1
|
Son W, Kim J, Kim JH, Lee JM, Seo H, Cho HE, Kim M, Park SC, Sim HJ, Min S, Kim CS, Lim SC, Baik S, Choi C. Stretchable Micro-Wrinkled Carbon Nanotube-Assembled Skin-Adhesive Patches with Suction-Cup Patterns for Human Breath-Derived Moisture Energy Harvesting. ACS NANO 2025. [PMID: 40415305 DOI: 10.1021/acsnano.5c02709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2025]
Abstract
With significant advances in self-powered, stretchable, and skin-attachable electronics, harvesting energy from ubiquitous moisture has emerged as a promising method for powering wearable and adhesive devices. However, current moisture energy harvesting (MEH) devices still face challenges in direct application to skin surfaces, mainly due to insufficient stretchability and weak adhesion, particularly under wet conditions. Here, we construct a stretchable and skin-adhesive MEH patch by harnessing microwrinkled carbon nanotube (CNT) sheets featuring asymmetric oxygen content and a highly elastic silicone rubber-polymer substrate with suction-cup patterns (SP). The developed MEH patch (2 cm × 4 cm) achieves an open-circuit voltage of ∼102 mV and a short-circuit current of ∼1.75 mA/m2 under ambient humidity variations. Notably, it maintains stable electrical output even when stretched up to 300% strain. The SP architecture introduced in the patch ensures robust adhesion to both dry and wet skin surfaces with the application of preload. Consequently, the stretchable and adhesive MEH patch can effectively convert breath-induced moisture energy into electric output on the philtrum, enabling self-powered monitoring of various respiratory patterns.
Collapse
Affiliation(s)
- Wonkyeong Son
- Department of Electronic Engineering and Biomedical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jeeeun Kim
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Ji Hyeon Kim
- Department of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Myeong Lee
- Department of Electronic Engineering and Biomedical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyunji Seo
- Department of Electronic Engineering and Biomedical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Ha Eun Cho
- Department of Electronic Engineering and Biomedical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Minjeong Kim
- Department of Electronic Engineering and Biomedical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Seung Cheol Park
- Department of Electronic Engineering and Biomedical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyeon Jun Sim
- Department of Biomedical Engineering, Konkuk University, Chungju 27478, South Korea
| | - Sunghyun Min
- Department of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Chang-Seok Kim
- Department of Cogno-Mechatronics Engineering Pusan National University Geumjeong-gu, Busan 46241, Republic of Korea
| | - Seong Chu Lim
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sangyul Baik
- Department of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Changsoon Choi
- Department of Electronic Engineering and Biomedical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
2
|
Xu J, Li Y, Wang F, Li W, Zhan J, Deng S, Song C, Yang H, Cai R, Tan W. Machine Learning Assisted-Intelligent Lactic Acid Monitoring in Sweat Supported by a Perspiration-Driven Self-Powered Sensor. NANO LETTERS 2025; 25:2968-2977. [PMID: 39909470 DOI: 10.1021/acs.nanolett.4c06485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Lactic acid has aroused increasing attention due to its close association with serious diseases. A real-time, dynamic, and intelligent detection method is vital for sensitive detection of lactic acid. Here, a machine learning (ML)-assisted perspiration-driven self-powered sensor (PDS sensor) is fabricated using Ni-ZIF-8@lactate oxidase and pyruvate oxidase (Ni-ZIF-8@LOx&POx)/laser-induced graphene (LIG), bilirubin oxidase (BOD)/LIG, and a microchannel for highly sensitive and real-time monitoring of lactic acid in sweat. Driven by the oxidation reaction of lactic acid, PDS sensors exhibit excellent sensitivity, a wide detection range, good reproducibility, and excellent selectivity for lactic acid detection in sweat. When subjects with different body mass index (BMI) undergo aerobic or anaerobic exercise or maintain a sedentary state, PDS sensors can monitor lactic acid in sweat wirelessly and in real-time. Moreover, a ML algorithm was employed to assist PDS sensors to detect lactic acid in the subjects' sweat with a high prediction accuracy of 96.0%.
Collapse
Affiliation(s)
- Jing Xu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Dabie Mountain Laboratory, Xinyang 464000, China
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Yujin Li
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Dabie Mountain Laboratory, Xinyang 464000, China
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Futing Wang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Wangchen Li
- College of Pipeline and Civil Engineering, China University of Petroleum, Shandong 266580, China
| | - Jiajun Zhan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Suping Deng
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Changxiao Song
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Hongfen Yang
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Ren Cai
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Bai H, Zhao T, Cao M. Interfacial fluid manipulation with bioinspired strategies: special wettability and asymmetric structures. Chem Soc Rev 2025; 54:1733-1784. [PMID: 39745100 DOI: 10.1039/d4cs01073f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
The inspirations from nature always enlighten us to develop advanced science and technology. To survive in complicated and harsh environments, plants and animals have evolved remarkable capabilities to control fluid transfer via sophisticated designs such as wettability contrast, oriented micro-/nano-structures, and geometry gradients. Based on the bioinspired structures, the on-surface fluid manipulation exhibits spontaneous, continuous, smart, and integrated performances, which can promote the applications in the fields of heat transfer, microfluidics, heterogeneous catalysis, water harvesting, etc. Although fluid manipulating interfaces (FMIs) have provided plenty of ideas to optimize the current systems, a comprehensive review of history, classification, fabrication, and integration focusing on their interfacial chemistry and asymmetric structure is highly required. In this review, we systematically introduce development and highlight the state-of-the-art progress of bioinspired FMIs. Firstly, the biological prototype and development timeline are presented, and the underlying mechanism of on-surface fluid control on versatile structures is analyzed. Secondly, the definition and classification of FMIs as well as the strategy for controlling fluid/interface interaction are discussed. Thirdly, emergent applications of FMIs in practical scenarios including fog/vapor collection, fluid diodes, interfacial catalysis, etc. are presented. Furthermore, the challenges and prospects of interfacial liquid manipulation are concluded. We envision that this review should provide guidance for the incorporation of FMIs into suitable situations, which enlightens interdisciplinary research and practical applications in the fields of interface chemistry, materials design, bionic science, fluid dynamics, etc.
Collapse
Affiliation(s)
- Haoyu Bai
- School of materials science and engineering, Smart sensing interdisciplinary science center, Nankai university, Tianjin 300350, P. R. China.
| | - Tianhong Zhao
- School of materials science and engineering, Smart sensing interdisciplinary science center, Nankai university, Tianjin 300350, P. R. China.
| | - Moyuan Cao
- School of materials science and engineering, Smart sensing interdisciplinary science center, Nankai university, Tianjin 300350, P. R. China.
- Tianjin key laboratory of metal and molecule-based material chemistry, Nankai university, Tianjin 300192, P. R. China
- National institute for advanced materials, Nankai university, Tianjin 300350, P. R. China
| |
Collapse
|
4
|
Zhu M, Xu W, Chen L, Wu D, Wang Z, Hu X, Luo X, Xiong R, Huang C. Ultrathin Self-Healing Nanofibrous Membrane with a Hierarchical Confined Structure for Biomimetic Epidermal Electrodes. ACS NANO 2024; 18:28834-28848. [PMID: 39388302 DOI: 10.1021/acsnano.4c08617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Integrating self-healing capabilities into epidermal electrodes is crucial to improving their reliability and longevity. Self-healing nanofibrous materials are considered an ideal candidate for constructing ultrathin, long-lasting wearable epidermal electrodes due to their lightweight and high breathability. However, due to the strong interaction between fibers, self-healing nanofiber membranes cannot exist stably. Therefore, the development of self-healing and breathable nanofibrous epidermal electrodes still remains a major challenge. Here, a hierarchical confinement strategy that combines molecular and spatial confinement to overcome supramolecular hydrogen bonding between self-healing nanofibers is reported, and an ultrathin self-healing nanofibrous epidermal electrode with a neural net-like structure is developed. It can achieve real-time monitoring of electrophysiological signals through long-term conformal attachment to skin or plants and has no adverse effects on skin health or plant growth. Given the almost imperceptible nature of epidermal electrodes to users and plants, it lays the foundation for the development of biocompatible, self-healing, wearable, flexible electronics.
Collapse
Affiliation(s)
- Miaomiao Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Wenxuan Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Long Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Duo Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Zhi Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoxue Hu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Xingrong Luo
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Ranhua Xiong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Chaobo Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
5
|
Liu M, Liu S, Zhang T, Zhou D, Li L, Gao Q, Liu Y, Ge C, Wang Y, Wang M, Wen F, Xiong Z, Zhou Z, Wang S, Zhang T. Adaptively resettable microfluidic patch for sweat rate and electrolytes detection. Biosens Bioelectron 2024; 257:116299. [PMID: 38636318 DOI: 10.1016/j.bios.2024.116299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/07/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Skin-interfaced microfluidic patch has become a reliable device for sweat collection and analysis. However, the intractable problems of emptying the microchannel for reuse, and the channel's volumetric capacity limited by the size of the patch, directly hinder the practical application of sweat sensors. Herein, we report an adaptively resettable microfluidic sweat patch (Art-Sweat patch) capable of continuously monitoring both sweat rate (0.2-4.0 μL min-1) and total ionic charge concentration (10-200 mmol L-1). We develop a platform with a vertical and horizontal microchannel combined strategy, enabling repeatedly filling sweat and emptying the microchannel for autonomously resetting and detecting. The variation in the emptied volume is designed to be adaptively identified by the sensor, resulting in enhanced stability and an enlarged volumetric capacity of over 300 μL. By integrating with self-designed wireless transmission modules, the proposed Art-Sweat patch shows product-level wearability and high performance in monitoring variations in regional sweat rate and concentration for hydration status assessment.
Collapse
Affiliation(s)
- Mengyuan Liu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China; i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China
| | - Siyuan Liu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China; i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China
| | - Tong Zhang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China; i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China
| | - Dengfeng Zhou
- Suzhou Leanstar Electronic Technology Co., Ltd., 99 Jinji Lake Avenue, Suzhou, Jiangsu, 215123, PR China
| | - Lianhui Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China; i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China
| | - Qiang Gao
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China
| | - Yujie Liu
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China
| | - Changlei Ge
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China; i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China
| | - Yongfeng Wang
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China
| | - Mingxu Wang
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China
| | - Feng Wen
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China
| | - Zuoping Xiong
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China; i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China; Suzhou Leanstar Electronic Technology Co., Ltd., 99 Jinji Lake Avenue, Suzhou, Jiangsu, 215123, PR China
| | - Zhen Zhou
- Suzhou Leanstar Electronic Technology Co., Ltd., 99 Jinji Lake Avenue, Suzhou, Jiangsu, 215123, PR China
| | - Shuqi Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China; i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China.
| | - Ting Zhang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China; i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China; Nano-X Vacuum Interconnected Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China.
| |
Collapse
|
6
|
Wei M, Zhou Q, Ma X, Gao B. Review of biomimetic ordered microstructures in advancing synergistic integration of adhesion and microfluidics. RSC Adv 2024; 14:11643-11658. [PMID: 38605897 PMCID: PMC11005026 DOI: 10.1039/d3ra07698a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/29/2024] [Indexed: 04/13/2024] Open
Abstract
Many ordered arrangements are observable in the natural world, serving not only as pleasing aesthetics but also as functional improvements. These structured arrangements streamline cohesion while also facilitating the spontaneous drainage of liquids in microfluidics, resulting in effective separation and signal enhancement. Nevertheless, there is a substantial challenge when handling microstructured chips with microfluidic detection and adhesion. The arrangement of the adhesive interface's microstructure affects the liquid flow in the microfluidic chip, impacting the detection's sensitivity and accuracy. Additionally, the liquid in the microfluidic chip corrodes the adhesive material and structure, reducing the adhesion strength due to the hydration layer between the material and the contact interface. Therefore, this review explores the application of ordered structures in the integration of adhesion and microfluidics. We discussed the standard preparation method, appropriate materials, and the application of ordered structures in biomimetic adhesion and microfluidics. Furthermore, the paper discusses the major challenges in this field and provides opinions on its future developments.
Collapse
Affiliation(s)
- Meng Wei
- School of Pharmaceutical Sciences, Nanjing Tech University Nanjing 211816 China
| | - Qian Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University Nanjing 211816 China
| | - Xiaoming Ma
- Department of Orthopedics, Taizhou People's Hospital 366 Taihu Road Taizhou Jiangsu Province People's Republic of China
| | - Bingbing Gao
- School of Pharmaceutical Sciences, Nanjing Tech University Nanjing 211816 China
| |
Collapse
|
7
|
Xu F, Zhang H, Liu H, Han W, Nie Z, Lu Y, Wang H, Zhu J. Ultrafast universal fabrication of configurable porous silicone-based elastomers by Joule heating chemistry. Proc Natl Acad Sci U S A 2024; 121:e2317440121. [PMID: 38437532 PMCID: PMC10945771 DOI: 10.1073/pnas.2317440121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/01/2024] [Indexed: 03/06/2024] Open
Abstract
Silicone-based elastomers (SEs) have been extensively applied in numerous cutting-edge areas, including flexible electronics, biomedicine, 5G smart devices, mechanics, optics, soft robotics, etc. However, traditional strategies for the synthesis of polymer elastomers, such as bulk polymerization, suspension polymerization, solution polymerization, and emulsion polymerization, are inevitably restricted by long-time usage, organic solvent additives, high energy consumption, and environmental pollution. Here, we propose a Joule heating chemistry method for ultrafast universal fabrication of SEs with configurable porous structures and tunable components (e.g., graphene, Ag, graphene oxide, TiO2, ZnO, Fe3O4, V2O5, MoS2, BN, g-C3N4, BaCO3, CuI, BaTiO3, polyvinylidene fluoride, cellulose, styrene-butadiene rubber, montmorillonite, and EuDySrAlSiOx) within seconds by only employing H2O as the solvent. The intrinsic dynamics of the in situ polymerization and porosity creation of these SEs have been widely investigated. Notably, a flexible capacitive sensor made from as-fabricated silicone-based elastomers exhibits a wide pressure range, fast responses, long-term durability, extreme operating temperatures, and outstanding applicability in various media, and a wireless human-machine interaction system used for rescue activities in extreme conditions is established, which paves the way for more polymer-based material synthesis and wider applications.
Collapse
Affiliation(s)
- Feng Xu
- Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics, Xi’an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi’an710072, People’s Republic of China
| | - Hongjian Zhang
- Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics, Xi’an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi’an710072, People’s Republic of China
- School of Flexible Electronics and Henan Institute of Flexible Electronics, Henan University, Zhengzhou450046, People’s Republic of China
| | - Haodong Liu
- Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics, Xi’an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi’an710072, People’s Republic of China
| | - Wenqi Han
- Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics, Xi’an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi’an710072, People’s Republic of China
| | - Zhentao Nie
- Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics, Xi’an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi’an710072, People’s Republic of China
| | - Yufei Lu
- Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics, Xi’an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi’an710072, People’s Republic of China
- School of Flexible Electronics and Henan Institute of Flexible Electronics, Henan University, Zhengzhou450046, People’s Republic of China
| | - Haoyang Wang
- Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics, Xi’an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi’an710072, People’s Republic of China
| | - Jixin Zhu
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei230027, People’s Republic of China
| |
Collapse
|
8
|
Park JE, Je H, Kim CR, Park S, Yu Y, Cho W, Won S, Kang DJ, Han TH, Kwak R, Lee SG, Kim S, Wie JJ. Programming Anisotropic Functionality of 3D Microdenticles by Staggered-Overlapped and Multilayered Microarchitectures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309518. [PMID: 38014492 DOI: 10.1002/adma.202309518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/10/2023] [Indexed: 11/29/2023]
Abstract
Natural sharkskin features staggered-overlapped and multilayered architectures of riblet-textured anisotropic microdenticles, exhibiting drag reduction and providing a flexible yet strong armor. However, the artificial fabrication of three-dimensional (3D) sharkskin with these unique functionalities and mechanical integrity is a challenge using conventional techniques. In this study, it is reported on the facile microfabrication of multilayered 3D sharkskin through the magnetic actuation of polymeric composites and subsequent chemical shape fixation by casting thin polymeric films. The fabricated hydrophobic sharkskin, with geometric symmetry breaking, achieves anisotropic drag reduction in frontal and backward flow directions against the riblet-textured microdenticles. For mechanical integrity, hard-on-soft multilayered mechanical properties are realized by coating the polymeric sharkskin with thin layers of zinc oxide and platinum, which have higher hardness and recovery behaviors than the polymer. This multilayered hard-on-soft sharkskin exhibits friction anisotropy, mechanical robustness, and structural recovery. Furthermore, coating the MXene nanosheets provides the fabricated sharkskin with a low electrical resistance of ≈5.3 Ω, which leads to high Joule heating (≈229.9 °C at 2.75 V). The proposed magnetomechanical actuation-assisted microfabrication strategy is expected to facilitate the development of devices requiring multifunctional microtextures.
Collapse
Affiliation(s)
- Jeong Eun Park
- Department of Organic and Nano Engineering, The Research Institute of Industrial Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hyeongmin Je
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Chae Ryean Kim
- Department of Chemistry, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Sudong Park
- Department of Mechanical Convergence Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yeonuk Yu
- Department of Mechanical Convergence Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Woongbi Cho
- Department of Organic and Nano Engineering, Human-Tech Convergence Program, Hanyang University, Seoul, 04763, Republic of Korea
| | - Sukyoung Won
- Department of Organic and Nano Engineering, The Research Institute of Industrial Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Dong Jun Kang
- Department of Organic and Nano Engineering, The Research Institute of Industrial Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Tae Hee Han
- Department of Organic and Nano Engineering, The Research Institute of Industrial Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Rhokyun Kwak
- Department of Mechanical Convergence Engineering, Institute of Nano Science and Technology, Hanyang University, Seoul, 04763, Republic of Korea
| | - Seung Goo Lee
- Department of Chemistry, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Sanha Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Jeong Jae Wie
- Department of Organic and Nano Engineering, Human-Tech Convergence Program, Department of Chemical Engineering, Institute of Nano Science and Technology, Hanyang University, Seoul, 04763, Republic of Korea
- Department of Chemical Engineering, The Michael M. Szwarc Polymer Research Institute, State University of New York College of Environmental Science and Forestry, Syracuse, NY, 13210, USA
| |
Collapse
|
9
|
Gong S, Lu Y, Yin J, Levin A, Cheng W. Materials-Driven Soft Wearable Bioelectronics for Connected Healthcare. Chem Rev 2024; 124:455-553. [PMID: 38174868 DOI: 10.1021/acs.chemrev.3c00502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
In the era of Internet-of-things, many things can stay connected; however, biological systems, including those necessary for human health, remain unable to stay connected to the global Internet due to the lack of soft conformal biosensors. The fundamental challenge lies in the fact that electronics and biology are distinct and incompatible, as they are based on different materials via different functioning principles. In particular, the human body is soft and curvilinear, yet electronics are typically rigid and planar. Recent advances in materials and materials design have generated tremendous opportunities to design soft wearable bioelectronics, which may bridge the gap, enabling the ultimate dream of connected healthcare for anyone, anytime, and anywhere. We begin with a review of the historical development of healthcare, indicating the significant trend of connected healthcare. This is followed by the focal point of discussion about new materials and materials design, particularly low-dimensional nanomaterials. We summarize material types and their attributes for designing soft bioelectronic sensors; we also cover their synthesis and fabrication methods, including top-down, bottom-up, and their combined approaches. Next, we discuss the wearable energy challenges and progress made to date. In addition to front-end wearable devices, we also describe back-end machine learning algorithms, artificial intelligence, telecommunication, and software. Afterward, we describe the integration of soft wearable bioelectronic systems which have been applied in various testbeds in real-world settings, including laboratories that are preclinical and clinical environments. Finally, we narrate the remaining challenges and opportunities in conjunction with our perspectives.
Collapse
Affiliation(s)
- Shu Gong
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Yan Lu
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Jialiang Yin
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Arie Levin
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Wenlong Cheng
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
10
|
Kang K, Ye S, Jeong C, Jeong J, Ye YS, Jeong JY, Kim YJ, Lim S, Kim TH, Kim KY, Kim JU, Kim GI, Chun DH, Kim K, Park J, Hong JH, Park B, Kim K, Jung S, Baek K, Cho D, Yoo J, Lee K, Cheng H, Min BW, Kim HJ, Jeon H, Yi H, Kim TI, Yu KJ, Jung Y. Bionic artificial skin with a fully implantable wireless tactile sensory system for wound healing and restoring skin tactile function. Nat Commun 2024; 15:10. [PMID: 38169465 PMCID: PMC10762199 DOI: 10.1038/s41467-023-44064-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
Tactile function is essential for human life as it enables us to recognize texture and respond to external stimuli, including potential threats with sharp objects that may result in punctures or lacerations. Severe skin damage caused by severe burns, skin cancer, chemical accidents, and industrial accidents damage the structure of the skin tissue as well as the nerve system, resulting in permanent tactile sensory dysfunction, which significantly impacts an individual's daily life. Here, we introduce a fully-implantable wireless powered tactile sensory system embedded artificial skin (WTSA), with stable operation, to restore permanently damaged tactile function and promote wound healing for regenerating severely damaged skin. The fabricated WTSA facilitates (i) replacement of severely damaged tactile sensory with broad biocompatibility, (ii) promoting of skin wound healing and regeneration through collagen and fibrin-based artificial skin (CFAS), and (iii) minimization of foreign body reaction via hydrogel coating on neural interface electrodes. Furthermore, the WTSA shows a stable operation as a sensory system as evidenced by the quantitative analysis of leg movement angle and electromyogram (EMG) signals in response to varying intensities of applied pressures.
Collapse
Affiliation(s)
- Kyowon Kang
- Department of Electrical and Electronic Engineering, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Seongryeol Ye
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Korea
| | - Chanho Jeong
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jinmo Jeong
- Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Yeong-Sinn Ye
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jin-Young Jeong
- Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Yu-Jin Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
| | - Selin Lim
- Department of Electrical and Electronic Engineering, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
- School of Electrical and Electronic Engineering, YU-KIST Institute, Yonsei University, Seoul, Republic of Korea
| | - Tae Hee Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
- Department of Fusion Research and Collaboration, Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Kyung Yeun Kim
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jong Uk Kim
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Gwan In Kim
- Department of Electrical and Electronic Engineering, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Do Hoon Chun
- Department of Electrical and Electronic Engineering, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Kiho Kim
- Department of Electrical and Electronic Engineering, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Jaejin Park
- Department of Electrical and Electronic Engineering, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Jung-Hoon Hong
- Department of Electrical and Electronic Engineering, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Byeonghak Park
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Kyubeen Kim
- Department of Electrical and Electronic Engineering, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Sujin Jung
- Department of Electrical and Electronic Engineering, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Kyeongrim Baek
- Department of Electrical and Electronic Engineering, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Dongjun Cho
- Department of Electrical and Electronic Engineering, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Jin Yoo
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
| | - Kangwon Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Korea
- Research Institute for Convergence Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Byung-Wook Min
- Department of Electrical and Electronic Engineering, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Hyun Jae Kim
- Department of Electrical and Electronic Engineering, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Hojeong Jeon
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Hyunjung Yi
- Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
- Department of Materials Science and Engineering, YU-KIST Institute, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
| | - Ki Jun Yu
- Department of Electrical and Electronic Engineering, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea.
- School of Electrical and Electronic Engineering, YU-KIST Institute, Yonsei University, Seoul, Republic of Korea.
| | - Youngmee Jung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea.
- School of Electrical and Electronic Engineering, YU-KIST Institute, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
11
|
Liu M, Wang S, Xiong Z, Zheng Z, Ma N, Li L, Gao Q, Ge C, Wang Y, Zhang T. Perspiration permeable, textile embeddable microfluidic sweat sensor. Biosens Bioelectron 2023; 237:115504. [PMID: 37406481 DOI: 10.1016/j.bios.2023.115504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023]
Abstract
Epidermal microfluidic devices are continuously being developed for efficient sweat collection and sweat rate detection. However, most microfluidic designs ignore the use of airtight/adhesive substrate will block the natural perspiration of the covered sweat pores, which will seriously affect normal sweat production and long-term wearable comfort. Herein, we present a Janus textile-embedded microfluidic sensor platform with high breathability and directional sweat permeability for synchronous sweat rate and total electrolyte concentration detection. The device consists of a hollowed-out serpentine microchannel with interdigital electrodes and Janus textile. The dual-mode signal of the sweat rate (0.2-4.0 μL min-1) and total ionic charge concentration (10-200 mmol L-1) can be obtained synchronously by decoupling conductance step signals generated when sweat flows through alternating interdigitated spokes at equal intervals in the microchannel. Meanwhile, the hollowed-out microchannel structure significantly reduces the coverage area of the sensor on the skin, and the Janus textile-embedded device ensures a comfortable skin/device interface (fewer sweat pores are blocked) and improves breathability (503.15 g m-2 d-1) and sweat permeability (directional liquid transportation) during long-term monitoring. This device is washable and reusable, which shows the potential to integrate with clothing and smart textile, and thus facilitate the practicality of wearable sweat sensors for personalized healthcare.
Collapse
Affiliation(s)
- Mengyuan Liu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China; i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China
| | - Shuqi Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China; i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China.
| | - Zuoping Xiong
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China; i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China
| | - Zhuo Zheng
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China
| | - Nan Ma
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China; School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Road, Nanjing, Jiangsu, 210094, PR China
| | - Lianhui Li
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China
| | - Qiang Gao
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China
| | - Changlei Ge
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China; i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China
| | - Yongfeng Wang
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China
| | - Ting Zhang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China; i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China; Nano-X Vacuum Interconnected Workstation, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China.
| |
Collapse
|
12
|
Li Z, Wang Y, Fan Z, Sun Y, Sun Y, Yang Y, Zhang Y, Ma J, Wang Z, Zhu Z. A Dual-Function Wearable Electrochemical Sensor for Uric Acid and Glucose Sensing in Sweat. BIOSENSORS 2023; 13:bios13010105. [PMID: 36671938 PMCID: PMC9855683 DOI: 10.3390/bios13010105] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 05/27/2023]
Abstract
Simultaneous detection of uric acid and glucose using a non-invasive approach can be a promising strategy for related diseases, e.g., diabetes, gout, kidney disease, and cardiovascular disease. In this study, we have proposed a dual-function wearable electrochemical sensor for uric acid and glucose detection in sweat. The sensor with a four-electrode system was prepared by printing the ink on a common rubber glove. CV and chronoamperometry were used to characterize the prepared sensor's electrochemical sensing performance. The sensors exhibited the linear range from 0 to 1.6 mM and 0 to 3.7 mM towards uric acid and glucose electrochemical sensing in phosphate-buffered solution, with the corresponding limit of detection of 3.58 μM and 9.10 μM obtained, respectively. Moreover, the sensors had shown their feasibility of real sample sensing in sweat. The linear detection range for uric acid (0 to 40 μM) and glucose (0 to 1.6 mM) in the sweat can well cover their concentration range in physiological conditions. The prepared dual-function wearable electrochemical sensor features easy preparation, fast detection, high sensitivity, high selectivity, and the practical application potential in uric acid and glucose sensing.
Collapse
|
13
|
Wei L, He Y, Lv Z, Guo D, Cheng L, Wu H, Liu A. Full-Cut Manufacture of Skin-Interfaced Microfluidic Patch with Copper Electrode for In Situ Admittance Sensing of Sweat Rate. BIOSENSORS 2022; 13:67. [PMID: 36671902 PMCID: PMC9855928 DOI: 10.3390/bios13010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Sweat-rate measurement has received more and more attention, especially for specific groups, such as athletes, soldiers and manual workers, due to their excessive sweat loss under prolonged intense heat stress, which increases the risk of dehydration and electrolyte imbalance. The highly effective manufacture of a sweat-sensing device is essential to its wide range of applications in perspiration-related physiological information detection. In this work, we propose a simple and cost-effective strategy for the manufacture of a microfluidic sweat-rate-sensing patch via laser cutting and transfer printing technology. A copper foil tape is used as the electrode for in situ admittance based sweat-rate-sensing. The detection circuits and measurement conditions are optimized to prevent the negative effect of an electrochemical reaction between a copper electrode and sweat for precise admittance measurement. In vitro and on-body experiments demonstrate that the copper electrode is applicable for admittance-based sweat sensing and is capable of achieving equivalent sensing accuracy as a gold electrode and that the proposed sensor structure can perform consecutive and accurate sweat-rate-sensing and facilitates a significant increase in manufacturing efficiency.
Collapse
Affiliation(s)
- Lei Wei
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
- School of Physics and Electronics Engineering, Fuyang Normal University, Fuyang 236037, China
| | - Yuxin He
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zihan Lv
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Daoyou Guo
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Lin Cheng
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Huaping Wu
- Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Aiping Liu
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|