1
|
Zeng W, Wang Y, Peng C, Qiu Y. Organo-mediator enabled electrochemical transformations. Chem Soc Rev 2025; 54:4468-4501. [PMID: 40151968 DOI: 10.1039/d4cs01142b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Electrochemistry has emerged as a powerful means to facilitate redox transformations in modern chemical synthesis. This review focuses on organo-mediators that facilitate electrochemical reactions via outer-sphere electron transfer (ET) between active mediators and substrates, offering advantages over direct electrolysis due to their availability, ease of modification, and simple post-processing. They prevent overoxidation/reduction, enhance selectivity, and mitigate electrode passivation during the electrosynthesis. By modifying the structure of organo-mediators, those with tunable redox potentials enable electrosynthesis and avoid metal residues in the final products, making them promising for further application in synthetic chemistry, particularly in pharmacochemistry, where the maximum allowed level of the metal residue in synthetic samples is extremely strict. This review highlights the recent advancements in this rapidly growing area within the past two decades, including the electrochemical organo-mediated oxidation (EOMO) and electrochemical organo-mediated reduction (EOMR) events. The organo-mediator enabled electrochemical transformations are discussed according to the reaction type, which has been categorized into oxidation and reduction organic mediators.
Collapse
Affiliation(s)
- Weimei Zeng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Yanwei Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Chengyi Peng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| |
Collapse
|
2
|
Li R, He M, Cheng C, Chen F, Yang L, Cui JZ, Liu C, Zhang B. Defect-Induced Electron Localization Promotes D 2O Dissociation and Nitrile Adsorption for Deuterated Amines. Angew Chem Int Ed Engl 2025; 64:e202424039. [PMID: 39806818 DOI: 10.1002/anie.202424039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/03/2025] [Accepted: 01/14/2025] [Indexed: 01/16/2025]
Abstract
Electrochemical reductive deuteration of nitriles is a promising strategy for synthesizing deuterated amines with D2O as the deuterated source. However, this reaction suffers from high overpotentials owing to the sluggish D2O dissociation kinetics and high thermodynamic stability of the C≡N triple bond. Here, low-coordinated copper (LC-Cu) is designed to decrease the overpotential for the electrosynthesis of the precursor of Melatonin-d4, 5-methoxytryptamine-d4, by 100 mV with a 68 % yield (Faradaic efficiency), which is 4 times greater than that of high-coordinated copper (HC-Cu). The low coordinated sites induced an enrichment of electrons to concentrate K+ ions hydrated deuterium water (K⋅D2O) and decrease the energy of the Volmer step via the polarization effect, leading to a continuous supplementation of *D for the reductive deuteration of nitriles. Moreover, the enhanced local electric field changes the adsorption configuration of nitriles from a semibridge model to a flat model, leading to faster reduction kinetics of nitriles with a high reaction rate at lower potentials. High deuterium incorporation, a wide substrate scope, and easy gram-scale synthesis over LC-Cu at 300 mA rationalize the design concept. Furthermore, the enhanced antitumor and antioxidation effects of Melatonin-d4 highlight the great promise of deuterated drugs.
Collapse
Affiliation(s)
- Rui Li
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Meng He
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Chuanqi Cheng
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Fanpeng Chen
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Lijun Yang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Jian-Zhong Cui
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Cuibo Liu
- Institute of Molecular Plus, Tianjin University, Tianjin, 300072, China
| | - Bin Zhang
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
3
|
Xiong Y, Chen J, Wang Y, Wang Q, Liu D, Shao Q, Lu J. Metastable Phase Noble-Metal-Free Core-Shell Structure for Efficient Electrocatalytic Nitrobenzene Transfer Hydrogenation. NANO LETTERS 2025; 25:3383-3390. [PMID: 39969422 DOI: 10.1021/acs.nanolett.4c04966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
In order to study the catalytic behavior of a metastable-phase catalyst in electrocatalytic hydrogenation, we report a new metastable-phase noble-metal-free core-shell catalyst with a metastable hexagonal closest packed (hcp) phase Ni as the shell and face-centered-cubic (fcc) phase Cu as the core (Cu@hcp Ni NPs) for electrocatalytic hydrogenation of nitrobenzene (Ph-NO2) to aniline (Ph-NH2). Using H2O as the hydrogen source, it achieves up to 99.63% Ph-NO2 conversion and ∼100% Ph-NH2 selectivity, with an improved activity turnover frequency (TOF: 6640 h-1), much higher than those of hcp Ni NPs (5183.7 h-1) and commercial Pt/C (3537.6 h-1). It can also deliver a variety of aminoarenes with outstanding selectivity and excellent functional group compatibility with several groups. Mechanistic studies have shown that the introduction of Cu enhances hcp Ni's ability to dissociate water in situ to produce H* and improves the hydrogenation rate, resulting in the rapid conversion of Ph-NO2 to the final product Ph-NH2.
Collapse
Affiliation(s)
- Yutian Xiong
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jinxin Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yue Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qun Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Da Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
4
|
He M, Wang H, Cheng C, Li R, Liu C, Gao Y, Zhang B. Cu δ+ Site-Enhanced Adsorption and Crown Ether-Reconfigured Interfacial D 2O Promote Electrocatalytic Dehalogenative Deuteration. J Am Chem Soc 2025; 147:5377-5385. [PMID: 39874478 DOI: 10.1021/jacs.4c17432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Electrocatalytic dehalogenative deuteration is a sustainable method for precise deuteration, whereas its Faradaic efficiency (FE) is limited by a high overpotential and severe D2 evolution reaction (DER). Here, Cuδ+ site-adjusted adsorption and crown ether-reconfigured interfacial D2O are reported to cooperatively increase the FE of dehalogenative deuteration up to 84% at -100 mA cm-2. Cuδ+ sites strengthen the adsorption of aryl iodides, promoting interfacial mass transfer and thus accelerating the kinetics toward dehalogenative deuteration. The crown ethers disrupt the hydration effect of K·D2O and reconstruct the hydrogen bond with the interfacial D2O, lowering the content K·D2O of the electric double layer and hindering the interaction between D2O and the cathode, thus inhibiting the kinetics of the competitive DER. A linear relationship between the matched sizes of crown ethers and alkali metal cations is demonstrated for universally increasing FEs. This method is also suitable for the deuteration of various halides with high easily reducible functional group compatibility and improved FEs at -100 mA cm-2.
Collapse
Affiliation(s)
- Meng He
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Haotian Wang
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, China
| | - Chuanqi Cheng
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Rui Li
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Cuibo Liu
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, China
| | - Ying Gao
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Bin Zhang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| |
Collapse
|
5
|
Liu C, Wang L, Ge H. Multifunctionalization of Alkenyl Alcohols via a Sequential Relay Process. J Am Chem Soc 2024; 146:30733-30740. [PMID: 39470983 DOI: 10.1021/jacs.4c09522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Aryl-substituted aliphatic amines are widely recognized as immensely valuable molecules. Consequently, the development of practical strategies for the construction of these molecules becomes increasingly urgent and critical. Here, we have successfully achieved multifunctionalization reactions of alkenyl alcohols in a sequential relay process, which enables transformation patterns of arylamination, deuterated arylamination, and methylenated arylamination to the easy access of multifarious arylalkylamines. Notably, a novel functionalization mode for carbonyl groups has been developed to facilitate the processes of deuterium incorporation and methylene introduction, thereby providing new means for the diverse transformations of carbonyl groups. This methodology displays a wide tolerance toward functional groups, while also exhibiting good applicability across various skeletal structures of alkenols and amines.
Collapse
Affiliation(s)
- Chong Liu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Ling Wang
- Residual Department, Merieux Testing Technology (Qingdao) Co., Ltd., Qingdao, 266000, China
| | - Haibo Ge
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
6
|
Narobe R, Perner MN, Gálvez-Vázquez MDJ, Kuhwald C, Klein M, Broekmann P, Rösler S, Cezanne B, Waldvogel SR. Practical electrochemical hydrogenation of nitriles at the nickel foam cathode. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2024; 26:10567-10574. [PMID: 39309016 PMCID: PMC11413620 DOI: 10.1039/d4gc03446e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024]
Abstract
We report a scalable hydrogenation method for nitriles based on cost-effective materials in a very simple two-electrode setup under galvanostatic conditions. All components are commercially and readily available. The method is very easy to conduct and applicable to a variety of nitrile substrates, leading exclusively to primary amine products in yields of up to 89% using an easy work-up protocol. Importantly, this method is readily transferable from the milligram scale in batch-type screening cells to the multi-gram scale in a flow-type electrolyser. The transfer to flow electrolysis enabled us to achieve a notable 20 g day-1 productivity of phenylethylamine at a geometric current density of 50 mA cm-2 in a flow-type electrolyser with 48 cm2 electrodes. It is noteworthy that this method is sustainable in terms of process safety and reusability of components.
Collapse
Affiliation(s)
- Rok Narobe
- Department of Chemistry, Johannes Gutenberg University Mainz 55128 Mainz Germany
- Max-Planck-Institute for Chemical Energy Conversion Stiftstraße 34-36 45470 Mülheim an der Ruhr Germany +49 208/306-3131
| | - Marcel Nicolas Perner
- Department of Chemistry, Johannes Gutenberg University Mainz 55128 Mainz Germany
- Max-Planck-Institute for Chemical Energy Conversion Stiftstraße 34-36 45470 Mülheim an der Ruhr Germany +49 208/306-3131
| | | | | | | | - Peter Broekmann
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern 3012 Bern Switzerland
| | - Sina Rösler
- Sigma-Aldrich Production GmbH 9470 Buchs Switzerland
| | | | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz 55128 Mainz Germany
- Max-Planck-Institute for Chemical Energy Conversion Stiftstraße 34-36 45470 Mülheim an der Ruhr Germany +49 208/306-3131
| |
Collapse
|
7
|
Bu F, Deng Y, Xu J, Yang D, Li Y, Li W, Lei A. Electrocatalytic reductive deuteration of arenes and heteroarenes. Nature 2024; 634:592-599. [PMID: 39208847 DOI: 10.1038/s41586-024-07989-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The incorporation of deuterium in organic molecules has widespread applications in medicinal chemistry and materials science1,2. For example, the deuterated drugs austedo3, donafenib4 and sotyktu5 have been recently approved. There are various methods for the synthesis of deuterated compounds with high deuterium incorporation6. However, the reductive deuteration of aromatic hydrocarbons-ubiquitous chemical feedstocks-to saturated cyclic compounds has rarely been achieved. Here we describe a scalable and general electrocatalytic method for the reductive deuteration and deuterodefluorination of (hetero)arenes using a prepared nitrogen-doped electrode and deuterium oxide (D2O), giving perdeuterated and saturated deuterocarbon products. This protocol has been successfully applied to the synthesis of 13 highly deuterated drug molecules. Mechanistic investigations suggest that the ruthenium-deuterium species, generated by electrolysis of D2O in the presence of a nitrogen-doped ruthenium electrode, are key intermediates that directly reduce aromatic compounds. This quick and cost-effective methodology for the preparation of highly deuterium-labelled saturated (hetero)cyclic compounds could be applied in drug development and metabolism studies.
Collapse
Affiliation(s)
- Faxiang Bu
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, People's Republic of China
| | - Yuqi Deng
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, People's Republic of China
| | - Jie Xu
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, People's Republic of China
| | - Dali Yang
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, People's Republic of China
| | - Yan Li
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, People's Republic of China
| | - Wu Li
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, People's Republic of China.
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, People's Republic of China.
| |
Collapse
|
8
|
Li M, Cheng X. Aggregation-induced C-C bond formation on an electrode driven by the surface tension of water. Nat Commun 2024; 15:7540. [PMID: 39215021 PMCID: PMC11364745 DOI: 10.1038/s41467-024-52042-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Electrochemical organic synthesis is typically conducted in organic media. The solvent and related supporting electrolytes negatively affect the greenness of electrosynthesis. In this work, with 100% water used as the solvent, we realize aggregation-driven electrochemical radical cross coupling of unsaturated compounds driven by water tension. A key finding is that aggregation of the substrate at the electrode confined the radical intermediate and prevented side reactions, thus providing a way to regulate radical reactions in addition to their native properties. The reaction provides up to 90% yields with almost quantitative chemoselectivity. The pure water system readily yields the products via cold filtration, and the solvent is recycled repeatedly. In particular, the life span of the radical species generated in the reaction increase significantly because of the confined environment in the aggregation state. The greenness of this protocol is further enhanced with readily separation of product from media using cooling and filtration.
Collapse
Affiliation(s)
- Mengfan Li
- State Key Laboratory of Coordination Chemistry, Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Xu Cheng
- State Key Laboratory of Coordination Chemistry, Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| |
Collapse
|
9
|
Zhu FY, Wu BD, Du MH, Yao JL, Abrahams BF, Gu H, Braunstein P, Lang JP. Tandem Protocol for Diversified Deuteration of Secondary Aliphatic Amines under Mild Conditions. J Org Chem 2024; 89:11414-11420. [PMID: 39102497 DOI: 10.1021/acs.joc.4c01089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Deuteration of amine compounds has been widely of concern because of its practical role in organic reaction mechanisms and drug research; however, only limited deuteration label methods are accessible with D2O as a deuterium source. Herein, we propose a convenient deuteration protocol, including preparing D2 by the AlGa activation method, using PtRu nanowires as catalysts, and utilizing the elementary step in the couple reaction involving an imine unit, to realize the rapid preparation of a secondary amine with a diversified deuteration label. The self-coupling between nitriles not only provides a symmetric secondary amine with four α-D atoms but also produces high-valued ND3 in an atomic-economic way.
Collapse
Affiliation(s)
- Feng-Yuan Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 Jiangsu, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Bao-De Wu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 Jiangsu, P. R. China
| | - Ming-Hao Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 Jiangsu, P. R. China
| | - Jian-Lin Yao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 Jiangsu, P. R. China
| | | | - Hongwei Gu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 Jiangsu, P. R. China
| | - Pierre Braunstein
- Université de Strasbourg─CNRS, Institut de Chimie (UMR 7177 CNRS), 4 rue Blaise Pascal-CS 90032, Strasbourg 67081, France
| | - Jian-Ping Lang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 Jiangsu, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
10
|
Li X, Zhou J, Deng W, Wang Z, Wen Y, Li Z, Qiu Y, Huang Y. Electroreductive deuteroarylation of alkenes enabled by an organo-mediator. Chem Sci 2024; 15:11418-11427. [PMID: 39054999 PMCID: PMC11268466 DOI: 10.1039/d4sc03049d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/12/2024] [Indexed: 07/27/2024] Open
Abstract
Electroreduction mediated by organo-mediators has emerged as a concise and effective strategy, holding significant potential in the site-specific introduction of deuterium. In this study, we present an environmentally friendly electroreduction approach for anti-Markovnikov selective deuteroarylation of alkenes and aryl iodides with D2O as the deuterium source. The key to the protocol lies in the employment of a catalytic amount of 2,2'-bipyiridine as an efficient organo-mediator, which facilitates the generation of aryl radicals by assisting in the cleavage of the C-X (X = I or Br) bonds in aryl halides. Because its reduction potential matches that of aryl iodides, the organo-mediator can control the chemoselectivity of the reaction and avoid the side reactions of competitive substrate deuteration. These phenomena are theoretically supported by CV experiments and DFT calculations. Our protocol provides a series of mono-deuterated alkylarenes with excellent deuterium incorporation through two single-electron reductions (SER), without requiring metal catalysts, external reductants, and sacrificial anodes.
Collapse
Affiliation(s)
- Xinling Li
- School of Environmental and Chemical Engineering, Wuyi University Jiangmen 529090 P. R. China
| | - Jianfeng Zhou
- School of Environmental and Chemical Engineering, Wuyi University Jiangmen 529090 P. R. China
| | - Weijie Deng
- School of Environmental and Chemical Engineering, Wuyi University Jiangmen 529090 P. R. China
| | - Ziliang Wang
- School of Environmental and Chemical Engineering, Wuyi University Jiangmen 529090 P. R. China
| | - Yating Wen
- School of Environmental and Chemical Engineering, Wuyi University Jiangmen 529090 P. R. China
| | - Zhenjie Li
- School of Environmental and Chemical Engineering, Wuyi University Jiangmen 529090 P. R. China
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University 94 Weijin Road Tianjin 300071 People's Republic of China
| | - Yubing Huang
- School of Environmental and Chemical Engineering, Wuyi University Jiangmen 529090 P. R. China
| |
Collapse
|
11
|
He M, Li R, Cheng C, Liu C, Zhang B. Microenvironment regulation breaks the Faradaic efficiency-current density trade-off for electrocatalytic deuteration using D 2O. Nat Commun 2024; 15:5231. [PMID: 38898044 PMCID: PMC11187139 DOI: 10.1038/s41467-024-49544-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024] Open
Abstract
The high Faradaic efficiency (FE) of the electrocatalytic deuteration of organics with D2O at a large current density is significant for deuterated electrosynthesis. However, the FE and current density are the two ends of a seesaw because of the severe D2 evolution side reaction at nearly industrial current densities. Herein, we report a combined scenario of a nanotip-enhanced electric field and surfactant-modified interface microenvironment to enable the electrocatalytic deuteration of arylacetonitrile in D2O with an 80% FE at -100 mA cm-2. The increased concentration with low activation energy of arylacetonitrile due to the large electric field along the tips and the accelerated arylacetonitrile transfer and suppressed D2 evolution by the surfactant-created deuterophobic microenvironment contribute to breaking the trade-off between a high FE and large current density. Furthermore, the application of our strategy in other deuteration reactions with improved Faradaic efficiencies at -100 mA cm-2 rationalizes the design concept.
Collapse
Affiliation(s)
- Meng He
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Rui Li
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Chuanqi Cheng
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Cuibo Liu
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China.
- Institute of Molecular Plus, Tianjin University, Tianjin, 300072, China.
| | - Bin Zhang
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China.
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
12
|
Liu C, Chen F, Zhao BH, Wu Y, Zhang B. Electrochemical hydrogenation and oxidation of organic species involving water. Nat Rev Chem 2024; 8:277-293. [PMID: 38528116 DOI: 10.1038/s41570-024-00589-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2024] [Indexed: 03/27/2024]
Abstract
Fossil fuel-driven thermochemical hydrogenation and oxidation using high-pressure H2 and O2 are still popular but energy-intensive CO2-emitting processes. At present, developing renewable energy-powered electrochemical technologies, especially those using clean, safe and easy-to-handle reducing agents and oxidants for organic hydrogenation and oxidation reactions, is urgently needed. Water is an ideal carrier of hydrogen and oxygen. Electrochemistry provides a powerful route to drive water splitting under ambient conditions. Thus, electrochemical hydrogenation and oxidation transformations involving water as the hydrogen source and oxidant, respectively, have been developed to be mild and efficient tools to synthesize organic hydrogenated and oxidized products. In this Review, we highlight the advances in water-participating electrochemical hydrogenation and oxidation reactions of representative organic molecules. Typical electrode materials, performance metrics and key characterization techniques are firstly introduced. General electrocatalyst design principles and controlling the microenvironment for promoting hydrogenation and oxygenation reactions involving water are summarized. Furthermore, paired hydrogenation and oxidation reactions are briefly introduced before finally discussing the challenges and future opportunities of this research field.
Collapse
Affiliation(s)
- Cuibo Liu
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, China
| | - Fanpeng Chen
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, China
| | - Bo-Hang Zhao
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, China
| | - Yongmeng Wu
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, China
| | - Bin Zhang
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, China.
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology, Tianjin University, Tianjin, China.
| |
Collapse
|
13
|
Feng J, Qiao L, Liu C, Zhou P, Feng W, Pan H. Triggering efficient reconstructions of Co/Fe dual-metal incorporated Ni hydroxide by phosphate additives for electrochemical hydrogen and oxygen evolutions. J Colloid Interface Sci 2024; 657:705-715. [PMID: 38071819 DOI: 10.1016/j.jcis.2023.11.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/20/2023] [Accepted: 11/26/2023] [Indexed: 01/02/2024]
Abstract
Alkaline electrochemical water splitting has been considered as an efficient way for the green hydrogen production in industry, where the electrocatalysts play the critical role for the electricity-to-fuel conversion efficiency. Phosphate salts are widely used as additives in the fabrication of electrocatalysts with improved activity, but their roles on the electrocatalytic performance have not been fully understood. Herein, we fabricate Co, Fe dual-metal incorporated Ni hydroxide on Ni foam using NaH2PO4 ((Co, Fe)NiOxHy-pi) and NaH2PO2 ((Co, Fe)NiOxHy-hp) as additive, respectively. We find that (Co, Fe)NiOxHy-hp with NaH2PO2 in the fabrication shows high activity and stability for both HER and OER (a overpotential of -0.629 V and 0.65 V at 400 mA cm-2 for HER and OER, respectively). Further experiment reveals that the reconstructed structures of electrocatalyst by using NaH2PO2 (hp) endow high electrocatalytic performances: (1) in-situ generated active metal improves the accumulation, transportation and activity of hydrogen species in the HER process; and (2) in-situ generated poor-crystalline hydroxide endows superior charge/mass transportation and kinetics improvements in the OER process. Our study may provide an insightful understanding on the catalytic performance of non-precious metal electrocatalysts by controlling additives and guidance for the design and synthesis of novel electrocatalysts.
Collapse
Affiliation(s)
- Jinxian Feng
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, China
| | - Lulu Qiao
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, China
| | - Chunfa Liu
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, China
| | - Pengfei Zhou
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, China; Department of Materials and Metallurgy, Guizhou University, Guiyang, Guizhou 550025, China
| | - Wenlin Feng
- Department of Physics and Energy, Chongqing University of Technology, Chongqing 400054, China
| | - Hui Pan
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, China; Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macao SAR, China.
| |
Collapse
|
14
|
Wang T, He F, Jiang W, Liu J. Electrohydrogenation of Nitriles with Amines by Cobalt Catalysis. Angew Chem Int Ed Engl 2024; 63:e202316140. [PMID: 38124405 DOI: 10.1002/anie.202316140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023]
Abstract
Catalytic hydrogenation of nitriles represents an efficient and sustainable one-step synthesis of valuable bulk and fine chemicals. We report herein a molecular cobalt electrocatalyst for selective hydrogenative coupling of nitriles with amines using protons as the hydrogen source. The key to success for this reductive reaction is the use of an electrocatalytic approach for efficient cobalt-hydride generation through a sequence of cathodic reduction and protonation. As only electrons (e- ) and protons (H+ ) as the redox equivalent and hydrogen source, this general electrohydrogenation protocol is showcased by highly selective and straightforward synthesis of various functionalized and structurally diverse amines, as well as deuterium isotope labeling applications. Mechanistic studies reveal that the electrogenerated cobalt-hydride transfer to nitrile process is the rate-determining step.
Collapse
Affiliation(s)
- Tiantian Wang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, 410082, Changsha, China
| | - Fangfang He
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, 410082, Changsha, China
| | - Wei Jiang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, 410082, Changsha, China
| | - Jie Liu
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, 410082, Changsha, China
- Greater Bay Area Institute for Innovation, Hunan University, 511300, Guangzhou, Guangdong Province, China
| |
Collapse
|
15
|
Meng X, Dong Y, Liu Q, Wang W. Organophotocatalytic α-deuteration of unprotected primary amines via H/D exchange with D 2O. Chem Commun (Camb) 2024; 60:296-299. [PMID: 38054348 PMCID: PMC10872390 DOI: 10.1039/d3cc04634f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
We report a straightforward H/D exchange method for the synthesis of α-deuterated primary amines from a diverse set of primary amines with high levels of deuteration and chemo- and site selectivity and preparative utility. This cost-effective strategy enables the direct conversion of primary amines to α-deuterated counterparts using D2O as the deuterium source under mild reaction conditions without requiring additional functionality manipulation and with minimal byproduct production.
Collapse
Affiliation(s)
- Xiang Meng
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, USA.
| | - Yue Dong
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, USA.
| | - Qiangqiang Liu
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, USA.
| | - Wei Wang
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, USA.
- Department of Chemistry and Biochemistry, University of Arizona, USA
- University of Arizona Cancer Centre, University of Arizona, 1703 E. Mabel Street, Tucson, AZ 85721-0207, USA
| |
Collapse
|
16
|
Ma C, Li X, Chen X, He X, Zhang ST, Jiang YQ, Yu B. Photocatalytic Umpolung Strategy for the Synthesis of α-Amino Phosphine Oxides and Deuterated Derivatives. Org Lett 2023; 25:8016-8021. [PMID: 37903293 DOI: 10.1021/acs.orglett.3c03193] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Direct, economical, and green synthesis of deuterated α-amino phosphine oxides remains an elusive challenge in synthetic chemistry. Herein, we report a visible-light-driven umpolung strategy for synthesizing deuterated α-amino phosphine oxides from isocyanide using 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene as the photocatalyst and D2O as the deuterium source. Moreover, the streamlined and sustainable methodology can be applied in the modification of amino acids, natural products, and drugs. The strong antiproliferative activity of the desired products indicates that the method could provide a novel privileged scaffold for antitumor drug development.
Collapse
Affiliation(s)
- Chunhua Ma
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Xiaofeng Li
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Xiya Chen
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Xing He
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Shu-Ting Zhang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yu-Qin Jiang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Bing Yu
- Green Catalysis Centre, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
17
|
Qian Y, Chen Z, Wang J, Peng M, Zhang S, Yan X, Han X, Ou X, Sun J, Li S, Chen K. H/D Exchange Coupled with 2H-labeled Stable Isotope-Assisted Metabolomics Discover Transformation Products of Contaminants of Emerging Concern. Anal Chem 2023; 95:12541-12549. [PMID: 37574906 DOI: 10.1021/acs.analchem.3c02833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Stable isotope-assisted metabolomics (SIAM) is a powerful tool for discovering transformation products (TPs) of contaminants. Nevertheless, the high cost or lack of isotope-labeled analytes limits its application. In-house H/D (hydrogen/deuterium) exchange reactions enable direct 2H labeling to target analytes with favorable reaction conditions, providing intuitive and easy-to-handle approaches for environmentally relevant laboratories to obtain cost-effective 2H-labeled contaminants of emerging concern (CECs). We first combined the use of in-house H/D exchange and 2H-SIAM to discover potential TPs of 6PPD (N-1,3-dimethylbutyl-N'-phenyl-p-phenylenediamine), providing a new strategy for finding TPs of CECs. 6PPD-d9 was obtained by in-house H/D exchange with favorable reaction conditions, and the impurities were carefully studied. Incomplete deuteride, for instance, 6PPD-d8 in this study, constitutes a major part of the impurities. Nevertheless, it has few adverse effects on the 2H-SIAM pipeline in discovering TPs of 6PPD. The 2H-SIAM pipeline annotated 9 TPs of 6PPD, and commercial standards further confirmed the annotated 6PPDQ (2-anilino-5-(4-methylpentan-2-ylamino)cyclohexa-2,5-diene-1,4-dione) and PPPD (N-phenyl-p-phenylenediamine). Additionally, a possible new formation mechanism for 6PPDQ was proposed, highlighting the performance of the strategy. In summary, this study highlighted a new strategy for discovering the TPs of CECs and broadening the application of SIAM in environmental studies.
Collapse
Affiliation(s)
- Yiguang Qian
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, P. R. China
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Ziyu Chen
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Jiahui Wang
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Man Peng
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Shenghua Zhang
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Xiaoyu Yan
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Xiaole Han
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Xiaohui Ou
- Ecological and Environmental Monitoring Centre, Guangxi Zhuang Autonomous Region, Nanning 530028, P. R. China
| | - Jie Sun
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Siyue Li
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Ke Chen
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, P. R. China
| |
Collapse
|
18
|
Liu C, Wu Y, Zhao B, Zhang B. Designed Nanomaterials for Electrocatalytic Organic Hydrogenation Using Water as the Hydrogen Source. Acc Chem Res 2023. [PMID: 37316974 DOI: 10.1021/acs.accounts.3c00192] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
ConspectusThe hydrogenation reaction is one of the most frequently used transformations in organic synthesis. Electrocatalytic hydrogenation by using water (H2O) as the hydrogen source offers an efficient and sustainable approach to synthesize hydrogenated products under ambient conditions. Such a technique can avoid the use of high-pressure and flammable hydrogen gas or other toxic/expensive hydrogen donors, which usually cause environmental, safety, and cost concerns. Interestingly, utilizing easily available heavy water (D2O) for deuterated syntheses is also attractive due to the widespread applications of deuterated molecules in organic synthesis and the pharmaceutical industry. Despite impressive achievements, electrode selection mainly relies on trial-and-error modes, and how electrodes dictate reaction outcomes remains elusive. Therefore, the rational design of nanostructured electrodes for driving the electrocatalytic hydrogenation of a series of organics via H2O electrolysis is developed.In this Account, we review recent advances in the electrocatalytic hydrogenation of different types of organic functional groups, including C≡C, C≡N, C═C, C═O, and C-Br/I bonds, -NO2, and N-heterocycles, with H2O over nanostructured cathodes. First, the general reaction steps (reactant/intermediate adsorption, active atomic hydrogen (H*) formation, surface hydrogenation reaction, product desorption) are analyzed, and key factors are proposed to optimize hydrogenation performance (e.g., selectivity, activity, Faradaic efficiency (FE), reaction rate, and productivity) and inhibit side reactions. Then, ex situ and in situ spectroscopic tools to study key intermediates and interpret mechanisms are introduced. Third, based on the knowledge of key reaction steps and mechanisms, we introduce catalyst design principles in detail on how to optimize the adoption of reactants and key intermediates, promote the formation of H* from water electrolysis, inhibit hydrogen evolution and side reactions, and improve the selectivity, reaction rate, FEs, and space-time productivity of products. We then introduce some typical examples. (i) P- and S-modified Pd can decrease C═C adsorption and promote H* formation, enabling semihydrogenation of alkynes with high selectivity and FEs at lower potentials. Then, creating high-curvature nanotips to concentrate the substrates further speeds up the hydrogenation process. (ii) By introducing low-coordination sites into Fe and combining low-coordination sites and surface fluorine to modify Co to optimize the adsorption of intermediates and facilitate H* formation, hydrogenation of nitriles and N-heterocycles with high activity and selectivity is obtained. (iii) By forming isolated Pd sites to induce a specific σ-alkynyl adsorption of alkynes and steering S vacancies of Co3S4-x to preferentially adsorb -NO2, hydrogenation of easily reduced group-decorated alkynes and nitroarenes with high chemoselectivity is realized. (iv) For gas reactant participated reactions, by designing hydrophobic gas diffusion layer-supported ultrasmall Cu nanoparticles to enhance mass transfer, improve H2O activation, inhibit H2 formation, and decrease ethylene adsorption, ampere-level ethylene production with a 97.7% FE is accomplished. Finally, we provide an outlook on the current challenges and promising opportunities in this area. We believe that the electrode selection principles summarized here provide a paradigm for designing highly active and selective nanomaterials to achieve electrocatalytic hydrogenation and other organic transformations with fascinating performances.
Collapse
Affiliation(s)
- Cuibo Liu
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, Tianjin 300072, China
| | - Yongmeng Wu
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, Tianjin 300072, China
| | - Bohang Zhao
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, Tianjin 300072, China
| | - Bin Zhang
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|