1
|
Stockwell CA, Thang M, Kram DE, Satterlee AB, Hingtgen S. Therapeutic approaches for targeting the pediatric brain tumor microenvironment. Drug Deliv Transl Res 2025:10.1007/s13346-025-01839-3. [PMID: 40257744 DOI: 10.1007/s13346-025-01839-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2025] [Indexed: 04/22/2025]
Abstract
Central nervous system (CNS) tumors are the most frequent solid malignant tumors in pediatric patients and are the leading cause of tumor-related death in children. Treatment for this heterogeneous group of tumors consists of various combinations of safe maximal surgical resection, chemotherapy, and radiation therapy which offer a cure for some children but often cause debilitating adverse late effects in others. While therapies targeting the tumor microenvironment (TME) like immune checkpoint inhibition (ICI) have been successful in treating some cancers, these therapies failed to exhibit treatment efficacy in the majority of pediatric brain tumors in the clinic. Importantly, the pediatric TME is unique and distinct from adult brain tumors and designing therapies to effectively target these tumors requires understanding the unique biology of pediatric brain tumors and the use of translational models that recapitulate the TME. Here we describe the TME of medulloblastoma (MB) and diffuse midline glioma (DMG), specifically diffuse intrinsic pontine glioma (DIPG), and further present the current drug delivery approaches and clinical administration routes targeting the TME in these tumors, including preclinical and clinical studies.
Collapse
Affiliation(s)
- Caroline A Stockwell
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Morrent Thang
- Neuroscience Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David E Kram
- Division of Pediatric Hematology-Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew B Satterlee
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Eshelman Innovation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shawn Hingtgen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
2
|
Mahin A, Gopalakrishnan AP, Ahmed M, Nisar M, John L, Shivamurthy PB, Ummar S, Varghese S, Modi PK, Pai VR, Prasad TSK, Raju R. Orchestrating Intracellular Calcium Signaling Cascades by Phosphosite-Centric Regulatory Network: A Comprehensive Analysis on Kinases CAMKK1 and CAMKK2. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2025; 29:139-153. [PMID: 40079160 DOI: 10.1089/omi.2024.0196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Intracellular calcium signaling is a cornerstone in cell biology and a key molecular target for human health and disease. Calcium/calmodulin dependent protein kinase kinases, CAMKK1 and CAMKK2 are serine/threonine kinases that contribute to the regulation of intracellular calcium signals in response to diverse stimuli. CAMKK1 generally has stable dynamics, whereas CAMKK2 dysregulation triggers oncogenicity and neurological disorders. To differentiate the phosphosignaling hierarchy associated with predominant phosphosites of CAMKK1 and CAMKK2, we assembled and analyzed the global cellular phosphoproteome datasets. We found that predominant phosphosites in CAMKK1 and CAMKK2 are located outside the kinase domain, and their phosphomotifs are highly homologous. Further, we employed a coregulation analysis approach to these predominant phosphosites, to infer the co-occurrence patterns of phosphorylations within CAMKKs and the coregulation patterns of other protein phosphosites with CAMKK sites. We report herein that independent phosphorylations at CAMKK2 S100 and S511 increase their enzymatic activity in the presence of calcium/calmodulin. In addition, the study unveils kinase-substrate associations such as RPS6KB1 as a novel high-confidence upstream kinase of both CAMKK1 S74 and CAMKK2 S100. Further, CAMKK2 was identified as a primary orchestrator in mediating intracellular calcium signaling cascades compared to CAMKK1 based on coregulation patterns of phosphosites from proteins involved in the calcium signaling pathway. These molecular details shed promising insights into the pathophysiology of several diseases such as cancers and psychiatric disorders associated with kinase activity dysregulations of CAMKK2 and further open the avenue for novel PTM-directed therapeutic strategies to regulate CAMKK2.
Collapse
Affiliation(s)
- Althaf Mahin
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, India
- Center for Systems Biology and Molecular Medicine (CSBMM) [an ICMR-Collaborating Centre of Excellence (ICMR-CCoE 2024)], Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Athira Perunelly Gopalakrishnan
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, India
- Center for Systems Biology and Molecular Medicine (CSBMM) [an ICMR-Collaborating Centre of Excellence (ICMR-CCoE 2024)], Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Mukhtar Ahmed
- Department of Zoology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mahammed Nisar
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, India
| | - Levin John
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, India
| | | | - Samseera Ummar
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, India
| | - Susmi Varghese
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, India
| | - Prashant Kumar Modi
- Center for Systems Biology and Molecular Medicine (CSBMM) [an ICMR-Collaborating Centre of Excellence (ICMR-CCoE 2024)], Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Vinitha Ramanath Pai
- Department of Biochemistry, Yenepoya Medical College, Yenepoya (Deemed to be University), Mangaluru, India
| | - Thottethodi Subrahmanya Keshava Prasad
- Center for Systems Biology and Molecular Medicine (CSBMM) [an ICMR-Collaborating Centre of Excellence (ICMR-CCoE 2024)], Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Rajesh Raju
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, India
- Center for Systems Biology and Molecular Medicine (CSBMM) [an ICMR-Collaborating Centre of Excellence (ICMR-CCoE 2024)], Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| |
Collapse
|
3
|
Guan Y, Zhang M, Song J, Negrete M, Adcock T, Kandel R, Racioppi L, Gerecht S. CaMKK2 Regulates Macrophage Polarization Induced by Matrix Stiffness: Implications for Shaping the Immune Response in Stiffened Tissues. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2417778. [PMID: 40036145 PMCID: PMC12021110 DOI: 10.1002/advs.202417778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/13/2025] [Indexed: 03/06/2025]
Abstract
Macrophages are essential for immune responses and maintaining tissue homeostasis, exhibiting a wide range of phenotypes depending on their microenvironment. The extracellular matrix (ECM) is a vital component that provides structural support and organization to tissues, with matrix stiffness acting as a key regulator of macrophage behavior. Using physiologically relevant 3D stiffening hydrogel models, it is found that increased matrix stiffness alone promoted macrophage polarization toward a pro-regenerative phenotype, mimicking the effect of interleukin-4(IL-4) in softer matrices. Blocking Calcium/calmodulin-dependent kinase kinase 2 (CaMKK2) selectively inhibited stiffness-induced macrophage polarization without affecting IL-4-driven pro-regenerative pathways. In functional studies, CaMKK2 deletion prevented M2-like/pro-tumoral polarization caused by matrix stiffening, which in turn hindered tumor growth. In a murine wound healing model, loss of CaMKK2 impaired matrix stiffness-mediated macrophage accumulation, ultimately disrupting vascularization. These findings highlight the critical role of CaMKK2 in the macrophage mechanosensitive fate determination and gene expression program, positioning this kinase as a promising therapeutic target to selectively modulate macrophage responses in pathologically stiff tissues.
Collapse
Affiliation(s)
- Ya Guan
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Min Zhang
- Division of Hematological Malignancies and Cellular TherapyDepartment of MedicineDuke University Medical CenterDurhamNC27708USA
| | - Jiyeon Song
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Marcos Negrete
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Tyler Adcock
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Reeva Kandel
- Division of Hematological Malignancies and Cellular TherapyDepartment of MedicineDuke University Medical CenterDurhamNC27708USA
| | - Luigi Racioppi
- Division of Hematological Malignancies and Cellular TherapyDepartment of MedicineDuke University Medical CenterDurhamNC27708USA
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Naples Federico IINaplesItaly
| | - Sharon Gerecht
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| |
Collapse
|
4
|
Lunavat TR, Nieland L, van de Looij SM, de Reus AJEM, Couturier CP, Farran CAE, Miller TE, Lill JK, Schübel M, Xiao T, Ianni ED, Woods EC, Sun Y, Rufino-Ramos D, van Solinge TS, Mahjoum S, Grandell E, Li M, Mangena V, Dunn GP, Jenkins RW, Mempel TR, Breakefield XO, Breyne K. Intratumoral gene delivery of 4-1BBL boosts IL-12-triggered anti-glioblastoma immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.03.636330. [PMID: 39975249 PMCID: PMC11838556 DOI: 10.1101/2025.02.03.636330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The standard of care in high-grade gliomas has remained unchanged in the past 20 years. Efforts to replicate effective immunotherapies in non-cranial tumors have led to only modest therapeutical improvements in glioblastoma (GB). Here, we demonstrate that intratumoral administration of recombinant interleukin-12 (rIL-12) promotes local cytotoxic CD8 POS T cell accumulation and conversion into an effector-like state, resulting in a dose-dependent survival benefit in preclinical GB mouse models. This tumor-reactive CD8 T cell response is further supported by intratumoral rIL-12-sensing dendritic cells (DCs) and is accompanied by the co-stimulatory receptor 4-1BB expression on both cell types. Given that DCs and CD8 POS T cells are functionally suppressed in the tumor microenvironments of de novo and recurrent glioma patients, we tested whether anti-tumor response at the rIL-12-inflamed tumor site could be enhanced with 4-1BBL, the ligand of 4-1BB. 4-1BBL was delivered using an adeno-associated virus (AAV) vector targeting GFAP-expressing cells and resulted in prolonged survival of rIL-12 treated GB-bearing mice. This study establishes that tumor antigen-specific CD8 T cell activity can be directed using an AAV-vector-mediated gene therapy approach, effectively enhancing anti-GB immunity.
Collapse
|
5
|
Waibl Polania J, Hoyt-Miggelbrink A, Tomaszewski WH, Wachsmuth LP, Lorrey SJ, Wilkinson DS, Lerner E, Woroniecka K, Finlay JB, Ayasoufi K, Fecci PE. Antigen presentation by tumor-associated macrophages drives T cells from a progenitor exhaustion state to terminal exhaustion. Immunity 2025; 58:232-246.e6. [PMID: 39724910 DOI: 10.1016/j.immuni.2024.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/26/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024]
Abstract
Whereas terminally exhausted T (Tex_term) cells retain anti-tumor cytotoxic functions, the frequencies of stem-like progenitor-exhausted T (Tex_prog) cells better reflect immunotherapeutic responsivity. Here, we examined the intratumoral cellular interactions that govern the transition to terminal T cell exhaustion. We defined a metric reflecting the intratumoral progenitor exhaustion-to-terminal exhaustion ratio (PETER), which decreased with tumor progression in solid cancers. Single-cell analyses of Tex_prog cells and Tex_term cells in glioblastoma (GBM), a setting of severe T cell exhaustion, revealed disproportionate loss of Tex_prog cells over time. Exhaustion concentrated within tumor-specific T cell subsets, with cognate antigen exposure requisite for acquisition of the Tex_term phenotype. Tumor-associated macrophages (TAMs)-not tumor cells-were the primary source of antigenic exposure governing the Tex_prog to Tex_term transition. TAM depletion increased frequencies of Tex_prog cells in multiple tumor models, increased PETER, and promoted responsiveness to αPD1 immunotherapy. Thus, targeting TAM-T cell interactions may further license checkpoint blockade responses.
Collapse
Affiliation(s)
| | | | | | - Lucas P Wachsmuth
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Medical Scientist Training Program, Duke University School of Medicine, Durham, NC 27710, USA
| | - Selena J Lorrey
- Department of Immunology, Duke University, Durham, NC 27710, USA
| | - Daniel S Wilkinson
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Emily Lerner
- Duke Medical Scientist Training Program, Duke University School of Medicine, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Karolina Woroniecka
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - John B Finlay
- Duke Medical Scientist Training Program, Duke University School of Medicine, Durham, NC 27710, USA
| | - Katayoun Ayasoufi
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Peter E Fecci
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
6
|
Tian R, Tang S, Zhao J, Hao Y, Zhao L, Han X, Wang X, Zhang L, Li R, Zhou X. β-Hydroxybutyrate Protects Against Cisplatin-Induced Renal Damage via Regulating Ferroptosis. Ren Fail 2024; 46:2354918. [PMID: 38757723 PMCID: PMC11104694 DOI: 10.1080/0886022x.2024.2354918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/08/2024] [Indexed: 05/18/2024] Open
Abstract
Cisplatin is a particularly potent antineoplastic drug. However, its usefulness is restricted due to the induction of nephrotoxicity. More recent research has indicated that β-hydroxybutyrate (β-HB) protects against acute or chronic organ damage as an efficient healing agent. Nonetheless, the therapeutic mechanisms of β-HB in acute kidney damage caused by chemotherapeutic drugs remain unclear. Our study developed a model of cisplatin-induced acute kidney injury (AKI), which involved the administration of a ketogenic diet or β-HB. We analyzed blood urea nitrogen (BUN) and creatinine (Cr) levels in serum, and used western blotting and immunohistochemical staining to assess ferroptosis and the calcium/calmodulin-dependent kinase kinase 2 (Camkk2)/AMPK pathway. The mitochondrial morphology and function were examined. Additionally, we conducted in vivo and in vitro experiments using selective Camkk2 inhibitor or activator to investigate the protective mechanism of β-HB on cisplatin-induced AKI. Exogenous or endogenous β-HB effectively alleviated cisplatin-induced abnormally elevated levels of BUN and Cr and renal tubular necrosis in vivo. Additionally, β-HB reduced ferroptosis biomarkers and increased the levels of anti-ferroptosis biomarkers in the kidney. β-HB also improved mitochondrial morphology and function. Moreover, β-HB significantly attenuated cisplatin-induced cell ferroptosis and damage in vitro. Furthermore, western blotting and immunohistochemical staining indicated that β-HB may prevent kidney injury by regulating the Camkk2-AMPK pathway. The use of the Camkk2 inhibitor or activator verified the involvement of Camkk2 in the renal protection by β-HB. This study provided evidence of the protective effects of β-HB against cisplatin-induced nephrotoxicity and identified inhibited ferroptosis and Camkk2 as potential molecular mechanisms.
Collapse
Affiliation(s)
- Ruixue Tian
- Department of Nephrology, Shanxi Provincial People’s Hospital; The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Shuqin Tang
- Department of Nephrology, Shanxi Provincial People’s Hospital; The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Jingyu Zhao
- The Third Clinical Medical College, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Yajie Hao
- Department of Nephrology, Shanxi Provincial People’s Hospital; The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Limei Zhao
- Department of Nephrology, Shanxi Provincial People’s Hospital; The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Xiutao Han
- The Third Clinical Medical College, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Xingru Wang
- Department of Nephrology, Shanxi Provincial People’s Hospital; The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Lijun Zhang
- Department of Nephrology, Shanxi Provincial People’s Hospital; The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Rongshan Li
- Department of Nephrology, Shanxi Provincial People’s Hospital; The Fifth Clinical Medical College of Shanxi Medical University; Shanxi Kidney Disease Institute, Taiyuan, China
| | - Xiaoshuang Zhou
- Department of Nephrology, Shanxi Provincial People’s Hospital; The Fifth Clinical Medical College of Shanxi Medical University; Shanxi Kidney Disease Institute, Taiyuan, China
| |
Collapse
|
7
|
Khan M, Huang X, Ye X, Zhang D, Wang B, Xu A, Li R, Ren A, Chen C, Song J, Zheng R, Yuan Y, Lin J. Necroptosis-based glioblastoma prognostic subtypes: implications for TME remodeling and therapy response. Ann Med 2024; 56:2405079. [PMID: 39387496 PMCID: PMC11469424 DOI: 10.1080/07853890.2024.2405079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/14/2024] [Accepted: 08/28/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is an aggressive primary brain tumor with a high recurrence rate and poor prognosis. Necroptosis, a pathological hallmark of GBM, is poorly understood in terms of its role in prognosis, tumor microenvironment (TME) alteration, and immunotherapy. METHODS & RESULTS We assessed the expression of 55 necroptosis-related genes in GBM and normal brain tissues. We identified necroptosis-stratified clusters using Uni-Cox and Least Absolute Shrinkage and Selection Operator (LASSO) regression to establish the 10-gene Glioblastoma Necroptosis Index (GNI). GNI demonstrated significant prognostic efficacy in the TCGA dataset (n = 160) and internal validation dataset (n = 345) and in external validation cohorts (n = 591). The GNI-high subgroup displayed a mesenchymal phenotype, lacking the IDH1 mutation, and MGMT methylation. This subgroup was characterized by significant enrichment in inflammatory and humoral immune pathways with prominent cell adhesion molecules (CD44 and ICAM1), inflammatory cytokines (TGFB1, IL1B, and IL10), and chemokines (CX3CL1, CXCL9, and CCL5). The TME in this subgroup showed elevated infiltration of M0 macrophages, neutrophils, mast cells, and regulatory T cells. GNI-related genes appeared to limit macrophage polarization, as confirmed by immunohistochemistry and flow cytometry. The top 30% high-risk score subset exhibited increased CD8 T cell infiltration and enhanced cytolytic activity. GNI showed promise in predicting responses to immunotherapy and targeted treatment. CONCLUSIONS Our study highlights the role of necroptosis-related genes in glioblastoma (GBM) and their effects on the tumor microenvironment and patient prognosis. TheGNI demonstrates potential as a prognostic marker and provides insights into immune characteristics and treatment responsiveness.
Collapse
Affiliation(s)
- Muhammad Khan
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Xiuting Huang
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Xiaoxin Ye
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Donghui Zhang
- Department of Pathology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Baiyao Wang
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Anan Xu
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Rong Li
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Anbang Ren
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Chengcong Chen
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jingjing Song
- Department of Pathology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Rong Zheng
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors, Fujian Medical University, Fuzhou, People’s Republic of China
- Clinical Research Center for Radiology and Radiotherapy of Fujian Province (Digestive, Hematological and Breast Malignancies), Fuzhou, People’s Republic of China
| | - Yawei Yuan
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jie Lin
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
8
|
Jin S, Wang Y, Hu S, Yan G. The prognostic value and immunological role of calcium/calmodulin dependent protein kinase kinase 2 (CAMKK2) in pan-cancer study. Medicine (Baltimore) 2024; 103:e40072. [PMID: 39465821 PMCID: PMC11479412 DOI: 10.1097/md.0000000000040072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 09/25/2024] [Indexed: 10/29/2024] Open
Abstract
A thorough assessment of calcium/calmodulin dependent protein kinase kinase 2 (CAMKK2) in pan-cancer studies is currently absent. We integrate multi-omics and clinical data to conduct a molecular landscape of CAMKK2. Gene variation results revealed abnormal high frequency mutations of CAMKK2 in uterine corpus endometrial carcinoma, while expression level analysis demonstrated relatively high expression of CAMKK2 in prostate adenocarcinoma. The aberrant expression of CAMKK2 was found to be predictive of survival outcomes in several cancer types. Additionally, we identified potential regulators of CAMKK2 expression, including miRNAs such as miR.129.1.3p, as well as small-molecule drugs such as EPZ004777, which significantly correlated with CAMKK2 expression. Single-cell transcriptome analysis of kidney renal clear cell carcinoma further revealed a significantly higher expression of CAMKK2 in and monocyte and macrophage M1. Furthermore, in the kidney renal clear cell carcinoma IMvigor210 cohort, patients ongoing immunotherapy with higher CAMKK2 expression experienced a significantly longer median overall survival, but it was observed that in bladder urothelial carcinoma GSE176307 and skin cutaneous melanoma GSE78220 cohorts, CAMKK2 might significantly prolong overall survival. Briefly, CAMKK2 emerges as a promising molecular biomarker that holds potential implications for prognostic evaluation and predicting the effectiveness of immunotherapy across cancers.
Collapse
Affiliation(s)
- Senjun Jin
- Department of Emergency Medicine, Emergency and Critical Care Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yanyan Wang
- Department of Clinical Laboratory, Laboratory Medicine Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Sheng’an Hu
- Department of Emergency Medicine, Emergency and Critical Care Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Guangzhao Yan
- Department of Emergency Medicine, Emergency and Critical Care Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Di L, Li M, Lei X, Xie W, Liu G, Wang Y, Zhang W, Zhu WG. Caspase-4 in glioma indicates deterioration and unfavorable prognosis by affecting tumor cell proliferation and immune cell recruitment. Sci Rep 2024; 14:17443. [PMID: 39075190 PMCID: PMC11286837 DOI: 10.1038/s41598-024-65018-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/16/2024] [Indexed: 07/31/2024] Open
Abstract
Gliomas are the most common malignant tumors of the central nervous system, accounting for approximately 80% of all malignant brain tumors. Accumulating evidence suggest that pyroptosis plays an essential role in the progression of cancer. Unfortunately, the effect of the pyroptosis-related factor caspase-4 (CASP4) on immunotherapy and drug therapy for tumors has not been comprehensively investigated. In this study, we systematically screened six hub genes by pooling differential pyroptosis-related genes in The Cancer Genome Atlas (TCGA) glioma data and the degree of centrality of index-related genes in the protein-protein interaction network. We performed functional and pathway enrichment analyses of the six hub genes to explore their biological functions and potential molecular mechanisms. We then investigated the importance of CASP4 using Kaplan-Meier survival analysis of glioma patients. TCGA and the Chinese Glioma Genome Atlas (CGGA) databases showed that reduced CASP4 expression leads to the potent clinical deterioration of glioma patients. Computational analysis of the effect of CASP4 on the infiltration level and recruitment of glioma immune cells revealed that CASP4 expression was closely associated with a series of tumor-suppressive immune checkpoint molecules, chemokines, and chemokine receptors. We also found that aberrant CASP4 expression correlated with chemotherapeutic drug sensitivity. Finally, analysis at the cellular and tissue levels indicated an increase in CASP4 expression in glioma, and that CASP4 inhibition significantly inhibited the proliferation of glioma cells. Thus, CASP4 is implicated as a new prognostic biomarker for gliomas with the potential to further guide immunotherapy and chemotherapy strategies for glioma patients.
Collapse
Affiliation(s)
- Longjiang Di
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Mengyan Li
- Guangdong Key Laboratory of Genomic Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen, 518055, China
| | - Xianli Lei
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Faculty of Medicine, Peking University, Beijing, 100191, China
| | - Wenting Xie
- Department of Clinical Laboratory, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China
| | - Guoqiang Liu
- Department of Clinical Laboratory, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China
| | - Yongqing Wang
- Division of Rheumatology and Immunology, University of Toledo Medical Center, Toledo, OH, 43614, USA
| | - Wenjing Zhang
- Department of Clinical Laboratory, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China.
| | - Wei-Guo Zhu
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Key Laboratory of Genomic Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen, 518055, China.
- College of Basic Medical Sciences, Wan Nan Medical College, Wuhu, 241006, China.
- International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, 518055, China.
| |
Collapse
|
10
|
Zhang W, Lu L, Zhu Z, Deng F, Zhang W, Wang F, Zeng P, Shi H, Wang T, Chen Y, Song Y, Liu Y, Kang T, Li K, Mao J, Liu Z, Zhang L. A Manganese-Based Nanodriver Coordinates Tumor Prevention and Suppression through STING Activation in Glioblastoma. Adv Healthc Mater 2024; 13:e2400421. [PMID: 38576069 DOI: 10.1002/adhm.202400421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/23/2024] [Indexed: 04/06/2024]
Abstract
Glioblastoma (GBM), the most prevalent and aggressive primary malignant brain tumor, exhibits profound immunosuppression and demonstrates a low response rate to current immunotherapy strategies. Manganese cations (Mn2+) directly activate the cGAS/STING pathway and induce the unique catalytic synthesis of 2'3'-cGAMP to facilitate type I IFN production, thereby enhancing innate immunity. Here, a telodendrimer and Mn2+-based nanodriver (PLHM) with a small size is developed, which effectively target lymph nodes through the blood circulation and exhibit tumor-preventive effects at low doses of Mn2+ (3.7 mg kg-1). On the other hand, the PLHM nanodriver also exhibits apparent antitumor effects in GBM-bearing mice via inducing in vivo innate immune responses. The combination of PLHM with doxorubicin nanoparticles (PLHM-DOX NPs) results in superior inhibition of tumor growth in GBM-bearing mice due to the synergistic potentiation of STING pathway functionality by Mn2+ and the presence of cytoplasmic DNA. These findings demonstrate that PLHM-DOX NPs effectively stimulate innate immunity, promote dendritic cell maturation, and orchestrate cascaded infiltration of CD8 cytotoxic T lymphocytes within glioblastomas characterized by low immunogenicity. These nanodivers chelated with Mn2+ show promising potential for tumor prevention and antitumor effects on glioblastoma by activating the STING pathway.
Collapse
Affiliation(s)
- Wenyuan Zhang
- Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, 518000, China
- Department of Neurosurgery, Longgang Central Hospital of Shenzhen, Shenzhen, 518116, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Liejing Lu
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zheng Zhu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shanxi, 710032, China
| | - Fuan Deng
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wenchang Zhang
- Department of Neurosurgery, Longgang Central Hospital of Shenzhen, Shenzhen, 518116, China
| | - Fengyi Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ping Zeng
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Haonan Shi
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Tong Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yichi Chen
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yue Song
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yiping Liu
- Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, 518000, China
- Department of Neurosurgery, Longgang Central Hospital of Shenzhen, Shenzhen, 518116, China
| | - Tianze Kang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Kai Li
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jie Mao
- Department of Neurosurgery, Longgang Central Hospital of Shenzhen, Shenzhen, 518116, China
| | - Zhengwei Liu
- Department of Neurosurgery, Longgang Central Hospital of Shenzhen, Shenzhen, 518116, China
| | - Lu Zhang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
11
|
Kang I, Kim Y, Lee HK. γδ T cells as a potential therapeutic agent for glioblastoma. Front Immunol 2023; 14:1273986. [PMID: 37928546 PMCID: PMC10623054 DOI: 10.3389/fimmu.2023.1273986] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Although γδ T cells comprise a small population of T cells, they perform important roles in protecting against infection and suppressing tumors. With their distinct tissue-localizing properties, combined with their various target recognition mechanisms, γδ T cells have the potential to become an effective solution for tumors that do not respond to current therapeutic procedures. One such tumor, glioblastoma (GBM), is a malignant brain tumor with the highest World Health Organization grade and therefore the worst prognosis. The immune-suppressive tumor microenvironment (TME) and immune-evasive glioma stem cells are major factors in GBM immunotherapy failure. Currently, encouraged by the strong anti-tumoral function of γδ T cells revealed at the preclinical and clinical levels, several research groups have shown progression of γδ T cell-based GBM treatment. However, several limitations still exist that block effective GBM treatment using γδ T cells. Therefore, understanding the distinct roles of γδ T cells in anti-tumor immune responses and the suppression mechanism of the GBM TME are critical for successful γδ T cell-mediated GBM therapy. In this review, we summarize the effector functions of γδ T cells in tumor immunity and discuss current advances and limitations of γδ T cell-based GBM immunotherapy. Additionally, we suggest future directions to overcome the limitations of γδ T cell-based GBM immunotherapy to achieve successful treatment of GBM.
Collapse
Affiliation(s)
- In Kang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Yumin Kim
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| |
Collapse
|
12
|
Gardam B, Gargett T, Brown MP, Ebert LM. Targeting the dendritic cell-T cell axis to develop effective immunotherapies for glioblastoma. Front Immunol 2023; 14:1261257. [PMID: 37928547 PMCID: PMC10623138 DOI: 10.3389/fimmu.2023.1261257] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Glioblastoma is an aggressive primary brain tumor that has seen few advances in treatments for over 20 years. In response to this desperate clinical need, multiple immunotherapy strategies are under development, including CAR-T cells, immune checkpoint inhibitors, oncolytic viruses and dendritic cell vaccines, although these approaches are yet to yield significant clinical benefit. Potential reasons for the lack of success so far include the immunosuppressive tumor microenvironment, the blood-brain barrier, and systemic changes to the immune system driven by both the tumor and its treatment. Furthermore, while T cells are essential effector cells for tumor control, dendritic cells play an equally important role in T cell activation, and emerging evidence suggests the dendritic cell compartment may be deeply compromised in glioblastoma patients. In this review, we describe the immunotherapy approaches currently under development for glioblastoma and the challenges faced, with a particular emphasis on the critical role of the dendritic cell-T cell axis. We suggest a number of strategies that could be used to boost dendritic cell number and function and propose that the use of these in combination with T cell-targeting strategies could lead to successful tumor control.
Collapse
Affiliation(s)
- Bryan Gardam
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Translational Oncology Laboratory, Centre for Cancer Biology, University of South Australia and South Australia (SA) Pathology, Adelaide, SA, Australia
| | - Tessa Gargett
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Translational Oncology Laboratory, Centre for Cancer Biology, University of South Australia and South Australia (SA) Pathology, Adelaide, SA, Australia
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Michael P. Brown
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Translational Oncology Laboratory, Centre for Cancer Biology, University of South Australia and South Australia (SA) Pathology, Adelaide, SA, Australia
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Lisa M. Ebert
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Translational Oncology Laboratory, Centre for Cancer Biology, University of South Australia and South Australia (SA) Pathology, Adelaide, SA, Australia
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
| |
Collapse
|
13
|
Sharma S, Chepurna O, Sun T. Drug resistance in glioblastoma: from chemo- to immunotherapy. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:688-708. [PMID: 38239396 PMCID: PMC10792484 DOI: 10.20517/cdr.2023.82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/07/2023] [Accepted: 09/25/2023] [Indexed: 01/22/2024]
Abstract
As the most common and aggressive type of primary brain tumor in adults, glioblastoma is estimated to end over 10,000 lives each year in the United States alone. Stand treatment for glioblastoma, including surgery followed by radiotherapy and chemotherapy (i.e., Temozolomide), has been largely unchanged since early 2000. Cancer immunotherapy has significantly shifted the paradigm of cancer management in the past decade with various degrees of success in treating many hematopoietic cancers and some solid tumors, such as melanoma and non-small cell lung cancer (NSCLC). However, little progress has been made in the field of neuro-oncology, especially in the application of immunotherapy to glioblastoma treatment. In this review, we attempted to summarize the common drug resistance mechanisms in glioblastoma from Temozolomide to immunotherapy. Our intent is not to repeat the well-known difficulty in the area of neuro-oncology, such as the blood-brain barrier, but to provide some fresh insights into the molecular mechanisms responsible for resistance by summarizing some of the most recent literature. Through this review, we also hope to share some new ideas for improving the immunotherapy outcome of glioblastoma treatment.
Collapse
Affiliation(s)
| | | | - Tao Sun
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
14
|
Tao JC, Yu D, Shao W, Zhou DR, Wang Y, Hou SQ, Deng K, Lin N. Interactions between microglia and glioma in tumor microenvironment. Front Oncol 2023; 13:1236268. [PMID: 37700840 PMCID: PMC10493873 DOI: 10.3389/fonc.2023.1236268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023] Open
Abstract
Gliomas, the most prevalent primary tumors in the central nervous system, are marked by their immunosuppressive properties and consequent poor patient prognosis. Current evidence emphasizes the pivotal role of the tumor microenvironment in the progression of gliomas, largely attributed to tumor-associated macrophages (brain-resident microglia and bone marrow-derived macrophages) that create a tumor microenvironment conducive to the growth and invasion of tumor cells. Yet, distinguishing between these two cell subgroups remains a challenge. Thus, our review starts by analyzing the heterogeneity between these two cell subsets, then places emphasis on elucidating the complex interactions between microglia and glioma cells. Finally, we conclude with a summary of current attempts at immunotherapy that target microglia. However, given that independent research on microglia is still in its initial stages and has many shortcomings at the present time, we express our related concerns and hope that further research will be carried out to address these issues in the future.
Collapse
Affiliation(s)
- Jin-Cheng Tao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dong Yu
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People’s Hospital of Chuzhou, Chuzhou, Anhui, China
| | - Wei Shao
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People’s Hospital of Chuzhou, Chuzhou, Anhui, China
| | - Dong-Rui Zhou
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People’s Hospital of Chuzhou, Chuzhou, Anhui, China
| | - Yu Wang
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People’s Hospital of Chuzhou, Chuzhou, Anhui, China
| | - Shi-Qiang Hou
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People’s Hospital of Chuzhou, Chuzhou, Anhui, China
| | - Ke Deng
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Lin
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People’s Hospital of Chuzhou, Chuzhou, Anhui, China
| |
Collapse
|
15
|
Meadows JRS, Kidd JM, Wang GD, Parker HG, Schall PZ, Bianchi M, Christmas MJ, Bougiouri K, Buckley RM, Hitte C, Nguyen AK, Wang C, Jagannathan V, Niskanen JE, Frantz LAF, Arumilli M, Hundi S, Lindblad-Toh K, Ginja C, Agustina KK, André C, Boyko AR, Davis BW, Drögemüller M, Feng XY, Gkagkavouzis K, Iliopoulos G, Harris AC, Hytönen MK, Kalthoff DC, Liu YH, Lymberakis P, Poulakakis N, Pires AE, Racimo F, Ramos-Almodovar F, Savolainen P, Venetsani S, Tammen I, Triantafyllidis A, vonHoldt B, Wayne RK, Larson G, Nicholas FW, Lohi H, Leeb T, Zhang YP, Ostrander EA. Genome sequencing of 2000 canids by the Dog10K consortium advances the understanding of demography, genome function and architecture. Genome Biol 2023; 24:187. [PMID: 37582787 PMCID: PMC10426128 DOI: 10.1186/s13059-023-03023-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 07/25/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND The international Dog10K project aims to sequence and analyze several thousand canine genomes. Incorporating 20 × data from 1987 individuals, including 1611 dogs (321 breeds), 309 village dogs, 63 wolves, and four coyotes, we identify genomic variation across the canid family, setting the stage for detailed studies of domestication, behavior, morphology, disease susceptibility, and genome architecture and function. RESULTS We report the analysis of > 48 M single-nucleotide, indel, and structural variants spanning the autosomes, X chromosome, and mitochondria. We discover more than 75% of variation for 239 sampled breeds. Allele sharing analysis indicates that 94.9% of breeds form monophyletic clusters and 25 major clades. German Shepherd Dogs and related breeds show the highest allele sharing with independent breeds from multiple clades. On average, each breed dog differs from the UU_Cfam_GSD_1.0 reference at 26,960 deletions and 14,034 insertions greater than 50 bp, with wolves having 14% more variants. Discovered variants include retrogene insertions from 926 parent genes. To aid functional prioritization, single-nucleotide variants were annotated with SnpEff and Zoonomia phyloP constraint scores. Constrained positions were negatively correlated with allele frequency. Finally, the utility of the Dog10K data as an imputation reference panel is assessed, generating high-confidence calls across varied genotyping platform densities including for breeds not included in the Dog10K collection. CONCLUSIONS We have developed a dense dataset of 1987 sequenced canids that reveals patterns of allele sharing, identifies likely functional variants, informs breed structure, and enables accurate imputation. Dog10K data are publicly available.
Collapse
Affiliation(s)
- Jennifer R S Meadows
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 75132, Uppsala, Sweden.
| | - Jeffrey M Kidd
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48107, USA.
| | - Guo-Dong Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Heidi G Parker
- National Human Genome Research Institute, National Institutes of Health, 50 South Drive, Building 50 Room 5351, Bethesda, MD, 20892, USA
| | - Peter Z Schall
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48107, USA
| | - Matteo Bianchi
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 75132, Uppsala, Sweden
| | - Matthew J Christmas
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 75132, Uppsala, Sweden
| | - Katia Bougiouri
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark
| | - Reuben M Buckley
- National Human Genome Research Institute, National Institutes of Health, 50 South Drive, Building 50 Room 5351, Bethesda, MD, 20892, USA
| | - Christophe Hitte
- University of Rennes, CNRS, Institute Genetics and Development Rennes - UMR6290, 35000, Rennes, France
| | - Anthony K Nguyen
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48107, USA
| | - Chao Wang
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 75132, Uppsala, Sweden
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Julia E Niskanen
- Department of Medical and Clinical Genetics, Department of Veterinary Biosciences, University of Helsinki and Folkhälsan Research Center, 02900, Helsinki, Finland
| | - Laurent A F Frantz
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E14NS, UK and Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, D-80539, Munich, Germany
| | - Meharji Arumilli
- Department of Medical and Clinical Genetics, Department of Veterinary Biosciences, University of Helsinki and Folkhälsan Research Center, 02900, Helsinki, Finland
| | - Sruthi Hundi
- Department of Medical and Clinical Genetics, Department of Veterinary Biosciences, University of Helsinki and Folkhälsan Research Center, 02900, Helsinki, Finland
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 75132, Uppsala, Sweden
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Catarina Ginja
- BIOPOLIS-CIBIO-InBIO-Centro de Investigação Em Biodiversidade E Recursos Genéticos - ArchGen Group, Universidade Do Porto, 4485-661, Vairão, Portugal
| | | | - Catherine André
- University of Rennes, CNRS, Institute Genetics and Development Rennes - UMR6290, 35000, Rennes, France
| | - Adam R Boyko
- Department of Biomedical Sciences, Cornell University, 930 Campus Road, Ithaca, NY, 14853, USA
| | - Brian W Davis
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Michaela Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Xin-Yao Feng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Konstantinos Gkagkavouzis
- Department of Genetics, School of Biology, ), Aristotle University of Thessaloniki, Thessaloniki, Macedonia 54124, Greece and Genomics and Epigenomics Translational Research (GENeTres), Center for Interdisciplinary Research and Innovation (CIRI-AUTH, Balkan Center, Thessaloniki, Greece
| | - Giorgos Iliopoulos
- NGO "Callisto", Wildlife and Nature Conservation Society, 54621, Thessaloniki, Greece
| | - Alexander C Harris
- National Human Genome Research Institute, National Institutes of Health, 50 South Drive, Building 50 Room 5351, Bethesda, MD, 20892, USA
| | - Marjo K Hytönen
- Department of Medical and Clinical Genetics, Department of Veterinary Biosciences, University of Helsinki and Folkhälsan Research Center, 02900, Helsinki, Finland
| | - Daniela C Kalthoff
- NGO "Callisto", Wildlife and Nature Conservation Society, 54621, Thessaloniki, Greece
| | - Yan-Hu Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Petros Lymberakis
- Natural History Museum of Crete & Department of Biology, University of Crete, 71202, Irakleio, Greece
- Biology Department, School of Sciences and Engineering, University of Crete, Heraklion, Greece
- Palaeogenomics and Evolutionary Genetics Lab, Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology - Hellas (FORTH), Heraklion, Greece
| | - Nikolaos Poulakakis
- Natural History Museum of Crete & Department of Biology, University of Crete, 71202, Irakleio, Greece
- Biology Department, School of Sciences and Engineering, University of Crete, Heraklion, Greece
- Palaeogenomics and Evolutionary Genetics Lab, Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology - Hellas (FORTH), Heraklion, Greece
| | - Ana Elisabete Pires
- BIOPOLIS-CIBIO-InBIO-Centro de Investigação Em Biodiversidade E Recursos Genéticos - ArchGen Group, Universidade Do Porto, 4485-661, Vairão, Portugal
| | - Fernando Racimo
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark
| | | | - Peter Savolainen
- Department of Gene Technology, Science for Life Laboratory, KTH - Royal Institute of Technology, 17121, Solna, Sweden
| | - Semina Venetsani
- Department of Genetics, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Macedonia, Greece
| | - Imke Tammen
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, 2570, Australia
| | - Alexandros Triantafyllidis
- Department of Genetics, School of Biology, ), Aristotle University of Thessaloniki, Thessaloniki, Macedonia 54124, Greece and Genomics and Epigenomics Translational Research (GENeTres), Center for Interdisciplinary Research and Innovation (CIRI-AUTH, Balkan Center, Thessaloniki, Greece
| | - Bridgett vonHoldt
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Robert K Wayne
- Department of Ecology and Evolutionary Biology, Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095-7246, USA
| | - Greger Larson
- Palaeogenomics and Bio-Archaeology Research Network, School of Archaeology, University of Oxford, Oxford, OX1 3TG, UK
| | - Frank W Nicholas
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, 2570, Australia
| | - Hannes Lohi
- Department of Medical and Clinical Genetics, Department of Veterinary Biosciences, University of Helsinki and Folkhälsan Research Center, 02900, Helsinki, Finland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Elaine A Ostrander
- National Human Genome Research Institute, National Institutes of Health, 50 South Drive, Building 50 Room 5351, Bethesda, MD, 20892, USA.
| |
Collapse
|
16
|
Pelka S, Guha C. Enhancing Immunogenicity in Metastatic Melanoma: Adjuvant Therapies to Promote the Anti-Tumor Immune Response. Biomedicines 2023; 11:2245. [PMID: 37626741 PMCID: PMC10452223 DOI: 10.3390/biomedicines11082245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/26/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Advanced melanoma is an aggressive form of skin cancer characterized by low survival rates. Less than 50% of advanced melanoma patients respond to current therapies, and of those patients that do respond, many present with tumor recurrence due to resistance. The immunosuppressive tumor-immune microenvironment (TIME) remains a major obstacle in melanoma therapy. Adjuvant treatment modalities that enhance anti-tumor immune cell function are associated with improved patient response. One potential mechanism to stimulate the anti-tumor immune response is by inducing immunogenic cell death (ICD) in tumors. ICD leads to the release of damage-associated molecular patterns within the TIME, subsequently promoting antigen presentation and anti-tumor immunity. This review summarizes relevant concepts and mechanisms underlying ICD and introduces the potential of non-ablative low-intensity focused ultrasound (LOFU) as an immune-priming therapy that can be combined with ICD-inducing focal ablative therapies to promote an anti-melanoma immune response.
Collapse
Affiliation(s)
- Sandra Pelka
- Department of Development and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Chandan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Urology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute of Onco-Physics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
17
|
Mu J, Gong J, Shi M, Zhang Y. Analysis and validation of aging-related genes in prognosis and immune function of glioblastoma. BMC Med Genomics 2023; 16:109. [PMID: 37208656 DOI: 10.1186/s12920-023-01538-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 05/09/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is a common malignant brain tumor with poor prognosis and high mortality. Numerous reports have identified the correlation between aging and the prognosis of patients with GBM. The purpose of this study was to establish a prognostic model for GBM patients based on aging-related gene (ARG) to help determine the prognosis of GBM patients. METHODS 143 patients with GBM from The Cancer Genomic Atlas (TCGA), 218 patients with GBM from the Chinese Glioma Genomic Atlas (CGGA) of China and 50 patients from Gene Expression Omnibus (GEO) were included in the study. R software (V4.2.1) and bioinformatics statistical methods were used to develop prognostic models and study immune infiltration and mutation characteristics. RESULTS Thirteen genes were screened out and used to establish the prognostic model finally, and the risk scores of the prognostic model was an independent factor (P < 0.001), which indicated a good prediction ability. In addition, there are significant differences in immune infiltration and mutation characteristics between the two groups with high and low risk scores. CONCLUSION The prognostic model of GBM patients based on ARGs can predict the prognosis of GBM patients. However, this signature requires further investigation and validation in larger cohort studies.
Collapse
Affiliation(s)
- Jianhua Mu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jianan Gong
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Miao Shi
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Yinian Zhang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
18
|
The role of CaMKK2 in Golgi-associated vesicle trafficking. Biochem Soc Trans 2023; 51:331-342. [PMID: 36815702 PMCID: PMC9987998 DOI: 10.1042/bst20220833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/24/2023]
Abstract
Calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) is a serine/threonine-protein kinase, that is involved in maintaining various physiological and cellular processes within the cell that regulate energy homeostasis and cell growth. CaMKK2 regulates glucose metabolism by the activation of downstream kinases, AMP-activated protein kinase (AMPK) and other calcium/calmodulin-dependent protein kinases. Consequently, its deregulation has a role in multiple human metabolic diseases including obesity and cancer. Despite the importance of CaMKK2, its signalling pathways and pathological mechanisms are not completely understood. Recent work has been aimed at broadening our understanding of the biological functions of CaMKK2. These studies have uncovered new interaction partners that have led to the description of new functions that include lipogenesis and Golgi vesicle trafficking. Here, we review recent insights into the role of CaMKK2 in membrane trafficking mechanisms and discuss the functional implications in a cellular context and for disease.
Collapse
|