1
|
Dong Z, Liu N, Zhang Z, Wang H, Li S, Zhan B. N6-Methyladenosine Modification Regulates Prunus Necrotic Ringspot Virus Infection in Cucumis sativus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:11586-11597. [PMID: 40319386 DOI: 10.1021/acs.jafc.5c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
N6-methyladenosine (m6A) is a common epigenetic modification found in eukaryotic RNA. Recent studies have increasingly highlighted the importance of m6A modification in plant defense against viruses. In this investigation, we found that prunus necrotic ringspot virus (PNRSV) infection affected the m6A modification process. Plant transcriptomes and epitranscriptomes were sequenced to coanalyze the dynamic changes of m6A modifications after PNRSV infection. Further studies revealed that the silencing of evolutionarily conserved C-terminal region (ECTs), encoding m6A readers, led to increased PNRSV accumulation, indicating that ECTs confer resistance to PNRSV. Additionally, we demonstrated that UPF3 and SMG7, which are involved in non-sense-mediated mRNA decay pathways, as well as phenylalanine ammonia-lyase (PAL), a well-known key enzyme in plant defense and an identified m6A-modified gene following PNRSV infection, play crucial roles in regulating PNRSV infection. These findings provide new insights into understanding PNRSV infection and further elucidate the role of m6A in modulating viral infection in plants.
Collapse
Affiliation(s)
- Zhenfei Dong
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing 100193, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Na Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhixiang Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hongqing Wang
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Shifang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Center for Biosafety, Chinese Academy of Inspection and Quarantine, Sanya 572024, Hainan, China
| | - Binhui Zhan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
2
|
Liu K, Wang X, Wang J, Wang S, Bai H, Dong W, Qiao L, Jin Q, Zhang Z, Luo GZ, Wang Z. N 6-methyladenosine modifications stabilize phosphate starvation response-related mRNAs in plant adaptation to nutrient-deficient stress. Nat Commun 2025; 16:4093. [PMID: 40312414 PMCID: PMC12045979 DOI: 10.1038/s41467-025-59331-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 04/16/2025] [Indexed: 05/03/2025] Open
Abstract
N6-methyladenosine (m6A), an abundant internal mRNA modification, is induced by various stress conditions and post-transcriptionally regulates gene expression. However, how m6A modifications help plants respond to nutrient-deficiency stress remains unclear. Here, we profile high-confidence m6A modifications in Arabidopsis transcriptome-wide under normal and inorganic orthophosphate (Pi)-deficient conditions (-P). High-confidence m6A modifications are identified using synthetic modification-free RNA libraries for systematic calibration. Pi starvation induces widespread m6A modifications, mediated by the Pi starvation response (PSR) master regulator PHOSPHATE STARVATION RESPONSE1 (PHR1) and its family members. Many Pi starvation-induced (PSI) m6A modifications occur on PSR-related mRNAs, including PHR1. In addition, PHR1 proteins interact with the m6A writers MRNA ADENOSINE METHYLASE (MTA) and METHYLTRANSFERASE B (MTB) in nuclei under -P conditions. m6A modifications facilitate systemic PSR signaling, as reflected by the reduced Pi content and PSR signaling in a knockdown artificial miRNA line targeting MTA, which shows a global decrease in m6A. Transcriptome-wide mRNA decay analysis reveals that PSI-m6A increases the stability of PSR-related mRNAs, but not through alternative polyadenylation site shifts. Analysis of transgenic plants with mutations in m6A loci demonstrates that m6A stabilizes PHR1 transcripts via a positive feedback loop. Our findings indicate that PSI-m6A modifications facilitate PSR signaling by enhancing the stability of certain mRNAs, shedding light on the role of m6A modifications in nutrient stress responses in plants.
Collapse
Affiliation(s)
- Kai Liu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaojia Wang
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingyi Wang
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shuman Wang
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haiyan Bai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Weiguo Dong
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lulu Qiao
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qiongli Jin
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhonghui Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Guan-Zheng Luo
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhiye Wang
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Zhang Y, Kaido M, Mine A, Takano Y, Mise K. Identification of host specificity determinants in brome mosaic virus for rice infection. Virus Res 2025; 355:199564. [PMID: 40147509 PMCID: PMC11997414 DOI: 10.1016/j.virusres.2025.199564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/21/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
Brome mosaic virus (BMV) is a tripartite positive-stranded RNA plant virus. The genomic RNA2 encodes the 2a protein, which has conserved RNA-dependent RNA polymerase motifs and is required for viral RNA replication. In this study, we have used two BMV strains, F and KU5, and identified two key amino acid residues, 776R and 784T, in the C-terminal non-conserved region of the 2a protein that are critical for systemic infection of BMV-F in rice. While KU5 strain was not able to systemically infect rice, the KU5 mutant strain with two codon changes for 776R and 784T in the 2a gene gained the ability to establish systemic infection in rice, which affects long-distance movement, but not replication or cell-to-cell movement. Through infection assays of KU5 synonymous mutant strains, we demonstrated that amino acids, rather than RNA sequences or secondary structures, are responsible for viral infectivity in rice. Computer predictions and yeast two-hybrid screening revealed that the C-terminal region of 2a functions as an intrinsically disordered region, capable of interacting with host proteins. These results provide molecular insights into the host specificity of BMV and advance our understanding of RNA virus evolution and host-pathogen interactions.
Collapse
Affiliation(s)
- Yifan Zhang
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Masanori Kaido
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Akira Mine
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Yoshitaka Takano
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Kazuyuki Mise
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
4
|
Chen Y, Kong D, Wang Z, Liu J, Wang L, Dai K, Ji J, Chen W, Tang X, Wen M, Zhang X, Zhang H, Jiao C, Sun L, Wang H, Fei X, Guo H, Sun B, Tao X, Wang W, Yang J, Wang X, Xiao J. A wheat CC-NBS-LRR protein Ym1 confers WYMV resistance by recognizing viral coat protein. Nat Commun 2025; 16:3630. [PMID: 40240346 PMCID: PMC12003722 DOI: 10.1038/s41467-025-58816-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Ym1 is the most widely utilized gene for wheat yellow mosaic virus (WYMV) disease control in worldwide wheat breeding. Here, we successfully isolated the responsible gene for Ym1. It encodes a typical CC-NBS-LRR type R protein, which is specifically expressed in root and induced upon WYMV infection. Ym1-mediated WYMV resistance is likely achieved by blocking viral transmission from the root cortex into steles, thereby preventing systemic movement to aerial tissues. Ym1 CC domain is essential for triggering cell death. Ym1 specifically interacts with WYMV coat protein, and this interaction leads to nucleocytoplasmic redistribution, a process for transitioning Ym1 from an auto-inhibited to an activated state. The activation subsequently elicits hypersensitive responses and establishes WYMV resistance. Ym1 is likely introgressed from the sub-genome Xn or Xc of polyploid Aegilops species. The findings highlight an exogenous-introgressed and root-specifically expressed R gene that confers WYMV resistance by recognizing the viral component.
Collapse
Affiliation(s)
- Yiming Chen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Dehui Kong
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Zongkuan Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Jiaqian Liu
- Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, China
| | - Linghan Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Keli Dai
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Jialun Ji
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiong Tang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Mingxing Wen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Xu Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Huajian Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Chengzhi Jiao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Li Sun
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Haiyan Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Xingru Fei
- Yandu District Agricultural Science Research Institute, Yancheng, Jiangsu, China
| | - Hong Guo
- Yandu District Agricultural Science Research Institute, Yancheng, Jiangsu, China
| | - Bingjian Sun
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xiaorong Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wei Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Jian Yang
- Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, China
| | - Xiue Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China.
| | - Jin Xiao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China.
| |
Collapse
|
5
|
Ye X, Hu X, Zhen K, Meng J, Du H, Cao X, Zhou D. Genome-Wide Identification and Expression Analysis of m 6A Methyltransferase Family in Przewalskia tangutica Maxim. Int J Mol Sci 2025; 26:3593. [PMID: 40332128 PMCID: PMC12027458 DOI: 10.3390/ijms26083593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/30/2025] [Accepted: 04/03/2025] [Indexed: 05/08/2025] Open
Abstract
N6-methyladenosine (m6A) RNA modification plays important regulatory roles in plant development and adaptation to the environment. However, there has been no research regarding m6A RNA methyltransferases (MT-A70) in Przewalskia tangutica Maxim. Here, we performed a comprehensive analysis of the MT-A70 family in Przewalskia tangutica (PtMTs), including gene structures, phylogenetic relationships, conserved motifs, gene location, promoter analysis, GO enrichment analysis, and expression profiles. We identified seven PtMT genes. Phylogeny analysis indicated that the seven PtMT genes could be divided into three groups; two MTA genes, three MTB genes, and two MTC genes, and domains and motifs exhibited similar patterns within the same group. These PtMT genes were found to contain a large number of cis-acting elements associated with plant hormones, light response, and stress response, suggesting their widespread regulatory function. Furthermore, the expression profiling of different tissues was investigated using RNA-seq data, and the expression of seven genes was further validated by qPCR analysis. These results provided valuable information to further elucidate the function of m6A regulatory genes and their epigenetic regulatory mechanisms in Przewalskia tangutica.
Collapse
Affiliation(s)
- Xing Ye
- The College of Pharmacy, Qinghai Minzu University, Xining 810007, China; (X.Y.); (X.H.); (K.Z.); (J.M.); (H.D.); (X.C.)
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, Xining 810007, China
| | - Xingqiang Hu
- The College of Pharmacy, Qinghai Minzu University, Xining 810007, China; (X.Y.); (X.H.); (K.Z.); (J.M.); (H.D.); (X.C.)
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, Xining 810007, China
| | - Kun Zhen
- The College of Pharmacy, Qinghai Minzu University, Xining 810007, China; (X.Y.); (X.H.); (K.Z.); (J.M.); (H.D.); (X.C.)
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, Xining 810007, China
| | - Jing Meng
- The College of Pharmacy, Qinghai Minzu University, Xining 810007, China; (X.Y.); (X.H.); (K.Z.); (J.M.); (H.D.); (X.C.)
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, Xining 810007, China
| | - Heyan Du
- The College of Pharmacy, Qinghai Minzu University, Xining 810007, China; (X.Y.); (X.H.); (K.Z.); (J.M.); (H.D.); (X.C.)
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, Xining 810007, China
| | - Xueye Cao
- The College of Pharmacy, Qinghai Minzu University, Xining 810007, China; (X.Y.); (X.H.); (K.Z.); (J.M.); (H.D.); (X.C.)
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, Xining 810007, China
| | - Dangwei Zhou
- The College of Pharmacy, Qinghai Minzu University, Xining 810007, China; (X.Y.); (X.H.); (K.Z.); (J.M.); (H.D.); (X.C.)
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, Xining 810007, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| |
Collapse
|
6
|
Li S, Tan XY, He Z, Shen C, Li YL, Qin L, Zhao CQ, Luo GH, Fang JC, Ji R. The dynamics of N 6-methyladenine RNA modification in resistant and susceptible rice varieties responding to rice stem borer damage. INSECT SCIENCE 2025; 32:530-550. [PMID: 38831720 DOI: 10.1111/1744-7917.13401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 06/05/2024]
Abstract
N6-methyladenosine (m6A) is the most prevalent modification in cellular RNA which orchestrates diverse physiological and pathological processes during stress response. However, the differential m6A modifications that cope with herbivore stress in resistant and susceptible crop varieties remain unclear. Here, we found that rice stem borer (RSB) larvae grew better on indica rice (e.g., MH63, IR64, Nanjing 11) than on japonica rice varieties (e.g., Nipponbare, Zhonghua 11, Xiushui 11). Then, transcriptome-wide m6A profiling of representative resistant (Nipponbare) and susceptible (MH63) rice varieties were performed using a nanopore direct RNA sequencing approach, to reveal variety-specific m6A modifications against RSB. Upon RSB infestation, m6A methylation occurred in actively expressed genes in Nipponbare and MH63, but the number of methylation sites decreased across rice chromosomes. Integrative analysis showed that m6A methylation levels were closely associated with transcriptional regulation. Genes involved in herbivorous resistance related to mitogen-activated protein kinase, jasmonic acid (JA), and terpenoid biosynthesis pathways, as well as JA-mediated trypsin protease inhibitors, were heavily methylated by m6A, and their expression was more pronounced in RSB-infested Nipponbare than in RSB-infested MH63, which may have contributed to RSB resistance in Nipponbare. Therefore, dynamics of m6A modifications act as the main regulatory strategy for expression of genes involved in plant-insect interactions, which is attributed to differential responses of resistant and susceptible rice varieties to RSB infestation. These findings could contribute to developing molecular breeding strategies for controlling herbivorous pests.
Collapse
Affiliation(s)
- Shuai Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Xin-Yang Tan
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zhen He
- School of Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Chen Shen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ya-Li Li
- Wuhan Benagen Technology Company Limited, Wuhan, China
| | - Lang Qin
- School of Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Chun-Qing Zhao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Guang-Hua Luo
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Ji-Chao Fang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, Jiangsu Province, China
| | - Rui Ji
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, Jiangsu Province, China
- School of Life Sciences, Anhui Normal University/Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Wuhu, Anhui Province, China
| |
Collapse
|
7
|
Wu W, Wang X, Liang X, Huang X, Nawaz MA, Jing C, Fan Y, Niu J, Wu J, Feng X. Characterization of the m 6A Regulatory Gene Family in Phaseolus vulgaris L. and Functional Analysis of PvMTA in Response to BCMV Infection. Int J Mol Sci 2025; 26:2748. [PMID: 40141390 PMCID: PMC11942742 DOI: 10.3390/ijms26062748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/13/2025] [Accepted: 03/15/2025] [Indexed: 03/28/2025] Open
Abstract
Common bean (Phaseolus vulgaris L.) is known for its high protein, dietary fiber, and various trace element contents, making it a widely grown leguminous crop globally. The bean common mosaic virus (BCMV) poses a significant threat to leguminous crop production, causing substantial yield reductions when common beans are infected. Widely occurring in mRNA, the m6A modification is vital for maintaining mRNA stability, facilitating splicing, enabling nuclear export, supporting polyadenylation, and initiating translation. Recent studies have identified the m6A regulatory gene family in various plant species, and its ability to regulate plant virus infection has been confirmed. There is currently insufficient information regarding the m6A regulatory gene family in beans and how it responds to BCMV infection. Consequently, we carried out a genome-wide characterization of the m6A regulatory gene family in common bean, which led to the identification of 31 potential regulatory gene members associated with m6A. According to evolutionary analysis, the increase in the bean m6A regulatory gene family appears to be linked to either whole-genome duplication or segmental duplication events. Subsequent investigations into the expression levels of these genes throughout different phases of BCMV infection showed that all candidate genes responded to the infection with various changes in expression. Moreover, we characterized the methyltransferase activity of PvMTA and validated the interactive relationship between mRNA adenosine methyltransferase A (MTA) and mRNA adenosine methyltransferase B (MTB) in common beans. Through overexpressing and silencing PvMTA, we further ascertained that this particular gene has a detrimental impact on the regulation of BCMV infection. This research provides fresh perspectives on the molecular processes that govern the interaction between the common bean and BCMV and aids progress in molecular bean breeding.
Collapse
Affiliation(s)
- Wenyan Wu
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (W.W.); (X.W.); (X.L.); (X.H.); (C.J.); (Y.F.); (J.N.)
| | - Xinhua Wang
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (W.W.); (X.W.); (X.L.); (X.H.); (C.J.); (Y.F.); (J.N.)
| | - Xingrui Liang
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (W.W.); (X.W.); (X.L.); (X.H.); (C.J.); (Y.F.); (J.N.)
| | - Xinqi Huang
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (W.W.); (X.W.); (X.L.); (X.H.); (C.J.); (Y.F.); (J.N.)
| | - Muhammad Amjad Nawaz
- Advanced Engineering School (Agrobiotek), National Research Tomsk State University, Lenin Ave, 36, 634050 Tomsk, Tomsk Oblast, Russia;
- Centre for Research in the Field of Materials and Technologies, National Research Tomsk State University, Lenin Ave, 36, 634050 Tomsk, Tomsk Oblast, Russia
| | - Chenchen Jing
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (W.W.); (X.W.); (X.L.); (X.H.); (C.J.); (Y.F.); (J.N.)
| | - Yaru Fan
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (W.W.); (X.W.); (X.L.); (X.H.); (C.J.); (Y.F.); (J.N.)
| | - Jingya Niu
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (W.W.); (X.W.); (X.L.); (X.H.); (C.J.); (Y.F.); (J.N.)
| | - Jing Wu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xue Feng
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (W.W.); (X.W.); (X.L.); (X.H.); (C.J.); (Y.F.); (J.N.)
| |
Collapse
|
8
|
Wang P, Zhang T, Wu Z, Yu L, Liao P, Yang J, Sun B. Genome-wide identification and characterization of ALKB homolog gene family in wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2025; 16:1544879. [PMID: 40171482 PMCID: PMC11959028 DOI: 10.3389/fpls.2025.1544879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/28/2025] [Indexed: 04/03/2025]
Abstract
Introduction N6-methyladenosine (m6A) is the most prevalent posttranscriptional modification in eukaryotic mRNAs. AlkB homologs (ALKBHs) are involved in plant responses to stress by modulating m6A methylation. However, homologous genes in wheat remain largely uncharacterized. Methods and results In this study, 30 ALKBH genes were identified in wheat, and analyzed their physicochemical properties. The phylogenetic analysis allowed the classification of these genes into seven distinct subfamilies. Additionally, their conserved domains, motif compositions, gene structures, chromosomal localization, and synteny, and the predicted cis-acting elements within their promoters were examined. Expression analysis revealed that TaALKBH9B-5 exhibited the highest expression and its demethylase activity was investigated. Furthermore, TaALKBH9B-5 was significantly upregulated in response to abscisic acid treatment and cold stress, indicating a positive regulatory trend. Discussion In conclusion, this study provides a comprehensive genomic assessment of the TaALKBH gene family and offers a theoretical framework for understanding the role of TaALKBH9B in the response to abiotic stress in wheat.
Collapse
Affiliation(s)
- Pengkun Wang
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, China
| | - Tianye Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs (MARA), Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Zechi Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs (MARA), Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Lei Yu
- Luohe Academy of Agricultural Sciences, Luohe, Henan, China
| | - Pingan Liao
- Luohe Academy of Agricultural Sciences, Luohe, Henan, China
| | - Jian Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs (MARA), Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Bingjian Sun
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
9
|
Ge L, Pan F, Jia M, Pott DM, He H, Shan H, Lozano-Durán R, Wang A, Zhou X, Li F. RNA modifications in plant biotic interactions. PLANT COMMUNICATIONS 2025; 6:101232. [PMID: 39722456 PMCID: PMC11897454 DOI: 10.1016/j.xplc.2024.101232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
The chemical modifications of DNA and proteins are powerful mechanisms for regulating molecular and biological functions, influencing a wide array of signaling pathways in eukaryotes. Recent advancements in epitranscriptomics have shown that RNA modifications play crucial roles in diverse biological processes. Since their discovery in the 1970s, scientists have sought to decipher, identify, and elucidate the functions of these modifications across biological systems. Over the past decade, mounting evidence has demonstrated the importance of RNA modification pathways in plants, prompting significant efforts to decipher their physiological relevance. With the advent of high-resolution mapping techniques for RNA modifications and the gradual uncovering of their biological roles, our understanding of this additional layer of regulation is beginning to take shape. In this review, we summarize recent findings on the major RNA modifications identified in plants, with an emphasis on N6-methyladenosine (m6A), the most extensively studied modification. We discuss the functional significance of the effector components involved in m6A modification and its diverse roles in plant biotic interactions, including plant-virus, plant-bacterium, plant-fungus, and plant-insect relationships. Furthermore, we highlight new technological developments driving research progress in this field and outline key challenges that remain to be addressed.
Collapse
Affiliation(s)
- Linhao Ge
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fuan Pan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Mingxuan Jia
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Delphine M Pott
- Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University, 72076 Tübingen, Germany
| | - Hao He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hongying Shan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Rosa Lozano-Durán
- Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University, 72076 Tübingen, Germany
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
10
|
Li Y, Chen J, Sun Z. N6-methyladenosine (m6A) modification: Emerging regulators in plant-virus interactions. Virology 2025; 603:110373. [PMID: 39729962 DOI: 10.1016/j.virol.2024.110373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/09/2024] [Accepted: 12/20/2024] [Indexed: 12/29/2024]
Abstract
N6-methyladenosine (m6A), a reversible epigenetic modification, is widely present on both cellular and viral RNAs. This modification undergoes catalysis by methyltransferases (writers), removal by demethylases (erasers), and recognition by m6A-binding proteins (readers), ultimately influencing the fate and function of modified RNA molecules. With recent advances in sequencing technologies, the genome-wide mapping of m6A has become possible, enabling a deeper exploration of its roles during viral infections. So far, while the significance of m6A in regulating virus-host interactions has been well-established in animal viruses, research on its involvement in plant viruses remains in its early stages. In this review, we summarize the current knowledge regarding the functions and molecular mechanisms of m6A in plant-virus interactions. A better understanding of these complex interactions may provide valuable insights for developing novel antiviral strategies, potentially leading to more effective control of plant viral diseases in the field.
Collapse
Affiliation(s)
- Yanjun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
11
|
Secco N, Sheikh AH, Hirt H. Insights into the role of N6-methyladenosine (m6A) in plant-virus interactions. J Virol 2025; 99:e0159824. [PMID: 39570081 PMCID: PMC11784248 DOI: 10.1128/jvi.01598-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024] Open
Abstract
N6-methyladenosine (m6A) is a common and dynamic epitranscriptomic modification in eukaryotic RNAs, affecting stability, splicing, translation, and degradation. Recent technological advancements have revealed the complex nature of m6A modifications, highlighting their importance in plant and animal species. The m6A modification is a reversible process, with "writers" depositing methylation, "erasers" demethylating it, and "reader" proteins recognizing m6A and executing various biological functions. Studying the relationship between m6A methylation and viral infection is crucial. Animal viruses, including retroviruses, RNA viruses, and DNA viruses, often employ the host's m6A machinery to replicate or avoid immune responses. In plant viruses, host methyltransferases or demethylases can stabilize or degrade viral RNA, depending on the virus-host interaction. Additionally, viral infections can modify the host's m6A machinery, impacting the viral life cycle. This review examines the role of m6A modifications in plant viral pathogenesis, focussing on RNA viruses infecting crops like alfalfa, turnip, wheat, rice, and potato. Understanding the role of m6A in virus-host interactions can aid in studying plant viral disease development and discovering novel antiviral targets for crop protection. In this review, we summarize current information on m6A in RNA biology, focussing on its function in viral infections and plant-virus interactions.
Collapse
Affiliation(s)
- Nicola Secco
- Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Arsheed H. Sheikh
- Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Utrecht, the Netherlands
| | - Heribert Hirt
- Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
12
|
Cao Y, Ren Q, Chang S, Cui W, Zhao P, Wang Y. N6-methyladenosine RNA methylation modification regulates the transcription of viral-derived E (XSR) miRNAs to promote ALV-J replication. Vet Microbiol 2024; 298:110218. [PMID: 39159504 DOI: 10.1016/j.vetmic.2024.110218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024]
Abstract
The E (XSR) element located in the 3'UTR of the ALV-J genome has the capability to transcribe and generate viral-derived E (XSR) miRNA. However, the biological function and transcriptional regulation mechanism of this process remain unclear. In this study, the impact of E (XSR) miRNA on ALV-J replication and the regulatory effect of N6-methyladenosine (m6A) methylation on its transcription were investigated. The results demonstrated that E (XSR) miRNA could stimulate ALV-J replication and suppress apoptosis in DF-1 cells in vitro. E (XSR) miRNA's promotion of ALV-J replication was not associated with the type I interferon pathway, but achieved by suppressing the expression of the host GPC5 gene. The transcription of E (XSR) miRNA could be promoted by m6A methylation modification, where m6A modification was found at the A6880 and A7016 sites of ALV-J gRNA. This study provides a new perspective on the transcription of ALV-J E (XSR) miRNA and its regulatory function in ALV-J replication.
Collapse
Affiliation(s)
- Yuqing Cao
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China; Shandong Provincial Key Laboratory of Zoonoses, Tai'an, China
| | - Qingling Ren
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China; Shandong Provincial Key Laboratory of Zoonoses, Tai'an, China
| | - Shuang Chang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China; Shandong Provincial Key Laboratory of Zoonoses, Tai'an, China
| | - Wenping Cui
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China; Shandong Provincial Key Laboratory of Zoonoses, Tai'an, China
| | - Peng Zhao
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China; Shandong Provincial Key Laboratory of Zoonoses, Tai'an, China.
| | - Yixin Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China; Shandong Provincial Key Laboratory of Zoonoses, Tai'an, China.
| |
Collapse
|
13
|
Sha T, Li Z, Xu S, Su T, Shopan J, Jin X, Deng Y, Lyu X, Hu Z, Zhang M, Yang J. eIF2Bβ confers resistance to Turnip mosaic virus by recruiting ALKBH9B to modify viral RNA methylation. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3205-3217. [PMID: 39229972 PMCID: PMC11501005 DOI: 10.1111/pbi.14442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/12/2024] [Accepted: 07/14/2024] [Indexed: 09/05/2024]
Abstract
Eukaryotic translation initiation factors (eIFs) are the primary targets for overcoming RNA virus resistance in plants. In a previous study, we mapped a BjeIF2Bβ from Brassica juncea representing a new class of plant virus resistance genes associated with resistance to Turnip mosaic virus (TuMV). However, the mechanism underlying eIF2Bβ-mediated virus resistance remains unclear. In this study, we discovered that the natural variation of BjeIF2Bβ in the allopolyploid B. juncea was inherited from one of its ancestors, B. rapa. By editing of eIF2Bβ, we were able to confer resistance to TuMV in B. juncea and in its sister species of B. napus. Additionally, we identified an N6-methyladenosine (m6A) demethylation factor, BjALKBH9B, for interaction with BjeIF2Bβ, where BjALKBH9B co-localized with both BjeIF2Bβ and TuMV. Furthermore, BjeIF2Bβ recruits BjALKBH9B to modify the m6A status of TuMV viral coat protein RNA, which lacks the ALKB homologue in its genomic RNA, thereby affecting viral infection. Our findings have applications for improving virus resistance in the Brassicaceae family through natural variation or genome editing of the eIF2Bβ. Moreover, we uncovered a non-canonical translational control of viral mRNA in the host plant.
Collapse
Affiliation(s)
- Tongyun Sha
- Laboratory of Germplasm Innovation and Molecular BreedingInstitute of Vegetable Science, Zhejiang UniversityHangzhouChina
| | - Zhangping Li
- Laboratory of Germplasm Innovation and Molecular BreedingInstitute of Vegetable Science, Zhejiang UniversityHangzhouChina
- Hainan Institute, Zhejiang UniversityYazhou Bay Science and Technology CitySanyaChina
| | - Shirui Xu
- Laboratory of Germplasm Innovation and Molecular BreedingInstitute of Vegetable Science, Zhejiang UniversityHangzhouChina
| | - Tongbing Su
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Jannat Shopan
- Laboratory of Germplasm Innovation and Molecular BreedingInstitute of Vegetable Science, Zhejiang UniversityHangzhouChina
| | - Xingming Jin
- Laboratory of Germplasm Innovation and Molecular BreedingInstitute of Vegetable Science, Zhejiang UniversityHangzhouChina
| | - Yueying Deng
- Laboratory of Germplasm Innovation and Molecular BreedingInstitute of Vegetable Science, Zhejiang UniversityHangzhouChina
| | - Xiaolong Lyu
- Laboratory of Germplasm Innovation and Molecular BreedingInstitute of Vegetable Science, Zhejiang UniversityHangzhouChina
| | - Zhongyuan Hu
- Laboratory of Germplasm Innovation and Molecular BreedingInstitute of Vegetable Science, Zhejiang UniversityHangzhouChina
- Hainan Institute, Zhejiang UniversityYazhou Bay Science and Technology CitySanyaChina
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture and Rural AffairsHangzhouChina
| | - Mingfang Zhang
- Laboratory of Germplasm Innovation and Molecular BreedingInstitute of Vegetable Science, Zhejiang UniversityHangzhouChina
- Hainan Institute, Zhejiang UniversityYazhou Bay Science and Technology CitySanyaChina
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture and Rural AffairsHangzhouChina
| | - Jinghua Yang
- Laboratory of Germplasm Innovation and Molecular BreedingInstitute of Vegetable Science, Zhejiang UniversityHangzhouChina
- Hainan Institute, Zhejiang UniversityYazhou Bay Science and Technology CitySanyaChina
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture and Rural AffairsHangzhouChina
| |
Collapse
|
14
|
Hu H, Zhang T, Wang J, Guo J, Jiang Y, Liao Q, Chen L, Lu Q, Liu P, Zhong K, Liu J, Chen J, Yang J. The dynamic TaRACK1B-TaSGT1-TaHSP90 complex modulates NLR-protein-mediated antiviral immunity in wheat. Cell Rep 2024; 43:114765. [PMID: 39306845 DOI: 10.1016/j.celrep.2024.114765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/07/2024] [Accepted: 08/30/2024] [Indexed: 10/26/2024] Open
Abstract
Nucleotide-binding leucine-rich repeat (NLR) proteins contribute widely to plant immunity by regulating defense mechanisms through the elicitation of a hypersensitive response (HR). Here, we find that TaRACK1B (the receptor for activated C-kinase 1B) regulates wheat immune response against Chinese wheat mosaic virus (CWMV) infection. TaRACK1B recruits TaSGT1 and TaHSP90 to form the TaRACK1B-TaSGT1-TaHSP90 complex. This complex is essential for maintaining NLR proteins' stability (TaRGA5-like and TaRGH1A-like) in order to control HR activation and inhibit viral infection. However, the cysteine-rich protein encoded by CWMV can disrupt TaRACK1B-TaSGT1-TaHSP90 complex formation, leading to the reduction of NLR-protein stability and suppression of HR activation, thus promoting CWMV infection. Interestingly, the 7K protein of wheat yellow mosaic virus also interferes with this antiviral immunity. Our findings show a shared viral counter-defense strategy whereby two soil-borne viruses may disrupt the TaRACK1B-TaSGT1-TaHSP90 complex, suppressing NLR-protein-mediated broad-spectrum antiviral immunity and promoting viral infection in wheat.
Collapse
Affiliation(s)
- Haichao Hu
- State Key Laboratory for Quality and Safety of Argo-products, Key Laboratory of Biotechnology in Plant Protection of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Tianye Zhang
- State Key Laboratory for Quality and Safety of Argo-products, Key Laboratory of Biotechnology in Plant Protection of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jinnan Wang
- State Key Laboratory for Quality and Safety of Argo-products, Key Laboratory of Biotechnology in Plant Protection of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jun Guo
- State Key Laboratory for Quality and Safety of Argo-products, Key Laboratory of Biotechnology in Plant Protection of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Yaoyao Jiang
- State Key Laboratory for Quality and Safety of Argo-products, Key Laboratory of Biotechnology in Plant Protection of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Qiansheng Liao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Lu Chen
- State Key Laboratory for Quality and Safety of Argo-products, Key Laboratory of Biotechnology in Plant Protection of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Qisen Lu
- State Key Laboratory for Quality and Safety of Argo-products, Key Laboratory of Biotechnology in Plant Protection of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Peng Liu
- State Key Laboratory for Quality and Safety of Argo-products, Key Laboratory of Biotechnology in Plant Protection of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Kaili Zhong
- State Key Laboratory for Quality and Safety of Argo-products, Key Laboratory of Biotechnology in Plant Protection of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jiaqian Liu
- State Key Laboratory for Quality and Safety of Argo-products, Key Laboratory of Biotechnology in Plant Protection of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jianping Chen
- State Key Laboratory for Quality and Safety of Argo-products, Key Laboratory of Biotechnology in Plant Protection of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| | - Jian Yang
- State Key Laboratory for Quality and Safety of Argo-products, Key Laboratory of Biotechnology in Plant Protection of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
15
|
Pan Y, Jia Y, Liu W, Zhao Q, Pan W, Jia Y, Lv S, Liu X, Nie X. Transcriptome-wide m6A methylation profile reveals its potential role underlying drought response in wheat (Triticum aestivum L.). PLANTA 2024; 260:65. [PMID: 39073585 DOI: 10.1007/s00425-024-04491-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
MAIN CONCLUSION This study revealed the transcriptome-wide m6A methylation profile under drought stress and found that TaETC9 might regulate drought tolerance through mediating RNA methylation in wheat. Drought is one of the most destructive environmental constraints limiting crop growth and development. N6-methyladenosine (m6A) is a prevalent and important post-transcriptional modification in various eukaryotic RNA molecules, playing the crucial role in regulating drought response in plants. However, the significance of m6A in wheat (Triticum aestivum L.), particularly its involvment in drought response, remains underexplored. In this study, we investigated the transcriptome-wide m6A profile under drought stress using parallel m6A immunoprecipitation sequencing (MeRIP-seq). Totally, 4221 m6A peaks in 3733 m6A-modified genes were obtained, of which 373 methylated peaks exhibited differential expression between the control (CK) and drought-stressed treatments. These m6A loci were significantly enriched in proximity to stop codons and within the 3'-untranslated region. Integration of MeRIP-seq and RNA-seq revealed a positive correlation between m6A methylation and mRNA abundance and the genes displaying both differential methylation and expression were obtained. Finally, qRT-PCR analyses were further performed and the results found that the m6A-binding protein (TaETC9) showed significant up-regulation, while the m6A demethylase (TaALKBH10B) was significantly down-regulated under drought stress, contributing to increased m6A levels. Furthermore, the loss-of-function mutant of TaECT9 displayed significantly higher drought sensitivity compared to the wild type, highlighting its role in regulating drought tolerance. This study reported the first wheat m6A profile associated with drought stress, laying the groundwork for unraveling the potential role of RNA methylation in drought responses and enhancing stress tolerance in wheat through epigenetic approaches.
Collapse
Affiliation(s)
- Yan Pan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Northwest, A&F University, Yangling, 712100, Shaanxi, China
| | - Yanzhe Jia
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Northwest, A&F University, Yangling, 712100, Shaanxi, China
| | - Wenxin Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Northwest, A&F University, Yangling, 712100, Shaanxi, China
| | - Qinlong Zhao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Northwest, A&F University, Yangling, 712100, Shaanxi, China
| | - Wenqiu Pan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Northwest, A&F University, Yangling, 712100, Shaanxi, China
| | - Yongpeng Jia
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang, 743004, Henan, China
| | - Shuzuo Lv
- Luoyang Academy of Agricultural and Forestry Sciences, 471027, Luoyang, Henan, China
| | - Xiaoqin Liu
- Peking University Institute of Advanced Agricultural Science, 261325, Weifang, Shandong, China.
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Northwest, A&F University, Yangling, 712100, Shaanxi, China.
- State Key Laboratory of Crop Stress Biology for Arid Areas, Pioneering Innovation Center for Wheat Stress Tolerance Improvement, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
16
|
Xiang Y, Zhang D, Li L, Xue YX, Zhang CY, Meng QF, Wang J, Tan XL, Li YL. Detection, distribution, and functions of RNA N 6-methyladenosine (m 6A) in plant development and environmental signal responses. FRONTIERS IN PLANT SCIENCE 2024; 15:1429011. [PMID: 39081522 PMCID: PMC11286456 DOI: 10.3389/fpls.2024.1429011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024]
Abstract
The epitranscriptomic mark N 6-methyladenosine (m6A) is the most common type of messenger RNA (mRNA) post-transcriptional modification in eukaryotes. With the discovery of the demethylase FTO (FAT MASS AND OBESITY-ASSOCIATED PROTEIN) in Homo Sapiens, this modification has been proven to be dynamically reversible. With technological advances, research on m6A modification in plants also rapidly developed. m6A modification is widely distributed in plants, which is usually enriched near the stop codons and 3'-UTRs, and has conserved modification sequences. The related proteins of m6A modification mainly consist of three components: methyltransferases (writers), demethylases (erasers), and reading proteins (readers). m6A modification mainly regulates the growth and development of plants by modulating the RNA metabolic processes and playing an important role in their responses to environmental signals. In this review, we briefly outline the development of m6A modification detection techniques; comparatively analyze the distribution characteristics of m6A in plants; summarize the methyltransferases, demethylases, and binding proteins related to m6A; elaborate on how m6A modification functions in plant growth, development, and response to environmental signals; and provide a summary and outlook on the research of m6A in plants.
Collapse
|
17
|
Qin R, Huang M, Jiang Y, Jiang D, Chang D, Xie Y, Dou Y, Wu L, Wei L, Wang M, Tian Z, Li C, Wang C. N6-Methyladenosine (m6A) Sequencing Reveals Heterodera glycines-Induced Dynamic Methylation Promoting Soybean Defense. PHYTOPATHOLOGY 2024; 114:1612-1625. [PMID: 38478699 DOI: 10.1094/phyto-12-23-0474-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Unraveling the intricacies of soybean cyst nematode (Heterodera glycines) race 4 resistance and susceptibility in soybean breeding lines-11-452 (highly resistant) and Dongsheng1 (DS1, highly susceptible)-was the focal point of this study. Employing cutting-edge N6-methyladenosine (m6A) and RNA sequencing techniques, we delved into the impact of m6A modification on gene expression and plant defense responses. Through the evaluation of nematode development in both resistant and susceptible roots, a pivotal time point (3 days postinoculation) for m6A methylation sequencing was identified. Our sequencing data exhibited robust statistics, successful soybean genome mapping, and prevalent m6A peak distributions, primarily in the 3' untranslated region and stop codon regions. Analysis of differential methylation peaks and differentially expressed genes revealed distinctive patterns between resistant and susceptible genotypes. In the highly resistant line (11-452), key resistance and defense-associated genes displayed increased expression coupled with inhibited methylation, encompassing crucial players such as R genes, receptor kinases, and transcription factors. Conversely, the highly susceptible DS1 line exhibited heightened expression correlated with decreased methylation in genes linked to susceptibility pathways, including Mildew Locus O-like proteins and regulatory elements affecting defense mechanisms. Genome-wide assessments, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses, and differential methylation peak/differentially expressed gene overlap emphasized the intricate interplay of m6A modifications, alternative splicing, microRNA, and gene regulation in plant defense. Protein-protein interaction networks illuminated defense-pivotal genes, delineating divergent mechanisms in resistant and susceptible responses. This study sheds light on the dynamic correlation between methylation, splicing, and gene expression, providing profound insights into plant responses to nematode infection.
Collapse
Affiliation(s)
- Ruifeng Qin
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, Heilongjiang, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghui Huang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, Heilongjiang, China
| | - Ye Jiang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, Heilongjiang, China
| | - Dan Jiang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, Heilongjiang, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Doudou Chang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, Heilongjiang, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifan Xie
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, Heilongjiang, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuewen Dou
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, Heilongjiang, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lili Wu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, Heilongjiang, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liuli Wei
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, Heilongjiang, China
| | - Mingze Wang
- Heilongjiang Academy of Agricultural Sciences, Daqing 163316, Heilongjiang, China
| | - Zhongyan Tian
- Heilongjiang Academy of Agricultural Sciences, Daqing 163316, Heilongjiang, China
| | - Chunjie Li
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, Heilongjiang, China
| | - Congli Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, Heilongjiang, China
| |
Collapse
|
18
|
Agustinho DP, Fu Y, Menon VK, Metcalf GA, Treangen TJ, Sedlazeck FJ. Unveiling microbial diversity: harnessing long-read sequencing technology. Nat Methods 2024; 21:954-966. [PMID: 38689099 PMCID: PMC11955098 DOI: 10.1038/s41592-024-02262-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 03/29/2024] [Indexed: 05/02/2024]
Abstract
Long-read sequencing has recently transformed metagenomics, enhancing strain-level pathogen characterization, enabling accurate and complete metagenome-assembled genomes, and improving microbiome taxonomic classification and profiling. These advancements are not only due to improvements in sequencing accuracy, but also happening across rapidly changing analysis methods. In this Review, we explore long-read sequencing's profound impact on metagenomics, focusing on computational pipelines for genome assembly, taxonomic characterization and variant detection, to summarize recent advancements in the field and provide an overview of available analytical methods to fully leverage long reads. We provide insights into the advantages and disadvantages of long reads over short reads and their evolution from the early days of long-read sequencing to their recent impact on metagenomics and clinical diagnostics. We further point out remaining challenges for the field such as the integration of methylation signals in sub-strain analysis and the lack of benchmarks.
Collapse
Affiliation(s)
- Daniel P Agustinho
- Human Genome Sequencing center, Baylor College of Medicine, Houston, TX, USA
| | - Yilei Fu
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Vipin K Menon
- Human Genome Sequencing center, Baylor College of Medicine, Houston, TX, USA
- Senior research project manager, Human Genetics, Genentech, South San Francisco, CA, USA
| | - Ginger A Metcalf
- Human Genome Sequencing center, Baylor College of Medicine, Houston, TX, USA
| | - Todd J Treangen
- Department of Computer Science, Rice University, Houston, TX, USA
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Fritz J Sedlazeck
- Human Genome Sequencing center, Baylor College of Medicine, Houston, TX, USA.
- Department of Computer Science, Rice University, Houston, TX, USA.
| |
Collapse
|
19
|
Tian S, Song Q, Zhou W, Wang J, Wang Y, An W, Wu Y, Zhao L. A viral movement protein targets host catalases for 26S proteasome-mediated degradation to facilitate viral infection and aphid transmission in wheat. MOLECULAR PLANT 2024; 17:614-630. [PMID: 38454602 DOI: 10.1016/j.molp.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/02/2024] [Accepted: 03/06/2024] [Indexed: 03/09/2024]
Abstract
The infection of host plants by many different viruses causes reactive oxygen species (ROS) accumulation and yellowing symptoms, but the mechanisms through which plant viruses counteract ROS-mediated immunity to facilitate infection and symptom development have not been fully elucidated. Most plant viruses are transmitted by insect vectors in the field, but the molecular mechanisms underlying virus‒host-insect interactions are unclear. In this study, we investigated the interactions among wheat, barley yellow dwarf virus (BYDV), and its aphid vector and found that the BYDV movement protein (MP) interacts with both wheat catalases (CATs) and the 26S proteasome ubiquitin receptor non-ATPase regulatory subunit 2 homolog (PSMD2) to facilitate the 26S proteasome-mediated degradation of CATs, promoting viral infection, disease symptom development, and aphid transmission. Overexpression of the BYDV MP gene in wheat enhanced the degradation of CATs, which leading to increased accumulation of ROS and thereby enhanced viral infection. Interestingly, transgenic wheat lines overexpressing BYDV MP showed significantly reduced proliferation of wingless aphids and an increased number of winged aphids. Consistent with this observation, silencing of CAT genes also enhanced viral accumulation and reduced the proliferation of wingless aphids but increased the occurrence of winged aphids. In contrast, transgenic wheat plants overexpressing TaCAT1 exhibited the opposite changes and showed increases in grain size and weight upon infection with BYDV. Biochemical assays demonstrated that BYDV MP interacts with PSMD2 and promotes 26S proteasome-mediated degradation of TaCAT1 likely in a ubiquitination-independent manner. Collectively, our study reveals a molecular mechanism by which a plant virus manipulates the ROS production system of host plants to facilitate viral infection and transmission, shedding new light on the sophisticated interactions among viruses, host plants, and insect vectors.
Collapse
Affiliation(s)
- Shuyuan Tian
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingting Song
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenmei Zhou
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingke Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanbin Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei An
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yunfeng Wu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Lei Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
20
|
Wang X, Yang J, Hu H, Yuan T, Zhao Y, Liu Y, Li W, Liu J. Genome-Wide Analysis and Identification of UDP Glycosyltransferases Responsive to Chinese Wheat Mosaic Virus Resistance in Nicotiana benthamiana. Viruses 2024; 16:489. [PMID: 38675832 PMCID: PMC11054786 DOI: 10.3390/v16040489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Glycosylation, a dynamic modification prevalent in viruses and higher eukaryotes, is principally regulated by uridine diphosphate (UDP)-glycosyltransferases (UGTs) in plants. Although UGTs are involved in plant defense responses, their responses to most pathogens, especially plant viruses, remain unclear. Here, we aimed to identify UGTs in the whole genome of Nicotiana benthamiana (N. benthamiana) and to analyze their function in Chinese wheat mosaic virus (CWMV) infection. A total of 147 NbUGTs were identified in N. benthamiana. To conduct a phylogenetic analysis, the UGT protein sequences of N. benthamiana and Arabidopsis thaliana were aligned. The gene structure and conserved motifs of the UGTs were also analyzed. Additionally, the physicochemical properties and predictable subcellular localization were examined in detail. Analysis of cis-acting elements in the putative promoter revealed that NbUGTs were involved in temperature, defense, and hormone responses. The expression levels of 20 NbUGTs containing defense-related cis-acting elements were assessed in CWMV-infected N. benthamiana, revealing a significant upregulation of 8 NbUGTs. Subcellular localization analysis of three NbUGTs (NbUGT12, NbUGT16 and NbUGT17) revealed their predominant localization in the cytoplasm of N. benthamiana leaves, and NbUGT12 was also distributed in the chloroplasts. CWMV infection did not alter the subcellular localization of NbUGT12, NbUGT16, and NbUGT17. Transient overexpression of NbUGT12, NbUGT16, and NbUGT17 enhanced CWMV infection, whereas the knockdown of NbUGT12, NbUGT16 and NbUGT17 inhibited CWMV infection in N. benthamiana. These NbUGTs could serve as potential susceptibility genes to facilitate CWMV infection. Overall, the findings throw light on the evolution and function of NbUGTs.
Collapse
Affiliation(s)
- Xia Wang
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (X.W.); (H.H.)
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.Y.); (Y.Z.); (Y.L.)
| | - Jin Yang
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.Y.); (Y.Z.); (Y.L.)
| | - Haichao Hu
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (X.W.); (H.H.)
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.Y.); (Y.Z.); (Y.L.)
| | - Tangyu Yuan
- Yantai Academy of Agricultural Science, No. 26 Gangcheng West Street, Fushan District, Yantai City 265500, China;
| | - Yingjie Zhao
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.Y.); (Y.Z.); (Y.L.)
| | - Ying Liu
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.Y.); (Y.Z.); (Y.L.)
| | - Wei Li
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (X.W.); (H.H.)
| | - Jiaqian Liu
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.Y.); (Y.Z.); (Y.L.)
| |
Collapse
|
21
|
Wu J, Zhang Y, Li F, Zhang X, Ye J, Wei T, Li Z, Tao X, Cui F, Wang X, Zhang L, Yan F, Li S, Liu Y, Li D, Zhou X, Li Y. Plant virology in the 21st century in China: Recent advances and future directions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:579-622. [PMID: 37924266 DOI: 10.1111/jipb.13580] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/02/2023] [Indexed: 11/06/2023]
Abstract
Plant viruses are a group of intracellular pathogens that persistently threaten global food security. Significant advances in plant virology have been achieved by Chinese scientists over the last 20 years, including basic research and technologies for preventing and controlling plant viral diseases. Here, we review these milestones and advances, including the identification of new crop-infecting viruses, dissection of pathogenic mechanisms of multiple viruses, examination of multilayered interactions among viruses, their host plants, and virus-transmitting arthropod vectors, and in-depth interrogation of plant-encoded resistance and susceptibility determinants. Notably, various plant virus-based vectors have also been successfully developed for gene function studies and target gene expression in plants. We also recommend future plant virology studies in China.
Collapse
Affiliation(s)
- Jianguo Wu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongliang Zhang
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Ye
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Taiyun Wei
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xiaorong Tao
- Department of Plant Pathology, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianbing Wang
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lili Zhang
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Shifang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Dawei Li
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yi Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
22
|
Yao M, Cheng Z, Li X, Li Y, Ye W, Zhang H, Liu H, Zhang L, Lei Y, Zhang F, Lv X. N6-methyladenosine modification positively regulate Japanese encephalitis virus replication. Virol J 2024; 21:23. [PMID: 38243270 PMCID: PMC10799421 DOI: 10.1186/s12985-023-02275-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024] Open
Abstract
N6-methyladenosine (m6A) is present in diverse viral RNA and plays important regulatory roles in virus replication and host antiviral innate immunity. However, the role of m6A in regulating JEV replication has not been investigated. Here, we show that the JEV genome contains m6A modification upon infection of mouse neuroblast cells (neuro2a). JEV infection results in a decrease in the expression of m6A writer METTL3 in mouse brain tissue. METTL3 knockdown by siRNA leads to a substantial decrease in JEV replication and the production of progeny viruses at 48 hpi. Mechanically, JEV triggered a considerable increase in the innate immune response of METTL3 knockdown neuro2a cells compared to the control cells. Our study has revealed the distinctive m6A signatures of both the virus and host in neuro2a cells infected with JEV, illustrating the positive role of m6A modification in JEV infection. Our study further enhances understanding of the role of m6A modification in Flaviviridae viruses.
Collapse
Affiliation(s)
- Min Yao
- Department of Microbiology, Airforce Medical University, Xi'an, 710032, Shaanxi, China
| | - Zhirong Cheng
- Department of Microbiology, Airforce Medical University, Xi'an, 710032, Shaanxi, China
- College of Life Science, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Xueyun Li
- Department of Microbiology, Airforce Medical University, Xi'an, 710032, Shaanxi, China
- College of Basic Medicine, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Yuexiang Li
- Department of Microbiology, Airforce Medical University, Xi'an, 710032, Shaanxi, China
| | - Wei Ye
- Department of Microbiology, Airforce Medical University, Xi'an, 710032, Shaanxi, China
| | - Hui Zhang
- Department of Microbiology, Airforce Medical University, Xi'an, 710032, Shaanxi, China
| | - He Liu
- Department of Microbiology, Airforce Medical University, Xi'an, 710032, Shaanxi, China
| | - Liang Zhang
- Department of Microbiology, Airforce Medical University, Xi'an, 710032, Shaanxi, China
| | - Yingfeng Lei
- Department of Microbiology, Airforce Medical University, Xi'an, 710032, Shaanxi, China
| | - Fanglin Zhang
- Department of Microbiology, Airforce Medical University, Xi'an, 710032, Shaanxi, China.
| | - Xin Lv
- Department of Microbiology, Airforce Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
23
|
He H, Ge L, Chen Y, Zhao S, Li Z, Zhou X, Li F. m 6A modification of plant virus enables host recognition by NMD factors in plants. SCIENCE CHINA. LIFE SCIENCES 2024; 67:161-174. [PMID: 37837530 DOI: 10.1007/s11427-022-2377-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/26/2023] [Indexed: 10/16/2023]
Abstract
N6-methyladenosine (m6A) is the most abundant eukaryotic mRNA modification and is involved in various biological processes. Increasing evidence has implicated that m6A modification is an important anti-viral defense mechanism in mammals and plants, but it is largely unknown how m6A regulates viral infection in plants. Here we report the dynamic changes and functional anatomy of m6A in Nicotiana benthamiana and Solanum lycopersicum during Pepino mosaic virus (PepMV) infection. m6A modification in the PepMV RNA genome is conserved in these two species. Overexpression of the m6A writers, mRNA adenosine methylase A (MTA), and HAKAI inhibit the PepMV RNA accumulation accompanied by increased viral m6A modifications, whereas deficiency of these writers decreases the viral RNA m6A levels but enhances virus infection. Further study reveals that the cytoplasmic YTH-domain family protein NbECT2A/2B/2C as m6A readers are involved in anti-viral immunity. Protein-protein interactions indicate that NbECT2A/2B/2C interact with nonsense-mediated mRNA decay (NMD)-related proteins, including NbUPF3 and NbSMG7, but not with NbUPF1. m6A modification-mediated restriction to PepMV infection is dependent on NMD-related factors. These findings provide new insights into the functionality of m6A anti-viral activity and reveal a distinct immune response that NMD factors recognize the m6A readers-viral m6A RNA complex for viral RNA degradation to limit virus infection in plants.
Collapse
Affiliation(s)
- Hao He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Linhao Ge
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yalin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Siwen Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhaolei Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310029, China.
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
24
|
Yue J, Lu Y, Sun Z, Guo Y, San León D, Pasin F, Zhao M. Methyltransferase-like (METTL) homologues participate in Nicotiana benthamiana antiviral responses. PLANT SIGNALING & BEHAVIOR 2023; 18:2214760. [PMID: 37210738 PMCID: PMC10202045 DOI: 10.1080/15592324.2023.2214760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/23/2023]
Abstract
Methyltransferase (MTase) enzymes catalyze the addition of a methyl group to a variety of biological substrates. MTase-like (METTL) proteins are Class I MTases whose enzymatic activities contribute to the epigenetic and epitranscriptomic regulation of multiple cellular processes. N6-adenosine methylation (m6A) is a common chemical modification of eukaryotic and viral RNA whose abundance is jointly regulated by MTases and METTLs, demethylases, and m6A binding proteins. m6A affects various cellular processes including RNA degradation, post-transcriptional processing, and antiviral immunity. Here, we used Nicotiana benthamiana and plum pox virus (PPV), an RNA virus of the Potyviridae family, to investigated the roles of MTases in plant-virus interaction. RNA sequencing analysis identified MTase transcripts that are differentially expressed during PPV infection; among these, accumulation of a METTL gene was significantly downregulated. Two N. benthamiana METTL transcripts (NbMETTL1 and NbMETTL2) were cloned and further characterized. Sequence and structural analyses of the two encoded proteins identified a conserved S-adenosyl methionine (SAM) binding domain, showing they are SAM-dependent MTases phylogenetically related to human METTL16 and Arabidopsis thaliana FIONA1. Overexpression of NbMETTL1 and NbMETTL2 caused a decrease of PPV accumulation. In sum, our results indicate that METTL homologues participate in plant antiviral responses.
Collapse
Affiliation(s)
- Jianying Yue
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| | - Yan Lu
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhenqi Sun
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| | - Yuqing Guo
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| | - David San León
- Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Fabio Pasin
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas – Universitat Politècnica de València (CSIC-UPV), Valencia, Spain
| | - Mingmin Zhao
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
25
|
Yang J, Zhao Y, Wang X, Yang J, Tang K, Liu J. N-linked glycoproteome analysis reveals central glycosylated proteins involved in response to wheat yellow mosaic virus in wheat. Int J Biol Macromol 2023; 253:126818. [PMID: 37690635 DOI: 10.1016/j.ijbiomac.2023.126818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Glycosylation is an important proteins post-translational modification and is involved in protein folding, stability and enzymatic activity, which plays a crucial role in regulating protein function in plants. Here, we report for the first time on the changes of N-glycoproteome in wheat response to wheat yellow mosaic virus (WYMV) infection. Quantitative analyses of N-linked glycoproteome were performed in wheat without and with WYMV infection by ZIC-HILIC enrichment method combined with LC-MS/MS. Altogether 1160 N-glycopeptides and 971 N-glycosylated sites corresponding to 734 N-glycoproteins were identified, of which 64 N-glycopeptides and 64 N-glycosylated sites in 60 N-glycoproteins were significantly differentially expressed. Two conserved typical N-glycosylation motifs N-X-T and N-X-S and a nontypical motifs N-X-C were enriched in wheat. Gene Ontology analysis showed that most differentially expressed proteins were mainly enriched in metabolic process, catalytic activity and response to stress. Kyoto Encyclopedia of Genes and Genomes analysis indicated that two significantly changed glycoproteins were specifically related to plant-pathogen interaction. Furthermore, we found that over-expression of TaCERK reduced WYMV accumulation. Glycosylation site mutation further suggested that N-glycosylation of TaCERK could regulate wheat resistance to WYMV. This study provides a new insight for the regulation of protein N-glycosylation in defense response of plant.
Collapse
Affiliation(s)
- Jiaqian Yang
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass spectrometry and Clinical Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China; Zhenhai Institute of Mass Spectrometry, Ningbo 315211, China
| | - Yingjie Zhao
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Xia Wang
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jian Yang
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Keqi Tang
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass spectrometry and Clinical Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China; Zhenhai Institute of Mass Spectrometry, Ningbo 315211, China.
| | - Jiaqian Liu
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
26
|
He H, Jia M, Liu J, Zhou X, Li F. Roles of RNA m 6A modifications in plant-virus interactions. STRESS BIOLOGY 2023; 3:57. [PMID: 38105385 PMCID: PMC10725857 DOI: 10.1007/s44154-023-00133-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 10/31/2023] [Indexed: 12/19/2023]
Abstract
Viral RNAs have been known to contain N6-methyladenosine (m6A) modifications since the 1970s. The function of these modifications remained unknown until the development of genome-wide methods to map m6A residues. Increasing evidence has recently revealed a strong association between m6A modifications and plant viral infection. This highlight introduces advances in the roles of RNA m6A modifications in plant-virus interactions.
Collapse
Affiliation(s)
- Hao He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingxuan Jia
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
27
|
Liu P, Shi C, Liu S, Lei J, Lu Q, Hu H, Ren Y, Zhang N, Sun C, Chen L, Jiang Y, Feng L, Zhang T, Zhong K, Liu J, Zhang J, Zhang Z, Sun B, Chen J, Tang Y, Chen F, Yang J. A papain-like cysteine protease-released small signal peptide confers wheat resistance to wheat yellow mosaic virus. Nat Commun 2023; 14:7773. [PMID: 38012219 PMCID: PMC10682394 DOI: 10.1038/s41467-023-43643-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 11/15/2023] [Indexed: 11/29/2023] Open
Abstract
Wheat yellow mosaic virus (WYMV), a soil-borne pathogen, poses a serious threat to global wheat production. Here, we identify a WYMV resistance gene, TaRD21A, that belongs to the papain-like cysteine protease family. Through genetic manipulation of TaRD21A expression, we establish its positive role in the regulation of wheat to WYMV resistance. Furthermore, our investigation shows that the TaRD21A-mediated plant antiviral response relies on the release of a small peptide catalyzed by TaRD21A protease activity. To counteract wheat resistance, WYMV-encoded nuclear inclusion protease-a (NIa) suppress TaRD21A activity to promote virus infection. In resistant cultivars, a natural variant of TaRD21A features a glycine-to-threonine substitution and this substitution enables the phosphorylation of threonine, thereby weakening the interaction between NIa and TaRD21A, reinforcing wheat resistance against WYMV. Our study not only unveils a WYMV resistance gene but also offers insights into the intricate mechanisms underpinning resistance against WYMV.
Collapse
Affiliation(s)
- Peng Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Chaonan Shi
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shuang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jiajia Lei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Qisen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Haichao Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yan Ren
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ning Zhang
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450002, China
| | - Congwei Sun
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450002, China
| | - Lu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yaoyao Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Lixiao Feng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Tianye Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Kaili Zhong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jiaqian Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Juan Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Zhuo Zhang
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha, 410152, China
| | - Bingjian Sun
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| | - Yimiao Tang
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Feng Chen
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Jian Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
28
|
He M, Li Z, Xie X. The Roles of N6-Methyladenosine Modification in Plant-RNA Virus Interactions. Int J Mol Sci 2023; 24:15608. [PMID: 37958594 PMCID: PMC10649972 DOI: 10.3390/ijms242115608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/06/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
N6-methyladenosine (m6A) is a dynamic post-transcriptional RNA modification. Recently, its role in viruses has led to the study of viral epitranscriptomics. m6A has been observed in viral genomes and alters the transcriptomes of both the host cell and virus during infection. The effects of m6A modifications on host plant mRNA can either increase the likelihood of viral infection or enhance the resistance of the host to the virus. However, to date, the regulatory mechanisms of m6A in viral infection and host immune responses have not been fully elucidated. With the development of sequencing-based biotechnologies, the study of m6A in plant viruses has received increasing attention. In this mini review, we summarize the positive and negative consequences of m6A modification in different RNA viral infections. Given its increasingly important roles in multiple viruses, m6A represents a new potential target for antiviral defense.
Collapse
Affiliation(s)
- Min He
- Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, China;
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Zhiqiang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Xin Xie
- Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, China;
| |
Collapse
|
29
|
Martínez‐Pérez M, Aparicio F, Arribas‐Hernández L, Tankmar MD, Rennie S, von Bülow S, Lindorff‐Larsen K, Brodersen P, Pallas V. Plant YTHDF proteins are direct effectors of antiviral immunity against an N6-methyladenosine-containing RNA virus. EMBO J 2023; 42:e113378. [PMID: 37431920 PMCID: PMC10505913 DOI: 10.15252/embj.2022113378] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/31/2023] [Accepted: 06/15/2023] [Indexed: 07/12/2023] Open
Abstract
In virus-host interactions, nucleic acid-directed first lines of defense that allow viral clearance without compromising growth are of paramount importance. Plants use the RNA interference pathway as a basal antiviral immune system, but additional RNA-based mechanisms of defense also exist. The infectivity of a plant positive-strand RNA virus, alfalfa mosaic virus (AMV), relies on the demethylation of viral RNA by the recruitment of the cellular N6-methyladenosine (m6 A) demethylase ALKBH9B, but how demethylation of viral RNA promotes AMV infection remains unknown. Here, we show that inactivation of the Arabidopsis cytoplasmic YT521-B homology domain (YTH)-containing m6 A-binding proteins ECT2, ECT3, and ECT5 is sufficient to restore AMV infectivity in partially resistant alkbh9b mutants. We further show that the antiviral function of ECT2 is distinct from its previously demonstrated function in the promotion of primordial cell proliferation: an ect2 mutant carrying a small deletion in its intrinsically disordered region is partially compromised for antiviral defense but not for developmental functions. These results indicate that the m6 A-YTHDF axis constitutes a novel branch of basal antiviral immunity in plants.
Collapse
Affiliation(s)
- Mireya Martínez‐Pérez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones CientíficasUniversitat Politècnica de ValènciaValenciaSpain
| | - Frederic Aparicio
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones CientíficasUniversitat Politècnica de ValènciaValenciaSpain
| | | | | | - Sarah Rennie
- Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Sören von Bülow
- Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | | | - Peter Brodersen
- Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Vicente Pallas
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones CientíficasUniversitat Politècnica de ValènciaValenciaSpain
| |
Collapse
|
30
|
Lin H, Shi T, Zhang Y, He C, Zhang Q, Mo Z, Pan W, Nie X. Genome-Wide Identification, Expression and Evolution Analysis of m6A Writers, Readers and Erasers in Aegilops_tauschii. PLANTS (BASEL, SWITZERLAND) 2023; 12:2747. [PMID: 37514361 PMCID: PMC10385245 DOI: 10.3390/plants12142747] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/16/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
N6-methyladenosine modifications (m6A) is one of the most abundant and prevalent post-transcriptional RNA modifications in plants, playing the crucial role in plant growth and development and stress adaptation. However, the m6A regulatory machinery in Aegilops_tauschii, the D genome progenitor of common wheat, is not well understood at present. Here, we systematically identified the m6A-related genes in Aegilops with a genome-wide search approach. In total, 25 putative m6A genes composed of 5 writers, 13 readers and 7 erasers were obtained. A phylogenetic analysis clearly grouped them into three subfamilies with the same subfamily showing similar gene structures and conserved domains. These m6A genes were found to contain a large number of cis-acting elements associating with plant hormones, regulation of growth and development as well as stress response, suggesting their widespread regulation function. Furthermore, the expression profiling of them was investigated using RNA-seq data to obtain stress-responsive candidates, of which 5 were further validated with a qPCR analysis. Finally, the genetic variation of m6A-related genes was investigated between Aegilops and D subgenome of wheat based on re-sequencing data, and an obvious genetic bottleneck occurred on them during the wheat domestication process. The promising haplotype association with domestication and agronomic traits was also detected. This study provided some insights on the genomic organization and evolutionary features of m6A-related genes in Aegilops, which will facilitate the further functional study and also contribute to broaden the genetic basis for genetic improvement in wheat and other crops.
Collapse
Affiliation(s)
- Huiyuan Lin
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling 712100, China
| | - Tingrui Shi
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling 712100, China
| | - Ying Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling 712100, China
| | - Chuyang He
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling 712100, China
| | - Qiying Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling 712100, China
| | - Zhiping Mo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling 712100, China
| | - Wenqiu Pan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling 712100, China
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling 712100, China
- Australia-China Joint Research Centre for Abiotic and Biotic Stress Management in Agriculture, Horticulture and Forestry, Yangling 712100, China
| |
Collapse
|
31
|
Liang Y, Wang H, Wu B, Peng N, Yu D, Wu X, Zhong X. The emerging role of N 6-methyladenine RNA methylation in metal ion metabolism and metal-induced carcinogenesis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121897. [PMID: 37244530 DOI: 10.1016/j.envpol.2023.121897] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
N6-methyladenine (m6A) is the most common and abundant internal modification in eukaryotic mRNAs, which can regulate gene expression and perform important biological tasks. Metal ions participate in nucleotide biosynthesis and repair, signal transduction, energy generation, immune defense, and other important metabolic processes. However, long-term environmental and occupational exposure to metals through food, air, soil, water, and industry can result in toxicity, serious health problems, and cancer. Recent evidence indicates dynamic and reversible m6A modification modulates various metal ion metabolism, such as iron absorption, calcium uptake and transport. In turn, environmental heavy metal can alter m6A modification by directly affecting catalytic activity and expression level of methyltransferases and demethylases, or through reactive oxygen species, eventually disrupting normal biological function and leading to diseases. Therefore, m6A RNA methylation may play a bridging role in heavy metal pollution-induced carcinogenesis. This review discusses interaction among heavy metal, m6A, and metal ions metabolism, and their regulatory mechanism, focuses on the role of m6A methylation and heavy metal pollution in cancer. Finally, the role of nutritional therapy that targeting m6A methylation to prevent metal ion metabolism disorder-induced cancer is summarized.
Collapse
Affiliation(s)
- Yaxu Liang
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Huan Wang
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Bencheng Wu
- Anyou Biotechnology Group Co., LTD., Taicang, 215437, China
| | - Ning Peng
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Dongming Yu
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Xin Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xiang Zhong
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China.
| |
Collapse
|
32
|
Feng H, Wu M, Wang Z, Wang X, Chen J, Yang J, Liu P. Genome-Wide Identification and Functional Analysis of NAP1 in Triticum aestivum. Genes (Basel) 2023; 14:genes14051041. [PMID: 37239401 DOI: 10.3390/genes14051041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/29/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
As a main molecular chaperone of histone H2A-H2B, nucleosome assembly protein 1 (NAP1) has been widely researched in many species. However, there is little research investigating the function of NAP1 in Triticum aestivum. To understand the capabilities of the family of NAP1 genes in wheat and the relationship between TaNAP1 genes and plant viruses, we performed comprehensive genome-wide analysis and quantitative real-time polymerase chain reaction (qRT-PCR) for testing expression profiling under hormonal and viral stresses. Our results showed that TaNAP1 was expressed at different levels in different tissues, with higher expression in tissues with high meristematic capacity, such as roots. Furthermore, the TaNAP1 family may participate in plant defense mechanisms. This study provides a systematic analysis of the NAP1 gene family in wheat and lays the foundation for further studies on the function of TaNAP1 in the response of wheat plants to viral infection.
Collapse
Affiliation(s)
- Huimin Feng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Mila Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Ziqiong Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Xia Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jian Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Peng Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
33
|
Lv G, Zhang Y, Ma L, Yan X, Yuan M, Chen J, Cheng Y, Yang X, Qiao Q, Zhang L, Niaz M, Sun X, Zhang Q, Zhong S, Chen F. A cell wall invertase modulates resistance to fusarium crown rot and sharp eyespot in common wheat. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36912577 DOI: 10.1111/jipb.13478] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/09/2023] [Indexed: 05/09/2023]
Abstract
Fusarium crown rot (FCR) and sharp eyespot (SE) are serious soil-borne diseases in wheat and its relatives that have been reported to cause wheat yield losses in many areas. In this study, the expression of a cell wall invertase gene, TaCWI-B1, was identified to be associated with FCR resistance through a combination of bulk segregant RNA sequencing and genome resequencing in a recombinant inbred line population. Two bi-parental populations were developed to further verify TaCWI-B1 association with FCR resistance. Overexpression lines and ethyl methanesulfonate (EMS) mutants revealed TaCWI-B1 positively regulating FCR resistance. Determination of cell wall thickness and components showed that the TaCWI-B1-overexpression lines exhibited considerably increased thickness and pectin and cellulose contents. Furthermore, we found that TaCWI-B1 directly interacted with an alpha-galactosidase (TaGAL). EMS mutants showed that TaGAL negatively modulated FCR resistance. The expression of TaGAL is negatively correlated with TaCWI-B1 levels, thus may reduce mannan degradation in the cell wall, consequently leading to thickening of the cell wall. Additionally, TaCWI-B1-overexpression lines and TaGAL mutants showed higher resistance to SE; however, TaCWI-B1 mutants were more susceptible to SE than controls. This study provides insights into a FCR and SE resistance gene to combat soil-borne diseases in common wheat.
Collapse
Affiliation(s)
- Guoguo Lv
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450000, China
| | - Yixiao Zhang
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450000, China
| | - Lin Ma
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450000, China
| | - Xiangning Yan
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450000, China
| | - Mingjie Yuan
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450000, China
| | - Jianhui Chen
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450000, China
| | - Yongzhen Cheng
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450000, China
| | - Xi Yang
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450000, China
| | - Qi Qiao
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450000, China
| | - Leilei Zhang
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450000, China
| | - Mohsin Niaz
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450000, China
| | - Xiaonan Sun
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450000, China
| | - Qijun Zhang
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, USA
| | - Shaobin Zhong
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, USA
| | - Feng Chen
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450000, China
| |
Collapse
|
34
|
Okada K, Xu W, Mishina K, Oono Y, Kato T, Namai K, Komatsuda T. Genetic resistance in barley against Japanese soil-borne wheat mosaic virus functions in the roots. FRONTIERS IN PLANT SCIENCE 2023; 14:1149752. [PMID: 36968424 PMCID: PMC10036763 DOI: 10.3389/fpls.2023.1149752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Infection by the Japanese soil-borne wheat mosaic virus (JSBWMV) can lead to substantial losses in the grain yield of barley and wheat crops. While genetically based resistance to this virus has been documented, its mechanistic basis remains obscure. In this study, the deployment of a quantitative PCR assay showed that the resistance acts directly against the virus rather than by inhibiting the colonization of the roots by the virus' fungal vector Polymyxa graminis. In the susceptible barley cultivar (cv.) Tochinoibuki, the JSBWMV titre was maintained at a high level in the roots during the period December-April, and the virus was translocated from the root to the leaf from January onwards. In contrast, in the roots of both cv. Sukai Golden and cv. Haruna Nijo, the titre was retained at a low level, and translocation of the virus to the shoot was strongly suppressed throughout the host's entire life cycle. The roots of wild barley (Hordeum vulgare ssp. spontaneum) accession H602 responded in the early stages of infection similarly to those of the resistant cultivated forms, but the host was unable to suppress the translocation of the virus to the shoot from March onwards. The virus titre in the root was presumed to have been restricted by the action of the gene product of Jmv1 (on chromosome 2H), while the stochastic nature of the infection was suppressed by the action of that of Jmv2 (on chromosome 3H), a gene harbored by cv. Sukai Golden but not by either cv. Haruna Nijo or accession H602.
Collapse
Affiliation(s)
- Kaori Okada
- Tochigi Prefectural Agricultural Experiment Station, Utsunomiya, Tochigi, Japan
| | - Wenjing Xu
- Crop Research Institute, Shandong Academy of Agricultural Sciences (SAAS), Ji’nan, Shandong, China
| | - Kohei Mishina
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Kan-non-dai, Ibaraki, Japan
| | - Youko Oono
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Kan-non-dai, Ibaraki, Japan
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| | - Tsuneo Kato
- Tochigi Prefectural Agricultural Experiment Station, Utsunomiya, Tochigi, Japan
| | - Kiyoshi Namai
- Tochigi Prefectural Agricultural Experiment Station, Utsunomiya, Tochigi, Japan
| | - Takao Komatsuda
- Crop Research Institute, Shandong Academy of Agricultural Sciences (SAAS), Ji’nan, Shandong, China
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Kan-non-dai, Ibaraki, Japan
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| |
Collapse
|