1
|
Klümper N, Cox A, Sjödahl G, Roghmann F, Bolenz C, Hartmann A, Grünwald V, Faltas BM, Hölzel M, Eckstein M. Pre-treatment metastatic biopsy: a step towards precision oncology for urothelial cancer. Nat Rev Urol 2025; 22:256-267. [PMID: 39472646 DOI: 10.1038/s41585-024-00951-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2024] [Indexed: 05/10/2025]
Abstract
Early metastatic spread and clonal expansion of individual mutations result in a heterogeneous tumour landscape in metastatic urothelial cancer (mUC). Substantial molecular heterogeneity of common drug targets, such as membranous NECTIN4, FGFR3 mutations, PDL1 or immune phenotypes, has been documented between primary and metastatic tumours. However, translational and clinical studies frequently do not account for such heterogeneity and often investigate primary tumour samples that might not be representative in patients with mUC. We propose this as a potential factor for why many biomarkers for mUC have failed to be integrated into clinical practice. Fresh pre-treatment metastatic biopsies enable the capturing of prevailing tumour biology in real time. The characterization of metastatic tumour samples can improve response prediction to immunotherapy, the anti-NECTIN4 antibody-drug conjugate enfortumab vedotin and the FGFR inhibitor erdafitinib. Routine metastatic biopsy can thus improve the precision of identifying driver druggable alterations, thus improving treatment selection for patients with mUC.
Collapse
Affiliation(s)
- Niklas Klümper
- Department of Urology and Pediatric Urology, University Hospital Bonn, Bonn, Germany.
- Institute of Experimental Oncology, University Hospital Bonn, Bonn, Germany.
| | - Alexander Cox
- Department of Urology and Pediatric Urology, University Hospital Bonn, Bonn, Germany
| | - Gottfrid Sjödahl
- Department of Translational Medicine, Division of Urological Research, Lund University, Lund, Sweden
| | - Florian Roghmann
- Department of Urology, Marien Hospital, Ruhr-University Bochum, Herne, Germany
| | - Christian Bolenz
- Department of Urology and Paediatric Urology, University Hospital Ulm, University of Ulm, Ulm, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Viktor Grünwald
- Clinic for Internal Medicine (Tumour Research) and Clinic for Urology, Interdisciplinary Genitourinary Oncology at the West-German Cancer Center, Essen University Hospital, Essen, Germany
| | - Bishoy M Faltas
- Department of Hematology/Oncology, Weill-Cornell Medicine, New York, NY, USA
| | - Michael Hölzel
- Institute of Experimental Oncology, University Hospital Bonn, Bonn, Germany
| | - Markus Eckstein
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
2
|
Acosta AM, Saad M, Chaux A, Gordetsky JB, Zheng L, Guo C, Bikhet M, Osunkoya AO, Collins K, Idrees MT, van Leenders GJLH, Gonzalez-Peramato P, Cornejo KM, Hirsch MS, Kao CS, Matoso A, Magi-Galluzzi C, Rais-Bahrami S. Differential Outcomes in Bladder Cancer After Neoadjuvant Chemotherapy: An International Multi-Institutional Study Comparing Isolated Nodal Disease vs Persistent Muscle-Invasive Disease. Urology 2025:S0090-4295(25)00345-0. [PMID: 40250715 DOI: 10.1016/j.urology.2025.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/02/2025] [Accepted: 04/08/2025] [Indexed: 04/20/2025]
Abstract
OBJECTIVE To evaluate clinical outcomes based on patterns of residual disease in patients undergoing cystectomy after neoadjuvant chemotherapy (NAC), focusing on those with residual tumor only in lymph nodes. METHODS We retrospectively analyzed 174 patients who underwent post-NAC radical cystectomy between 2010 and 2023 at academic centers from the United States and Europe. Patients were stratified into two groups: those with isolated lymph node disease despite complete local response (n=35) and those with persistent muscle-invasive or locally advanced disease without lymph node involvement (n=139). Primary outcomes included recurrence, disease-specific mortality (DSM), and survival. Median follow-up was 27.0months (interquartile range: 9.0-60.0). RESULTS Recurrence occurred in 33% of patients, with higher risk in patients with residual disease only in lymph nodes compared to those with persistent disease in the bladder and negative lymph nodes (adjusted OR: 0.43, 95% CI: 0.20-0.95, P=.036). DSM was 24%, with no significant difference between groups (adjusted OR: 0.70, 95% CI: 0.29-1.64, P=.407). Disease-related events occurred in 41% of patients, with lower risk in the group with residual disease in the bladder (adjusted OR: 0.46, 95% CI: 0.21-0.99, P=.048). Survival analyses showed no significant differences in DSM between groups (HR: 1.03, 95% CI: 0.48-2.20, P=0.947). Variant histology (present in 36% of cases) did not influence outcomes. CONCLUSION Patients with isolated lymph node disease, despite complete local response after NAC, demonstrate higher recurrence risk compared to those with persistent muscle-invasive disease, although this does not translate into survival differences. These findings suggest the need for risk-adapted surveillance strategies and consideration of additional therapeutic interventions in patients with isolated residual nodal disease.
Collapse
Affiliation(s)
- Andres M Acosta
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN.
| | - Mohammed Saad
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN
| | - Alcides Chaux
- Facultad de Medicina, Universidad del Norte, Asuncion, Paraguay; Facultad de Ciencias de la Salud, Universidad del Sol, Ciudad del Este, Paraguay
| | | | - Lan Zheng
- Department of Pathology, MD Anderson Cancer Center, Houston, TX
| | - Charles Guo
- Department of Pathology, MD Anderson Cancer Center, Houston, TX
| | - Mohamed Bikhet
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN
| | | | - Katrina Collins
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN
| | - Muhammad T Idrees
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN
| | - Geert J L H van Leenders
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Pilar Gonzalez-Peramato
- Department of Pathology, Hospital Universitario La Paz/Universidad Autónoma de Madrid, Madrid, Spain
| | - Kristine M Cornejo
- Department of Pathology, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - Michelle S Hirsch
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Chia-Sui Kao
- Department of Pathology, Cleveland Clinic, Cleveland, OH
| | - Andres Matoso
- Department of Pathology, Urology, and Oncology, The Johns Hopkins University, Baltimore, MD
| | - Cristina Magi-Galluzzi
- Department of Pathology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Soroush Rais-Bahrami
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL; Department of Urology, University of Alabama at Birmingham, Birmingham, AL; Department of Radiology, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
3
|
Song H, Xie G, Li Y, Hu X, Yang Z, Zhao Y, Shi Q, Li H, Liu Z, Yin Z, Wang Z, Tong Z, Xu W. A single-cell atlas of bladder cancer unveils dynamic cellular composition and endothelial functional shifts during progression. Discov Oncol 2025; 16:500. [PMID: 40205274 PMCID: PMC11982012 DOI: 10.1007/s12672-025-02297-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 04/02/2025] [Indexed: 04/11/2025] Open
Abstract
PURPOSE Bladder cancer (BC) is characterized by high heterogeneity, with non-muscle-invasive (NMIBC) and muscle-invasive (MIBC) stages differing significantly in clinical behavior and outcomes. The transition from NMIBC to MIBC involves extensive tumor microenvironment (TME) remodeling, particularly in endothelial cells (ECs), which drive angiogenesis and modulate immune and extracellular matrix (ECM) interactions. However, the precise roles of ECs in this progression remain poorly defined. METHODS Public single-cell RNA sequencing (scRNA-seq) datasets from 47 BC patients were analyzed to characterize endothelial cell heterogeneity and functional states across NMIBC and MIBC. Computational tools such as CellChat were applied to reconstruct cell-cell communication networks, focusing on pathways related to angiogenesis, immune crosstalk, and ECM remodeling. RESULTS Twelve major cell types were identified, with endothelial cells exhibiting distinct transcriptional profiles between NMIBC and MIBC. NMIBC-associated ECs promoted adhesion and migration through HMGB1 and CXCL12 signaling. In contrast, MIBC was enriched in an ADAM10+ endothelial subset associated with vascular remodeling and activation of Wnt signaling via CTNNB1. Key ligand-receptor interactions highlighted the dynamic roles of ECs in TME modulation during BC progression. CONCLUSIONS This study reveals stage-specific endothelial cell phenotypes and signaling networks in BC. The identification of an MIBC-specific ADAM10+ endothelial subset underscores its potential role in driving tumor progression and highlights opportunities for stage-adapted vascular-targeted therapies. These findings advance our understanding of BC pathogenesis and provide the foundation for novel therapeutic strategies.
Collapse
Affiliation(s)
- Hongjian Song
- NHC Key Laboratory of Molecular Probe and Targeted Theranostics, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150001, China
- Heilongjiang Provincial Key Laboratory of Basic Medical Sciences in Urology Cancer, Harbin Medical University Cancer Hospital, Harbin, 150001, China
| | | | - Yaowei Li
- NHC Key Laboratory of Molecular Probe and Targeted Theranostics, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150001, China
- Heilongjiang Provincial Key Laboratory of Basic Medical Sciences in Urology Cancer, Harbin Medical University Cancer Hospital, Harbin, 150001, China
| | - Xiaowei Hu
- Department of Urogenital Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150001, China
| | - Zongzheng Yang
- NHC Key Laboratory of Molecular Probe and Targeted Theranostics, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150001, China
- BGI Research, Beijing, 102601, China
- Heilongjiang Provincial Key Laboratory of Basic Medical Sciences in Urology Cancer, Harbin Medical University Cancer Hospital, Harbin, 150001, China
| | - Yubo Zhao
- NHC Key Laboratory of Molecular Probe and Targeted Theranostics, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, 150001, China
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Heilongjiang Provincial Key Laboratory of Basic Medical Sciences in Urology Cancer, Harbin Medical University Cancer Hospital, Harbin, 150001, China
- Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Qing Shi
- NHC Key Laboratory of Molecular Probe and Targeted Theranostics, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150001, China
- Heilongjiang Provincial Key Laboratory of Basic Medical Sciences in Urology Cancer, Harbin Medical University Cancer Hospital, Harbin, 150001, China
| | - Haonan Li
- NHC Key Laboratory of Molecular Probe and Targeted Theranostics, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150001, China
- Heilongjiang Provincial Key Laboratory of Basic Medical Sciences in Urology Cancer, Harbin Medical University Cancer Hospital, Harbin, 150001, China
| | - Ziyi Liu
- NHC Key Laboratory of Molecular Probe and Targeted Theranostics, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150001, China
- Heilongjiang Provincial Key Laboratory of Basic Medical Sciences in Urology Cancer, Harbin Medical University Cancer Hospital, Harbin, 150001, China
| | - Zhihao Yin
- NHC Key Laboratory of Molecular Probe and Targeted Theranostics, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150001, China
- Heilongjiang Provincial Key Laboratory of Basic Medical Sciences in Urology Cancer, Harbin Medical University Cancer Hospital, Harbin, 150001, China
| | - Ziqi Wang
- NHC Key Laboratory of Molecular Probe and Targeted Theranostics, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, 150001, China.
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150001, China.
- Heilongjiang Provincial Key Laboratory of Basic Medical Sciences in Urology Cancer, Harbin Medical University Cancer Hospital, Harbin, 150001, China.
- Department of Cystoscope Center, Harbin Medical University Cancer Hospital, Harbin, 150001, China.
| | - Zhichao Tong
- NHC Key Laboratory of Molecular Probe and Targeted Theranostics, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, 150001, China.
- Department of Urogenital Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150001, China.
- Biobank, Harbin Medical University Cancer Hospital, Harbin, 150001, China.
- Heilongjiang Provincial Key Laboratory of Basic Medical Sciences in Urology Cancer, Harbin Medical University Cancer Hospital, Harbin, 150001, China.
| | - Wanhai Xu
- NHC Key Laboratory of Molecular Probe and Targeted Theranostics, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, 150001, China.
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150001, China.
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
- Heilongjiang Provincial Key Laboratory of Basic Medical Sciences in Urology Cancer, Harbin Medical University Cancer Hospital, Harbin, 150001, China.
| |
Collapse
|
4
|
Scholtes MP, Akbarzadeh M, Galaras A, Nakauma-Gonzáles JA, Bazrafshan A, Solanki V, Torenvliet B, Beikmohammadi L, Lozovanu V, Romal S, Moulos P, Vavouraki N, Kan TW, Algoe M, van Royen ME, Sacchetti A, van den Bosch TPP, Eussen B, de Klein A, van Leenders GJLH, Boormans JL, Hatzis P, Palstra RJ, Zuiverloon TCM, Mahmoudi T. Integrative analysis of patient-derived tumoroids and ex vivo organoid modelling of ARID1A loss in bladder cancer reveals therapeutic molecular targets. Cancer Lett 2025; 614:217506. [PMID: 39892702 DOI: 10.1016/j.canlet.2025.217506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/06/2025] [Accepted: 01/24/2025] [Indexed: 02/04/2025]
Abstract
Somatic mutations in ARID1A (AT-rich interactive domain-containing protein 1A) are present in approximately 25 % of bladder cancers (BC) and are associated with poor prognosis. With a view to discover effective treatment options for ARID1A-deficient BC patients, we set out to identify targetable effectors dysregulated consequent to ARID1A deficiency. Integrative analyses of ARID1A depletion in normal organoids and data mining in publicly available datasets revealed upregulation of DNA repair and cell cycle-associated genes consequent to loss of ARID1A and identified CHEK1 (Checkpoint kinase 1) and chromosomal passenger complex member BIRC5 (Baculoviral IAP Repeat Containing 5) as therapeutically drug-able candidate molecular effectors. Ex vivo treatment of patient-derived BC tumoroids with clinically advanced small molecule inhibitors targeting CHEK1 or BIRC5 was associated with increased DNA damage signalling and apoptosis, and selectively induced cell death in tumoroids lacking ARID1A protein expression. Thus, integrating public datasets with patient-derived organoid modelling and ex-vivo drug testing can uncover key molecular effectors and mechanisms of oncogenic transformation, potentially leading to novel therapeutic strategies. Our data point to ARID1A protein expression as a suitable candidate biomarker for the selection of BC patients responsive to therapies targeting BIRC5 and CHEK1.
Collapse
Affiliation(s)
- Mathijs P Scholtes
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Maryam Akbarzadeh
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Biochemistry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Stem Cell and Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Alexandros Galaras
- Institute for Fundamental Biomedical Research (IFBR), Biomedical Sciences Research Center "Alexander Fleming", the Netherlands; Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - J Alberto Nakauma-Gonzáles
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Ameneh Bazrafshan
- Department of Biochemistry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Vandana Solanki
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Bram Torenvliet
- Department of Biochemistry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Leila Beikmohammadi
- Department of Biochemistry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Stem Cell and Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Valeria Lozovanu
- Department of Biochemistry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Shahla Romal
- Department of Biochemistry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Panagiotis Moulos
- Institute for Fundamental Biomedical Research (IFBR), Biomedical Sciences Research Center "Alexander Fleming", the Netherlands; Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Nikoleta Vavouraki
- Institute for Fundamental Biomedical Research (IFBR), Biomedical Sciences Research Center "Alexander Fleming", the Netherlands
| | - Tsung Wai Kan
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Mahesh Algoe
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Martin E van Royen
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Andrea Sacchetti
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Thierry P P van den Bosch
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Bert Eussen
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Geert J L H van Leenders
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Joost L Boormans
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Pantelis Hatzis
- Institute for Fundamental Biomedical Research (IFBR), Biomedical Sciences Research Center "Alexander Fleming", the Netherlands
| | - Robert-Jan Palstra
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Tahlita C M Zuiverloon
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Tokameh Mahmoudi
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| |
Collapse
|
5
|
Boll LM, Vázquez Montes de Oca S, Camarena ME, Castelo R, Bellmunt J, Perera-Bel J, Albà MM. Predicting immunotherapy response of advanced bladder cancer through a meta-analysis of six independent cohorts. Nat Commun 2025; 16:1213. [PMID: 39979258 PMCID: PMC11842772 DOI: 10.1038/s41467-025-56462-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 01/14/2025] [Indexed: 02/22/2025] Open
Abstract
Advanced bladder cancer patients show very variable responses to immune checkpoint inhibitors (ICIs) and effective strategies to predict response are still lacking. Here we integrate mutation and gene expression data from 707 advanced bladder cancer patients treated with anti-PD-1/anti-PD-L1 to build highly accurate predictive models. We find that, in addition to tumor mutational burden (TMB), enrichment in the APOBEC mutational signature, and the abundance of pro-inflammatory macrophages, are major factors associated with the response. Paradoxically, patients with high immune infiltration do not show an overall better response. We show that this can be explained by the activation of immune suppressive mechanisms in a large portion of these patients. In the case of non-immune-infiltrated cancer subtypes, we uncover specific variables likely to be involved in the response. Our findings provide information for advancing precision medicine in patients with advanced bladder cancer treated with immunotherapy.
Collapse
Affiliation(s)
| | | | | | - Robert Castelo
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Joaquim Bellmunt
- Hospital del Mar Research Institute (HMRIB), Barcelona, Spain.
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | | | - M Mar Albà
- Hospital del Mar Research Institute (HMRIB), Barcelona, Spain.
- Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
6
|
Sekino Y, Nakahara H, Ikeda K, Kobatake K, Kohada Y, Tasaka R, Takemoto K, Miyamoto S, Kitano H, Goto K, Goriki A, Hieda K, Hinata N. The Gender-Biased Differential Effect of KDM6A Mutation on Immune Therapy in Urothelial Carcinoma: A Public Database Study. Cancers (Basel) 2025; 17:356. [PMID: 39941725 PMCID: PMC11816370 DOI: 10.3390/cancers17030356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/16/2025] [Accepted: 01/19/2025] [Indexed: 02/16/2025] Open
Abstract
Background/Objectives: It is said that genes that escape from X chromosome inactivation (XCI) contribute to gender differences. We analyzed the prognostic role of these genes and identified a gender-biased difference in prognosis according to KDM6A mutation in the immune therapy cohort (IMvigor 210). We also investigate the gender-biased differential effect of KDM6A mutation in several public databases of urothelial carcinoma (UC). Methods: We used AACR GENIE, The Cancer Genome Atlas, International Cancer Genome Consortium, several public databases related to immune therapy, chemotherapy, and BCG treatment. We studied the gender-biased prognostic role of KDM6A mutation in several cohorts and the association between KDM6A mutation and immune-related fractions according to gender. Results: The expression of KDM6A was higher in females than in males in several cohorts. Mutation of KDM6A was observed in about 20-25% of the patients. The rate of KDM6A mutation was higher in females than in males in several cohorts. Kaplan-Meier analysis revealed a gender-biased difference in prognosis between patients with KDM6A mutations and those with the wild-type KDM6A in several cohorts, including the immune therapy cohort. The rate of immune-inflamed type was higher in males than in females in the patients with KDM6A mutation in the IMvigor 210 and UC-GENOME studies. Single-sample Gene Set Enrichment Analysis showed that CD8+ cells and type 1 IFN response fractions and APC co-inhibition fraction were higher in the male than female patients with KDM6A mutation. Similar findings were observed in other immune-related studies (UC-GENOME). Conclusions: The effect of KDM6A mutation on immune therapy varied according to gender, and the status of KDM6A mutation may be a promising biomarker in immune therapy in UC.
Collapse
Affiliation(s)
- Yohei Sekino
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (K.I.); (K.K.); (Y.K.); (R.T.); (K.T.); (S.M.); (H.K.); (K.G.); (A.G.); (K.H.); (N.H.)
| | - Hikaru Nakahara
- Department of Clinical and Molecular Genetics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan;
| | - Kenichiro Ikeda
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (K.I.); (K.K.); (Y.K.); (R.T.); (K.T.); (S.M.); (H.K.); (K.G.); (A.G.); (K.H.); (N.H.)
| | - Kohei Kobatake
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (K.I.); (K.K.); (Y.K.); (R.T.); (K.T.); (S.M.); (H.K.); (K.G.); (A.G.); (K.H.); (N.H.)
| | - Yuki Kohada
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (K.I.); (K.K.); (Y.K.); (R.T.); (K.T.); (S.M.); (H.K.); (K.G.); (A.G.); (K.H.); (N.H.)
| | - Ryo Tasaka
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (K.I.); (K.K.); (Y.K.); (R.T.); (K.T.); (S.M.); (H.K.); (K.G.); (A.G.); (K.H.); (N.H.)
| | - Kenshiro Takemoto
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (K.I.); (K.K.); (Y.K.); (R.T.); (K.T.); (S.M.); (H.K.); (K.G.); (A.G.); (K.H.); (N.H.)
| | - Shunsuke Miyamoto
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (K.I.); (K.K.); (Y.K.); (R.T.); (K.T.); (S.M.); (H.K.); (K.G.); (A.G.); (K.H.); (N.H.)
| | - Hiroyuki Kitano
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (K.I.); (K.K.); (Y.K.); (R.T.); (K.T.); (S.M.); (H.K.); (K.G.); (A.G.); (K.H.); (N.H.)
| | - Keisuke Goto
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (K.I.); (K.K.); (Y.K.); (R.T.); (K.T.); (S.M.); (H.K.); (K.G.); (A.G.); (K.H.); (N.H.)
| | - Akihiro Goriki
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (K.I.); (K.K.); (Y.K.); (R.T.); (K.T.); (S.M.); (H.K.); (K.G.); (A.G.); (K.H.); (N.H.)
| | - Keisuke Hieda
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (K.I.); (K.K.); (Y.K.); (R.T.); (K.T.); (S.M.); (H.K.); (K.G.); (A.G.); (K.H.); (N.H.)
| | - Nobuyuki Hinata
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (K.I.); (K.K.); (Y.K.); (R.T.); (K.T.); (S.M.); (H.K.); (K.G.); (A.G.); (K.H.); (N.H.)
| |
Collapse
|
7
|
Jin K, Ding Y, Xu J, Liu Z, Zeng H, Su X, Zhang L, Sun J, Wu Y, Liu H, Chang Y, Zhu Y, Wang Z, Xu L, Zhang W, Xu J. Lethal clinical outcome and chemotherapy and immunotherapy resistance in patients with urothelial carcinoma with MDM2 amplification or overexpression. J Immunother Cancer 2025; 13:e010964. [PMID: 39762080 PMCID: PMC11749520 DOI: 10.1136/jitc-2024-010964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 12/13/2024] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND The E3 ubiquitin ligase murine double minute 2 (MDM2) binds the p53 transcriptional activation domain and acts as a potent inhibitor of TP53 pathway, one of the three most crucial oncogenic pathways in urothelial carcinoma (UC). However, the clinical significance and impact on tumor immune contexture of MDM2 amplification in UC remain unclear. METHODS This study analyzed 240 patients with UC with matched clinical annotations from two local cohorts (ZSHS cohort and FUSCC cohort). We assessed the correlation between MDM2 status and clinical outcomes, therapeutic efficacy, and immunological characteristics by immunohistochemical analysis and targeted sequencing. Additionally, 2264 UC samples from five independent external cohorts, with genomic, transcriptomic, and clinical data, were used for validation. RESULTS MDM2 amplification (MDM2 Amp) or protein overexpression (MDM2OE) was associated with inferior overall survival (ZSHS cohort, Log-rank p<0.001; FUSCC cohort, Log-rank p=0.030) and reduced response to platinum-based chemotherapy (ZSHS cohort, Log-rank p<0.001) as well as anti-PD-1/PD-L1 immunotherapy (FUSCC cohort, Log-rank p=0.016) in patients with UC, irrespective of TP53/p53 status. MDM2 amplification or overexpression was further linked to high-grade UC tumors with dedifferentiated morphology. In addition, UC with MDM2 amplification or overexpression was associated with an immuno-evasive contexture characterized by lower proportion of tertiary lymphoid structure infiltration, lower abundance of CD8+ T cells, IFN-γ+ cells, GZMB+ cells, and decreased expression of immune checkpoint molecules including programmed death-ligand 1 (PD-L1), programmed death-1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4). CONCLUSIONS MDM2 amplification or overexpression defines a lethal subset of patients with UC with inferior prognosis and resistance to both platinum-based chemotherapy and immunotherapy irrespective of TP53/p53 status. These tumors are characterized by dedifferentiated morphology and an immunosuppressive microenvironment. Accurate assessment of MDM2 status can improve risk stratification and enable personalized genomics-guided treatment for patients with UC.
Collapse
Affiliation(s)
- Kaifeng Jin
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yawei Ding
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jingtong Xu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhaopei Liu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Han Zeng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaohe Su
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lingkai Zhang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jiaxing Sun
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yuzhen Wu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hailong Liu
- Department of Urology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Chang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yu Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zewei Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Le Xu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weijuan Zhang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jiejie Xu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Cho M, Chang H, Kim JH. Integration of bulk and single-cell RNA-seq reveals prognostic gene signatures in patients with bladder cancer treated with immune checkpoint inhibitors. Cancer Immunol Immunother 2024; 74:28. [PMID: 39708127 PMCID: PMC11663206 DOI: 10.1007/s00262-024-03839-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 09/17/2024] [Indexed: 12/23/2024]
Abstract
Immune checkpoint inhibitors have significantly advanced research in oncology and are used to successfully treat patients with bladder cancer (BC). However, as the benefits of programmed death-1/ programmed death-ligand-1 blockade immunotherapy do not extend to all patients with BC, biomarkers are required to improve prognostic stratification. This study aims to identify reliable biomarkers to enhance the prediction of treatment outcomes. Bulk RNA expression data from a BC cohort (GSE176307) receiving ICI and single-cell sequencing data from patients with BC (GSE135337) were collected. We identified differentially expressed genes (DEGs) within cells that were associated with favorable survival outcomes and developed a predictive bladder cancer gene signature (BC-GS). Subsequently, we performed pathway enrichment analysis using the Reactome database. We used two independent datasets to validate the BC-GS. Patients with low BC-GS had a significantly shorter overall survival (OS) than those with high BC-GS (p < 0.05, p < 0.001, respectively). Additionally, patients with a concurrently low BC-GS score and low tumor mutation burden (TMB) in GSE176307 and the two validation datasets exhibited an increased risk of death. Genes in the BC-GS were predominantly involved in CD8+ T cell activation, antigen presentation, and immune checkpoint pathways. CIBERSORT analysis revealed differences in CD4+ T cells and macrophages between the high and low BC-GS groups. This study demonstrated the prognostic significance of the BC-GS in patients with BC treated with ICI. The combined assessment of the BC-GS and TMB may provide a sophisticated prognostic approach to enhance patient stratification for ICI treatment in BC.
Collapse
Affiliation(s)
- Mina Cho
- Division of Biomedical Informatics, Seoul National University Biomedical Informatics (SNUBI), Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Hyun Chang
- Medical Oncology and Hematology, College of Medicine, International St Mary's Hospital, Catholic Kwandong University, Incheon, 22711, Republic of Korea.
| | - Ju Han Kim
- Division of Biomedical Informatics, Seoul National University Biomedical Informatics (SNUBI), Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
9
|
Koll FJ, Döring C, Herwig L, Hoeh B, Wenzel M, Cano Garcia C, Banek S, Kluth L, Köllermann J, Weigert A, Chun FKH, Wild P, Reis H. Impact of consensus molecular subtypes on survival with and without adjuvant chemotherapy in muscle-invasive urothelial bladder cancer. J Clin Pathol 2024; 78:19-27. [PMID: 37989554 DOI: 10.1136/jcp-2023-208973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/30/2023] [Indexed: 11/23/2023]
Abstract
AIMS Adjuvant chemotherapy after radical cystectomy can reduce the risk of recurrence and death in advanced muscle-invasive urothelial bladder cancer (MIBC). Molecular subtypes have been shown to be associated with survival. However, their predictive value to guide treatment decisions is controversial and data to use subtypes as guidance for adjuvant chemotherapy is sparse. We aimed to assess survival rates based on MIBC consensus molecular subtypes with and without adjuvant chemotherapy. METHODS Gene expression profiles of 143 patients with MIBC undergoing radical cystectomy were determined from formalin-fixed, paraffin-embedded specimen to assign consensus molecular subtypes. Expression of programmed cell death ligand-1 (PD-L1) and immune cell infiltration were determined using multiplex immunofluorescence. Matched-pair analysis was performed to evaluate the effect of adjuvant chemotherapy on overall survival (OS) for molecular subtypes applying Kaplan-Meier and Cox regression survival analyses. RESULTS Samples were luminal papillary: 9.1% (n=13), luminal non-specified: 6.3% (n=9), luminal unstable: 4.9% (n=7), stroma-rich: 27.9% (n=40), basal/squamous (Ba/Sq): 48.9% (n=70) and neuroendocrine-like (NE-like): 2.8% (n=4). Ba/Sq tumours had the highest concentration of PD-L1+ tumour and immune cells. Patients with luminal subtypes had better OS than those with NE-like (HR 0.2, 95% CI 0.1 to 0.7, p<0.05) and Ba/Sq (HR 0.5, 95% CI 0.2 to 0.9, p<0.05). No survival benefit with adjuvant chemotherapy was observed for luminal tumours, whereas Ba/Sq had significantly improved survival rates with adjuvant chemotherapy. Retrospective design and sample size are the main limitations. CONCLUSION Consensus molecular subtypes can be used to stratify patients with MIBC. Luminal tumours have the best prognosis and less benefit when receiving adjuvant chemotherapy compared with Ba/Sq tumours.
Collapse
Affiliation(s)
- Florestan J Koll
- Department of Urology, Hospital of the Goethe University Frankfurt, Frankfurt am Main, Hessen, Germany
- Frankfurt Cancer Institute (FCI), Hospital of the Goethe University Frankfurt, Frankfurt am Main, Hessen, Germany
- University Cancer Center (UCT) Frankfurt, Hospital of the Goethe University Frankfurt, Frankfurt am Main, Hessen, Germany
| | - Claudia Döring
- Dr. Senckenberg Institute of Pathology, Hospital of the Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Leon Herwig
- Dr. Senckenberg Institute of Pathology, Hospital of the Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Benedikt Hoeh
- Department of Urology, Hospital of the Goethe University Frankfurt, Frankfurt am Main, Hessen, Germany
| | - Mike Wenzel
- Department of Urology, Hospital of the Goethe University Frankfurt, Frankfurt am Main, Hessen, Germany
| | - Cristina Cano Garcia
- Department of Urology, Hospital of the Goethe University Frankfurt, Frankfurt am Main, Hessen, Germany
| | - Severine Banek
- Department of Urology, Hospital of the Goethe University Frankfurt, Frankfurt am Main, Hessen, Germany
| | - Luis Kluth
- Department of Urology, Hospital of the Goethe University Frankfurt, Frankfurt am Main, Hessen, Germany
| | - Jens Köllermann
- Dr. Senckenberg Institute of Pathology, Hospital of the Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main, Hessen, Germany
| | - Felix K-H Chun
- Department of Urology, Hospital of the Goethe University Frankfurt, Frankfurt am Main, Hessen, Germany
| | - Peter Wild
- Frankfurt Cancer Institute (FCI), Hospital of the Goethe University Frankfurt, Frankfurt am Main, Hessen, Germany
- Dr. Senckenberg Institute of Pathology, Hospital of the Goethe University Frankfurt, Frankfurt am Main, Germany
- Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main, Hessen, Germany
| | - Henning Reis
- Dr. Senckenberg Institute of Pathology, Hospital of the Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
10
|
Myszka A, Ciesla M, Siekierzynska A, Sendera A, Constantinou C, Karpinski P, Wysiadecki G, Balawender K. Predictive Molecular Biomarkers of Bladder Cancer Identified by Next-Generation Sequencing-Preliminary Data. J Clin Med 2024; 13:7701. [PMID: 39768623 PMCID: PMC11677048 DOI: 10.3390/jcm13247701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Background: The majority of patients with bladder cancer suffer from tumour recurrence. Identifying prognostic factors for tumour recurrence is crucial for treatment and follow-up in affected patients. The study aimed to assess the impact of somatic mutations in bladder cancer on patient outcomes and tumour recurrence. Methods: The study group comprised 46 patients with urothelial bladder cancers referred for transurethral resection of the tumour. A molecular study on tumour-derived DNA was performed using next-generation sequencing. Somatic mutations were screened in 50 genes involved in carcinogenesis. Results: We identified 81 variants in 23 genes, including 54 pathogenic mutations, 18 likely pathogenic variants, and 9 variants of unknown significance. The most frequently mutated genes were FGFR3, PIK3CA, and TP53 in 52%, 35%, and 24% of tumours, respectively. The average tumour-free survival was significantly longer in cases with mutations in the PIK3CA gene (p = 0.02), and mutations in the PIK3CA gene were associated with a decreased risk of tumour recurrence (Hazard Ratio = 0.26; 95% CI: 0.11-0.62; p = 0.018). Conclusions: The PIK3CA gene was shown to be a predictive marker of a low risk of bladder tumour recurrence. Molecular screening of bladder cancers supported predictive biomarkers of tumour recurrence and showed that tumour-free survival is molecularly determined.
Collapse
Affiliation(s)
- Aleksander Myszka
- Institute of Medical Sciences, University of Rzeszow, 35-310 Rzeszow, Poland; (M.C.); (A.S.); (K.B.)
| | - Marek Ciesla
- Institute of Medical Sciences, University of Rzeszow, 35-310 Rzeszow, Poland; (M.C.); (A.S.); (K.B.)
| | - Aleksandra Siekierzynska
- Department of Biotechnology and Plant Physiology, University of Rzeszow, 35-601 Rzeszow, Poland;
| | - Anna Sendera
- Institute of Medical Sciences, University of Rzeszow, 35-310 Rzeszow, Poland; (M.C.); (A.S.); (K.B.)
| | | | - Pawel Karpinski
- Department of Genetics, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Grzegorz Wysiadecki
- Department of Normal and Clinical Anatomy, Medical University of Lodz, 90-752 Łodz, Poland;
| | - Krzysztof Balawender
- Institute of Medical Sciences, University of Rzeszow, 35-310 Rzeszow, Poland; (M.C.); (A.S.); (K.B.)
| |
Collapse
|
11
|
Wu X, Chen M, Liu K, Wu Y, Feng Y, Fu S, Xu H, Zhao Y, Lin F, Lin L, Ye S, Lin J, Xiao T, Li W, Lou M, Lv H, Qiu Y, Yu R, Chen W, Li M, Feng X, Luo Z, Guo L, Ke H, Zhao L. Molecular classification of geriatric breast cancer displays distinct senescent subgroups of prognostic significance. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102309. [PMID: 39296329 PMCID: PMC11408383 DOI: 10.1016/j.omtn.2024.102309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/12/2024] [Indexed: 09/21/2024]
Abstract
Breast cancer in the elderly presents distinct biological characteristics and clinical treatment responses compared with cancer in younger patients. Comprehensive Geriatric Assessment is recommended for evaluating treatment efficacy in elderly cancer patients based on physiological classification. However, research on molecular classification in older cancer patients remains insufficient. In this study, we identified two subgroups with distinct senescent clusters among geriatric breast cancer patients through multi-omics analysis. Using various machine learning algorithms, we developed a comprehensive scoring model called "Sene_Signature," which more accurately distinguished elderly breast cancer patients compared with existing methods and better predicted their prognosis. The Sene_Signature was correlated with tumor immune cell infiltration, as supported by single-cell transcriptomics, RNA sequencing, and pathological data. Furthermore, we observed increased drug responsiveness in patients with a high Sene_Signature to treatments targeting the epidermal growth factor receptor and cell-cycle pathways. We also established a user-friendly web platform to assist investigators in assessing Sene_Signature scores and predicting treatment responses for elderly breast cancer patients. In conclusion, we developed a novel model for evaluating prognosis and therapeutic responses, providing a potential molecular classification that assists in the pre-treatment assessment of geriatric breast cancer.
Collapse
Affiliation(s)
- Xia Wu
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
- Ningbo Clinical Pathology Diagnosis Center, Ningbo, Zhejiang 315021, China
| | - Mengxin Chen
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | - Kang Liu
- Ganzhou People's Hospital, Ganzhou 341000, China
| | - Yixin Wu
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | - Yun Feng
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | - Shiting Fu
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | - Huaimeng Xu
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | - Yongqi Zhao
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | - Feilong Lin
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | - Liang Lin
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | - Shihui Ye
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | - Junqiang Lin
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | - Taiping Xiao
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | - Wenhao Li
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | - Meng Lou
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | - Hongyu Lv
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | - Ye Qiu
- Huankui Academy, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Ruifan Yu
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | - Wenyan Chen
- Department of Medical Oncology, Nanchang People's Hospital, Nanchang 330008, China
| | - Mengyuan Li
- Department of Gynaecology and Obstetrics, Chongqing General Hospital, Chongqing 401147, China
| | - Xu Feng
- Xianlin High School, Weinan 714000, China
| | | | - Lu Guo
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310000, China
| | - Hao Ke
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, China
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Limin Zhao
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| |
Collapse
|
12
|
Song B, Wu P, Wan C, Sun Q, Kong G. Integrating single cell and bulk RNA sequencing data identifies RBM17 as a novel response biomarker for immunotherapy in bladder cancer. Virchows Arch 2024; 485:1133-1150. [PMID: 39453457 DOI: 10.1007/s00428-024-03952-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/12/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
Checkpoint inhibitors (CPIs) have been widely applied in the treatment of patients with bladder cancer (BLCA). However, there is still unmet need to dissect response predict biomarkers. To uncover CPI response-related marker genes in cancer cells, we utilized SCISSOR, integrating single-cell RNA and bulk RNA sequencing data. Transcriptomic and clinical data from IMvigor210, UNC-108, and BCAN/HCRN datasets were collected to evaluate and validate the identified biomarkers and signatures. Additionally, we analyzed TCGA-BLCA and local-BLCA RNA-seq data to investigate alternative splicing events (ASEs). Cell viability was assessed in T24 and UMUC3 cells with RBM17 upregulation or downregulation. Through SCISSOR analysis, we discovered that the expression levels of RBM17, TAP1, and PSMB8 were significantly associated with CPI response. Since PSMB8 displayed a highly positive correlation with TAP1, we developed a CPI response score (CRS) signature based on the expression profiles of RBM17 and TAP1. The CRS demonstrated robust predictive capacity in IMvigor210, UNC-108, and BCAN/HCRN datasets and was associated with higher tumor mutational burden (TMB), PD-L1 expression, and unique genomic features. Notably, RBM17 was not linked to the clinical outcomes of BLCA patients but positively correlated with BLCA cell proliferation in vitro. In the meantime, RBM17 was correlated with higher activity in core biological pathways, including antigen processing machinery, CD8 + T effector cells, cell cycle, DNA damage repair, epithelial-mesenchymal transition, histone regulation, and immune checkpoints. Moreover, the high-RBM17 group showed enrichment of LumU/Ba/sq subtypes but fewer FGFR3 alterations. Lastly, RBM17 significantly upregulated ASEs in BLCA samples, leading to higher neoantigen levels, a more inflamed tumor microenvironment, and improved CPI response. RBM17 is associated with higher ASEs and neoantigen levels, thereby potentiating the efficacy of CPI in BLCA. The established predictive signature, utilizing only two genes, has the potential to streamline clinical applications, providing a cost-effective alternative to expensive genomic, transcriptomic, and biological feature tests.
Collapse
Affiliation(s)
- Bo Song
- Department of Urology, Beijing Luhe Hospital, Capital Medical University, No. 82 Xinhua South Road, Tongzhou District, Beijing, 101149, China
| | - Peishan Wu
- Department of Urology, Beijing Luhe Hospital, Capital Medical University, No. 82 Xinhua South Road, Tongzhou District, Beijing, 101149, China.
| | - Chong Wan
- Precision Medicine Center, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, 314001, Zhejiang, China
| | - Qiangqiang Sun
- Department of Precision Medicine, Accb Co. Ltd., Jiaxing, 314001, China
| | - Guangqi Kong
- Department of Urology, Beijing Luhe Hospital, Capital Medical University, No. 82 Xinhua South Road, Tongzhou District, Beijing, 101149, China
| |
Collapse
|
13
|
Cotillas EA, Bernardo C, Veerla S, Liedberg F, Sjödahl G, Eriksson P. A Versatile and Upgraded Version of the LundTax Classification Algorithm Applied to Independent Cohorts. J Mol Diagn 2024; 26:1081-1101. [PMID: 39326668 DOI: 10.1016/j.jmoldx.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/10/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
Stratification of cancer into biologically and molecularly similar subgroups is a cornerstone of precision medicine. The Lund Taxonomy classification system for urothelial carcinoma aims to be applicable across the whole disease spectrum including both non-muscle-invasive and invasive bladder cancer. A successful classification system is one that can be robustly and reproducibly applied to new samples. However, transcriptomic methods used for subtype classification are affected by analytic platform, data preprocessing, cohort composition, and tumor purity. Furthermore, only limited data have been published evaluating the transferability of existing classification algorithms to external data sets. In this study, a single sample classifier was developed based on in-house microarray and RNA-sequencing data, intended to be broadly applicable across studies and platforms. The new classification algorithm was applied to 10 published external bladder cancer cohorts (n = 2560 cases) to evaluate its ability to capture characteristic subtype-associated gene expression signatures and complementary data such as mutations, clinical outcomes, treatment response, or histologic subtypes. The effect of sample purity on the classification results was evaluated by generating low-purity versions of samples in silico. The classifier was robustly applicable across different gene expression profiling platforms and preprocessing methods and was less sensitive to variations in sample purity.
Collapse
Affiliation(s)
- Elena Aramendía Cotillas
- Department of Translational Medicine, Lund University, Malmö, Sweden; Department of Urology, Skåne University Hospital, Malmö, Sweden
| | - Carina Bernardo
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Srinivas Veerla
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Fredrik Liedberg
- Department of Translational Medicine, Lund University, Malmö, Sweden; Department of Urology, Skåne University Hospital, Malmö, Sweden
| | - Gottfrid Sjödahl
- Department of Translational Medicine, Lund University, Malmö, Sweden; Department of Urology, Skåne University Hospital, Malmö, Sweden
| | - Pontus Eriksson
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden.
| |
Collapse
|
14
|
Wijetunga NA, Gessner KH, Kanchi K, Moore JA, Fleischmann Z, Jin DX, Frampton GM, Sturdivant M, Repka M, Sud S, Corcoran DL, Galsky MD, Milowsky MI, Wobker SE, Kim WY, Rose TL, Damrauer JS. Poor Prognosis among Radiation-Associated Bladder Cancer Is Defined by Clinicogenomic Features. CANCER RESEARCH COMMUNICATIONS 2024; 4:2320-2334. [PMID: 39113632 PMCID: PMC11372343 DOI: 10.1158/2767-9764.crc-24-0352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024]
Abstract
Radiotherapy (RT) for prostate cancer has been associated with an increased risk for the development of bladder cancer. We aimed to integrate clinical and genomic data to better understand the development of RT-associated bladder cancer. A retrospective analysis was performed to identify control patients (CTRL; n = 41) and patients with RT-associated bladder cancer (n = 41). RT- and CTRL-specific features were then identified through integration and analysis of the genomic sequencing data and clinical variables. RT-associated bladder tumors were significantly enriched for alterations in KDM6A and ATM, whereas CTRL tumors were enriched for CDKN2A mutation. Globally, there were an increased number of variants within RT tumors, albeit at a lower variant allele frequency. Mutational signature analysis revealed three predominate motif patterns, with similarity to SBS2/13 (APOBEC3A), SBS5 (ERCC2/smoking), and SBS6/15 (MMR). Poor prognostic factors in the RT cohort include a short tumor latency, smoking status, the presence of the smoking and X-ray therapy mutational signatures, and CDKN2A copy number loss. Based on the clinical and genomic findings, we suggest at least two potential pathways leading to RT-associated bladder cancer: The first occurs in the setting of field cancerization related to smoking or preexisting genetic alterations and leads to the development of more aggressive bladder tumors, and the second involves RT initiating the oncogenic process in otherwise healthy urothelium, leading to a longer latency and less aggressive disease. SIGNIFICANCE Clinicogenomic analysis of radiation-associated bladder cancer uncovered mutational signatures that, in addition to a short tumor latency, smoking, and CDKN2A loss, are associated with a poor outcome. These clinical and genomic features provide a potential method to identify patients with prostate cancer who are at an increased risk for the development of aggressive bladder cancer following prostate RT.
Collapse
Affiliation(s)
- N. Ari Wijetunga
- Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina.
| | - Kathryn H. Gessner
- Department of Urology, University of North Carolina, Chapel Hill, North Carolina.
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina.
- Genetics, University of North Carolina, Chapel Hill, North Carolina.
| | - Krishna Kanchi
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina.
| | - Jay A. Moore
- Foundation Medicine, Inc., Boston, Massachusetts.
| | | | | | | | - Michael Sturdivant
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| | - Michael Repka
- Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina.
| | - Shivani Sud
- Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina.
| | - David L. Corcoran
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina.
- Genetics, University of North Carolina, Chapel Hill, North Carolina.
| | - Matthew D. Galsky
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Matthew I. Milowsky
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina.
- Department of Medicine, Oncology, University of North Carolina, Chapel Hill, North Carolina.
| | - Sara E. Wobker
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina.
- Pathology and Lab Medicine, University of North Carolina, Chapel Hill, North Carolina.
| | - William Y. Kim
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina.
- Genetics, University of North Carolina, Chapel Hill, North Carolina.
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
- Department of Medicine, Oncology, University of North Carolina, Chapel Hill, North Carolina.
- Pathology and Lab Medicine, University of North Carolina, Chapel Hill, North Carolina.
| | - Tracy L. Rose
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina.
- Department of Medicine, Oncology, University of North Carolina, Chapel Hill, North Carolina.
| | - Jeffrey S. Damrauer
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina.
- Department of Medicine, Oncology, University of North Carolina, Chapel Hill, North Carolina.
| |
Collapse
|
15
|
Wang J, Tan Z, Huang Y, Li C, Zhan P, Wang H, Li H. Integrating single-cell RNA-seq to identify fibroblast-based molecular subtypes for predicting prognosis and therapeutic response in bladder cancer. Aging (Albany NY) 2024; 16:11385-11408. [PMID: 39033778 PMCID: PMC11315389 DOI: 10.18632/aging.206021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Bladder cancer (BLCA) is a highly aggressive and heterogeneous disease, posing challenges for diagnosis and treatment. Cancer immunotherapy has recently emerged as a promising option for patients with advanced and drug-resistant cancers. Fibroblasts, a significant component of the tumor microenvironment, play a crucial role in tumor progression, but their precise function in BLCA remains uncertain. METHODS Single-cell RNA sequencing (scRNA-seq) data for BLCA were obtained from the Gene Expression Omnibus database. The R package "Seurat" was used for processing scRNA-seq data, with uniform manifold approximation and projection (UMAP) for downscaling and cluster identification. The FindAllMarkers function identified marker genes for each cluster. Differentially expressed genes influencing overall survival (OS) of BLCA patients were identified using the limma package. Differences in clinicopathological characteristics, immune microenvironment, immune checkpoints, and chemotherapeutic drug sensitivity between high- and low-risk groups were investigated. RT-qPCR and immunohistochemistry validated the expression of prognostic genes. RESULTS Fibroblast marker genes identified three molecular subtypes in the testing set. A prognostic signature comprising ten genes stratified BLCA patients into high- and low-score groups. This signature was validated in one internal and two external validation sets. High-score patients exhibited increased immune cell infiltration, elevated chemokine expression, and enhanced immune checkpoint expression but had poorer OS and a reduced response to immunotherapy. Six sensitive anti-tumor drugs were identified for the high-score group. RT-qPCR and immunohistochemistry showed that CERCAM, TM4SF1, FN1, ANXA1, and LOX were highly expressed, while EMP1, HEYL, FBN1, and SLC2A3 were downregulated in BLCA. CONCLUSION A novel fibroblast marker gene-based signature was established, providing robust predictions of survival and immunotherapeutic response in BLCA patients.
Collapse
Affiliation(s)
- Jia Wang
- The Second Clinical Medical College, Kunming Medical University, Kunming, China
- Department of Endocrinology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhiyong Tan
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yinglong Huang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Charles Li
- Core Facility for Protein Research, Chinese Academy of Sciences, Beijing, China
- Zhongke Jianlan Medical Research Institute, Beijing, China
- Zhejiang Institute of Integrated Traditional and Western Medicine, Hangzhou, China
| | - Peiqin Zhan
- The Second Clinical Medical College, Kunming Medical University, Kunming, China
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Haifeng Wang
- The Second Clinical Medical College, Kunming Medical University, Kunming, China
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Haihao Li
- The Second Clinical Medical College, Kunming Medical University, Kunming, China
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
16
|
Stormoen DR, Rohrberg KS, Mouw KW, Ørum K, Szallasi Z, Rossing M, Bagger FO, Pappot H. Similar genetic profile in early and late stage urothelial tract cancer. J Cancer Res Clin Oncol 2024; 150:339. [PMID: 38976041 PMCID: PMC11230994 DOI: 10.1007/s00432-024-05850-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/14/2024] [Indexed: 07/09/2024]
Abstract
INTRODUCTION Urothelial tract cancer (UTC) ranks as the tenth most prevalent cancer and holds the seventh position in terms of mortality worldwide. Despite its prevalence and mortality ranking, there are still gaps in the knowledge of the mutational landscape in patients with advanced disease who have limited therapeutic options after multiple lines of prior treatment. This study compares the genomic and transcriptomic landscape, and targeted treatment options between metastatic UTC (mUTC) patients treated with multiple lines of therapy compared to newly diagnosed, untreated Muscle Invasive Bladder Cancer (MIBC). METHODS We compared genomic and clinical data from two cohorts: mUTC patients who received multiple lines of therapy and were referred to the Copenhagen Prospective Personalized Oncology (CoPPO) project at Rigshospitalet, University of Copenhagen. Data for MIBC UTC patients were acquired from the Cancer Genome Atlas Bladder Cancer (TCGA BLCA) cohort. Biopsies in CoPPO were performed at the time of enrollment. 523 highly important cancer-related genes (TrueSight Oncology-500 targeted sequencing panel) were used from both cohorts for comparative analysis. Analyses included RNA count data to compare predicted molecular subtypes in each cohort separately. RESULTS Patients from the CoPPO cohort had a lower median age at first-line treatment than the TCGA BLCA cohort, with no significant gender disparity. The predominant histology was urothelial cell carcinoma in both cohorts. Genomic analysis revealed no significant difference between the top mutated genes in the two cohorts, specifically looking into DNA damage repair genes. Molecular subtyping indicated a higher frequency of neuroendocrine differentiation in the CoPPO cohort. 13% of patients in the CoPPO cohort received targeted therapy based on genomic findings, and 16% received non-targeted treatment, totaling 29% receiving CoPPO treatment (9 patients). The remaining 71% received best supportive care. Kaplan-Meier analysis showed a non-significant survival benefit for the intervention group in the CoPPO cohort. CONCLUSION When focusing on 523 highly relevant cancer genes, the mutational profile of mUTC patients who have undergone numerous treatment lines resembles that of newly diagnosed MIBC. These alterations can be targeted, indicating the potential advantage of early genomic testing for personalized treatment within clinical trials.
Collapse
Affiliation(s)
- Dag Rune Stormoen
- Department of Oncology, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, Copenhagen, 5073, Denmark.
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Kristoffer Staal Rohrberg
- Department of Oncology, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, Copenhagen, 5073, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Kent William Mouw
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Katrine Ørum
- Department of Oncology, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, Copenhagen, 5073, Denmark
| | - Zoltan Szallasi
- Harvard Medical School, Boston, MA, USA
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA
- Translational Cancer Genomics Group, Danish Cancer Society, Copenhagen, Denmark
| | - Maria Rossing
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department for Genomic Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Frederik Otzen Bagger
- Department for Genomic Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Helle Pappot
- Department of Oncology, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, Copenhagen, 5073, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Chai D, Wang J, Fan C, Lim JM, Wang X, Neeli P, Yu X, Young KH, Li Y. Remodeling of anti-tumor immunity with antibodies targeting a p53 mutant. J Hematol Oncol 2024; 17:45. [PMID: 38886748 PMCID: PMC11184848 DOI: 10.1186/s13045-024-01566-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND p53, the most frequently mutated gene in cancer, lacks effective targeted drugs. METHODS We developed monoclonal antibodies (mAbs) that target a p53 hotspot mutation E285K without cross-reactivity with wild-type p53. They were delivered using lipid nanoparticles (LNPs) that encapsulate DNA plasmids. Western blot, BLI, flow cytometry, single-cell sequencing (scRNA-seq), and other methods were employed to assess the function of mAbs in vitro and in vivo. RESULTS These LNP-pE285K-mAbs in the IgG1 format exhibited a robust anti-tumor effect, facilitating the infiltration of immune cells, including CD8+ T, B, and NK cells. scRNA-seq revealed that IgG1 reduces immune inhibitory signaling, increases MHC signaling from B cells to CD8+ T cells, and enriches anti-tumor T cell and B cell receptor profiles. The E285K-mAbs were also produced in the dimeric IgA (dIgA) format, whose anti-tumor activity depended on the polymeric immunoglobulin receptor (PIGR), a membrane Ig receptor, whereas that of IgG1 relied on TRIM21, an intracellular IgG receptor. CONCLUSIONS Targeting specific mutant epitopes using DNA-encoded and LNP-delivered mAbs represents a potential precision medicine strategy against p53 mutants in TRIM21- or PIGR-positive cancers.
Collapse
Affiliation(s)
- Dafei Chai
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA.
| | - Junhao Wang
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Chunmei Fan
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Jing-Ming Lim
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Xu Wang
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Praveen Neeli
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Xinfang Yu
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Ken H Young
- Department of Pathology, Division of Hematopathology, Duke University Medical Center, Durham, NC, USA
| | - Yong Li
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA.
| |
Collapse
|
18
|
Beckabir W, Zhou M, Lee JS, Vensko SP, Woodcock MG, Wang HH, Wobker SE, Atassi G, Wilkinson AD, Fowler K, Flick LM, Damrauer JS, Harrison MR, McKinnon KP, Rose TL, Milowsky MI, Serody JS, Kim WY, Vincent BG. Immune features are associated with response to neoadjuvant chemo-immunotherapy for muscle-invasive bladder cancer. Nat Commun 2024; 15:4448. [PMID: 38789460 PMCID: PMC11126571 DOI: 10.1038/s41467-024-48480-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Neoadjuvant cisplatin-based chemotherapy is standard of care for muscle-invasive bladder cancer (MIBC). Immune checkpoint inhibition (ICI) alone, and ICI in combination with chemotherapy, have demonstrated promising pathologic response (
Collapse
Affiliation(s)
- Wolfgang Beckabir
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, NC, USA
| | - Mi Zhou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jin Seok Lee
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Bioinformatics and Computational Biology, UNC School of Medicine, Chapel Hill, NC, USA
| | - Steven P Vensko
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mark G Woodcock
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hsing-Hui Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, NC, USA
| | - Sara E Wobker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gatphan Atassi
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alec D Wilkinson
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenneth Fowler
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Leah M Flick
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jeffrey S Damrauer
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael R Harrison
- Division of Medical Oncology, Department of Medicine, Duke Cancer Institute, Duke University, Durham, NC, USA
| | - Karen P McKinnon
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, NC, USA
| | - Tracy L Rose
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Matthew I Milowsky
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jonathan S Serody
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, NC, USA.
- Division of Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - William Y Kim
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Division of Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Division of Hematology, Department of Medicine, UNC School of Medicine, Chapel Hill, NC, USA.
| | - Benjamin G Vincent
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Bioinformatics and Computational Biology, UNC School of Medicine, Chapel Hill, NC, USA.
- Division of Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Computational Medicine Program, UNC School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
19
|
Beckabir W, Wobker SE, Damrauer JS, Midkiff B, De la Cruz G, Makarov V, Flick L, Woodcock MG, Grivas P, Bjurlin MA, Harrison MR, Vincent BG, Rose TL, Gupta S, Kim WY, Milowsky MI. Spatial Relationships in the Tumor Microenvironment Demonstrate Association with Pathologic Response to Neoadjuvant Chemoimmunotherapy in Muscle-invasive Bladder Cancer. Eur Urol 2024; 85:242-253. [PMID: 38092611 PMCID: PMC11022933 DOI: 10.1016/j.eururo.2023.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/11/2023] [Accepted: 11/09/2023] [Indexed: 03/09/2024]
Abstract
BACKGROUND Platinum-based neoadjuvant chemotherapy (NAC) is standard for patients with muscle-invasive bladder cancer (MIBC). Pathologic response (complete: ypT0N0 and partial: OBJECTIVE Using the NanoString GeoMx platform, we performed proteomic digital spatial profiling (DSP) on transurethral resections of bladder tumors from 18 responders ( DESIGN, SETTING, AND PARTICIPANTS Pretreatment tumor samples were stained by hematoxylin and eosin and immunofluorescence (panCK and CD45) to select four regions of interest (ROIs): tumor enriched (TE), immune enriched (IE), tumor/immune interface (tumor interface = TX and immune interface = IX). OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS DSP was performed with 52 protein markers from immune cell profiling, immunotherapy drug target, immune activation status, immune cell typing, and pan-tumor panels. RESULTS AND LIMITATIONS Protein marker expression patterns were analyzed to determine their association with pathologic response, incorporating or agnostic of their ROI designation (TE/IE/TX/IX). Overall, DSP-based marker expression showed high intratumoral heterogeneity; however, response was associated with markers including PD-L1 (ROI agnostic), Ki-67 (ROI agnostic, TE, IE, and TX), HLA-DR (TX), and HER2 (TE). An elastic net model of response with ROI-inclusive markers demonstrated better validation set performance (area under the curve [AUC] = 0.827) than an ROI-agnostic model (AUC = 0.432). A model including DSP, tumor mutational burden, and clinical data performed no better (AUC = 0.821) than the DSP-only model. CONCLUSIONS Despite high intratumoral heterogeneity of DSP-based marker expression, we observed associations between pathologic response and specific DSP-based markers in a spatially dependent context. Further exploration of tumor region-specific biomarkers may help predict response to neoadjuvant chemoimmunotherapy in MIBC. PATIENT SUMMARY In this study, we used the GeoMx platform to perform proteomic digital spatial profiling on transurethral resections of bladder tumors from 18 responders and 18 nonresponders from two studies of neoadjuvant chemotherapy (gemcitabine and cisplatin) plus immune checkpoint inhibitor therapy (LCCC1520 [pembrolizumab] and BLASST-1 [nivolumab]). We found that assessing protein marker expression in the context of tumor architecture improved response prediction.
Collapse
Affiliation(s)
- Wolfgang Beckabir
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, NC, USA
| | - Sara E Wobker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Pathology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jeffrey S Damrauer
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Division of Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bentley Midkiff
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gabriela De la Cruz
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Vladmir Makarov
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Leah Flick
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mark G Woodcock
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, NC, USA
| | - Petros Grivas
- Department of Medicine, Division of Medical Oncology, University of Washington, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Marc A Bjurlin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Urology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael R Harrison
- Division of Medical Oncology, Department of Medicine, Duke Cancer Institute, Duke University, Durham, NC, USA
| | - Benjamin G Vincent
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, NC, USA; Division of Hematology, Department of Medicine, UNC School of Medicine, Chapel Hill, NC, USA; Computational Medicine Program, UNC School of Medicine, Chapel Hill, NC, USA; Curriculum in Bioinformatics and Computational Biology, UNC School of Medicine, Chapel Hill, NC, USA
| | - Tracy L Rose
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Division of Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shilpa Gupta
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - William Y Kim
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Division of Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Matthew I Milowsky
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Division of Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
20
|
Yang J, Liu Q, Shyr Y. A Large-Scale Meta-Analysis Reveals Positive Feedback between Macrophages and T Cells That Sensitizes Tumors to Immunotherapy. Cancer Res 2024; 84:626-638. [PMID: 38117502 PMCID: PMC10867621 DOI: 10.1158/0008-5472.can-23-2006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/24/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023]
Abstract
Although considerable efforts have been dedicated to identifying predictive signatures for immune checkpoint inhibitor (ICI) treatment response, current biomarkers suffer from poor generalizability and reproducibility across different studies and cancer types. The integration of large-scale multiomics studies holds great promise for discovering robust biomarkers and shedding light on the mechanisms of immune resistance. In this study, we conducted the most extensive meta-analysis involving 3,037 ICI-treated patients with genetic and/or transcriptomics profiles across 14 types of solid tumor. The comprehensive analysis uncovered both known and novel reliable signatures associated with ICI treatment outcomes. The signatures included tumor mutational burden (TMB), IFNG and PDCD1 expression, and notably, interactions between macrophages and T cells driving their activation and recruitment. Independent data from single-cell RNA sequencing and dynamic transcriptomic profiles during the ICI treatment provided further evidence that enhanced cross-talk between macrophages and T cells contributes to ICI response. A multivariable model based on eight nonredundant signatures significantly outperformed existing models in five independent validation datasets representing various cancer types. Collectively, this study discovered biomarkers predicting ICI response that highlight the contribution of immune cell networks to immunotherapy efficacy and could help guide patient treatment. SIGNIFICANCE Identification of robust immunogenomic connections, particularly macrophage T-cell interactions, in a large-scale pan-cancer meta-analysis and development of a predictive model for immunotherapy response that outperformed existing models could facilitate clinical decision-making.
Collapse
Affiliation(s)
- Jing Yang
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yu Shyr
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
21
|
Okato A, Utsumi T, Ranieri M, Zheng X, Zhou M, Pereira LD, Chen T, Kita Y, Wu D, Hyun H, Lee H, Gdowski AS, Raupp JD, Clark-Garvey S, Manocha U, Chafitz A, Sherman F, Stephens J, Rose TL, Milowsky MI, Wobker SE, Serody JS, Damrauer JS, Wong KK, Kim WY. FGFR inhibition augments anti-PD-1 efficacy in murine FGFR3-mutant bladder cancer by abrogating immunosuppression. J Clin Invest 2024; 134:e169241. [PMID: 38226620 PMCID: PMC10786699 DOI: 10.1172/jci169241] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 11/14/2023] [Indexed: 01/17/2024] Open
Abstract
The combination of targeted therapy with immune checkpoint inhibition (ICI) is an area of intense interest. We studied the interaction of fibroblast growth factor receptor (FGFR) inhibition with ICI in urothelial carcinoma (UC) of the bladder, in which FGFR3 is altered in 50% of cases. Using an FGFR3-driven, Trp53-mutant genetically engineered murine model (UPFL), we demonstrate that UPFL tumors recapitulate the histology and molecular subtype of their FGFR3-altered human counterparts. Additionally, UPFL1 allografts exhibit hyperprogression to ICI associated with an expansion of T regulatory cells (Tregs). Erdafitinib blocked Treg proliferation in vitro, while in vivo ICI-induced Treg expansion was fully abrogated by FGFR inhibition. Combined erdafitinib and ICI resulted in high therapeutic efficacy. In aggregate, our work establishes that, in mice, co-alteration of FGFR3 and Trp53 results in high-grade, non-muscle-invasive UC and presents a previously underappreciated role for FGFR inhibition in blocking ICI-induced Treg expansion.
Collapse
Affiliation(s)
- Atsushi Okato
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Takanobu Utsumi
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Michela Ranieri
- Perlmutter Cancer Center, New York University, New York, New York, USA
| | - Xingnan Zheng
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Mi Zhou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Luiza D. Pereira
- Perlmutter Cancer Center, New York University, New York, New York, USA
| | - Ting Chen
- Perlmutter Cancer Center, New York University, New York, New York, USA
| | - Yuki Kita
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Di Wu
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Hyesun Hyun
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Hyojin Lee
- Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Andrew S. Gdowski
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - John D. Raupp
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Sean Clark-Garvey
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ujjawal Manocha
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Alison Chafitz
- Perlmutter Cancer Center, New York University, New York, New York, USA
| | - Fiona Sherman
- Perlmutter Cancer Center, New York University, New York, New York, USA
| | - Janaye Stephens
- Perlmutter Cancer Center, New York University, New York, New York, USA
| | - Tracy L. Rose
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Medicine
| | - Matthew I. Milowsky
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Medicine
| | - Sara E. Wobker
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Pathology and Laboratory Medicine
| | - Jonathan S. Serody
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Medicine
- Department of Pathology and Laboratory Medicine
- Department of Microbiology and Immunology
| | - Jeffrey S. Damrauer
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Medicine
| | - Kwok-Kin Wong
- Perlmutter Cancer Center, New York University, New York, New York, USA
| | - William Y. Kim
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Medicine
- Department of Genetics, and
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
22
|
Liu Z, Jin K, Xu Z, Xu J, Su X, Li B, Liu G, Liu H, Chang Y, Wang Y, Xu L, Zhang W, Wang Z, Zhu Y, Xu J. Gender disparities in clinical outcomes of urothelial carcinoma linked to X chromosome gene KDM6A mutation. BMJ ONCOLOGY 2023; 2:e000199. [PMID: 39886491 PMCID: PMC11234999 DOI: 10.1136/bmjonc-2023-000199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/03/2023] [Indexed: 02/01/2025]
Abstract
Objective KDM6A, a representative tumour suppressor gene with sex bias, is frequently altered in urothelial carcinoma (UC). The specific impacts of KDM6A mutations on gender-based clinical outcomes in UC remain poorly understood. Methods and analysis We enrolled 2438 patients with UC from seven independent real-world cohorts possessing comprehensive clinical and genomic data. Point mutations and homozygous deletions of KDM6A are categorised as KDM6A Mut. We assessed the correlation between gender disparities in relation to KDM6A status and clinical outcomes, as well as genomic and immunological profiles. Results KDM6A mutations were identified in 679 of the 2306 patients with UC (29.4%), with 505 of 1768 (28.6%) in men and 174 of 538 (32.3%) in women. KDM6A mutations correlated with enhanced overall survival exclusively in male patients but were linked to improved outcomes following adjuvant chemotherapy only in female patients. Concerning immunotherapeutic responses, KDM6A Mut male patients displayed the most favourable clinical outcomes, whereas KDM6A Mut female patients demonstrated the least favourable outcomes. Independent of gender variations, KDM6A Mut patients exhibited heightened androgen receptor and diminished oestrogen receptor 1 filtered regulon activity. Additionally, KDM6A Mut male patients showed increased infiltration of T cells, cytotoxic T cells and NK cells with enriched neoantigens, in contrast to KDM6A Mut female patients who manifested a more pronounced angiogenesis signature. Conclusion Our findings offer preliminary clinical evidence accentuating KDM6A alterations as a promising prognostic and predictive biomarker while elucidating the gender disparities observed in patients with UC.
Collapse
Affiliation(s)
- Zhaopei Liu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Kaifeng Jin
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ziyue Xu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jingtong Xu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaohe Su
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Bingyu Li
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ge Liu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hailong Liu
- Department of Urology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Chang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yiwei Wang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Le Xu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weijuan Zhang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zewei Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jiejie Xu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Durfee C, Temiz NA, Levin-Klein R, Argyris PP, Alsøe L, Carracedo S, Alonso de la Vega A, Proehl J, Holzhauer AM, Seeman ZJ, Liu X, Lin YHT, Vogel RI, Sotillo R, Nilsen H, Harris RS. Human APOBEC3B promotes tumor development in vivo including signature mutations and metastases. Cell Rep Med 2023; 4:101211. [PMID: 37797615 PMCID: PMC10591044 DOI: 10.1016/j.xcrm.2023.101211] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/14/2023] [Accepted: 09/06/2023] [Indexed: 10/07/2023]
Abstract
The antiviral DNA cytosine deaminase APOBEC3B has been implicated as a source of mutation in many cancers. However, despite years of work, a causal relationship has yet to be established in vivo. Here, we report a murine model that expresses tumor-like levels of human APOBEC3B. Animals expressing full-body APOBEC3B appear to develop normally. However, adult males manifest infertility, and older animals of both sexes show accelerated rates of carcinogenesis, visual and molecular tumor heterogeneity, and metastasis. Both primary and metastatic tumors exhibit increased frequencies of C-to-T mutations in TC dinucleotide motifs consistent with the established biochemical activity of APOBEC3B. Enrichment for APOBEC3B-attributable single base substitution mutations also associates with elevated levels of insertion-deletion mutations and structural variations. APOBEC3B catalytic activity is required for all of these phenotypes. Together, these studies provide a cause-and-effect demonstration that human APOBEC3B is capable of driving both tumor initiation and evolution in vivo.
Collapse
Affiliation(s)
- Cameron Durfee
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Nuri Alpay Temiz
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rena Levin-Klein
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Prokopios P Argyris
- Division of Oral and Maxillofacial Pathology, College of Dentistry, Ohio State University, Columbus, OH 43210, USA
| | - Lene Alsøe
- Department of Microbiology, Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway; Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway
| | - Sergio Carracedo
- Department of Microbiology, Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
| | - Alicia Alonso de la Vega
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Translational Lung Research Center Heidelberg (TRLC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Joshua Proehl
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Anna M Holzhauer
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zachary J Seeman
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Xingyu Liu
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Yu-Hsiu T Lin
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Rachel I Vogel
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rocio Sotillo
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Translational Lung Research Center Heidelberg (TRLC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Hilde Nilsen
- Department of Microbiology, Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway; Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
24
|
Ali W, Xiao W, Jacobs D, Kajdacsy-Balla A. Survival and Enrichment Analysis of Epithelial-Mesenchymal Transition Genes in Bladder Urothelial Carcinoma. Genes (Basel) 2023; 14:1899. [PMID: 37895248 PMCID: PMC10606556 DOI: 10.3390/genes14101899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/16/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
The escalating prevalence of bladder cancer, particularly urothelial carcinoma, necessitates innovative approaches for prognosis and therapy. This study delves into the significance of genes related to epithelial-mesenchymal transition (EMT), a process inherently linked to carcinogenesis and comparatively better studied in other cancers. We examined 1184 EMT-related gene expression levels in bladder urothelial cancer cases through the TCGA dataset. Genes shown to be differentially expressed in relation to survival underwent further network and enrichment analysis to uncover how they might shape disease outcomes. Our in silico analysis revealed a subset of 32 genes, including those significantly represented in biological pathways such as VEGF signaling and bacterium response. In addition, these genes interact with genes involved in the JAK-STAT signaling pathway. Additionally, some of those 32 genes have been linked to immunomodulators such as chemokines CCL15 and CCL18, as well as to various immune cell infiltrates. Our findings highlight the prognostic utility of various EMT-related genes and identify possible modulators of their effect on survival, allowing for further targeted wet lab research and possible therapeutic intervention.
Collapse
Affiliation(s)
- Waleed Ali
- Albert Einstein College of Medicine, New York, NY 10461, USA; (W.X.); (D.J.)
| | - Weirui Xiao
- Albert Einstein College of Medicine, New York, NY 10461, USA; (W.X.); (D.J.)
| | - Daniel Jacobs
- Albert Einstein College of Medicine, New York, NY 10461, USA; (W.X.); (D.J.)
| | - Andre Kajdacsy-Balla
- Professor of Pathology, University of Illinois at Chicago College of Medicine, Chicago, IL 60607, USA;
| |
Collapse
|
25
|
Song Y, Peng Y, Qin C, Wang Y, Yang W, Du Y, Xu T. Fibroblast growth factor receptor 3 mutation attenuates response to immune checkpoint blockade in metastatic urothelial carcinoma by driving immunosuppressive microenvironment. J Immunother Cancer 2023; 11:e006643. [PMID: 37777251 PMCID: PMC10546120 DOI: 10.1136/jitc-2022-006643] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND Immune checkpoint blockade (ICB) therapy holds promise in metastatic urothelial carcinoma (UC). Fibroblast growth factor receptor 3 (FGFR3) mutation drives T-cell-depleted microenvironment in UC, which led to the hypothesis that FGFR3 mutation might attenuate response to ICB in patients with metastatic UC. The study aims to compare prognosis and response between patients with FGFR3-mutated and FGFR3-wildtype metastatic UC after ICB therapy, and decode the potential molecular mechanisms. METHODS Based on the single-arm, multicenter, phase 2 trial, IMvigor210, we conducted a propensity score matched (PSM) analysis. After a 1:1 ratio PSM method, 39 patients with FGFR3-mutated and 39 FGFR3-wildtype metastatic UC treated with atezolizumab were enrolled. A meta-analysis through systematical database retrieval was conducted for validation. In addition, we performed single-cell RNA sequencing on three FGFR3-mutated and three FGFR3-wildtype UC tumors and analyzed 58,069 single cells. RESULTS The PSM analysis indicated FGFR3-mutated patients had worse overall survival (OS) in comparison to FGFR3-wildtype patients (HR=2.11, 95% CI=(1.16 to 3.85), p=0.015) receiving atezolizumab. The median OS was 9.2 months (FGFR3-mutated) versus 21.0 months (FGFR3-wildtype). FGFR3-mutated patients had lower disease control rate than FGFR3-wildtype patients (41.0% vs 66.7%, p=0.023). The meta-analysis involving 938 patients with metastatic UC confirmed FGFR3 mutation was associated with worse OS after ICB (HR=1.28, 95% CI=(1.04 to 1.59), p=0.02). Single-cell RNA transcriptome analysis identified FGFR3-mutated UC carried a stronger immunosuppressive microenvironment compared with FGFR3-wildtype UC. FGFR3-mutated UC exhibited less immune infiltration, and lower T-cell cytotoxicity. Higher TREM2+ macrophage abundance in FGFR3-mutated UC can undermine and suppress the T cells, potentially contributing to the formation of an immunosuppressive microenvironment. Lower inflammatory-cancer-associated fibroblasts in FGFR3-mutated UC recruited less chemokines in antitumor immunity but expressed growth factors to promote FGFR3-mutated malignant cell development. FGFR3-mutated UC carried abundance of malignant cells characterized by high hypoxia/metabolism and low interferon response phenotype. CONCLUSIONS FGFR3 mutation can attenuate prognosis and response to ICB in patients with metastatic UC. FGFR3-mutated UC carries a stronger immunosuppressive microenvironment in comparison with FGFR3-wildtype UC. Inhibition of FGFR3 might activate the immune microenvironment, and the combination of FGFR inhibitor targeted therapy and ICB might be a promising therapeutic regimen in metastatic UC, providing important implications for UC clinical management.
Collapse
Affiliation(s)
- Yuxuan Song
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Yun Peng
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Caipeng Qin
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Yulong Wang
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Wenbo Yang
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Yiqing Du
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Tao Xu
- Department of Urology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
26
|
Thomas JF, Valencia-Sánchez MI, Tamburri S, Gloor SL, Rustichelli S, Godínez-López V, De Ioannes P, Lee R, Abini-Agbomson S, Gretarsson K, Burg JM, Hickman AR, Sun L, Gopinath S, Taylor HF, Sun ZW, Ezell RJ, Vaidya A, Meiners MJ, Cheek MA, Rice WJ, Svetlov V, Nudler E, Lu C, Keogh MC, Pasini D, Armache KJ. Structural basis of histone H2A lysine 119 deubiquitination by Polycomb repressive deubiquitinase BAP1/ASXL1. SCIENCE ADVANCES 2023; 9:eadg9832. [PMID: 37556531 PMCID: PMC10411902 DOI: 10.1126/sciadv.adg9832] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/03/2023] [Indexed: 08/11/2023]
Abstract
Histone H2A lysine 119 (H2AK119Ub) is monoubiquitinated by Polycomb repressive complex 1 and deubiquitinated by Polycomb repressive deubiquitinase complex (PR-DUB). PR-DUB cleaves H2AK119Ub to restrict focal H2AK119Ub at Polycomb target sites and to protect active genes from aberrant silencing. The PR-DUB subunits (BAP1 and ASXL1) are among the most frequently mutated epigenetic factors in human cancers. How PR-DUB establishes specificity for H2AK119Ub over other nucleosomal ubiquitination sites and how disease-associated mutations of the enzyme affect activity are unclear. Here, we determine a cryo-EM structure of human BAP1 and the ASXL1 DEUBAD in complex with a H2AK119Ub nucleosome. Our structural, biochemical, and cellular data reveal the molecular interactions of BAP1 and ASXL1 with histones and DNA that are critical for restructuring the nucleosome and thus establishing specificity for H2AK119Ub. These results further provide a molecular explanation for how >50 mutations in BAP1 and ASXL1 found in cancer can dysregulate H2AK119Ub deubiquitination, providing insight into understanding cancer etiology.
Collapse
Affiliation(s)
- Jonathan F. Thomas
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Marco Igor Valencia-Sánchez
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Simone Tamburri
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
- Department of Health Sciences, University of Milan, Via A. di Rudini 8, 20142 Milan, Italy
| | | | - Samantha Rustichelli
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Victoria Godínez-López
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Pablo De Ioannes
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Rachel Lee
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Stephen Abini-Agbomson
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Kristjan Gretarsson
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | | | - Lu Sun
- EpiCypher Inc., Durham, NC 27709, USA
| | | | | | | | | | | | | | | | - William J. Rice
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Vladimir Svetlov
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Chao Lu
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | - Diego Pasini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
- Department of Health Sciences, University of Milan, Via A. di Rudini 8, 20142 Milan, Italy
| | - Karim-Jean Armache
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
27
|
Kim M, Lee JL, Shin SJ, Bae WK, Lee HJ, Byun JH, Choi YJ, Youk J, Ock CY, Kim S, Song H, Park KH, Keam B. Phase II study of a trastuzumab biosimilar in combination with paclitaxel for HER2-positive recurrent or metastatic urothelial carcinoma: KCSG GU18-18. ESMO Open 2023; 8:101588. [PMID: 37385153 PMCID: PMC10485395 DOI: 10.1016/j.esmoop.2023.101588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/11/2023] [Accepted: 05/21/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Human epidermal growth factor receptor 2 (HER2) is a widely explored therapeutic target in solid tumors. We evaluated the efficacy and safety of trastuzumab-pkrb, a biosimilar of trastuzumab, in combination with paclitaxel, in HER2-positive recurrent or metastatic urothelial carcinoma (UC). PATIENTS AND METHODS We enrolled 27 patients; they were administered a loading dose of 8 mg/kg trastuzumab-pkrb on day 1, followed by 6 mg/kg and 175 mg/m2 paclitaxel on day 1 every 3 weeks, intravenously. All patients received six cycles of the combination treatment and continued to receive trastuzumab-pkrb maintenance until disease progression, unacceptable toxicity, or for up to 2 years. HER2 positivity (based on immunohistochemistry analysis) was determined according to the 2013 American Society of Clinical Oncology /College of American Pathologists HER2 testing guidelines. The primary endpoint was objective response rate (ORR); the secondary endpoints were overall survival (OS), progression-free survival (PFS), and safety. RESULTS Twenty-six patients were evaluated via primary endpoint analysis. The ORR was 48.1% (1 complete and 12 partial responses) and the duration of response was 6.9 months [95% confidence interval (CI) 4.4-9.3 months]. With a median follow-up of 10.5 months, the median PFS and OS were 8.4 months (95% CI 6.2-8.8 months) and 13.5 months (95% CI 9.8 months-not reached), respectively. The most common treatment-related adverse event (TRAE) of any grade was peripheral neuropathy (88.9%). The most common grade 3/4 TRAEs were neutropenia (25.9%), thrombocytopenia (7.4%), and anemia (7.4%). CONCLUSIONS Trastuzumab-pkrb plus paclitaxel demonstrates promising efficacy with manageable toxicity profiles in patients with HER2-positive recurrent or metastatic UC.
Collapse
Affiliation(s)
- M Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul; Cancer Research Institute, Seoul National University College of Medicine, Seoul
| | - J L Lee
- Department of Oncology and Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul
| | - S J Shin
- Division of Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul
| | - W K Bae
- Department of Hemato-Oncology, Chonnam National University Medical School & Hwasun Hospital, Hwasun
| | - H J Lee
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon
| | - J H Byun
- Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon
| | - Y J Choi
- Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul
| | - J Youk
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul; Cancer Research Institute, Seoul National University College of Medicine, Seoul
| | - C Y Ock
- Lunit, Seoul, Republic of Korea
| | - S Kim
- Lunit, Seoul, Republic of Korea
| | - H Song
- Lunit, Seoul, Republic of Korea
| | - K H Park
- Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul
| | - B Keam
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul; Cancer Research Institute, Seoul National University College of Medicine, Seoul.
| |
Collapse
|
28
|
Koll FJ, Döring C, Olah C, Szarvas T, Köllermann J, Hoeh B, Chun FKH, Reis H, Wild PJ. Optimizing identification of consensus molecular subtypes in muscle-invasive bladder cancer: a comparison of two sequencing methods and gene sets using FFPE specimens. BMC Cancer 2023; 23:504. [PMID: 37270477 DOI: 10.1186/s12885-023-11016-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/26/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND Molecular subtypes predict prognosis in muscle-invasive bladder cancer (MIBC) and are explored as predictive markers. To provide a common base for molecular subtyping and facilitate clinical applications, a consensus classification has been developed. However, methods to determine consensus molecular subtypes require validation, particularly when FFPE specimens are used. Here, we aimed to evaluate two gene expression analysis methods on FFPE samples and to compare reduced gene sets to classify tumors into molecular subtypes. METHODS RNA was isolated from FFPE blocks of 15 MIBC patients. Massive analysis of 3' cDNA ends (MACE) and the HTG transcriptome panel (HTP) were used to retrieve gene expression. We used normalized, log2-transformed data to call consensus and TCGA subtypes with the consensusMIBC package for R using all available genes, a 68-gene panel (ESSEN1), and a 48-gene panel (ESSEN2). RESULTS Fifteen MACE-samples and 14 HTP-samples were available for molecular subtyping. The 14 samples were classified as Ba/Sq in 7 (50%), LumP in 2 (14.3%), LumU in 1 (7.1%), LumNS in 1 (7.1%), stroma-rich in 2 (14.3%) and NE-like in 1 (7.1%) case based on MACE- or HTP-derived transcriptome data. Consensus subtypes were concordant in 71% (10/14) of cases when comparing MACE with HTP data. Four cases with aberrant subtypes had a stroma-rich molecular subtype with either method. The overlap of the molecular consensus subtypes with the reduced ESSEN1 and ESSEN2 panels were 86% and 100%, respectively, with HTP data and 86% with MACE data. CONCLUSION Determination of consensus molecular subtypes of MIBC from FFPE samples is feasible using various RNA sequencing methods. Inconsistent classification mainly involves the stroma-rich molecular subtype, which may be the consequence of sample heterogeneity with (stroma)-cell sampling bias and highlights the limitations of bulk RNA-based subclassification. Classification is still reliable when analysis is reduced to selected genes.
Collapse
Affiliation(s)
- Florestan J Koll
- Department of Urology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany.
- Frankfurt Cancer Institute (FCI), University Hospital, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany.
- University Cancer Center (UCT) Frankfurt, University Hospital, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany.
| | - Claudia Döring
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, 60590, Frankfurt Am Main, Germany
| | - Csilla Olah
- Department of Urology, University of Duisburg-Essen, Essen, Germany
| | - Tibor Szarvas
- Department of Urology, University of Duisburg-Essen, Essen, Germany
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Jens Köllermann
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, 60590, Frankfurt Am Main, Germany
| | - Benedikt Hoeh
- Department of Urology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| | - Felix K-H Chun
- Department of Urology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| | - Henning Reis
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, 60590, Frankfurt Am Main, Germany
| | - Peter J Wild
- Frankfurt Cancer Institute (FCI), University Hospital, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, 60590, Frankfurt Am Main, Germany
- Frankfurt Institute for Advanced Studies (FIAS), 60438, Frankfurt Am Main, Germany
| |
Collapse
|
29
|
Durfee C, Temiz NA, Levin-Klein R, Argyris PP, Alsøe L, Carracedo S, de la Vega AA, Proehl J, Holzhauer AM, Seeman ZJ, Lin YHT, Vogel RI, Sotillo R, Nilsen H, Harris RS. Human APOBEC3B promotes tumor heterogeneity in vivo including signature mutations and metastases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.24.529970. [PMID: 36865194 PMCID: PMC9980288 DOI: 10.1101/2023.02.24.529970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
The antiviral DNA cytosine deaminase APOBEC3B has been implicated as a source of mutation in many different cancers. Despite over 10 years of work, a causal relationship has yet to be established between APOBEC3B and any stage of carcinogenesis. Here we report a murine model that expresses tumor-like levels of human APOBEC3B after Cre-mediated recombination. Animals appear to develop normally with full-body expression of APOBEC3B. However, adult males manifest infertility and older animals of both sexes show accelerated rates of tumorigenesis (mostly lymphomas or hepatocellular carcinomas). Interestingly, primary tumors also show overt heterogeneity, and a subset spreads to secondary sites. Both primary and metastatic tumors exhibit increased frequencies of C-to-T mutations in TC dinucleotide motifs consistent with the established biochemical activity of APOBEC3B. Elevated levels of structural variation and insertion-deletion mutations also accumulate in these tumors. Together, these studies provide the first cause-and-effect demonstration that human APOBEC3B is an oncoprotein capable of causing a wide range of genetic changes and driving tumor formation in vivo .
Collapse
Affiliation(s)
- Cameron Durfee
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA, 78229
| | - Nuri Alpay Temiz
- Institute for Health Informatics, University of Minnesota, Minneapolis, Minnesota, USA, 55455
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA, 55455
| | - Rena Levin-Klein
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA, 55455
| | - Prokopios P Argyris
- Division of Oral and Maxillofacial Pathology, College of Dentistry, Ohio State University, Columbus, Ohio, USA, 43210
| | - Lene Alsøe
- Department of Clinical Molecular Biology, University of Oslo, 0318, Oslo, Norway
- Department of Microbiology, Oslo University Hospital, N-0424 Oslo, Norway
| | - Sergio Carracedo
- Department of Clinical Molecular Biology, University of Oslo, 0318, Oslo, Norway
| | - Alicia Alonso de la Vega
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TRLC), German Center for Lung Research (DZL)
| | - Joshua Proehl
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA, 78229
| | - Anna M Holzhauer
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA, 55455
| | - Zachary J Seeman
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA, 55455
| | - Yu-Hsiu T Lin
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA, 78229
| | - Rachel I Vogel
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA, 55455
- Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Rocio Sotillo
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TRLC), German Center for Lung Research (DZL)
| | - Hilde Nilsen
- Department of Clinical Molecular Biology, University of Oslo, 0318, Oslo, Norway
- Department of Microbiology, Oslo University Hospital, N-0424 Oslo, Norway
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA, 78229
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, Texas, USA, 78229
| |
Collapse
|