1
|
Leclerc C, Frossard V, Sharaf N, Bazin S, Bruel R, Sentis A. Climate Impacts on Lake Food-Webs Are Mediated by Biological Invasions. GLOBAL CHANGE BIOLOGY 2025; 31:e70144. [PMID: 40145636 PMCID: PMC11948447 DOI: 10.1111/gcb.70144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 02/13/2025] [Accepted: 03/02/2025] [Indexed: 03/28/2025]
Abstract
Climate change and biological invasions are among the most important drivers of biodiversity and ecosystem change. Despite major advances in understanding their ecological impacts, these drivers are often considered individually, overlooking their possible complex interrelationship. By applying structural equation modeling to an extensive nationwide dataset of 430 fish communities across 257 French lakes, we investigated how taxonomic, size, and trophic diversities are impacted by climate warming and exotic species occurrence. Our goal was to compare their relative signature or lasting impacts after these factors had taken effect and to determine whether climate warming and biological invasions mediate the current state of community diversities. Drawing on a set of interconnected hypotheses, we suggest that biological invasions could be an important indirect effect of climate warming. This aspect must be considered to fully grasp the overall effects of climate change, beyond just its direct thermal impacts. Our results support our hypothesis that climate warming negatively impacts size and trophic diversities. However, these effects are mostly mediated by the warming-induced increase in exotic species richness, which, in turn, promotes total species richness. These results suggest that exotic species have a substantial role in determining the impact of climate change, obscuring the diversity patterns predicted by temperature alone. We conclude that the impacts of climate change cannot be understood without considering its mediated effects via biological invasions, underscoring the need to grasp their intertwined roles in predicting and managing ecological consequences.
Collapse
Affiliation(s)
- Camille Leclerc
- INRAE, Aix‐Marseille Université, RECOVERAix‐en‐ProvenceFrance
- Pôle R&D Écosystèmes Lacustres (ECLA), OFB‐INRAE‐USMBAix‐en‐ProvenceFrance
| | - Victor Frossard
- Pôle R&D Écosystèmes Lacustres (ECLA), OFB‐INRAE‐USMBAix‐en‐ProvenceFrance
- Université Savoie Mont‐Blanc, INRAE, CARRTELThonon‐les‐BainsFrance
| | - Najwa Sharaf
- INRAE, Aix‐Marseille Université, RECOVERAix‐en‐ProvenceFrance
- Pôle R&D Écosystèmes Lacustres (ECLA), OFB‐INRAE‐USMBAix‐en‐ProvenceFrance
| | - Simon Bazin
- INRAE, Aix‐Marseille Université, RECOVERAix‐en‐ProvenceFrance
- Pôle R&D Écosystèmes Lacustres (ECLA), OFB‐INRAE‐USMBAix‐en‐ProvenceFrance
| | - Rosalie Bruel
- Pôle R&D Écosystèmes Lacustres (ECLA), OFB‐INRAE‐USMBAix‐en‐ProvenceFrance
- OFB, DRAS, Service ECOAQUA, 3275 Route CézanneAix‐en‐ProvenceFrance
| | - Arnaud Sentis
- INRAE, Aix‐Marseille Université, RECOVERAix‐en‐ProvenceFrance
- Pôle R&D Écosystèmes Lacustres (ECLA), OFB‐INRAE‐USMBAix‐en‐ProvenceFrance
| |
Collapse
|
2
|
Sun X, Hu S, He R, Zeng J, Zhao D. Ecological restoration enhanced the stability of epiphytic microbial food webs of submerged macrophytes: Insights from predation characteristics of epiphytic predators. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174547. [PMID: 38992355 DOI: 10.1016/j.scitotenv.2024.174547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024]
Abstract
The application of various submerged macrophytes for ecological restoration has gained increasing attention in urban lake ecosystems. The multitrophic microbial communities that colonized in various submerged macrophytes constitute microbial food webs through trophic cascade effects, which affect the biogeochemical cycles of the lake ecosystem and directly determine the effects of ecological restoration. Therefore, it is essential to reveal the diversity, composition, assembly processes, and stability of the microbial communities within epiphytic food webs of diverse submerged macrophytes under eutrophication and ecological restoration scenarios. In this study, we explored the epiphytic microbial food webs of Vallisneria natans and Hydrilla verticillata in both eutrophic and ecological restoration regions. The obtained results indicated that the two regions with different nutrient levels remarkably affected the diversity and composition of epiphytic multitrophic microbial communities of submerged macrophytes, among them, the community composition of epiphytic predators were more prone to change. Secondly, environmental filtering effects played a more important role in driving the community assembly of epiphytic predators than that of prey. Furthermore, the generality and intraguild predation of epiphytic predators were significantly improved within ecological restoration regions, which increased the stability of epiphytic microbial food webs. Additionally, compared with Hydrilla verticillata, the epiphytic microbial food webs of Vallisneria natans exhibited higher multitrophic diversity and higher network stability regardless of regions. Overall, this study focused on the role of the epiphytic microbial food webs of submerged macrophytes in ecological restoration and uncovered the potential of epiphytic predators to enhance the stability of microbial food webs, which may provide new insights into the development of ecological restoration strategies.
Collapse
Affiliation(s)
- Xiaojian Sun
- Joint International Research Laboratory of Global Change and Water Cycle, the National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Siwen Hu
- Joint International Research Laboratory of Global Change and Water Cycle, the National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Rujia He
- Joint International Research Laboratory of Global Change and Water Cycle, the National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jin Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing 100039, China; Poyang Lake Wetland Research Station, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Jiujiang 332899, China
| | - Dayong Zhao
- Joint International Research Laboratory of Global Change and Water Cycle, the National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; College of Geography and Remote Sensing, Hohai University, Nanjing 210098, China.
| |
Collapse
|
3
|
Guo Y, Sun F, Wang J, Wang Z, Yang H, Wu F. Application of Synchronous Evaluation-Diagnosis Model with Quantitative Stressor-Response Analysis (SED-QSR) to Urban Lake Ecological Status: A Proposed Multiple-Level System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16028-16039. [PMID: 39207301 DOI: 10.1021/acs.est.4c04901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Ecological integrity assessment and degradation diagnosis are used globally to evaluate the health of water bodies and pinpoint critical stressors. However, current studies mainly focus on separate evaluation or diagnosis, leading to an inadequate exploration of the relationship between stressors and responses. Here, based on multiple data sets in an urban lake system, a synchronous evaluation-diagnosis model with quantitative stressor-response analysis was advanced, aiming to improve the accuracy of evaluation and diagnosis. The weights for key physicochemical stressors were quantitatively determined in the sequence of NDAVIadj > CODMn > TP > NH4+-N by the combination of generalized additive model and structural equation modeling, clarifying the most significant effects of aquatic vegetation on the degradation of fish assemblages. Then, sensitive biological metrics were screened by considering the distinct contributions of four key stressors to alleviate the possible deviation caused by common methods. Finally, ecological integrity was evaluated by summing the key physicochemical stressors and sensitive biological metrics according to the model-deduced weights instead of empirical weights. Our system's diagnosis and evaluation results achieved an accuracy of over 80% when predicting anthropogenic stress and biological status, which highlights the great potential of our multiple-level system for ecosystem management.
Collapse
Affiliation(s)
- Yiding Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Fuhong Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Jie Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Ziteng Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Hao Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| |
Collapse
|
4
|
Ho H, Altermatt F. Predicted community consequences of spatially explicit global change-induced processes on plant-insect networks. Ecol Evol 2024; 14:e70272. [PMID: 39286316 PMCID: PMC11405086 DOI: 10.1002/ece3.70272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/14/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Plant-insect trophic systems should be particularly sensitive to processes altering species spatial co-occurrences, as impacts on one level can cascade effectively through the strong trophic reliance to the other level. Here, we predicted the biogeography of Lepidoptera-plant communities under global-change scenarios, exploiting spatially resolved data on 423 Lepidoptera species and their 848 food plants across the German state of Baden-Württemberg (ca. 36,000 km2). We performed simulations of plant extinction and Lepidoptera expansion, and respectively assessed their cascading consequences-namely secondary extinction of Lepidoptera and change in functional distance of plants-on the interaction networks. Importantly, the simulations were spatially explicit, as we accounted for realistic landscape contexts of both processes: Plant extinctions were simulated as "regional" (a species goes extinct in the whole region at once) vs. "isolation-driven" (a species gradually goes extinct from the peripheral or isolated localities according to its real regional distribution); Lepidoptera expansions were simulated with random, northward, and upward directions according to real topography. The consequences were assessed based on empirical community composition and trophic relationships. When evaluated by regional richness, the robustness of Lepidoptera assemblages against secondary extinctions was higher under isolation-driven plant extinctions than regional plant extinction; however, this relationship was reversed when evaluated by averaged local richness. Also, with isolation-driven plant extinctions, Lepidoptera at the central sub-region of Baden-Württemberg appeared to be especially vulnerable. With Lepidoptera expansions, plants' functional distances in local communities dropped, indicating a possible increase of competition among plants, yet to a lesser extent particularly with upward movements. Together, our results suggested that the communities' composition context at the landscape scale (i.e., how communities, with respective species composition, are arranged within the landscape) matters when assessing global-change influences on interaction systems; spatially explicit consideration of such context can reveal localised consequences that are not necessarily captured via a spatially implicit, regional perspective.
Collapse
Affiliation(s)
- Hsi‐Cheng Ho
- Department of Aquatic EcologySwiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
- Institute of Ecology and Evolutionary BiologyNational Taiwan UniversityTaipeiTaiwan
| | - Florian Altermatt
- Department of Aquatic EcologySwiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| |
Collapse
|
5
|
Zhao W, Soininen J, Hu A, Liu J, Li M, Wang J. The structure of bacteria-fungi bipartite networks along elevational gradients in contrasting climates. Mol Ecol 2024; 33:e17442. [PMID: 38953280 DOI: 10.1111/mec.17442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/20/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024]
Abstract
Climate change is altering species distribution and modifying interactions in microbial communities. Understanding microbial community structure and their interactions is crucial to interpreting ecosystem responses to climate change. Here, we examined the assemblages of stream bacteria and fungi, and the associations between the two groups along elevational gradients in two regions with contrasting precipitation and temperature, that is the Galong and Qilian mountains of the Tibetan Plateau. In the wetter and warmer region, the species richness significantly increased and decreased with elevation for bacteria and fungi, respectively, while were nonsignificant in the drier and colder region. Their bipartite network structure was also different by showing significant increases in connectance and nestedness towards higher elevations only in the wetter and warmer region. In addition, these correlation network structure generally exhibited similar positive association with species richness in the wetter and warmer region and the drier and colder region. In the wetter and warmer region, climatic change along elevation was more important in determining connectance and nestedness, whereas microbial species richness exerted a stronger influence on network structure and robustness in the drier and colder region. These findings indicate substantial forthcoming changes in microbial diversity and network structure in warming climates, especially in wetter and warmer regions on Earth, advancing the understanding of microbial bipartite interactions' response to climate change.
Collapse
Affiliation(s)
- Wenqian Zhao
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Janne Soininen
- Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland
| | - Ang Hu
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Jinfu Liu
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Mingjia Li
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Jianjun Wang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
6
|
Wu H, Gao T, Dini-Andreote F, Xiao N, Zhang L, Kimirei IA, Wang J. Biotic and abiotic factors interplay in structuring the dynamics of microbial co-occurrence patterns in tropical mountainsides. ENVIRONMENTAL RESEARCH 2024; 250:118517. [PMID: 38401680 DOI: 10.1016/j.envres.2024.118517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/26/2024]
Abstract
Ecological interactions are important for maintaining biodiversity and ecosystem functions. Particularly in stream biofilms, little is known about the distributional patterns of different taxonomic groups and their potential interactions along elevational gradients. Here, we investigated the bacterial and fungal community structures of stream biofilms across elevational gradients on Mount Kilimanjaro, and explored patterns of their distribution, diversity, community structures, and taxa co-occurrence. We found that fungal and bacterial richness were more convergent at higher elevations, while their community structures became significantly more divergent. Inferred network complexity and stability significantly decreased with increasing elevation for fungi, while an opposite trend was observed for bacteria. Further quantitative analyses showed that network structures of bacteria and fungi were more divergent as elevation increased. This pattern was strongly associated with shifts in abiotic factors, such as mean annual temperatures, water PO43--P, and stream width. By constructing bipartite networks, we showed the fungal-bacterial network to be less redundant, more clustering, and unstable with increasing elevation. Abiotic factors (e.g., temperatures and stream width) and microbial community properties (i.e., structure and composition) significantly explained the dynamic changes in fungal-bacterial network properties. Taken together, this study provides evidence for the interplay of biotic and abiotic factors structuring potential microbial interactions in stream biofilms along a mountainside elevational gradient.
Collapse
Affiliation(s)
- Hao Wu
- College of Oceanography, Hohai University, Nanjing, 210098, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Tianheng Gao
- College of Oceanography, Hohai University, Nanjing, 210098, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China.
| | - Francisco Dini-Andreote
- Department of Plant Science & Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA; The One Health Microbiome Center, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Nengwen Xiao
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lu Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ismael Aaron Kimirei
- Tanzania Fisheries Research Institute, Headquarter, Dar Es Salaam, P.O. Box 9750, Tanzania
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
7
|
Schulz R, Bundschuh M, Entling MH, Jungkunst HF, Lorke A, Schwenk K, Schäfer RB. A synthesis of anthropogenic stress effects on emergence-mediated aquatic-terrestrial linkages and riparian food webs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168186. [PMID: 37914130 DOI: 10.1016/j.scitotenv.2023.168186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Anthropogenic stress alters the linkage between aquatic and terrestrial ecosystems in various ways. Here, we review the contemporary literature on how alterations in aquatic systems through environmental pollution, invasive species and hydromorphological changes carry-over to terrestrial ecosystems and the food webs therein. We consider both the aquatic insect emergence and flooding as pathways through which stressors can propagate from the aquatic to the terrestrial system. We specifically synthesize and contextualize results on the roles of pollutants in the emergence pathway and their top-down consequences. Our review revealed that the emergence and flooding pathway are only considered in isolation and that the overall effects of invasive species or pollutants on food webs at the water-land interface require further attention. While very few recent studies looked at invasive species, a larger number of studies focused on metal transfer compared to pesticides, pharmaceuticals or PCBs, and multiple stress studies up to now left aquatic-terrestrial linkages unconsidered. Recent research on pollutants and emergence used aquatic-terrestrial mesocosms to elucidate the effects of aquatic stressors such as the mosquito control agent Bti, metals or pesticides to understand the effects on riparian spiders. Quality parameters, such as the structural and functional composition of emergent insect communities, the fatty acid profiles, yet also the composition of pollutants transferred to land prove to be important for the effects on riparian spiders. Process-based models including quality of emergence are useful to predict the resulting top-down directed food web effects in the terrestrial recipient ecosystem. In conclusion, we present and recommend a combination of empirical and modelling approaches in order to understand the complexity of aquatic-terrestrial stressor propagation and its spatial and temporal variation.
Collapse
Affiliation(s)
- Ralf Schulz
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany.
| | - Mirco Bundschuh
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany; Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Martin H Entling
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany
| | - Hermann F Jungkunst
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany
| | - Andreas Lorke
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany
| | - Klaus Schwenk
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany
| | - Ralf B Schäfer
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany
| |
Collapse
|
8
|
Qu Y, Keller V, Bachiller-Jareno N, Eastman M, Edwards F, Jürgens MD, Sumpter JP, Johnson AC. Significant improvement in freshwater invertebrate biodiversity in all types of English rivers over the past 30 years. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167144. [PMID: 37730070 DOI: 10.1016/j.scitotenv.2023.167144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023]
Abstract
There remains a persistent concern that freshwater biodiversity is in decline and being threatened by pollution. As the UK, and particularly England, is a densely populated nation with rivers of modest dilution capacity, this location is very suitable to examine how freshwater biodiversity has responded to human pressures over the past 30 years. A long-term dataset of 223,325 freshwater macroinvertebrate records from 1989 to 2018 for England was retrieved and examined. A sub-set of approximately 200 sites per English Region (1515 sites in total with 62,514 samples), with the longest and most consistent records were matched with predicted wastewater exposure, upstream land cover and terrain characteristics (latitude, altitude, slope gradient and flow discharge). To understand changes in macroinvertebrate diversity and sensitivity with respect to these parameters, the biotic indices of (i) overall family richness, (ii) Ephemeroptera, Plecoptera, Trichoptera (EPT) family richness, and (iii) the Biological Monitoring Working Party (BMWP) scores of NTAXA (number of scoring taxa) and (iv) ASPT (average score per taxon) were selected. A review of how close the BMWP scores come to those expected at minimally impacted reference sites was included. For all latitudes, altitudes, channel slope, river size, wastewater exposure levels, and differing proportions of upstream woodland, seminatural, arable and urban land cover, all diversity or sensitivity indices examined improved over this period, although this improvement has slowed in some cases post 2003. Mean overall family richness has increased from 15 to 25 family groups, a 66 % improvement. The improvement in mean EPT family richness (3 to 10 families, >300 % improvement), which are considered to be particularly sensitive to pollution, implies macroinvertebrate diversity has benefited from a national improvement in critical components of water quality.
Collapse
Affiliation(s)
- Yueming Qu
- UK Centre for Ecology and Hydrology, Wallingford OX10 8BB, UK
| | - Virginie Keller
- UK Centre for Ecology and Hydrology, Wallingford OX10 8BB, UK
| | - Nuria Bachiller-Jareno
- UK Centre for Ecology and Hydrology, Wallingford OX10 8BB, UK; University of Portsmouth, Portsmouth PO1 2UP, UK
| | - Michael Eastman
- UK Centre for Ecology and Hydrology, Wallingford OX10 8BB, UK; Met Office, Exeter, EX1 3PB, UK
| | - Francois Edwards
- UK Centre for Ecology and Hydrology, Wallingford OX10 8BB, UK; APEM Ltd, Chester CH4 0GZ, UK
| | | | | | | |
Collapse
|
9
|
Qin S, Li F, Zou Y, Xue J, Zhang Y, Yang Z. eDNA-based diversity and multitrophic network reveal the effects of land use and pollutants on the subtropical Dongjiang River systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122157. [PMID: 37454713 DOI: 10.1016/j.envpol.2023.122157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/20/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Biodiversity and its constituted multitrophic network in rivers are accelerating change under human land use and pollutants. However, due to the lack of complete datasets across taxa limited by traditional morphological biomonitoring, the change patterns of biodiversity and multitrophic networks are still unclear. Here, we used the eDNA approach to capture multitrophic communities (including fish, aquatic insects, protozoa, diatom and bacteria) in the Dongjiang River, a typical subtropical river in southeast China, and analyzed the changing patterns of biodiversity and multitrophic networks in relation to land use and water pollution. First, our data showed that the eDNA approach provided a snapshot of the multitrophic communities in the Dongjiang River, and the monitored 5833 OTUs were annotated to 55 phyla, 144 classes, 329 orders, 521 families, 945 genera and 406 species. Second, the multitrophic diversity index had similar patterns on the longitudinal scale of rivers, with significant decreases from the upstream to the downstream, while individual taxonomic groups exhibited variable spatial patterns. While there were similar spatial patterns between network metrics and diversity index, the former had stronger relationships with the spatial distance. Third, the multitrophic diversity and networks were significantly negatively correlated with land use and water pollution (e.g., CODMn), and network structures often had stronger and non-linear responses. Overall, this study highlights that eDNA biomonitoring of multitrophic communities and networks can provide deeper insights into ecosystem changes and help develop more targeted management strategies.
Collapse
Affiliation(s)
- Shan Qin
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Feilong Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanting Zou
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jingchuan Xue
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yuan Zhang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Zhifeng Yang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| |
Collapse
|
10
|
Li F, Zhang Y, Altermatt F, Yang J, Zhang X. Destabilizing Effects of Environmental Stressors on Aquatic Communities and Interaction Networks across a Major River Basin. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7828-7839. [PMID: 37155929 DOI: 10.1021/acs.est.3c00456] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Human-driven environmental stressors are increasingly threatening species survival and diversity of river systems worldwide. However, it remains unclear how the stressors affect the stability changes across aquatic multiple communities. Here, we used environmental DNA (eDNA) data sets from a human-dominated river in China over 3 years and analyzed the stability changes in multiple communities under persistent anthropogenic stressors, including land use and pollutants. First, we found that persistent stressors significantly reduced multifaceted species diversity (e.g., species richness, Shannon's diversity, and Simpson's diversity) and species stability but increased species synchrony across multiple communities. Second, the structures of interaction networks inferred from an empirical meta-food web were significantly changed under persistent stressors, for example, resulting in decreased network modularity and negative/positive cohesion. Third, piecewise structural equation modeling proved that the persistent stress-induced decline in the stability of multiple communities mainly depended upon diversity-mediated pathways rather than the direct effects of stress per se; specifically, the increase of species synchrony and the decline of interaction network modularity were the main biotic drivers of stability variation. Overall, our study highlights the destabilizing effects of persistent stressors on multiple communities as well as the mechanistic dependencies, mainly through reducing species diversity, increasing species synchrony, and changing interaction networks.
Collapse
Affiliation(s)
- Feilong Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | - Yan Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Florian Altermatt
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
| | - Jianghua Yang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| |
Collapse
|