1
|
Wu H, Liu Z, Li Y. Intestinal microbiota and respiratory system diseases: Relationships with three common respiratory virus infections. Microb Pathog 2025; 203:107500. [PMID: 40139334 DOI: 10.1016/j.micpath.2025.107500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
In recent years, the role of the intestinal microbiota in regulating host health and immune balance has attracted widespread attention. This study provides an in-depth analysis of the close relationship between the intestinal microbiota and respiratory system diseases, with a focus on three common respiratory virus infections, including respiratory syncytial virus (RSV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and influenza virus. The research indicates that during RSV infection, there is a significant decrease in intestinal microbial diversity, suggesting the impact of the virus on the intestinal ecosystem. In SARS-CoV-2 infection, there are evident alterations in the intestinal microbiota, which are positively correlated with the severity of the disease. Similarly, influenza virus infection is associated with dysbiosis of the intestinal microbiota, and studies have shown that the application of specific probiotics exhibits beneficial effects against influenza virus infection. Further research indicates that the intestinal microbiota exerts a wide and profound impact on the occurrence and development of respiratory system diseases through various mechanisms, including modulation of the immune system and production of short-chain fatty acids (SCFAs). This article comprehensively analyzes these research advances, providing new perspectives and potential strategies for the prevention and treatment of future respiratory system diseases. This study not only deepens our understanding of the relationship between the intestinal microbiota and respiratory system diseases but also offers valuable insights for further exploring the role of host-microbiota interactions in the development of diseases.
Collapse
Affiliation(s)
- Haonan Wu
- Department of Respiratory, Children's Medical Center, The First Hospital of Jilin University, Changchun, China; Clinical Research Center for Child Health, The First Hospital of Jilin University, Changchun, China
| | - Ziyu Liu
- The First Hospital of Jilin University, Changchun, China.
| | - Yanan Li
- Department of Respiratory, Children's Medical Center, The First Hospital of Jilin University, Changchun, China; Clinical Research Center for Child Health, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
2
|
Parekh Z, Xiao J, Mani A, Evans Q, Phung C, Barba HA, Xie B, Sidebottom AM, Sundararajan A, Lin H, Ramaswamy R, Dao D, Gonnah R, Yehia M, Hariprasad SM, D'Souza M, Sulakhe D, Chang EB, Skondra D. Fecal Microbial Profiles and Short-Chain Fatty Acid/Bile Acid Metabolomics in Patients With Age-Related Macular Degeneration: A Pilot Study. Invest Ophthalmol Vis Sci 2025; 66:21. [PMID: 40202735 PMCID: PMC11993127 DOI: 10.1167/iovs.66.4.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 02/25/2025] [Indexed: 04/10/2025] Open
Abstract
Purpose Age-related macular degeneration (AMD) is a multifactorial disease, and studies have implicated the role of gut microbiota in its pathogenesis. However, characterization of microbiome dysbiosis and associated microbial-derived metabolomic profiles across AMD stages remains unknown. In this pilot study, we explored how gut microbiome composition and gut-derived metabolites differ in AMD. Methods Our pilot study analyzed fasted stool samples that were collected from 22 patients at a tertiary academic center. Subjects were classified as control, intermediate AMD, or advanced AMD based on clinical presentation. 16S rRNA amplicon sequencing and standard chromatography-mass spectrometry methods were used to identify bacterial taxonomy composition and abundance of short-chain fatty acids (SCFAs) and bile acids (BAs), respectively. Genetic testing was used to investigate the frequency of 14 high-risk single nucleotide polymorphisms (SNPs) associated with AMD in the AMD cohort. Results Forty-three differentially abundant genera were present among the control, intermediate, and advanced groups. Taxa with known roles in immunologic pathways, such as Desulfovibrionales (q = 0.10) and Terrisporobacter (q = 1.16e-03), were in greater abundance in advanced AMD patients compared to intermediate. Advanced AMD patients had decreased abundance of 12 SCFAs, including acetate (P = 0.002), butyrate (P = 0.04), and propionate (P = 0.01), along with 12 BAs, including taurocholic acid (P = 0.02) and tauroursodeoxycholic acid (P = 0.04). Frequencies of high-risk SNPs were not significantly different between the intermediate and advanced AMD groups. Conclusions This pilot study identifies distinct gut microbiome compositions and metabolomic profiles associated with AMD and its stages, providing preliminary evidence of a potential link between gut microbiota and AMD pathogenesis. To validate these findings and elucidate the underlying mechanisms, future research with larger cohorts and more comprehensive sampling is strongly recommended.
Collapse
Affiliation(s)
- Zaid Parekh
- Pritzker School of Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Jason Xiao
- Pritzker School of Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Amir Mani
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, Illinois, United States
| | - Quadis Evans
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, Illinois, United States
| | - Christopher Phung
- Pritzker School of Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Hugo A. Barba
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, Illinois, United States
| | - Bingqing Xie
- Department of Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Ashley M. Sidebottom
- Duchossois Family Institute, The University of Chicago, Chicago, Illinois, United States
| | - Anitha Sundararajan
- Duchossois Family Institute, The University of Chicago, Chicago, Illinois, United States
| | - Huaiying Lin
- Duchossois Family Institute, The University of Chicago, Chicago, Illinois, United States
| | - Ramanujam Ramaswamy
- Duchossois Family Institute, The University of Chicago, Chicago, Illinois, United States
| | - David Dao
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, Illinois, United States
| | - Reem Gonnah
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, Illinois, United States
| | - Madeleine Yehia
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, Illinois, United States
| | - Seenu M. Hariprasad
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, Illinois, United States
| | - Mark D'Souza
- Duchossois Family Institute, The University of Chicago, Chicago, Illinois, United States
| | - Dinanath Sulakhe
- Duchossois Family Institute, The University of Chicago, Chicago, Illinois, United States
| | - Eugene B. Chang
- Department of Medicine, The University of Chicago, Chicago, Illinois, United States
- Duchossois Family Institute, The University of Chicago, Chicago, Illinois, United States
| | - Dimitra Skondra
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, Illinois, United States
| |
Collapse
|
3
|
Loddo F, Laganà P, Rizzo CE, Calderone SM, Romeo B, Venuto R, Maisano D, Fedele F, Squeri R, Nicita A, Nirta A, Genovese G, Bartucciotto L, Genovese C. Intestinal Microbiota and Vaccinations: A Systematic Review of the Literature. Vaccines (Basel) 2025; 13:306. [PMID: 40266208 PMCID: PMC11946530 DOI: 10.3390/vaccines13030306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 04/24/2025] Open
Abstract
Background: Vaccination constitutes a low-cost, safe, and efficient public health measure that can help prevent the spread of infectious diseases and benefit the community. The fact that vaccination effectiveness varies among populations, and that the causes of this are still unclear, indicates that several factors are involved and should be thoroughly examined. The "intestinal microbiota" is the most crucial of these elements. Numerous clinical studies demonstrate the intestinal microbiota's significance in determining the alleged "immunogenicity" and efficacy of vaccines. This systematic review aimed to review all relevant scientific literature and highlight the role of intestinal microbiota in COVID-19, Salmonella typhi, Vibrio cholerae, and rotavirus vaccinations. Materials and Methods: The MESH terms "vaccines" and "microbiota" were used to search the major scientific databases PubMed, SciVerse Scopus, Web of Knowledge, and the Cochrane Central Register of Controlled Clinical Trials. Results: Between February 2024 and October 2024, the analysis was conducted using electronic databases, yielding a total of 235 references. Finally, 24 RCTs were chosen after meeting all inclusion criteria: eight studies of COVID-19, two studies of Salmonella typhi, three studies of Vibrio cholerae, and eleven studies of rotavirus. Only six of these demonstrated good study quality with a Jadad score of three or four. Conclusions: According to the review's results, the intestinal microbiota surely plays a role in vaccinations' enhanced immunogenicity, especially in younger people. As it is still unclear what mechanisms underlie this effect, more research is needed to better understand the role of the intestinal microbiota.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Giovanni Genovese
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences, University of Messina, 98122 Messina, Italy; (F.L.); (P.L.); (C.E.R.); (S.M.C.); (B.R.); (R.V.); (D.M.); (F.F.); (R.S.); (A.N.); (A.N.); (L.B.)
| | | | - Cristina Genovese
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences, University of Messina, 98122 Messina, Italy; (F.L.); (P.L.); (C.E.R.); (S.M.C.); (B.R.); (R.V.); (D.M.); (F.F.); (R.S.); (A.N.); (A.N.); (L.B.)
| |
Collapse
|
4
|
Agudelo C, Kateete DP, Nasinghe E, Kamulegeya R, Lubega C, Mbabazi M, Baker N, Lin KY, Liu CC, Kasambula AS, Kigozi E, Komakech K, Mukisa J, Mulumba K, Mwachan P, Nakalanda BS, Nalubega GP, Nsubuga J, Sitenda D, Ssenfuka H, Cirolia GT, Gustafson JT, Wang R, Nsubuga ML, Yiga F, Stanley SA, Bagaya BS, Elliott A, Joloba M, Wolf AR. Enterococcus and Eggerthella species are enriched in the gut microbiomes of COVID-19 cases in Uganda. Gut Pathog 2025; 17:9. [PMID: 39905557 DOI: 10.1186/s13099-025-00678-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/02/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Infection with the COVID-19-causing pathogen SARS-CoV-2 is associated with disruption in the human gut microbiome. The gut microbiome enables protection against diverse pathogens and exhibits dysbiosis during infectious and autoimmune disease. Studies based in the United States and China have found that severe COVID-19 cases have altered gut microbiome composition when compared to mild COVID-19 cases. We present the first study to investigate the gut microbiome composition of COVID-19 cases in a population from Sub-Saharan Africa. Given the impact of geography and cultural traditions on microbiome composition, it is important to investigate the microbiome globally and not draw broad conclusions from homogenous populations. RESULTS We used stool samples in a Ugandan biobank collected from COVID-19 cases during 2020-2022. We profiled the gut microbiomes of 83 symptomatic individuals who tested positive for SARS-CoV-2 along with 43 household contacts who did not present any symptoms of COVID-19. The inclusion of healthy controls enables us to generate hypotheses about bacterial strains potentially related to susceptibility to COVID-19 disease, which is highly heterogeneous. Comparison of the COVID-19 patients and their household contacts revealed decreased alpha diversity and blooms of Enterococcus and Eggerthella in COVID-19 cases. CONCLUSIONS Our study finds that the microbiome of COVID-19 individuals is more likely to be disrupted, as indicated by decreased diversity and increased pathobiont levels. This is either a consequence of the disease or may indicate that certain microbiome states increase susceptibility to COVID-19 disease. Our findings enable comparison with cohorts previously published in the Global North, as well as support new hypotheses about the interaction between the gut microbiome and SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Carolina Agudelo
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - David Patrick Kateete
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Integrated Biorepository of H3Africa Uganda (IBRH3AU), Kampala, Uganda
| | - Emmanuel Nasinghe
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Integrated Biorepository of H3Africa Uganda (IBRH3AU), Kampala, Uganda
| | - Rogers Kamulegeya
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Integrated Biorepository of H3Africa Uganda (IBRH3AU), Kampala, Uganda
| | - Christopher Lubega
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Integrated Biorepository of H3Africa Uganda (IBRH3AU), Kampala, Uganda
| | - Monica Mbabazi
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Integrated Biorepository of H3Africa Uganda (IBRH3AU), Kampala, Uganda
| | - Noah Baker
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Kathryn Y Lin
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Chang C Liu
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Arthur Shem Kasambula
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Edgar Kigozi
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Kevin Komakech
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - John Mukisa
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Kassim Mulumba
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Patricia Mwachan
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Brenda Sharon Nakalanda
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Gloria Patricia Nalubega
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Julius Nsubuga
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Diana Sitenda
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Henry Ssenfuka
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Giana T Cirolia
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
- Biophysics PhD Program, University of California, Berkeley, Berkeley, CA, USA
| | - Jeshua T Gustafson
- College of Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Ruohong Wang
- College of Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Moses Luutu Nsubuga
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Integrated Biorepository of H3Africa Uganda (IBRH3AU), Kampala, Uganda
| | - Fahim Yiga
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Integrated Biorepository of H3Africa Uganda (IBRH3AU), Kampala, Uganda
| | - Sarah A Stanley
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Bernard Ssentalo Bagaya
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Integrated Biorepository of H3Africa Uganda (IBRH3AU), Kampala, Uganda
| | - Alison Elliott
- MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Moses Joloba
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda.
- Integrated Biorepository of H3Africa Uganda (IBRH3AU), Kampala, Uganda.
| | - Ashley R Wolf
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA.
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
5
|
Kullberg RFJ, Haak BW, Chanderraj R, Prescott HC, Dickson RP, Wiersinga WJ. Empirical antibiotic therapy for sepsis: save the anaerobic microbiota. THE LANCET. RESPIRATORY MEDICINE 2025; 13:92-100. [PMID: 39401510 DOI: 10.1016/s2213-2600(24)00257-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/23/2024] [Accepted: 08/06/2024] [Indexed: 01/07/2025]
Abstract
Antibiotics are fundamental in sepsis management; however, the optimal empirical treatment remains debated. Despite anaerobes rarely being the causative pathogen of sepsis, antibiotics targeting them are frequently used, which might lead to unintended consequences. Multiple studies have shown that depletion of commensal anaerobic gut microbes by anti-anaerobic antibiotics influences systemic immunity and is associated with increased mortality in patients with sepsis. However, this knowledge has not yet been translated into clinical practice. When considering empirical coverage of anaerobic pathogens in sepsis, most physicians advocate for a better-safe-than-sorry approach. In this Viewpoint, we argue that anti-anaerobic antibiotics could often result in being sorry rather than safe. We provide an overview of the limited necessity of anaerobic coverage and the potential detrimental effects of anaerobic depletion in sepsis. We aim to raise anaerobic awareness to reduce the unnecessary use of anti-anaerobic antibiotics in empirical sepsis treatment and improve patient outcomes.
Collapse
Affiliation(s)
- Robert F J Kullberg
- Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.
| | - Bastiaan W Haak
- Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Rishi Chanderraj
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Medicine Service, Infectious Diseases Section, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, USA; Weil Institute for Critical Care Research and Innovation, Ann Arbor, MI, USA
| | - Hallie C Prescott
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Veterans Affairs Center for Clinical Management Research, Ann Arbor, MI, USA
| | - Robert P Dickson
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA; Weil Institute for Critical Care Research and Innovation, Ann Arbor, MI, USA
| | - W Joost Wiersinga
- Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands; Division of Infectious Diseases, Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
6
|
An Y, He L, Xu X, Piao M, Wang B, Liu T, Cao H. Gut microbiota in post-acute COVID-19 syndrome: not the end of the story. Front Microbiol 2024; 15:1500890. [PMID: 39777148 PMCID: PMC11703812 DOI: 10.3389/fmicb.2024.1500890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has led to major global health concern. However, the focus on immediate effects was assumed as the tip of iceberg due to the symptoms following acute infection, which was defined as post-acute COVID-19 syndrome (PACS). Gut microbiota alterations even after disease resolution and the gastrointestinal symptoms are the key features of PACS. Gut microbiota and derived metabolites disorders may play a crucial role in inflammatory and immune response after SARS-CoV-2 infection through the gut-lung axis. Diet is one of the modifiable factors closely related to gut microbiota and COVID-19. In this review, we described the reciprocal crosstalk between gut and lung, highlighting the participation of diet and gut microbiota in and after COVID-19 by destroying the gut barrier, perturbing the metabolism and regulating the immune system. Therefore, bolstering beneficial species by dietary supplements, probiotics or prebiotics and fecal microbiota transplantation (FMT) may be a novel avenue for COVID-19 and PACS prevention. This review provides a better understanding of the association between gut microbiota and the long-term consequences of COVID-19, which indicates modulating gut dysbiosis may be a potentiality for addressing this multifaceted condition.
Collapse
Affiliation(s)
| | | | | | | | | | - Tianyu Liu
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, National Key Clinical Specialty, General Hospital, Tianjin Medical University, Tianjin, China
| | - Hailong Cao
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, National Key Clinical Specialty, General Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
7
|
Wang XS, Wang JY, Yu F, Shi D, Xie JJ, Li LJ, Wang BH. Microbiota-related metabolites correlated with the severity of COVID-19 patients. Hepatobiliary Pancreat Dis Int 2024:S1499-3872(24)00168-1. [PMID: 39734160 DOI: 10.1016/j.hbpd.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 12/18/2024] [Indexed: 12/31/2024]
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is a global pandemic with high mortality, and the treatment options for the severe patients remain limited. Previous studies reported the altered gut microbiota in severe COVID-19. But there are no comprehensive data on the role of microbial metabolites in COVID-19 patients. METHODS We identified 153 serum microbial metabolites and assessed the changes in 72 COVID-19 patients upon admission and one-month after their discharge, comparing these changes to those in 133 healthy control individuals from the outpatient department during the same period. RESULTS Our study revealed that microbial metabolites varied across different stages and severity of COVID-19 patients. These altered microbial metabolites included tryptophan, bile acids, fatty acids, amino acids, vitamins and those containing benzene. A total of 13 distinct microbial metabolites were identified in COVID-19 patients compared to healthy controls. Notably, correlations were found among these disrupted metabolites and organ injury and inflammatory responses related to COVID-19. Furthermore, these metabolites did not restore to the normal levels one month after discharge. Importantly, two microbial metabolites were the core microbial metabolites related to the severity of COVID-19 patients. CONCLUSIONS The microbial metabolites were altered in the acute and recovery stage, correlating with disease severity of COVID-19. These results indicated the important role of gut microbiota in the progression of COVID-19, and facilitated the potential therapeutic microbial target for severe COVID-19 patients.
Collapse
Affiliation(s)
- Xiao-Sen Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jing-Yu Wang
- Jinan Microecological Biomedicine Shandong Laboratory, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Fei Yu
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ding Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Department of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jiao-Jiao Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Department of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Lan-Juan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Jinan Microecological Biomedicine Shandong Laboratory, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China; Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310000, China
| | - Bao-Hong Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Jinan Microecological Biomedicine Shandong Laboratory, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China; Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310000, China.
| |
Collapse
|
8
|
Pimentel E, Banoei MM, Kaur J, Lee CH, Winston BW. Metabolomic Insights into COVID-19 Severity: A Scoping Review. Metabolites 2024; 14:617. [PMID: 39590853 PMCID: PMC11596841 DOI: 10.3390/metabo14110617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/29/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND In 2019, SARS-CoV-2, the novel coronavirus, entered the world scene, presenting a global health crisis with a broad spectrum of clinical manifestations. Recognizing the significance of metabolomics as the omics closest to symptomatology, it has become a useful tool for predicting clinical outcomes. Several metabolomic studies have indicated variations in the metabolome corresponding to different disease severities, highlighting the potential of metabolomics to unravel crucial insights into the pathophysiology of SARS-CoV-2 infection. METHODS The PRISMA guidelines were followed for this scoping review. Three major scientific databases were searched: PubMed, the Directory of Open Access Journals (DOAJ), and BioMed Central, from 2020 to 2024. Initially, 2938 articles were identified and vetted with specific inclusion and exclusion criteria. Of these, 42 articles were retrieved for analysis and summary. RESULTS Metabolites were identified that were repeatedly noted to change with COVID-19 and its severity. Phenylalanine, glucose, and glutamic acid increased with severity, while tryptophan, proline, and glutamine decreased, highlighting their association with COVID-19 severity. Additionally, pathway analysis revealed that phenylalanine, tyrosine and tryptophan biosynthesis, and arginine biosynthesis were the most significantly impacted pathways in COVID-19 severity. CONCLUSIONS COVID-19 severity is intricately linked to significant metabolic alterations that span amino acid metabolism, energy production, immune response modulation, and redox balance.
Collapse
Affiliation(s)
- Eric Pimentel
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada; (E.P.); (M.M.B.); (J.K.); (C.H.L.)
| | - Mohammad Mehdi Banoei
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada; (E.P.); (M.M.B.); (J.K.); (C.H.L.)
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Jasnoor Kaur
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada; (E.P.); (M.M.B.); (J.K.); (C.H.L.)
| | - Chel Hee Lee
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada; (E.P.); (M.M.B.); (J.K.); (C.H.L.)
- Department of Mathematics and Statistics, Faculty of Science, University of Calgary, Calgary, AB T2N 5A1, Canada
| | - Brent W. Winston
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada; (E.P.); (M.M.B.); (J.K.); (C.H.L.)
- Departments of Medicine, Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| |
Collapse
|
9
|
Lu S, Wang C, Ma J, Wang Y. Metabolic mediators: microbial-derived metabolites as key regulators of anti-tumor immunity, immunotherapy, and chemotherapy. Front Immunol 2024; 15:1456030. [PMID: 39351241 PMCID: PMC11439727 DOI: 10.3389/fimmu.2024.1456030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024] Open
Abstract
The human microbiome has recently emerged as a focal point in cancer research, specifically in anti-tumor immunity, immunotherapy, and chemotherapy. This review explores microbial-derived metabolites, emphasizing their crucial roles in shaping fundamental aspects of cancer treatment. Metabolites such as short-chain fatty acids (SCFAs), Trimethylamine N-Oxide (TMAO), and Tryptophan Metabolites take the spotlight, underscoring their diverse origins and functions and their profound impact on the host immune system. The focus is on SCFAs' remarkable ability to modulate immune responses, reduce inflammation, and enhance anti-tumor immunity within the intricate tumor microenvironment (TME). The review critically evaluates TMAO, intricately tied to dietary choices and gut microbiota composition, assessing its implications for cancer susceptibility, progression, and immunosuppression. Additionally, the involvement of tryptophan and other amino acid metabolites in shaping immune responses is discussed, highlighting their influence on immune checkpoints, immunosuppression, and immunotherapy effectiveness. The examination extends to their dynamic interaction with chemotherapy, emphasizing the potential of microbial-derived metabolites to alter treatment protocols and optimize outcomes for cancer patients. A comprehensive understanding of their role in cancer therapy is attained by exploring their impacts on drug metabolism, therapeutic responses, and resistance development. In conclusion, this review underscores the pivotal contributions of microbial-derived metabolites in regulating anti-tumor immunity, immunotherapy responses, and chemotherapy outcomes. By illuminating the intricate interactions between these metabolites and cancer therapy, the article enhances our understanding of cancer biology, paving the way for the development of more effective treatment options in the ongoing battle against cancer.
Collapse
Affiliation(s)
- Shan Lu
- Department of General Practice, The Second Hospital of Jilin University, Changchun, China
| | - Chunling Wang
- Medical Affairs Department, The Second Hospital of Jilin University, Changchun, China
| | - Jingru Ma
- Department of Clinical Laboratory, the Second Hospital of Jilin University, Changchun, China
| | - Yichao Wang
- Department of Obstetrics and Gynecology, the Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Leveau JHJ. Re-Envisioning the Plant Disease Triangle: Full Integration of the Host Microbiota and a Focal Pivot to Health Outcomes. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:31-47. [PMID: 38684078 DOI: 10.1146/annurev-phyto-121423-042021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The disease triangle is a structurally simple but conceptually rich model that is used in plant pathology and other fields of study to explain infectious disease as an outcome of the three-way relationship between a host, a pathogen, and their environment. It also serves as a guide for finding solutions to treat, predict, and prevent such diseases. With the omics-driven, evidence-based realization that the abundance and activity of a pathogen are impacted by proximity to and interaction with a diverse multitude of other microorganisms colonizing the same host, the disease triangle evolved into a tetrahedron shape, which features an added fourth dimension representing the host-associated microbiota. Another variant of the disease triangle emerged from the recently formulated pathobiome paradigm, which deviates from the classical "one pathogen" etiology of infectious disease in favor of a scenario in which disease represents a conditional outcome of complex interactions between and among a host, its microbiota (including microbes with pathogenic potential), and the environment. The result is a version of the original disease triangle where "pathogen" is substituted with "microbiota." Here, as part of a careful and concise review of the origin, history, and usage of the disease triangle, I propose a next step in its evolution, which is to replace the word "disease" in the center of the host-microbiota-environment triad with the word "health." This triangle highlights health as a desirable outcome (rather than disease as an unwanted state) and as an emergent property of host-microbiota-environment interactions. Applied to the discipline of plant pathology, the health triangle offers an expanded range of targets and approaches for the diagnosis, prediction, restoration, and maintenance of plant health outcomes. Its applications are not restricted to infectious diseases only, and its underlying framework is more inclusive of all microbial contributions to plant well-being, including those by mycorrhizal fungi and nitrogen-fixing bacteria, for which there never was a proper place in the plant disease triangle. The plant health triangle also may have an edge as an education and communication tool to convey and stress the importance of healthy plants and their associated microbiota to a broader public and stakeholdership.
Collapse
Affiliation(s)
- Johan H J Leveau
- Department of Plant Pathology, University of California, Davis, California, USA;
| |
Collapse
|
11
|
Essex M, Millet Pascual-Leone B, Löber U, Kuhring M, Zhang B, Brüning U, Fritsche-Guenther R, Krzanowski M, Fiocca Vernengo F, Brumhard S, Röwekamp I, Anna Bielecka A, Lesker TR, Wyler E, Landthaler M, Mantei A, Meisel C, Caesar S, Thibeault C, Corman VM, Marko L, Suttorp N, Strowig T, Kurth F, Sander LE, Li Y, Kirwan JA, Forslund SK, Opitz B. Gut microbiota dysbiosis is associated with altered tryptophan metabolism and dysregulated inflammatory response in COVID-19. NPJ Biofilms Microbiomes 2024; 10:66. [PMID: 39085233 PMCID: PMC11291933 DOI: 10.1038/s41522-024-00538-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
The clinical course of COVID-19 is variable and often unpredictable. To test the hypothesis that disease progression and inflammatory responses associate with alterations in the microbiome and metabolome, we analyzed metagenome, metabolome, cytokine, and transcriptome profiles of repeated samples from hospitalized COVID-19 patients and uninfected controls, and leveraged clinical information and post-hoc confounder analysis. Severe COVID-19 was associated with a depletion of beneficial intestinal microbes, whereas oropharyngeal microbiota disturbance was mainly linked to antibiotic use. COVID-19 severity was also associated with enhanced plasma concentrations of kynurenine and reduced levels of several other tryptophan metabolites, lysophosphatidylcholines, and secondary bile acids. Moreover, reduced concentrations of various tryptophan metabolites were associated with depletion of Faecalibacterium, and tryptophan decrease and kynurenine increase were linked to enhanced production of inflammatory cytokines. Collectively, our study identifies correlated microbiome and metabolome alterations as a potential contributor to inflammatory dysregulation in severe COVID-19.
Collapse
Affiliation(s)
- Morgan Essex
- Experimental and Clinical Research Center (ECRC), a cooperation of the Max Delbrück Center and Charité-Universitätsmedizin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Belén Millet Pascual-Leone
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ulrike Löber
- Experimental and Clinical Research Center (ECRC), a cooperation of the Max Delbrück Center and Charité-Universitätsmedizin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Mathias Kuhring
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Berlin Institute of Health (BIH) at Charité, BIH Metabolomics Platform, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité, Core Unit Bioinformatics, Berlin, Germany
| | - Bowen Zhang
- Department of Computational Biology for Individualized Infection Medicine, Center for Individualized Infection Medicine (CiiM), a joint venture between the Helmholtz-Center for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, joint ventures between the Helmholtz Center for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Ulrike Brüning
- Berlin Institute of Health (BIH) at Charité, BIH Metabolomics Platform, Berlin, Germany
| | | | - Marta Krzanowski
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Facundo Fiocca Vernengo
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sophia Brumhard
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ivo Röwekamp
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Agata Anna Bielecka
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research (HZI), Braunschweig, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Braunschweig, Germany
| | - Till Robin Lesker
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research (HZI), Braunschweig, Germany
| | - Emanuel Wyler
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Christian Meisel
- Labor Berlin-Charité Vivantes GmbH, Berlin, Germany
- Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sandra Caesar
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Charlotte Thibeault
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Victor M Corman
- Labor Berlin-Charité Vivantes GmbH, Berlin, Germany
- Institute of Virology, Charité-Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), Berlin, Germany
| | - Lajos Marko
- Experimental and Clinical Research Center (ECRC), a cooperation of the Max Delbrück Center and Charité-Universitätsmedizin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Norbert Suttorp
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Berlin, Germany
| | - Till Strowig
- Department of Computational Biology for Individualized Infection Medicine, Center for Individualized Infection Medicine (CiiM), a joint venture between the Helmholtz-Center for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research (HZI), Braunschweig, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Braunschweig, Germany
| | - Florian Kurth
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Leif E Sander
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Berlin, Germany
| | - Yang Li
- Department of Computational Biology for Individualized Infection Medicine, Center for Individualized Infection Medicine (CiiM), a joint venture between the Helmholtz-Center for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, joint ventures between the Helmholtz Center for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Jennifer A Kirwan
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Berlin Institute of Health (BIH) at Charité, BIH Metabolomics Platform, Berlin, Germany
- University of Nottingham School of Veterinary Medicine and Science, Loughborough, UK
| | - Sofia K Forslund
- Experimental and Clinical Research Center (ECRC), a cooperation of the Max Delbrück Center and Charité-Universitätsmedizin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Bastian Opitz
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Labor Berlin-Charité Vivantes GmbH, Berlin, Germany.
- German Center for Lung Research (DZL), Berlin, Germany.
| |
Collapse
|
12
|
Zhou J, Han J, Wei Y, Wang Y. Desaminotyrosine is a redox-active microbial metabolite that bolsters macrophage antimicrobial functions while attenuating IL-6 production. FASEB J 2024; 38:e23844. [PMID: 39046365 DOI: 10.1096/fj.202400638r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/23/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024]
Abstract
Intestinal microbiota contributes to host defense against pathogens while avoiding the induction of inflammation in homeostatic conditions, but the mechanism is not fully understood. To investigate the potential role of the bacterial metabolite desaminotyrosine (DAT) in regulating host defense and inflammation, we pretreated mouse bone marrow-derived macrophages (BMDMs) with DAT for 12 hours and then challenged with bacterial lipopolysaccharide (LPS). We found that DAT priming-enhanced type I interferon response while selectively inhibiting proinflammatory interleukin (IL)-6 production after exposure to LPS. This is related to the fact that DAT is a natural antioxidant determined by radical scavenging assay in a cell-free system. DAT-primed cells had increased levels of the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) upon LPS stimulation. Countering the increased NADPH by supplementing extra oxidized NADP+ to cells reversed DAT's effect on LPS-induced Il-6 and interferon-stimulated gene expressions. DAT-primed cells also were more resistant to oxidative stress-induced generation of reactive oxygen species and cell death. DAT promoted the production of antimicrobial effector nitric oxide in a cellular redox-dependent manner, leading to enhanced macrophage antimicrobial activity during Salmonella enterica infection. Our data suggest that DAT acts as a host-microbiota crosstalk signal in shaping host immune defense and inflammatory response.
Collapse
Affiliation(s)
- Junyang Zhou
- Laboratory of Infection and Immunity, Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jinzhi Han
- Laboratory of Infection and Immunity, Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Xuzhou Center for Disease Control and Prevention, Xuzhou, Jiangsu, China
| | - Yanxia Wei
- Laboratory of Infection and Immunity, Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yugang Wang
- Laboratory of Infection and Immunity, Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
13
|
Buchynskyi M, Oksenych V, Kamyshna I, Vorobets I, Halabitska I, Kamyshnyi O. Modulatory Roles of AHR, FFAR2, FXR, and TGR5 Gene Expression in Metabolic-Associated Fatty Liver Disease and COVID-19 Outcomes. Viruses 2024; 16:985. [PMID: 38932276 PMCID: PMC11209102 DOI: 10.3390/v16060985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a risk factor for severe COVID-19. This study explores the potential influence of gut hormone receptor and immune response gene expression on COVID-19 outcomes in MAFLD patients. METHODS We investigated gene expression levels of AHR, FFAR2, FXR, and TGR5 in patients with MAFLD and COVID-19 compared to controls. We examined associations between gene expression and clinical outcomes. RESULTS COVID-19 patients displayed altered AHR expression, potentially impacting immune response and recovery. Downregulated AHR in patients with MAFLD correlated with increased coagulation parameters. Elevated FFAR2 expression in patients with MAFLD was linked to specific immune cell populations and hospital stay duration. A significantly lower FXR expression was observed in both MAFLD and severe COVID-19. CONCLUSION Our findings suggest potential modulatory roles for AHR, FFAR2, and FXR in COVID-19 and MAFLD.
Collapse
Affiliation(s)
- Mykhailo Buchynskyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Iryna Kamyshna
- Department of Medical Rehabilitation, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Ihor Vorobets
- Ophthalmology Clinic “Vizex”, Naukova St. 96B, 79060 Lviv, Ukraine
| | - Iryna Halabitska
- Department of Therapy and Family Medicine, I. Horbachevsky Ternopil National Medical University, Voli Square, 1, 46001 Ternopil, Ukraine;
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| |
Collapse
|
14
|
Huang X, Liu X, Li Z. Bile acids and coronavirus disease 2019. Acta Pharm Sin B 2024; 14:1939-1950. [PMID: 38799626 PMCID: PMC11119507 DOI: 10.1016/j.apsb.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/08/2023] [Accepted: 01/28/2024] [Indexed: 05/29/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been significantly alleviated. However, long-term health effects and prevention strategy remain unresolved. Thus, it is essential to explore the pathophysiological mechanisms and intervention for SARS-CoV-2 infection. Emerging research indicates a link between COVID-19 and bile acids, traditionally known for facilitating dietary fat absorption. The bile acid ursodeoxycholic acid potentially protects against SARS-CoV-2 infection by inhibiting the farnesoid X receptor, a bile acid nuclear receptor. The activation of G-protein-coupled bile acid receptor, another membrane receptor for bile acids, has also been found to regulate the expression of angiotensin-converting enzyme 2, the receptor through which the virus enters human cells. Here, we review the latest basic and clinical evidence linking bile acids to SARS-CoV-2, and reveal their complicated pathophysiological mechanisms.
Collapse
Affiliation(s)
- Xiaoru Huang
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
- Department of Pharmaceutical Management and Clinical Pharmacy, College of Pharmacy, Peking University, Beijing 100191, China
| | - Xuening Liu
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
- Department of Pharmaceutical Management and Clinical Pharmacy, College of Pharmacy, Peking University, Beijing 100191, China
| | - Zijian Li
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
- Department of Pharmaceutical Management and Clinical Pharmacy, College of Pharmacy, Peking University, Beijing 100191, China
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing Key Laboratory of Cardiovascular Receptors Research, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| |
Collapse
|
15
|
Lehmann CJ, Dylla NP, Odenwald M, Nayak R, Khalid M, Boissiere J, Cantoral J, Adler E, Stutz MR, Dela Cruz M, Moran A, Lin H, Ramaswamy R, Sundararajan A, Sidebottom AM, Little J, Pamer EG, Aronsohn A, Fung J, Baker TB, Kacha A. Fecal metabolite profiling identifies liver transplant recipients at risk for postoperative infection. Cell Host Microbe 2024; 32:117-130.e4. [PMID: 38103544 DOI: 10.1016/j.chom.2023.11.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/06/2023] [Accepted: 11/17/2023] [Indexed: 12/19/2023]
Abstract
Metabolites produced by the intestinal microbiome modulate mucosal immune defenses and optimize epithelial barrier function. Intestinal dysbiosis, including loss of intestinal microbiome diversity and expansion of antibiotic-resistant pathobionts, is accompanied by changes in fecal metabolite concentrations and increased incidence of systemic infection. Laboratory tests that quantify intestinal dysbiosis, however, have yet to be incorporated into clinical practice. We quantified fecal metabolites in 107 patients undergoing liver transplantation (LT) and correlated these with fecal microbiome compositions, pathobiont expansion, and postoperative infections. Consistent with experimental studies implicating microbiome-derived metabolites with host-mediated antimicrobial defenses, reduced fecal concentrations of short- and branched-chain fatty acids, secondary bile acids, and tryptophan metabolites correlate with compositional microbiome dysbiosis in LT patients and the relative risk of postoperative infection. Our findings demonstrate that fecal metabolite profiling can identify LT patients at increased risk of postoperative infection and may provide guideposts for microbiome-targeted therapies.
Collapse
Affiliation(s)
- Christopher J Lehmann
- Department of Medicine, Section of Infectious Disease and Global Health, University of Chicago Medicine, 5841 S. Maryland Ave., Chicago, IL 60637, USA; Department of Pediatrics, Section of Pediatric Infectious Diseases, University of Chicago Medicine, 5841 S. Maryland Ave., Chicago, IL 60637, USA.
| | - Nicholas P Dylla
- Duchossois Family Institute, Biological Sciences Division, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA
| | - Matthew Odenwald
- Duchossois Family Institute, Biological Sciences Division, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA; Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago Medicine, 5841 South Maryland Ave, Chicago, IL 60637, USA
| | - Ravi Nayak
- Duchossois Family Institute, Biological Sciences Division, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA
| | - Maryam Khalid
- Duchossois Family Institute, Biological Sciences Division, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA
| | - Jaye Boissiere
- Duchossois Family Institute, Biological Sciences Division, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA
| | - Jackelyn Cantoral
- Duchossois Family Institute, Biological Sciences Division, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA
| | - Emerald Adler
- Duchossois Family Institute, Biological Sciences Division, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA
| | - Matthew R Stutz
- Department of Pulmonary and Critical Care Medicine, Cook County Health, 1950 W. Polk St, Chicago, IL 60612, USA
| | - Mark Dela Cruz
- Department of Cardiology, Advocate Health Care Systems, 4400 W. 95(th) St, Oak Lawn, IL 60453, USA
| | - Angelica Moran
- Department of Pathology, University of Chicago Medicine, 5841 South Maryland Ave, Chicago, IL 60637, USA
| | - Huaiying Lin
- Duchossois Family Institute, Biological Sciences Division, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA
| | - Ramanujam Ramaswamy
- Duchossois Family Institute, Biological Sciences Division, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA
| | - Anitha Sundararajan
- Duchossois Family Institute, Biological Sciences Division, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA
| | - Ashley M Sidebottom
- Duchossois Family Institute, Biological Sciences Division, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA
| | - Jessica Little
- Duchossois Family Institute, Biological Sciences Division, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA
| | - Eric G Pamer
- Department of Medicine, Section of Infectious Disease and Global Health, University of Chicago Medicine, 5841 S. Maryland Ave., Chicago, IL 60637, USA; Duchossois Family Institute, Biological Sciences Division, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA.
| | - Andrew Aronsohn
- Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago Medicine, 5841 South Maryland Ave, Chicago, IL 60637, USA
| | - John Fung
- Department of Surgery, Section of Transplant Surgery, University of Chicago Medicine, 5841 South Maryland Ave, Chicago, IL 60637, USA
| | - Talia B Baker
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah Health, 30 N. 1900 East, Salt Lake City, UT 84132, USA
| | - Aalok Kacha
- Department of Anesthesia and Critical Care, University of Chicago Medicine, 5841 South Maryland Ave, Chicago, IL 60637, USA.
| |
Collapse
|
16
|
Ishizaka A, Koga M, Mizutani T, Yamayoshi S, Iwatsuki-Horimoto K, Adachi E, Suzuki Y, Kawaoka Y, Yotsuyanagi H. Association of gut microbiota with the pathogenesis of SARS-CoV-2 Infection in people living with HIV. BMC Microbiol 2024; 24:6. [PMID: 38172680 PMCID: PMC10763188 DOI: 10.1186/s12866-023-03157-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND People living with HIV (PLWH) with chronic inflammation may have an increasing risk for coronavirus disease 2019 (COVID-19) severity; however, the impact of their gut microbiota on COVID-19 is not fully elucidated. Here, we analyzed the temporal changes in the gut microbiota composition of hospitalized severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected PLWH (PLWH-CoV) and their correlation with COVID-19 severity. RESULT The 16S rRNA analysis results using stool samples (along the timeline from disease onset) from 12 hospitalized PLWH-CoV, whose median CD4 + T cell count was 671 cells/µl, were compared to those of 19 healthy people and 25 PLWH. Bacterial diversity in PLWH-CoV is not significantly different from that of healthy people and SARS-CoV-2 non-infected PLWH, but a significant difference in the microbiota diversity was observed in the classification according to the disease severity. Immediately after the disease onset, remarkable changes were observed in the gut microbiota of PLWH-CoV, and the changing with a decrease in some short-chain fatty acid-producing bacteria and an increase in colitis-related pathobiont. In the second week after disease onset, relative amounts of specific bacteria distinguished between disease severity. One month after the disease onset, dysbiosis of the gut microbiota persisted, and the number of Enterobacteriaceae, mainly Escherichia-Shigella, which is potentially pathogenic, increased and were enriched in patients who developed post-acute sequelae of COVID-19 (PASC). CONCLUSION The changes in the gut microbiota associated with SARS-CoV-2 infection observed in PLWH in this study indicated a persistent decrease in SCFA-producing bacteria and an intestinal environment with an increase in opportunistic pathogens associated with enteritis. This report demonstrates that the intestinal environment in PLWH tends to show delayed improvement even after COVID-19 recovery, and highlights the importance of the dysbiosis associated with SARS-CoV-2 infection as a potential factor in the COVID-19 severity and the PASC in PLWH.
Collapse
Affiliation(s)
- Aya Ishizaka
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Michiko Koga
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Taketoshi Mizutani
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Chiba, Japan.
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, 6-2-3 Kashiwanoha, 277-0882, Kashiwa-shi, Chiba, Japan.
| | - Seiya Yamayoshi
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Kiyoko Iwatsuki-Horimoto
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Eisuke Adachi
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Chiba, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Pandemic Preparedness, Infection and Advanced Research Center, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Yotsuyanagi
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan.
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of Institute of Medical Science, the University of Tokyo, Tokyo, Japan.
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, the University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, 108-8639, Tokyo, Japan.
| |
Collapse
|
17
|
Zhang Y, Ma Y, Sun W, Zhou X, Wang R, Xie P, Dai L, Gao Y, Li J. Exploring gut-lung axis crosstalk in SARS-CoV-2 infection: Insights from a hACE2 mouse model. J Med Virol 2024; 96:e29336. [PMID: 38193530 DOI: 10.1002/jmv.29336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/27/2023] [Accepted: 12/11/2023] [Indexed: 01/10/2024]
Abstract
Based on the forefront of clinical research, there is a growing recognition that the gut microbiota, which plays a pivotal role in shaping both the innate and adaptive immune systems, may significantly contribute to the pathogenesis of coronavirus disease 2019 (COVID-19). Although an association between altered gut microbiota and COVID-19 pathogenesis has been established, the causative mechanisms remain incompletely understood. Additionally, the validation of the precise functional alterations within the gut microbiota relevant to COVID-19 pathogenesis has been limited by a scarcity of suitable animal experimental models. In the present investigation, we employed a newly developed humanized ACE2 knock-in (hACE2-KI) mouse model, capable of recapitulating critical aspects of pulmonary and intestinal infection, to explore the modifications in the gut microbiota following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Examination of fecal samples using 16S rRNA gene profiling unveiled a notable reduction in species richness and conspicuous alterations in microbiota composition at 6 days postinfection (dpi). These alterations were primarily characterized by a decline in beneficial bacterial species and an escalation in certain opportunistic pathogens. Moreover, our analysis entailed a correlation study between the gut microbiota and plasma cytokine concentrations, revealing the potential involvement of the Lachnospiraceae_NK4A136_group and unclassified_f_Lachnospiraceae genera in attenuating hyperinflammatory responses triggered by the infection. Furthermore, integration of gut microbiota data with RNA-seq analysis results suggested that the increased presence of Staphylococcus in fecal samples may signify the potential for bacterial coinfection in lung tissues via gut translocation. In summary, our hACE2-KI mouse model effectively recapitulated the observed alterations in the gut microbiota during SARS-CoV-2 infection. This model presents a valuable tool for elucidating gut microbiota-targeted strategies aimed at mitigating COVID-19.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Yifang Ma
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Weiyang Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xiaoyang Zhou
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Ruixuan Wang
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Peng Xie
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Lu Dai
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Yuwei Gao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jintao Li
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| |
Collapse
|
18
|
Thiele Orberg E, Meedt E, Hiergeist A, Xue J, Heinrich P, Ru J, Ghimire S, Miltiadous O, Lindner S, Tiefgraber M, Göldel S, Eismann T, Schwarz A, Göttert S, Jarosch S, Steiger K, Schulz C, Gigl M, Fischer JC, Janssen KP, Quante M, Heidegger S, Herhaus P, Verbeek M, Ruland J, van den Brink MRM, Weber D, Edinger M, Wolff D, Busch DH, Kleigrewe K, Herr W, Bassermann F, Gessner A, Deng L, Holler E, Poeck H. Bacteria and bacteriophage consortia are associated with protective intestinal metabolites in patients receiving stem cell transplantation. NATURE CANCER 2024; 5:187-208. [PMID: 38172339 PMCID: PMC12063274 DOI: 10.1038/s43018-023-00669-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 10/13/2023] [Indexed: 01/05/2024]
Abstract
The microbiome is a predictor of clinical outcome in patients receiving allogeneic hematopoietic stem cell transplantation (allo-SCT). Microbiota-derived metabolites can modulate these outcomes. How bacteria, fungi and viruses contribute to the production of intestinal metabolites is still unclear. We combined amplicon sequencing, viral metagenomics and targeted metabolomics from stool samples of patients receiving allo-SCT (n = 78) and uncovered a microbiome signature of Lachnospiraceae and Oscillospiraceae and their associated bacteriophages, correlating with the production of immunomodulatory metabolites (IMMs). Moreover, we established the IMM risk index (IMM-RI), which was associated with improved survival and reduced relapse. A high abundance of short-chain fatty acid-biosynthesis pathways, specifically butyric acid via butyryl-coenzyme A (CoA):acetate CoA-transferase (BCoAT, which catalyzes EC 2.8.3.8) was detected in IMM-RI low-risk patients, and virome genome assembly identified two bacteriophages encoding BCoAT as an auxiliary metabolic gene. In conclusion, our study identifies a microbiome signature associated with protective IMMs and provides a rationale for considering metabolite-producing consortia and metabolite formulations as microbiome-based therapies.
Collapse
Affiliation(s)
- Erik Thiele Orberg
- Department of Internal Medicine III, School of Medicine, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany.
- German Cancer Consortium (DKTK), partner-site Munich, a partnership between DKFZ and Klinikum rechts der Isar, Munich, Germany.
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany.
| | - Elisabeth Meedt
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center, Regensburg, Germany
| | - Andreas Hiergeist
- Institute of Clinical Microbiology and Hygiene, University Medical Center, Regensburg, Germany
| | - Jinling Xue
- Institute of Virology, Helmholtz Zentrum Munich, Munich, Germany
- Chair of Prevention for Microbial Infectious Disease, Central Institute of Disease Prevention and School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Paul Heinrich
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center, Regensburg, Germany
- Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Jinlong Ru
- Institute of Virology, Helmholtz Zentrum Munich, Munich, Germany
- Chair of Prevention for Microbial Infectious Disease, Central Institute of Disease Prevention and School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Sakhila Ghimire
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center, Regensburg, Germany
| | - Oriana Miltiadous
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sarah Lindner
- Department of Immunology, Sloan Kettering Institute, New York, NY, USA
| | - Melanie Tiefgraber
- Department of Internal Medicine III, School of Medicine, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| | - Sophia Göldel
- Department of Internal Medicine III, School of Medicine, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| | - Tina Eismann
- Department of Internal Medicine III, School of Medicine, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| | - Alix Schwarz
- Department of Internal Medicine III, School of Medicine, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| | - Sascha Göttert
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center, Regensburg, Germany
| | - Sebastian Jarosch
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich, Munich, Germany
| | - Katja Steiger
- German Cancer Consortium (DKTK), partner-site Munich, a partnership between DKFZ and Klinikum rechts der Isar, Munich, Germany
- Comparative Experimental Pathology, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christian Schulz
- Department of Internal Medicine II, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Michael Gigl
- Bavarian Center for Biomolecular Mass Spectrometry, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Julius C Fischer
- Department of Radiation Oncology, School of Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar TUM, Munich, Germany
| | - Klaus-Peter Janssen
- Department of Surgery, School of Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar TUM, Munich, Germany
| | - Michael Quante
- Department of Internal Medicine II, University Medical Center, Freiburg, Germany
| | - Simon Heidegger
- Department of Internal Medicine III, School of Medicine, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Peter Herhaus
- Department of Internal Medicine III, School of Medicine, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| | - Mareike Verbeek
- Department of Internal Medicine III, School of Medicine, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| | - Jürgen Ruland
- German Cancer Consortium (DKTK), partner-site Munich, a partnership between DKFZ and Klinikum rechts der Isar, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany
| | - Marcel R M van den Brink
- Department of Immunology, Sloan Kettering Institute, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Daniela Weber
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center, Regensburg, Germany
| | - Matthias Edinger
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center, Regensburg, Germany
- Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Daniel Wolff
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center, Regensburg, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Karin Kleigrewe
- Bavarian Center for Biomolecular Mass Spectrometry, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center, Regensburg, Germany
| | - Florian Bassermann
- Department of Internal Medicine III, School of Medicine, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
- German Cancer Consortium (DKTK), partner-site Munich, a partnership between DKFZ and Klinikum rechts der Isar, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - André Gessner
- Institute of Clinical Microbiology and Hygiene, University Medical Center, Regensburg, Germany
| | - Li Deng
- Institute of Virology, Helmholtz Zentrum Munich, Munich, Germany
- Chair of Prevention for Microbial Infectious Disease, Central Institute of Disease Prevention and School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Ernst Holler
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center, Regensburg, Germany
| | - Hendrik Poeck
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center, Regensburg, Germany.
- Leibniz Institute for Immunotherapy, Regensburg, Germany.
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany.
| |
Collapse
|
19
|
Castelo J, Araujo-Aris S, Barriales D, Tanner Pasco S, Seoane I, Peña-Cearra A, Palacios A, Simó C, Garcia-Cañas V, Khamwong M, Martín-Ruiz I, Gonzalez-Lopez M, Barcena L, Martín Rodríguez JE, Lavín JL, Gutiez N, Marcos R, Atondo E, Cobela A, Plaza-Vinuesa L, Plata A, Santos-Fernandez E, Fernandez-Tejada A, Villarán MC, Mancheño JM, Maria Flores J, María Aransay A, Pellón A, de Las Rivas B, Muñoz R, Margolles A, Ruas-Madiedo P, Victoria Selma M, Gomez de Agüero M, Abecia L, Anguita J, Rodríguez H. The microbiota metabolite, phloroglucinol, confers long-term protection against inflammation. Gut Microbes 2024; 16:2438829. [PMID: 39676480 DOI: 10.1080/19490976.2024.2438829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/16/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024] Open
Abstract
Phloroglucinol is a key byproduct of gut microbial metabolism that has been widely used as a treatment for irritable bowel syndrome. Here, we demonstrate that phloroglucinol tempers macrophage responses to pro-inflammatory pathogens and stimuli. In vivo, phloroglucinol administration decreases gut and extraintestinal inflammation in murine models of inflammatory bowel disease and systemic infection. The metabolite induces modest modifications in the microbiota. However, the presence of an active microbiota is required to preserve its anti-inflammatory activity. Remarkably, the protective effect of phloroglucinol lasts partially at least 6 months. Single-cell transcriptomic analysis of bone marrow progenitors demonstrates the capacity of the metabolite to induce long-lasting innate immune training in hematopoietic lineages, at least partially through the participation of the receptor and transcription factor, aryl hydrocarbon receptor (AhR). Phloroglucinol induces alterations in metabolic and epigenetic pathways that are most prevalent in upstream progenitors as hallmarks of central trained immunity. These data identify phloroglucinol as a dietary-derived compound capable of inducing central trained immunity and modulating the response of the host to inflammatory insults.
Collapse
Affiliation(s)
- Janire Castelo
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Sarai Araujo-Aris
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Diego Barriales
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | | | - Iratxe Seoane
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Ainize Peña-Cearra
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Ainhoa Palacios
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Carolina Simó
- Molecular Nutrition and Metabolism, Institute of Food Science Research (CIAL), Spanish National Research Council (CSIC), Madrid, Spain
| | - Virginia Garcia-Cañas
- Molecular Nutrition and Metabolism, Institute of Food Science Research (CIAL), Spanish National Research Council (CSIC), Madrid, Spain
| | - Muthita Khamwong
- Würzburg Institute of Systems Immunology, Max-Planck Research Group at the Julius-Maximilians Universität, Würzburg, Germany
| | - Itziar Martín-Ruiz
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | | | - Laura Barcena
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | | | - José Luís Lavín
- Applied Mathematics Department - Bioinformatics Unit, NEIKER-BRTA, Derio, Spain
| | - Naiara Gutiez
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Raquel Marcos
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias, CSIC, Villaviciosa, Spain
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Estibaliz Atondo
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Arantza Cobela
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Laura Plaza-Vinuesa
- Departamento de PRocesos Tecnológicos y Biotecnología, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), CSIC, Madrid, Spain
| | - Adrián Plata
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | | | - Alberto Fernandez-Tejada
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | | | - José Miguel Mancheño
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Blas Cabrera (IQF), CSIC, Madrid, Spain
| | - Juana Maria Flores
- Department of Animal Medicine and Surgery, Veterinary Faculty, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana María Aransay
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
- CIBERehd, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Aize Pellón
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Blanca de Las Rivas
- Departamento de PRocesos Tecnológicos y Biotecnología, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), CSIC, Madrid, Spain
| | - Rosario Muñoz
- Departamento de PRocesos Tecnológicos y Biotecnología, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), CSIC, Madrid, Spain
| | - Abelardo Margolles
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias, CSIC, Villaviciosa, Spain
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Patricia Ruas-Madiedo
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias, CSIC, Villaviciosa, Spain
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Maria Victoria Selma
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Murcia, Spain
| | - Mercedes Gomez de Agüero
- Würzburg Institute of Systems Immunology, Max-Planck Research Group at the Julius-Maximilians Universität, Würzburg, Germany
| | - Leticia Abecia
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Juan Anguita
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Héctor Rodríguez
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| |
Collapse
|
20
|
Marzano V, Mortera SL, Marangelo C, Piazzesi A, Rapisarda F, Pane S, Del Chierico F, Vernocchi P, Romani L, Campana A, Palma P, Putignani L. The metaproteome of the gut microbiota in pediatric patients affected by COVID-19. Front Cell Infect Microbiol 2023; 13:1327889. [PMID: 38188629 PMCID: PMC10766818 DOI: 10.3389/fcimb.2023.1327889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction The gut microbiota (GM) play a significant role in the infectivity and severity of COVID-19 infection. However, the available literature primarily focuses on adult patients and it is known that the microbiota undergoes changes throughout the lifespan, with significant alterations occurring during infancy and subsequently stabilizing during adulthood. Moreover, children have exhibited milder symptoms of COVID-19 disease, which has been associated with the abundance of certain protective bacteria. Here, we examine the metaproteome of pediatric patients to uncover the biological mechanisms that underlie this protective effect of the GM. Methods We performed nanoliquid chromatography coupled with tandem mass spectrometry on a high resolution analytical platform, resulting in label free quantification of bacterial protein groups (PGs), along with functional annotations via COG and KEGG databases by MetaLab-MAG. Additionally, taxonomic assignment was possible through the use of the lowest common ancestor algorithm provided by Unipept software. Results A COVID-19 GM functional dissimilarity respect to healthy subjects was identified by univariate analysis. The alteration in COVID-19 GM function is primarily based on bacterial pathways that predominantly involve metabolic processes, such as those related to tryptophan, butanoate, fatty acid, and bile acid biosynthesis, as well as antibiotic resistance and virulence. Discussion These findings highlight the mechanisms by which the pediatric GM could contribute to protection against the more severe manifestations of the disease in children. Uncovering these mechanisms can, therefore, have important implications in the discovery of novel adjuvant therapies for severe COVID-19.
Collapse
Affiliation(s)
- Valeria Marzano
- Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Stefano Levi Mortera
- Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Chiara Marangelo
- Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Antonia Piazzesi
- Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Federica Rapisarda
- Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Stefania Pane
- Unit of Microbiomics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Federica Del Chierico
- Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Pamela Vernocchi
- Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Lorenza Romani
- Unit of Infectious Disease, Bambino Gesu’ Children’s Hospital, IRCCS, Rome, Italy
| | - Andrea Campana
- Department of Pediatrics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Paolo Palma
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Lorenza Putignani
- Unit of Microbiomics and Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | | |
Collapse
|
21
|
Ma B, Gavzy SJ, France M, Song Y, Lwin HW, Kensiski A, Saxena V, Piao W, Lakhan R, Iyyathurai J, Li L, Paluskievicz C, Wu L, WillsonShirkey M, Mongodin EF, Mas VR, Bromberg JS. Rapid intestinal and systemic metabolic reprogramming in an immunosuppressed environment. BMC Microbiol 2023; 23:394. [PMID: 38066426 PMCID: PMC10709923 DOI: 10.1186/s12866-023-03141-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Intrinsic metabolism shapes the immune environment associated with immune suppression and tolerance in settings such as organ transplantation and cancer. However, little is known about the metabolic activities in an immunosuppressive environment. In this study, we employed metagenomic, metabolomic, and immunological approaches to profile the early effects of the immunosuppressant drug tacrolimus, antibiotics, or both in gut lumen and circulation using a murine model. Tacrolimus induced rapid and profound alterations in metabolic activities within two days of treatment, prior to alterations in gut microbiota composition and structure. The metabolic profile and gut microbiome after seven days of treatment was distinct from that after two days of treatment, indicating continuous drug effects on both gut microbial ecosystem and host metabolism. The most affected taxonomic groups are Clostriales and Verrucomicrobiae (i.e., Akkermansia muciniphila), and the most affected metabolic pathways included a group of interconnected amino acids, bile acid conjugation, glucose homeostasis, and energy production. Highly correlated metabolic changes were observed between lumen and serum metabolism, supporting their significant interactions. Despite a small sample size, this study explored the largely uncharacterized microbial and metabolic events in an immunosuppressed environment and demonstrated that early changes in metabolic activities can have significant implications that may serve as antecedent biomarkers of immune activation or quiescence. To understand the intricate relationships among gut microbiome, metabolic activities, and immune cells in an immune suppressed environment is a prerequisite for developing strategies to monitor and optimize alloimmune responses that determine transplant outcomes.
Collapse
Affiliation(s)
- Bing Ma
- Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Samuel J Gavzy
- Department of Surgery, University of Maryland Medical Center, Baltimore, MD, 21201, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Michael France
- Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Yang Song
- Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Hnin Wai Lwin
- Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Allison Kensiski
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Vikas Saxena
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Wenji Piao
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Ram Lakhan
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jegan Iyyathurai
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Lushen Li
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Christina Paluskievicz
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Long Wu
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Marina WillsonShirkey
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Emmanuel F Mongodin
- Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Division of Lung Diseases, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Valeria R Mas
- Department of Surgery, University of Maryland Medical Center, Baltimore, MD, 21201, USA
| | - Jonathan S Bromberg
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Surgery, University of Maryland Medical Center, Baltimore, MD, 21201, USA.
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
22
|
Wang Y, Shen M, Li Y, Shao J, Zhang F, Guo M, Zhang Z, Zheng S. COVID-19-associated liver injury: Adding fuel to the flame. Cell Biochem Funct 2023; 41:1076-1092. [PMID: 37947373 DOI: 10.1002/cbf.3883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 11/12/2023]
Abstract
COVID-19 is mainly characterized by respiratory disorders and progresses to multiple organ involvement in severe cases. With expansion of COVID-19 and SARS-CoV-2 research, correlative liver injury has been revealed. It is speculated that COVID-19 patients exhibited abnormal liver function, as previously observed in the SARS and MERS pandemics. Furthermore, patients with underlying diseases such as chronic liver disease are more susceptible to SARS-CoV-2 and indicate a poor prognosis accompanied by respiratory symptoms, systemic inflammation, or metabolic diseases. Therefore, COVID-19 has the potential to impair liver function, while individuals with preexisting liver disease suffer from much worse infected conditions. COVID-19 related liver injury may be owing to direct cytopathic effect, immune dysfunction, gut-liver axis interaction, and inappropriate medication use. However, discussions on these issues are infancy. Expanding research have revealed that angiotensin converting enzyme 2 (ACE2) expression mediated the combination of virus and target cells, iron metabolism participated in the virus life cycle and the fate of target cells, and amino acid metabolism regulated immune response in the host cells, which are all closely related to liver health. Further exploration holds great significance in elucidating the pathogenesis, facilitating drug development, and advancing clinical treatment of COVID-19-related liver injury. This article provides a review of the clinical and laboratory hepatic characteristics in COVID-19 patients, describes the etiology and impact of liver injury, and discusses potential pathophysiological mechanisms.
Collapse
Affiliation(s)
- Yingqian Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Min Shen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Yujia Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiangjuan Shao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mei Guo
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zili Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
23
|
Odenwald MA, Lin H, Lehmann C, Dylla NP, Cole CG, Mostad JD, Pappas TE, Ramaswamy R, Moran A, Hutchison AL, Stutz MR, Dela Cruz M, Adler E, Boissiere J, Khalid M, Cantoral J, Haro F, Oliveira RA, Waligurski E, Cotter TG, Light SH, Beavis KG, Sundararajan A, Sidebottom AM, Reddy KG, Paul S, Pillai A, Te HS, Rinella ME, Charlton MR, Pamer EG, Aronsohn AI. Bifidobacteria metabolize lactulose to optimize gut metabolites and prevent systemic infection in patients with liver disease. Nat Microbiol 2023; 8:2033-2049. [PMID: 37845315 PMCID: PMC11059310 DOI: 10.1038/s41564-023-01493-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/08/2023] [Indexed: 10/18/2023]
Abstract
Progression of chronic liver disease is precipitated by hepatocyte loss, inflammation and fibrosis. This process results in the loss of critical hepatic functions, increasing morbidity and the risk of infection. Medical interventions that treat complications of hepatic failure, including antibiotic administration for systemic infections and lactulose treatment for hepatic encephalopathy, can impact gut microbiome composition and metabolite production. Here, using shotgun metagenomic sequencing and targeted metabolomic analyses on 847 faecal samples from 262 patients with acute or chronic liver disease, we demonstrate that patients hospitalized for liver disease have reduced microbiome diversity and a paucity of bioactive metabolites, including short-chain fatty acids and bile acid derivatives, that impact immune defences and epithelial barrier integrity. We find that patients treated with the orally administered but non-absorbable disaccharide lactulose have increased densities of intestinal bifidobacteria and reduced incidence of systemic infections and mortality. Bifidobacteria metabolize lactulose, produce high concentrations of acetate and acidify the gut lumen in humans and mice, which, in combination, can reduce the growth of antibiotic-resistant bacteria such as vancomycin-resistant Enterococcus faecium in vitro. Our studies suggest that lactulose and bifidobacteria serve as a synbiotic to reduce rates of infection in patients with severe liver disease.
Collapse
Affiliation(s)
- Matthew A Odenwald
- Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago, Chicago, IL, USA.
| | - Huaiying Lin
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Christopher Lehmann
- Department of Medicine, Section of Infectious Diseases and Global Health, University of Chicago, Chicago, IL, USA
| | - Nicholas P Dylla
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Cody G Cole
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Jake D Mostad
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Téa E Pappas
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | | | - Angelica Moran
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Alan L Hutchison
- Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago, Chicago, IL, USA
| | - Matthew R Stutz
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Cook County Health, Chicago, IL, USA
| | - Mark Dela Cruz
- Section of Cardiology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Emerald Adler
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Jaye Boissiere
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Maryam Khalid
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Jackelyn Cantoral
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Fidel Haro
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Rita A Oliveira
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Emily Waligurski
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Thomas G Cotter
- Division of Digestive and Liver Diseases, UT Southwestern Medical Center, Dallas, TX, USA
| | - Samuel H Light
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | | | | | | | - K Gautham Reddy
- Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago, Chicago, IL, USA
| | - Sonali Paul
- Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago, Chicago, IL, USA
| | - Anjana Pillai
- Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago, Chicago, IL, USA
| | - Helen S Te
- Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago, Chicago, IL, USA
| | - Mary E Rinella
- Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago, Chicago, IL, USA
| | - Michael R Charlton
- Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago, Chicago, IL, USA
| | - Eric G Pamer
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA.
- Department of Medicine, Section of Infectious Diseases and Global Health, University of Chicago, Chicago, IL, USA.
- Department of Microbiology, University of Chicago, Chicago, IL, USA.
| | - Andrew I Aronsohn
- Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago, Chicago, IL, USA
| |
Collapse
|
24
|
Joachim L, Göttert S, Sax A, Steiger K, Neuhaus K, Heinrich P, Fan K, Orberg ET, Kleigrewe K, Ruland J, Bassermann F, Herr W, Posch C, Heidegger S, Poeck H. The microbial metabolite desaminotyrosine enhances T-cell priming and cancer immunotherapy with immune checkpoint inhibitors. EBioMedicine 2023; 97:104834. [PMID: 37865045 PMCID: PMC10597767 DOI: 10.1016/j.ebiom.2023.104834] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/23/2023] Open
Abstract
BACKGROUND Inter-individual differences in response to immune checkpoint inhibitors (ICI) remain a major challenge in cancer treatment. The composition of the gut microbiome has been associated with differential ICI outcome, but the underlying molecular mechanisms remain unclear, and therapeutic modulation challenging. METHODS We established an in vivo model to treat C57Bl/6j mice with the type-I interferon (IFN-I)-modulating, bacterial-derived metabolite desaminotyrosine (DAT) to improve ICI therapy. Broad spectrum antibiotics were used to mimic gut microbial dysbiosis and associated ICI resistance. We utilized genetic mouse models to address the role of host IFN-I in DAT-modulated antitumour immunity. Changes in gut microbiota were assessed using 16S-rRNA sequencing analyses. FINDINGS We found that oral supplementation of mice with the microbial metabolite DAT delays tumour growth and promotes ICI immunotherapy with anti-CTLA-4 or anti-PD-1. DAT-enhanced antitumour immunity was associated with more activated T cells and natural killer cells in the tumour microenvironment and was dependent on host IFN-I signalling. Consistent with this, DAT potently enhanced expansion of antigen-specific T cells following vaccination with an IFN-I-inducing adjuvant. DAT supplementation in mice compensated for the negative effects of broad-spectrum antibiotic-induced dysbiosis on anti-CTLA-4-mediated antitumour immunity. Oral administration of DAT altered the gut microbial composition in mice with increased abundance of bacterial taxa that are associated with beneficial response to ICI immunotherapy. INTERPRETATION We introduce the therapeutic use of an IFN-I-modulating bacterial-derived metabolite to overcome resistance to ICI. This approach is a promising strategy particularly for patients with a history of broad-spectrum antibiotic use and associated loss of gut microbial diversity. FUNDING Melanoma Research Alliance, Deutsche Forschungsgemeinschaft, German Cancer Aid, Wilhelm Sander Foundation, Novartis Foundation.
Collapse
Affiliation(s)
- Laura Joachim
- Department of Medicine III, School of Medicine, Technical University of Munich, Munich, Germany; Centre for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Sascha Göttert
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Anna Sax
- Department of Medicine III, School of Medicine, Technical University of Munich, Munich, Germany; Centre for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Katja Steiger
- Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner-site Munich and German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Klaus Neuhaus
- Core Facility Microbiome, ZIEL Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Paul Heinrich
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany; Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
| | - Kaiji Fan
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Erik Thiele Orberg
- Department of Medicine III, School of Medicine, Technical University of Munich, Munich, Germany; Centre for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner-site Munich and German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Karin Kleigrewe
- Bavarian Centre for Biomolecular Mass Spectrometry, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Jürgen Ruland
- Centre for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner-site Munich and German Cancer Research Centre (DKFZ), Heidelberg, Germany; Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany
| | - Florian Bassermann
- Department of Medicine III, School of Medicine, Technical University of Munich, Munich, Germany; Centre for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner-site Munich and German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Christian Posch
- Department of Dermatology and Allergy, School of Medicine, Technical University of Munich, Munich, Germany; Faculty of Medicine, Sigmund Freud University Vienna, Vienna, Austria
| | - Simon Heidegger
- Department of Medicine III, School of Medicine, Technical University of Munich, Munich, Germany; Centre for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany.
| | - Hendrik Poeck
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany; Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany; Centre for Immunomedicine in Transplantation and Oncology (CITO), Regensburg, Germany; Bavarian Cancer Research Centre (BZKF), Regensburg, Germany.
| |
Collapse
|
25
|
Moreno-Corona NC, López-Ortega O, Pérez-Martínez CA, Martínez-Castillo M, De Jesús-González LA, León-Reyes G, León-Juárez M. Dynamics of the Microbiota and Its Relationship with Post-COVID-19 Syndrome. Int J Mol Sci 2023; 24:14822. [PMID: 37834270 PMCID: PMC10573029 DOI: 10.3390/ijms241914822] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Coronavirus disease (COVID-19) is an infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which can be asymptomatic or present with multiple organ dysfunction. Many infected individuals have chronic alterations associated with neuropsychiatric, endocrine, gastrointestinal, and musculoskeletal symptoms, even several months after disease onset, developing long-COVID or post-acute COVID-19 syndrome (PACS). Microbiota dysbiosis contributes to the onset and progression of many viral diseases, including COVID-19 and post-COVID-19 manifestations, which could serve as potential diagnostic and prognostic biomarkers. This review aimed to discuss the most recent findings on gut microbiota dysbiosis and its relationship with the sequelae of PACS. Elucidating these mechanisms could help develop personalized and non-invasive clinical strategies to identify individuals at a higher risk of experiencing severe disease progression or complications associated with PACS. Moreover, the review highlights the importance of targeting the gut microbiota composition to avoid dysbiosis and to develop possible prophylactic and therapeutic measures against COVID-19 and PACS in future studies.
Collapse
Affiliation(s)
- Nidia Carolina Moreno-Corona
- Laboratory of Human Lymphohematopoiesis, Imagine Institute, INSERM UMR 1163, Université de Paris, 75015 Paris, France;
| | - Orestes López-Ortega
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institute Necker Enfants Malades, 75015 Paris, France;
| | | | - Macario Martínez-Castillo
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | | | - Guadalupe León-Reyes
- Laboratorio de Nutrigenética y Nutrigenómica, Instituto Nacional de Medicina Genómica (INMEGEN), México City 16610, Mexico;
| | - Moisés León-Juárez
- Laboratorio de Virología Perinatal y Diseño Molecular de Antígenos y Biomarcadores, Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico
| |
Collapse
|
26
|
Ma B, Gavzy SJ, France M, Song Y, Lwin HW, Kensiski A, Saxena V, Piao W, Lakhan R, Iyyathurai J, Li L, Paluskievicz C, Wu L, WillsonShirkey M, Mongodin EF, Mas VR, Bromberg J. Rapid intestinal and systemic metabolic reprogramming in an immunosuppressed environment. RESEARCH SQUARE 2023:rs.3.rs-3364037. [PMID: 37790403 PMCID: PMC10543476 DOI: 10.21203/rs.3.rs-3364037/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Intrinsic metabolism shapes the immune environment associated with immune suppression and tolerance in settings such as organ transplantation and cancer. However, little is known about the metabolic activities in an immunosuppressive environment. In this study, we employed metagenomic, metabolomic, and immunological approaches to profile the early effects of the immunosuppressant drug tacrolimus, antibiotics, or both in gut lumen and circulation using a murine model. Tacrolimus induced rapid and profound alterations in metabolic activities within two days of treatment, prior to alterations in gut microbiota composition and structure. The metabolic profile and gut microbiome after seven days of treatment was distinct from that after two days of treatment, indicating continuous drug effects on both gut microbial ecosystem and host metabolism. The most affected taxonomic groups are Clostriales and Verrucomicrobiae (i.e., Akkermansia muciniphila), and the most affected metabolic pathways included a group of interconnected amino acids, bile acid conjugation, glucose homeostasis, and energy production. Highly correlated metabolic changes were observed between lumen and serum metabolism, supporting their significant interactions. Despite a small sample size, this study explored the largely uncharacterized microbial and metabolic events in an immunosuppressed environment and demonstrated that early changes in metabolic activities can have significant implications that may serve as antecedent biomarkers of immune activation or quiescence. To understand the intricate relationships among gut microbiome, metabolic activities, and immune cells in an immune suppressed environment is a prerequisite for developing strategies to monitor and optimize alloimmune responses that determine transplant outcomes.
Collapse
Affiliation(s)
- Bing Ma
- University of Maryland, Baltimore
| | | | | | | | | | | | | | | | | | | | | | | | - Long Wu
- University of Maryland, Baltimore
| | | | | | | | | |
Collapse
|
27
|
Nguyen LH, Okin D, Drew DA, Battista VM, Jesudasen SJ, Kuntz TM, Bhosle A, Thompson KN, Reinicke T, Lo CH, Woo JE, Caraballo A, Berra L, Vieira J, Huang CY, Das Adhikari U, Kim M, Sui HY, Magicheva-Gupta M, McIver L, Goldberg MB, Kwon DS, Huttenhower C, Chan AT, Lai PS. Metagenomic assessment of gut microbial communities and risk of severe COVID-19. Genome Med 2023; 15:49. [PMID: 37438797 DOI: 10.1186/s13073-023-01202-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 06/13/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND The gut microbiome is a critical modulator of host immunity and is linked to the immune response to respiratory viral infections. However, few studies have gone beyond describing broad compositional alterations in severe COVID-19, defined as acute respiratory or other organ failure. METHODS We profiled 127 hospitalized patients with COVID-19 (n = 79 with severe COVID-19 and 48 with moderate) who collectively provided 241 stool samples from April 2020 to May 2021 to identify links between COVID-19 severity and gut microbial taxa, their biochemical pathways, and stool metabolites. RESULTS Forty-eight species were associated with severe disease after accounting for antibiotic use, age, sex, and various comorbidities. These included significant in-hospital depletions of Fusicatenibacter saccharivorans and Roseburia hominis, each previously linked to post-acute COVID syndrome or "long COVID," suggesting these microbes may serve as early biomarkers for the eventual development of long COVID. A random forest classifier achieved excellent performance when tasked with classifying whether stool was obtained from patients with severe vs. moderate COVID-19, a finding that was externally validated in an independent cohort. Dedicated network analyses demonstrated fragile microbial ecology in severe disease, characterized by fracturing of clusters and reduced negative selection. We also observed shifts in predicted stool metabolite pools, implicating perturbed bile acid metabolism in severe disease. CONCLUSIONS Here, we show that the gut microbiome differentiates individuals with a more severe disease course after infection with COVID-19 and offer several tractable and biologically plausible mechanisms through which gut microbial communities may influence COVID-19 disease course. Further studies are needed to expand upon these observations to better leverage the gut microbiome as a potential biomarker for disease severity and as a target for therapeutic intervention.
Collapse
Affiliation(s)
- Long H Nguyen
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Daniel Okin
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - David A Drew
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Vincent M Battista
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sirus J Jesudasen
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Thomas M Kuntz
- Harvard Chan Microbiome in Public Health Center, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Amrisha Bhosle
- Harvard Chan Microbiome in Public Health Center, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Kelsey N Thompson
- Harvard Chan Microbiome in Public Health Center, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Trenton Reinicke
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Chun-Han Lo
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jacqueline E Woo
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexander Caraballo
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lorenzo Berra
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jacob Vieira
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ching-Ying Huang
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Minsik Kim
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Hui-Yu Sui
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Marina Magicheva-Gupta
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lauren McIver
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Marcia B Goldberg
- Division of Infectious Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Douglas S Kwon
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA, USA
- Division of Infectious Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Curtis Huttenhower
- Harvard Chan Microbiome in Public Health Center, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Harvard Chan Microbiome in Public Health Center, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Peggy S Lai
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
28
|
Buchynskyi M, Kamyshna I, Oksenych V, Zavidniuk N, Kamyshnyi A. The Intersection of COVID-19 and Metabolic-Associated Fatty Liver Disease: An Overview of the Current Evidence. Viruses 2023; 15:v15051072. [PMID: 37243158 DOI: 10.3390/v15051072] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
The global population is currently experiencing the impact of the SARS-CoV-2 coronavirus, which has caused the Coronavirus Disease 2019 (COVID-19) pandemic. With our profound comprehension of COVID-19, encompassing the involvement sequence of the respiratory tract, gastrointestinal system, and cardiovascular apparatus, the multiorgan symptoms of this infectious disease have been discerned. Metabolic-associated fatty liver disease (MAFLD), formerly known as non-alcoholic fatty liver disease (NAFLD), is a pervasive public health concern intricately linked with metabolic dysregulation and estimated to afflict one-fourth of the global adult population. The burgeoning focus on the association between COVID-19 and MAFLD is justified by the potential role of the latter as a risk factor for both SARS-CoV-2 infection and the subsequent emergence of severe COVID-19 symptoms. Investigations have suggested that changes in both innate and adaptive immune responses among MAFLD patients may play a role in determining the severity of COVID-19. The remarkable similarities observed in the cytokine pathways implicated in both diseases imply the existence of shared mechanisms governing the chronic inflammatory responses characterizing these conditions. The effect of MAFLD on the severity of COVID-19 illness remains uncertain, as indicated by conflicting results in cohort investigations.
Collapse
Affiliation(s)
- Mykhailo Buchynskyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Iryna Kamyshna
- Department of Medical Rehabilitation, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Valentyn Oksenych
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology (NTNU), 7028 Trondheim, Norway
| | - Nataliia Zavidniuk
- Department of Infectious Diseases with Epidemiology, Dermatology and Venerology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Aleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| |
Collapse
|
29
|
Gareau MG, Barrett KE. Role of the microbiota-gut-brain axis in postacute COVID syndrome. Am J Physiol Gastrointest Liver Physiol 2023; 324:G322-G328. [PMID: 36880667 PMCID: PMC10042594 DOI: 10.1152/ajpgi.00293.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023]
Abstract
The COVID-19 pandemic has resulted in the infection of hundreds of millions of individuals over the past 3 years, coupled with millions of deaths. Along with these more acute impacts of infection, a large subset of patients has developed symptoms that collectively comprise "postacute sequelae of COVID-19" (PASC, also known as long COVID), which can persist for months and maybe even years. In this review, we outline the current knowledge on the role of impaired microbiota-gut-brain (MGB) axis signaling in the development of PASC and the potential mechanisms involved, which may lead to a better understanding of disease progression and treatment options in the future.
Collapse
Affiliation(s)
- Mélanie G Gareau
- School of Veterinary Medicine, University of California, Davis, Davis, California, United States
| | - Kim E Barrett
- School of Medicine, University of California, Davis, Sacramento, California, United States
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Study of organ crosstalk in critical illness has uncovered complex biological communication between different organ systems, but the role of microbiota in organ crosstalk has received limited attention. We highlight the emerging understanding of the gut-lung axis, and how the largest biomass of the human body in the gut may affect lung physiology in critical illness. RECENT FINDINGS Disruption of healthy gut microbial communities and replacement by disease-promoting pathogens (pathobiome) generates a maladaptive transmitter of messages from the gut to the lungs, connected via the portal venous and the mesenteric lymphatic systems. Gut barrier impairment allows for microbial translocation (living organisms or cellular fragments) to the lungs. Host-microbiota interactions in the gut mucosa can also impact lung physiology through microbial metabolite secretion or host-derived messengers (hormones, cytokines or immune cells). Clinical examples like the prevention of ventilator-associated pneumonia by selective decontamination of the digestive tract show that the gut-lung axis can be manipulated therapeutically. SUMMARY A growing body of evidence supports the pathophysiological relevance of the gut-lung axis, yet we are only at the brink of understanding the therapeutic and prognostic relevance of the gut microbiome, metabolites and host-microbe interactions in critical illness.
Collapse
Affiliation(s)
- Sridesh Nath
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine
| | - Georgios D Kitsios
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine
- Acute Lung Injury Center of Excellence
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lieuwe D J Bos
- Intensive Care
- Laboratory of Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam University Medical Centers, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
31
|
Association between Gut Microbiota and SARS-CoV-2 Infection and Vaccine Immunogenicity. Microorganisms 2023; 11:microorganisms11020452. [PMID: 36838417 PMCID: PMC9961186 DOI: 10.3390/microorganisms11020452] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Gut microbiota is increasingly recognized to play a pivotal role in various human physiological functions and diseases. Amidst the COVID-19 pandemic, research has suggested that dysbiosis of the gut microbiota is also involved in the development and severity of COVID-19 symptoms by regulating SARS-CoV-2 entry and modulating inflammation. Previous studies have also suggested that gut microbiota and their metabolites could have immunomodulatory effects on vaccine immunogenicity, including influenza vaccines and oral rotavirus vaccines. In light of these observations, it is possible that gut microbiota plays a role in influencing the immune responses to COVID-19 vaccinations via similar mechanisms including effects of lipopolysaccharides, flagellin, peptidoglycan, and short-chain fatty acids. In this review, we give an overview of the current understanding on the role of the gut microbiota in COVID-19 manifestations and vaccine immunogenicity. We then discuss the limitations of currently published studies on the associations between gut microbiota and COVID-19 vaccine outcomes. Future research directions shall be focused on the development of microbiota-based interventions on improving immune response to SARS-CoV-2 infection and vaccinations.
Collapse
|
32
|
Zhou B, Pang X, Wu J, Liu T, Wang B, Cao H. Gut microbiota in COVID-19: new insights from inside. Gut Microbes 2023; 15:2201157. [PMID: 37078497 PMCID: PMC10120564 DOI: 10.1080/19490976.2023.2201157] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/04/2023] [Indexed: 04/21/2023] Open
Abstract
The epidemic of coronavirus disease-19 (COVID-19) has grown to be a global health threat. Gastrointestinal symptoms are thought to be common clinical manifestations apart from a series of originally found respiratory symptoms. The human gut harbors trillions of microorganisms that are indispensable for complex physiological processes and homeostasis. Growing evidence demonstrate that gut microbiota alteration is associated with COVID-19 progress and severity, and post-COVID-19 syndrome, characterized by decrease of anti-inflammatory bacteria like Bifidobacterium and Faecalibacterium and enrichment of inflammation-associated microbiota including Streptococcus and Actinomyces. Therapeutic strategies such as diet, probiotics/prebiotics, herb, and fecal microbiota transplantation have shown positive effects on relieving clinical symptoms. In this article, we provide and summarize the recent evidence about the gut microbiota and their metabolites alterations during and after COVID-19 infection and focus on potential therapeutic strategies targeting gut microbiota. Understanding the connections between intestinal microbiota and COVID-19 would provide new insights into COVID-19 management in the future.
Collapse
Affiliation(s)
- Bingqian Zhou
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xiaoqi Pang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Jingyi Wu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| |
Collapse
|
33
|
Wang M, Zhang Y, Li C, Chang W, Zhang L. The relationship between gut microbiota and COVID-19 progression: new insights into immunopathogenesis and treatment. Front Immunol 2023; 14:1180336. [PMID: 37205106 PMCID: PMC10185909 DOI: 10.3389/fimmu.2023.1180336] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/17/2023] [Indexed: 05/21/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed a global health crisis. Increasing evidence underlines the key role of competent immune responses in resisting SARS-CoV-2 infection and manifests the disastrous consequence of host immune dysregulation. Elucidating the mechanisms responsible for deregulated host immunity in COVID-19 may provide a theoretical basis for further research on new treatment modalities. Gut microbiota comprises trillions of microorganisms colonizing the human gastrointestinal tract and has a vital role in immune homeostasis and the gut-lung crosstalk. Particularly, SARS-CoV-2 infection can lead to the disruption of gut microbiota equilibrium, a condition called gut dysbiosis. Due to its regulatory effect on host immunity, gut microbiota has recently received considerable attention in the field of SARS-CoV-2 immunopathology. Imbalanced gut microbiota can fuel COVID-19 progression through production of bioactive metabolites, intestinal metabolism, enhancement of the cytokine storm, exaggeration of inflammation, regulation of adaptive immunity and other aspects. In this review, we provide an overview of the alterations in gut microbiota in COVID-19 patients, and their effects on individuals' susceptibility to viral infection and COVID-19 progression. Moreover, we summarize currently available data on the critical role of the bidirectional regulation between intestinal microbes and host immunity in SARS-CoV-2-induced pathology, and highlight the immunomodulatory mechanisms of gut microbiota contributing to COVID-19 pathogenesis. In addition, we discuss the therapeutic benefits and future perspectives of microbiota-targeted interventions including faecal microbiota transplantation (FMT), bacteriotherapy and traditional Chinese medicine (TCM) in COVID-19 treatment.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
- *Correspondence: Man Wang, ; Chunmei Li,
| | - Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Chunmei Li
- Department of Radiology, Qingdao Municipal Hospital, Qingdao, China
- *Correspondence: Man Wang, ; Chunmei Li,
| | - Wenguang Chang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
34
|
Tang X, Wang L, Wang D, Zhang Y, Wang T, Zhu Z, Weng Y, Tao G, Wang Q, Tang L, Yan F, Wang Y. Maggot extracts chemo-prevent inflammation and tumorigenesis accompanied by changes in the intestinal microbiome and metabolome in AOM/DSS-induced mice. Front Microbiol 2023; 14:1143463. [PMID: 37200915 PMCID: PMC10185807 DOI: 10.3389/fmicb.2023.1143463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/29/2023] [Indexed: 05/20/2023] Open
Abstract
Inflammatory responses and intestinal microbiome play a crucial role in the progression of colitis-associated carcinoma (CAC). The traditional Chinese medicine maggot has been widely known owing to its clinical application and anti-inflammatory function. In this study, we investigated the preventive effects of maggot extract (ME) by intragastric administration prior to azoxymethane (AOM) and dextran sulfate sodium (DSS)-induced CAC in mice. The results showed that ME had superior advantages in ameliorating disease activity index score and inflammatory phenotype, in comparison with the AOM/DSS group. The number and size of polypoid colonic tumors were decreased after pre-administration of ME. In addition, ME was found to reverse the downregulation of tight junction proteins (zonula occluden-1 and occluding) while suppressing the levels of inflammatory factors (IL-1β and IL-6) in models. Moreover, Toll-like receptor 4 (TLR4) mediated intracellular nuclear factor-κB (NF-κB)-containing signaling cascades, including inducible nitric oxide synthase and cyclooxygenase-2, and exhibited decreasing expression in the mice model after ME pre-administration. 16s rRNA analysis and untargeted-metabolomics profiling of fecal samples inferred that ME revealed ideal prevention of intestinal dysbiosis in CAC mice, accompanied by and correlated with alterations in the composition of metabolites. Overall, ME pre-administration might be a chemo-preventive candidate in the initiation and development of CAC.
Collapse
Affiliation(s)
- Xun Tang
- State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, The Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China
| | - Lei Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Daojuan Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, The Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yi Zhang
- Department of Pathology, The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China
| | - Tingyu Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, The Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhengquan Zhu
- State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, The Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yajing Weng
- State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, The Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Gaojian Tao
- State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, The Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qin Wang
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China
| | - Li Tang
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China
| | - Feng Yan
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China
- *Correspondence: Feng Yan
| | - Yong Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, The Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- Nanjing University (Suzhou) High-Tech Institute, Nanjing University, Suzhou, China
- Yong Wang
| |
Collapse
|