold, thereby bypassing an otherwise effective barrier to viral infection.
Collapse
Affiliation(s)
- Liran Fu
- Department of Cellular Logistics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Erika N Weiskopf
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Onno Akkermans
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nicholas A Swanson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shiya Cheng
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Thomas U Schwartz
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Dirk Görlich
- Department of Cellular Logistics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
32
|
Hudait A, Voth GA. HIV-1 capsid shape, orientation, and entropic elasticity regulate translocation into the nuclear pore complex. Proc Natl Acad Sci U S A 2024; 121:e2313737121. [PMID: 38241438 PMCID: PMC10823262 DOI: 10.1073/pnas.2313737121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/06/2023] [Indexed: 01/21/2024] Open
Abstract
Nuclear import and uncoating of the viral capsid are critical steps in the HIV-1 life cycle that serve to transport and release genomic material into the nucleus. Viral core import involves translocating the HIV-1 capsid at the nuclear pore complex (NPC). Notably, the central channel of the NPC appears to often accommodate and allow passage of intact HIV-1 capsid, though mechanistic details of the process remain to be fully understood. Here, we investigate the molecular interactions that operate in concert between the HIV-1 capsid and the NPC that regulate capsid translocation through the central channel. To this end, we develop a "bottom-up" coarse-grained (CG) model of the human NPC from recently released cryo-electron tomography structure and then construct composite membrane-embedded CG NPC models. We find that successful translocation from the cytoplasmic side to the NPC central channel is contingent on the compatibility of the capsid morphology and channel dimension and the proper orientation of the capsid approach to the channel from the cytoplasmic side. The translocation dynamics is driven by maximizing the contacts between phenylalanine-glycine nucleoporins at the central channel and the capsid. For the docked intact capsids, structural analysis reveals correlated striated patterns of lattice disorder likely related to the intrinsic capsid elasticity. Uncondensed genomic material inside the docked capsid augments the overall lattice disorder of the capsid. Our results suggest that the intrinsic "elasticity" can also aid the capsid to adapt to the stress and remain structurally intact during translocation.
Collapse
Affiliation(s)
- Arpa Hudait
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL60637
| | - Gregory A. Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL60637
| |
Collapse
|
33
|
Hitchcock AM, Kufel WD, Dwyer KAM, Sidman EF. Lenacapavir: A novel injectable HIV-1 capsid inhibitor. Int J Antimicrob Agents 2024; 63:107009. [PMID: 37844807 DOI: 10.1016/j.ijantimicag.2023.107009] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/06/2023] [Accepted: 10/01/2023] [Indexed: 10/18/2023]
Abstract
Patients living with multidrug-resistant (MDR) HIV have limited antiretroviral regimen options that provide durable viral suppression. Lenacapavir is a novel first-in-class inhibitor of HIV-1 capsid function with efficacy at various stages of the viral life cycle, and it is indicated for the treatment of MDR HIV-1 infection in combination with optimized background antiretroviral therapy. The favourable pharmacokinetic profile supports an every sixth month dosing interval of subcutaneous lenacapavir after an initial oral loading dose, which may advocate for continued adherence to antiretroviral therapy (ART) through the reduction of daily pill burden. The role of lenacapavir in promoting virologic suppression has been studied in patients with MDR HIV-1 on failing ART at baseline. Lenacapavir was well tolerated in clinical trials with the most common adverse effects including mild to moderate injection site reactions, gastrointestinal symptoms, and headache. Substitutions on the capsid molecule may confer resistance to lenacapavir by changing the binding potential. Cross-resistance to other antiretrovirals has not been observed. The unique mechanism of action, pharmacokinetics, and safety and efficacy of lenacapavir support its use for the management of MDR HIV-1 infection. Current studies are ongoing to evaluate the potential use of subcutaneous lenacapavir for pre-exposure prophylaxis (PrEP). Future studies will confirm the long-term clinical safety, efficacy, and resistance data for lenacapavir.
Collapse
Affiliation(s)
| | - Wesley D Kufel
- Upstate University Hospital, Syracuse, New York; Binghamton University School of Pharmacy and Pharmaceutical Sciences, Johnson City, New York
| | - Keri A Mastro Dwyer
- Binghamton University School of Pharmacy and Pharmaceutical Sciences, Johnson City, New York
| | | |
Collapse
|
34
|
Abstract
The HIV-1 capsid, composed of approximately 1,200 copies of the capsid protein, encases genomic RNA alongside viral nucleocapsid, reverse transcriptase, and integrase proteins. After cell entry, the capsid interacts with a myriad of host factors to traverse the cell cytoplasm, pass through the nuclear pore complex (NPC), and then traffic to chromosomal sites for viral DNA integration. Integration may very well require the dissolution of the capsid, but where and when this uncoating event occurs remains hotly debated. Based on size constraints, a long-prevailing view was that uncoating preceded nuclear transport, but recent research has indicated that the capsid may remain largely intact during nuclear import, with perhaps some structural remodeling required for NPC traversal. Completion of reverse transcription in the nucleus may further aid capsid uncoating. One canonical type of host factor, typified by CPSF6, leverages a Phe-Gly (FG) motif to bind capsid. Recent research has shown these peptides reside amid prion-like domains (PrLDs), which are stretches of protein sequence devoid of charged residues. Intermolecular PrLD interactions along the exterior of the capsid shell impart avid host factor binding for productive HIV-1 infection. Herein we overview capsid-host interactions implicated in HIV-1 ingress and discuss important research questions moving forward. Highlighting clinical relevance, the long-acting ultrapotent inhibitor lenacapavir, which engages the same capsid binding pocket as FG host factors, was recently approved to treat people living with HIV.
Collapse
Affiliation(s)
- Sooin Jang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Alan N. Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
35
|
Ay S, Di Nunzio F. HIV-Induced CPSF6 Condensates. J Mol Biol 2023; 435:168094. [PMID: 37061085 DOI: 10.1016/j.jmb.2023.168094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 04/17/2023]
Abstract
Viruses are obligate parasites that rely on their host's cellular machinery for replication. To facilitate their replication cycle, many viruses have been shown to remodel the cellular architecture by inducing the formation of membraneless organelles (MLOs). Eukaryotic cells have evolved MLOs that are highly dynamic, self-organizing microenvironments that segregate biological processes and increase the efficiency of reactions by concentrating enzymes and substrates. In the context of viral infections, MLOs can be utilized by viruses to complete their replication cycle. This review focuses on the pathway used by the HIV-1 virus to remodel the nuclear landscape of its host, creating viral/host niches that enable efficient viral replication. Specifically, we discuss how the interaction between the HIV-1 capsid and the cellular factor CPSF6 triggers the formation of nuclear MLOs that support nuclear reverse transcription and viral integration in favored regions of the host chromatin. This review compiles current knowledge on the origin of nuclear HIV-MLOs and their role in early post-nuclear entry steps of the HIV-1 replication cycle.
Collapse
Affiliation(s)
- Selen Ay
- Advanced Molecular Virology Unit, Department of Virology, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Francesca Di Nunzio
- Advanced Molecular Virology Unit, Department of Virology, Institut Pasteur, Université Paris Cité, 75015 Paris, France.
| |
Collapse
|
36
|
Xue G, Yu HJ, Buffone C, Huang SW, Lee K, Goh SL, Gres AT, Guney MH, Sarafianos SG, Luban J, Diaz-Griffero F, KewalRamani VN. The HIV-1 capsid core is an opportunistic nuclear import receptor. Nat Commun 2023; 14:3782. [PMID: 37355754 PMCID: PMC10290713 DOI: 10.1038/s41467-023-39146-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/01/2023] [Indexed: 06/26/2023] Open
Abstract
The movement of viruses and other large macromolecular cargo through nuclear pore complexes (NPCs) is poorly understood. The human immunodeficiency virus type 1 (HIV-1) provides an attractive model to interrogate this process. HIV-1 capsid (CA), the chief structural component of the viral core, is a critical determinant in nuclear transport of the virus. HIV-1 interactions with NPCs are dependent on CA, which makes direct contact with nucleoporins (Nups). Here we identify Nup35, Nup153, and POM121 to coordinately support HIV-1 nuclear entry. For Nup35 and POM121, this dependence was dependent cyclophilin A (CypA) interaction with CA. Mutation of CA or removal of soluble host factors changed the interaction with the NPC. Nup35 and POM121 make direct interactions with HIV-1 CA via regions containing phenylalanine glycine motifs (FG-motifs). Collectively, these findings provide additional evidence that the HIV-1 CA core functions as a macromolecular nuclear transport receptor (NTR) that exploits soluble host factors to modulate NPC requirements during nuclear invasion.
Collapse
Affiliation(s)
- Guangai Xue
- Model Development Section, Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Hyun Jae Yu
- Basic Science Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD, 21702, USA
| | - Cindy Buffone
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Szu-Wei Huang
- Model Development Section, Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - KyeongEun Lee
- Model Development Section, Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Shih Lin Goh
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Anna T Gres
- Bond Life Sciences Center, Chemistry, University of Missouri, Columbia, MO, 65201, USA
| | - Mehmet Hakan Guney
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Stefan G Sarafianos
- Bond Life Sciences Center, Chemistry, University of Missouri, Columbia, MO, 65201, USA
- Bond Life Sciences Center, MMI, Biochemistry, University of Missouri, Columbia, MO, 65201, USA
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Felipe Diaz-Griffero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Vineet N KewalRamani
- Model Development Section, Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, 21702, USA.
| |
Collapse
|
37
|
Dzinamarira T, Almehmadi M, Alsaiari AA, Allahyani M, Aljuaid A, Alsharif A, Khan A, Kamal M, Rabaan AA, Alfaraj AH, AlShehail BM, Alotaibi N, AlShehail SM, Imran M. Highlights on the Development, Related Patents, and Prospects of Lenacapavir: The First-in-Class HIV-1 Capsid Inhibitor for the Treatment of Multi-Drug-Resistant HIV-1 Infection. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1041. [PMID: 37374245 DOI: 10.3390/medicina59061041] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023]
Abstract
The multidrug-resistant (MDR) human immunodeficiency virus 1 (HIV-1) infection is an unmet medical need. HIV-1 capsid plays an important role at different stages of the HIV-1 replication cycle and is an attractive drug target for developing therapies against MDR HIV-1 infection. Lenacapavir (LEN) is the first-in-class HIV-1 capsid inhibitor approved by the USFDA, EMA, and Health Canada for treating MDR HIV-1 infection. This article highlights the development, pharmaceutical aspects, clinical studies, patent literature, and future directions on LEN-based therapies. The literature for this review was collected from PubMed, authentic websites (USFDA, EMA, Health Canada, Gilead, and NIH), and the free patent database (Espacenet, USPTO, and Patent scope). LEN has been developed by Gilead and is marketed as Sunlenca (tablet and subcutaneous injection). The long-acting and patient-compliant LEN demonstrated a low level of drug-related mutations, is active against MDR HIV-1 infection, and does not reveal cross-resistance to other anti-HIV drugs. LEN is also an excellent drug for patients having difficult or limited access to healthcare facilities. The literature has established additive/synergistic effects of combining LEN with rilpivirine, cabotegravir, islatravir, bictegravir, and tenofovir. HIV-1 infection may be accompanied by opportunistic infections such as tuberculosis (TB). The associated diseases make HIV treatment complex and warrant drug interaction studies (drug-drug, drug-food, and drug-disease interaction). Many inventions on different aspects of LEN have been claimed in patent literature. However, there is a great scope for developing more inventions related to the drug combination of LEN with anti-HIV/anti-TB drugs in a single dosage form, new formulations, and methods of treating HIV and TB co-infection. Additional research may provide more LEN-based treatments with favorable pharmacokinetic parameters for MDR HIV-1 infections and associated opportunistic infections such as TB.
Collapse
Affiliation(s)
- Tafadzwa Dzinamarira
- School of Health Systems and Public Health, University of Pretoria, Pretoria 0002, South Africa
- ICAP, Columbia University, Harare P.O. Box 28, Zimbabwe
| | - Mazen Almehmadi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Mamdouh Allahyani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Abdulelah Aljuaid
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Abdulaziz Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Abida Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Amal H Alfaraj
- Pediatric Department, Abqaiq General Hospital, First Eastern Health Cluster, Abqaiq 33261, Saudi Arabia
| | - Bashayer M AlShehail
- Pharmacy Practice Department, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Nouf Alotaibi
- Clinical Pharmacy Department, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Shams M AlShehail
- Internal Medicine Department, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 21487, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| |
Collapse
|
38
|
Overmars RJ, Krullaars Z, Mesplède T. Investigational drugs for HIV: trends, opportunities and key players. Expert Opin Investig Drugs 2023; 32:127-139. [PMID: 36751107 DOI: 10.1080/13543784.2023.2178415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
INTRODUCTION Since the first antiretroviral drug was described, the field of HIV treatment and prevention has undergone two drug-based revolutions: the first one, enabled by the virtually concomitant discovery of non-nucleoside reverse transcriptase and protease inhibitors, was the inception of combined antiretroviral therapy. The second followed the creation of integrase strand-transfer inhibitors with improved safety, potency, and resistance profiles. Long-acting antiretroviral drugs, including broadly neutralizing antibodies, now offer the opportunity for a third transformational change in HIV management. AREAS COVERED Our review focused on HIV treatment and prevention with investigational drugs that offer the potential for infrequent dosing, including drugs not yet approved for clinical use. We also discussed approved drugs for which administration modalities or formulations are being optimized. We performed a literature search in published manuscripts, conference communications, and registered clinical trials. EXPERT OPINION While the field focuses on extending dosing intervals, we identify drug tissue penetration as an understudied opportunity to improve HIV care. We repeat that self-administration remains an essential milestone to reach the full potential of long-acting drugs. Treatments and prevention strategies based on broadly neutralizing antibodies require a deeper understanding of their antiretroviral properties.
Collapse
Affiliation(s)
- Ronald J Overmars
- Viroscience Department, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Zoë Krullaars
- Viroscience Department, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Thibault Mesplède
- Viroscience Department, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|