1
|
Castonguay M, Roy J, Claveau JS, Lachance S, Delisle JS, Kiss T, Cohen S, Fleury I, Mollica L, Ahmad I, Bambace N, Bernard L, Roy DC, Sauvageau G, Veilleux O. Allogeneic Hematopoietic Cell Transplant for B-Cell Lymphomas in the Era of Novel Cellular Therapies: Experience from a Tertiary Canadian Center. Curr Oncol 2025; 32:285. [PMID: 40422544 DOI: 10.3390/curroncol32050285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 05/15/2025] [Accepted: 05/18/2025] [Indexed: 05/28/2025] Open
Abstract
BACKGROUND Allogeneic hematopoietic cell transplant (alloHCT) is a curative option for relapsed/refractory B-cell lymphomas (BCLs), but its role in the evolving field of cellular therapy is increasingly unclear as recent advances in transplant procedures have improved outcomes. METHODS This retrospective, single-center study included 55 BCL patients (large B-cell lymphoma-LBCL; indolent BCL; and mantle cell lymphoma-MCL) treated with alloHCT from 2015 to 2023 at Hôpital Maisonneuve-Rosemont. Primary endpoints were overall survival (OS) and progression-free survival (PFS); secondary endpoints included NRM and GVHD incidence. RESULTS A total of 55 patients were included (25 LBCLs, 16 indolent BCLs, 14 MCLs), and 76% of LBCLs were of indolent origin (Richter transformation, transformed follicular lymphoma). After a median follow-up of 6.1, 5.8 and 2.4 years for LBCLs, indolent BCLs and MCLs, their 5-year PFS and OS were 57.2% (IC 95%: 34.2-74.7) and 62.8% (IC 95%: 37.9-80.0), 81.2% (IC 95%: 52.5-93.5) and 93.8% (IC 95%: 63.2-99.1), and 39.0% (IC 95%: 14.3-63.3) and 68.1% (IC 95%: 35.4-86.8), respectively. The 5-year NRM was 16.9% (IC 95%: 8.2-28.3) with a relapse incidence of 23.4%. Overall/grade 3-4 acute GVHD occurred in 43.6% and 18.1% of patients. At 3 years, overall/moderate or severe chronic GVHD incidence was 49% and 34.5%. CONCLUSIONS AlloHCT remains a potentially curative option and should be considered for fit patients with chemosensitive FL or LBCLs of indolent origin and a low comorbidity index.
Collapse
Affiliation(s)
- Mathias Castonguay
- Hematology-Oncology and Cell Therapy University Institute, Hôpital Maisonneuve-Rosemont Research Center, Université de Montréal, Montréal, QC H1T 2M4, Canada
| | - Jean Roy
- Hematology-Oncology and Cell Therapy University Institute, Hôpital Maisonneuve-Rosemont Research Center, Université de Montréal, Montréal, QC H1T 2M4, Canada
| | - Jean-Sébastien Claveau
- Hematology-Oncology and Cell Therapy University Institute, Hôpital Maisonneuve-Rosemont Research Center, Université de Montréal, Montréal, QC H1T 2M4, Canada
| | - Sylvie Lachance
- Hematology-Oncology and Cell Therapy University Institute, Hôpital Maisonneuve-Rosemont Research Center, Université de Montréal, Montréal, QC H1T 2M4, Canada
| | - Jean-Sébastien Delisle
- Hematology-Oncology and Cell Therapy University Institute, Hôpital Maisonneuve-Rosemont Research Center, Université de Montréal, Montréal, QC H1T 2M4, Canada
| | - Thomas Kiss
- Hematology-Oncology and Cell Therapy University Institute, Hôpital Maisonneuve-Rosemont Research Center, Université de Montréal, Montréal, QC H1T 2M4, Canada
| | - Sandra Cohen
- Hematology-Oncology and Cell Therapy University Institute, Hôpital Maisonneuve-Rosemont Research Center, Université de Montréal, Montréal, QC H1T 2M4, Canada
| | - Isabelle Fleury
- Hematology-Oncology and Cell Therapy University Institute, Hôpital Maisonneuve-Rosemont Research Center, Université de Montréal, Montréal, QC H1T 2M4, Canada
| | - Luigina Mollica
- Hematology-Oncology and Cell Therapy University Institute, Hôpital Maisonneuve-Rosemont Research Center, Université de Montréal, Montréal, QC H1T 2M4, Canada
| | - Imran Ahmad
- Hematology-Oncology and Cell Therapy University Institute, Hôpital Maisonneuve-Rosemont Research Center, Université de Montréal, Montréal, QC H1T 2M4, Canada
| | - Nadia Bambace
- Hematology-Oncology and Cell Therapy University Institute, Hôpital Maisonneuve-Rosemont Research Center, Université de Montréal, Montréal, QC H1T 2M4, Canada
| | - Léa Bernard
- Hematology-Oncology and Cell Therapy University Institute, Hôpital Maisonneuve-Rosemont Research Center, Université de Montréal, Montréal, QC H1T 2M4, Canada
| | - Denis-Claude Roy
- Hematology-Oncology and Cell Therapy University Institute, Hôpital Maisonneuve-Rosemont Research Center, Université de Montréal, Montréal, QC H1T 2M4, Canada
| | - Guy Sauvageau
- Hematology-Oncology and Cell Therapy University Institute, Hôpital Maisonneuve-Rosemont Research Center, Université de Montréal, Montréal, QC H1T 2M4, Canada
| | - Olivier Veilleux
- Hematology-Oncology and Cell Therapy University Institute, Hôpital Maisonneuve-Rosemont Research Center, Université de Montréal, Montréal, QC H1T 2M4, Canada
| |
Collapse
|
2
|
Omezzolli G, Iannello A, Vallone FE, Brandimarte L, Micillo M, Bertola N, Lavarello C, Grinovero N, Ferrero G, Mellert K, Möller P, Bruno S, Furman RR, Allan JN, Petretto A, Deaglio S, Ravera S, Vaisitti T. Complementary approaches define the metabolic features that accompany Richter syndrome transformation. Cell Mol Life Sci 2025; 82:152. [PMID: 40204982 PMCID: PMC11982009 DOI: 10.1007/s00018-025-05670-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/25/2025] [Accepted: 03/19/2025] [Indexed: 04/11/2025]
Abstract
Richter syndrome (RS) is the transformation of chronic lymphocytic leukemia (CLL) into a high-grade lymphoma with previously unknown metabolic features. Transcriptomic data from primary CLL and RS samples, as well as RS-patient-derived xenografts, highlighted cellular metabolism as one of the most significant differentially expressed processes. Activity assays of key enzymes confirmed the intense metabolic rewiring of RS cells, which is characterized by an elevated rate of Krebs cycle, oxidative phosphorylation, and glutamine metabolism. These pathways were sustained by increased uptake of glucose and glutamine, two critical substrates for these cells. Moreover, RS cells showed activation of anabolic processes that resulted in the synthesis of nucleotides and lipids necessary to support their high proliferation. Exposure to drugs targeting PI3K and NF-kB, two master regulators of cellular metabolism, resulted in the shutdown of ATP production and glycolysis. Overall, these data suggest that metabolic rewiring characterizes the transformation of CLL into RS, presenting new translational opportunities.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Animals
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cell Transformation, Neoplastic/genetics
- Glycolysis
- Citric Acid Cycle
- Mice
- Oxidative Phosphorylation
- Glucose/metabolism
- Glutamine/metabolism
- NF-kappa B/metabolism
- NF-kappa B/antagonists & inhibitors
- Phosphatidylinositol 3-Kinases/metabolism
Collapse
Affiliation(s)
- Giulia Omezzolli
- Department of Medical Sciences, University of Torino, Via Nizza 52, 10126, Turin, Italy
| | - Andrea Iannello
- Department of Medical Sciences, University of Torino, Via Nizza 52, 10126, Turin, Italy
| | - Francesco E Vallone
- Department of Medical Sciences, University of Torino, Via Nizza 52, 10126, Turin, Italy
| | - Lorenzo Brandimarte
- Department of Medical Sciences, University of Torino, Via Nizza 52, 10126, Turin, Italy
| | - Matilde Micillo
- Department of Medical Sciences, University of Torino, Via Nizza 52, 10126, Turin, Italy
| | - Nadia Bertola
- U.O. Molecular Pathology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Chiara Lavarello
- Core Facilities-Clinical Proteomics and Metabolomics, IRCCS Giannina Gaslini, Genoa, Italy
| | - Nicole Grinovero
- Core Facilities-Clinical Proteomics and Metabolomics, IRCCS Giannina Gaslini, Genoa, Italy
| | - Giulio Ferrero
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Kevin Mellert
- Institute of Pathology, University Hospital Ulm, Ulm, Germany
| | - Peter Möller
- Institute of Pathology, University Hospital Ulm, Ulm, Germany
| | - Silvia Bruno
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Richard R Furman
- Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, NY, USA
| | - John N Allan
- Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Andrea Petretto
- Core Facilities-Clinical Proteomics and Metabolomics, IRCCS Giannina Gaslini, Genoa, Italy
| | - Silvia Deaglio
- Department of Medical Sciences, University of Torino, Via Nizza 52, 10126, Turin, Italy
| | - Silvia Ravera
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Tiziana Vaisitti
- Department of Medical Sciences, University of Torino, Via Nizza 52, 10126, Turin, Italy.
| |
Collapse
|
3
|
Charalampopoulou S, Chapiro E, Nadeu F, Zenz T, Beà S, Martínez-Farran A, Aymerich M, Rozman M, Roos-Weil D, Bernard O, Susin SA, Parker H, Walewska R, Oakes CC, Strefford JC, Campo E, Matutes E, Duran-Ferrer M, Nguyen-Khac F, Martín-Subero JI. Epigenetic features support the diagnosis of B-cell prolymphocytic leukemia and identify 2 clinicobiological subtypes. Blood Adv 2024; 8:6297-6307. [PMID: 39471431 DOI: 10.1182/bloodadvances.2024013327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/09/2024] [Accepted: 10/13/2024] [Indexed: 11/01/2024] Open
Abstract
ABSTRACT The recognition of B-cell prolymphocytic leukemia (B-PLL) as a separate entity is controversial based on the current classification systems. Here, we analyzed the DNA methylome of a cohort of 20 B-PLL cases diagnosed according to the guidelines of the International Consensus Classification/Fourth revised edition of the World Health Organization Classification, and compared them with chronic lymphocytic leukemia (CLL), mantle cell lymphoma (MCL), splenic marginal zone lymphoma (SMZL), and normal B-cell subpopulations. Unsupervised principal component analyses suggest that B-PLL is epigenetically distinct from CLL, MCL, and SMZL, which is further supported by robust differential methylation signatures in B-PLL. We also observe that B-PLL can be segregated into 2 epitypes with differential clinicobiological characteristics. B-PLL epitype 1 carries lower immunoglobulin heavy variable somatic hypermutation and a less profound germinal center-related DNA methylation imprint than epitype 2. Furthermore, epitype 1 is significantly enriched in mutations affecting MYC and SF3B1, and displays DNA hypomethylation and gene upregulation signatures enriched in MYC targets. Despite the low sample size, patients from epitype 1 have an inferior overall survival than those of epitype 2. This study provides relevant insights into the biology and differential diagnosis of B-PLL, and potentially identifies 2 subgroups with distinct biological and clinical features.
Collapse
MESH Headings
- Humans
- Epigenesis, Genetic
- DNA Methylation
- Leukemia, Prolymphocytic, B-Cell/diagnosis
- Leukemia, Prolymphocytic, B-Cell/genetics
- Male
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Female
- Lymphoma, Mantle-Cell/genetics
- Lymphoma, Mantle-Cell/diagnosis
- Lymphoma, Mantle-Cell/mortality
- Aged
Collapse
Affiliation(s)
| | - Elise Chapiro
- Service d'Hématologie Biologique, Hôpital Pitié-Salpêtrière, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, INSERM UMRS 1138, Drug Resistance in Hematological Malignancies Team, Paris, France
| | - Ferran Nadeu
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
| | - Thorsten Zenz
- Department of Medical Oncology and Hematology, University Hospital and University of Zürich, Zurich, Switzerland
| | - Sílvia Beà
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
- Pathology Department, Hematopathology Section, Hospital Clínic de Barcelona, Barcelona, Spain
- Departament de Fonaments Clinics, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | | | - Marta Aymerich
- Pathology Department, Hematopathology Section, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Maria Rozman
- Pathology Department, Hematopathology Section, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Damien Roos-Weil
- Service d'Hématologie Biologique, Hôpital Pitié-Salpêtrière, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, INSERM UMRS 1138, Drug Resistance in Hematological Malignancies Team, Paris, France
| | | | - Santos A Susin
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, INSERM UMRS 1138, Drug Resistance in Hematological Malignancies Team, Paris, France
| | - Helen Parker
- Cancer Genomics, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Renata Walewska
- Department of Molecular Pathology, University Hospitals Dorset, Bournemouth, United Kingdom
| | | | - Jonathan C Strefford
- Cancer Genomics, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Elías Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
- Pathology Department, Hematopathology Section, Hospital Clínic de Barcelona, Barcelona, Spain
- Departament de Fonaments Clinics, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Estela Matutes
- Pathology Department, Hematopathology Section, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Martí Duran-Ferrer
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Florence Nguyen-Khac
- Service d'Hématologie Biologique, Hôpital Pitié-Salpêtrière, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, INSERM UMRS 1138, Drug Resistance in Hematological Malignancies Team, Paris, France
| | - José I Martín-Subero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Departament de Fonaments Clinics, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
4
|
Rohan P, Binato R, Abdelhay E. NF-ΚB Activation as a Key Driver in Chronic Lymphocytic Leukemia Evolution to Richter's Syndrome: Unraveling the Influence of Immune Microenvironment Dynamics. Genes (Basel) 2024; 15:1434. [PMID: 39596634 PMCID: PMC11593636 DOI: 10.3390/genes15111434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in Western countries and it can progress to Richter's syndrome (RS), a more aggressive condition. The NF-κB pathway is pivotal in CLL pathogenesis, driven mainly by B-cell receptor (BCR) signaling. However, recent evidence indicates that BCR signaling is reduced in RS, raising questions about whether and how NF-κB activity is maintained in RS. This study aims to elucidate the triggers and dynamics of NF-κB activation and the progression from CLL to RS. Methods: Integrated single-cell RNA sequencing data from peripheral blood samples of four CLL-RS patients were analyzed. NF-κB pathway activity and gene expression profiles were assessed to determine changes in NF-κB components and their targets. Tumor microenvironment composition and cell-cell communication patterns were inferred to explore NF-κB regulatory mechanisms. Results: RS samples showed increased proportions of malignant cells expressing NF-κB components, including NFKB1, NFKB2, RELA, IKBKG, MAP3K14, CHUK, and IKBKB, with significantly higher expression levels than in CLL. Enhanced NF-κB pathway activity in RS cells was associated with targets involved in immune modulation. The tumor microenvironment in RS displayed significant compositional changes, and signaling inference revealed enhanced cell-cell communication via BAFF and APRIL pathways, involving interactions with receptors such as BAFF-R and TACI on RS cells. Conclusions: The findings from this study reveal an active state of NF-κB in RS and suggest that this state plays a critical role in the evolution of CLL to RS, which is modulated by alternative signaling pathways and the influence of the tumor microenvironment.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Signal Transduction/genetics
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Male
- Female
- Disease Progression
- Middle Aged
- Transcription Factor RelA/genetics
- Transcription Factor RelA/metabolism
- Single-Cell Analysis
Collapse
Affiliation(s)
| | | | - Eliana Abdelhay
- Stem Cell Laboratory, Specialized Laboratories Division, Instituto Nacional de Câncer (INCA), Rio de Janeiro 20230-130, RJ, Brazil; (P.R.); (R.B.)
| |
Collapse
|
5
|
Don MD, Casiano C, Wang HY, Gorbounov M, Song W, Ball ED. A Rare Case of Richter Transformation to Both Clonally Unrelated and Clonally Related Diffuse Large B-Cell Lymphoma in the Same Patient. Case Rep Hematol 2024; 2024:7913296. [PMID: 39246801 PMCID: PMC11380716 DOI: 10.1155/2024/7913296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/23/2024] [Indexed: 09/10/2024] Open
Abstract
Richter transformation (RT) is a rare sequelae of chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL). The clonal relationship of the RT to the underlined CLL/SLL is an important prognostic factor as clonally related RT has a worse prognosis than that of clonally unrelated RT. The development of more than one RT in the same patient is exceedingly rare and prior reports have shown cases consisting of RT to diffuse large B-cell lymphoma (DLBCL) and a subsequent or synchronous Hodgkin lymphoma. Here, we present a rare case of RT first to a clonally unrelated DLBCL and subsequently a clonally related DLBCL. Additionally, we retrospectively conducted next-generation sequencing studies of both RT's and found different mutational landscapes, including more clinically aggressive mutations identified in the clonally related RT. To our knowledge, this is the first reported case of clonally related and clonally unrelated RT, both of which are DLBCL, in the same patient.
Collapse
Affiliation(s)
- Michelle D Don
- Division of Laboratory and Genomic Medicine Department of Pathology University of California San Diego, 3855 Health Sciences Drive Room 3074, La Jolla, San Diego 92093, CA, USA
| | - Carlos Casiano
- Division of Laboratory and Genomic Medicine Department of Pathology University of California San Diego, 3855 Health Sciences Drive Room 3074, La Jolla, San Diego 92093, CA, USA
- Department of Pathology Loma Linda University Health, 11370 Anderson St, Suite 2950, Loma Linda 92354, CA, USA
| | - Huan-You Wang
- Division of Laboratory and Genomic Medicine Department of Pathology University of California San Diego, 3855 Health Sciences Drive Room 3074, La Jolla, San Diego 92093, CA, USA
| | - Mikhail Gorbounov
- Division of Laboratory and Genomic Medicine Department of Pathology University of California San Diego, 3855 Health Sciences Drive Room 3074, La Jolla, San Diego 92093, CA, USA
| | - Wei Song
- Division of Laboratory and Genomic Medicine Department of Pathology University of California San Diego, 3855 Health Sciences Drive Room 3074, La Jolla, San Diego 92093, CA, USA
| | - Edward D Ball
- Division of Blood and Marrow Transplant Department of Medicine University of California San Diego, 3855 Health Sciences Drive, La Jolla, San Diego 92093, CA, USA
| |
Collapse
|
6
|
Turk A, Čeh E, Calin GA, Kunej T. Multiple omics levels of chronic lymphocytic leukemia. Cell Death Discov 2024; 10:293. [PMID: 38906881 PMCID: PMC11192936 DOI: 10.1038/s41420-024-02068-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a lymphoproliferative malignancy characterized by the proliferation of functionally mature but incompetent B cells. It is the most prevalent type of leukemia in Western populations, accounting for approximately 25% of new leukemia cases. While recent advances, such as ibrutinib and venetoclax treatment have improved patient outlook, aggressive forms of CLL such as Richter transformation still pose a significant challenge. This discrepancy may be due to the heterogeneity of factors contributing to CLL development at multiple -omics levels. However, information on the omics of CLL is fragmented, hindering multi-omics-based research into potential treatment options. To address this, we aggregated and presented a selection of important aspects of various omics levels of the disease in this review. The purpose of the present literature analysis is to portray examples of CLL studies from different omics levels, including genomics, epigenomics, transcriptomics, epitranscriptomics, proteomics, epiproteomics, metabolomics, glycomics and lipidomics, as well as those identified by multi-omics approaches. The review includes the list of 102 CLL-associated genes with relevant genomics information. While single-omics studies yield substantial and useful data, they omit a significant level of complex biological interplay present in the disease. As multi-omics studies integrate several different layers of data, they may be better suited for complex diseases such as CLL and have thus far yielded promising results. Future multi-omics studies may assist clinicians in improved treatment choices based on CLL subtypes as well as allow the identification of novel biomarkers and targets for treatments.
Collapse
Grants
- R01 CA222007 NCI NIH HHS
- R01 GM122775 NIGMS NIH HHS
- P4-0220 Javna Agencija za Raziskovalno Dejavnost RS (Slovenian Research Agency)
- R01 CA182905 NCI NIH HHS
- P50 CA127001 NCI NIH HHS
- Dr. Calin is the Felix L. Haas Endowed Professor in Basic Science. Work in G.A.C.’s laboratory is supported by NCI grants 1R01 CA182905-01 and 1R01CA222007-01A1, NIGMS grant 1R01GM122775-01, DoD Idea Award W81XWH-21-1-0030, a Team DOD grant in Gastric Cancer W81XWH-21-1-0715, a Chronic Lymphocytic Leukemia Moonshot Flagship project, a CLL Global Research Foundation 2019 grant, a CLL Global Research Foundation 2020 grant, a CLL Global Research Foundation 2022 grant, The G. Harold & Leila Y. Mathers Foundation, two grants from Torrey Coast Foundation, an Institutional Research Grant and Development Grant associated with the Brain SPORE 2P50CA127001.
Collapse
Affiliation(s)
- Aleksander Turk
- Clinical Institute of Genomic Medicine, University Clinical Centre Ljubljana, Ljubljana, Slovenia
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Eva Čeh
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - George A Calin
- Department of Translational Molecular Pathology, Division of Pathology, MD Anderson Cancer Center, University of Texas, Houston, TX, 77030, USA.
| | - Tanja Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
7
|
Negara I, Tomuleasa C, Buruiana S, Efremov DG. Molecular Subtypes and the Role of TP53 in Diffuse Large B-Cell Lymphoma and Richter Syndrome. Cancers (Basel) 2024; 16:2170. [PMID: 38927876 PMCID: PMC11201917 DOI: 10.3390/cancers16122170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoid malignancy and a heterogeneous entity comprised of several biologically distinct subtypes. Recently, novel genetic classifications of DLBCL have been resolved based on common mutational patterns indicative of distinct pathways of transformation. However, the complicated and costly nature of the novel classifiers has precluded their inclusion into routine practice. In view of this, the status of the TP53 gene, which is mutated or deleted in 20-30% of the cases, has emerged as an important prognostic factor for DLBCL patients, setting itself apart from other predictors. TP53 genetic lesions are particularly enriched in a genetic subtype of DLBCL that shares genomic features with Richter Syndrome, highlighting the possibility of a subset of DLBCL arising from the transformation of an occult chronic lymphocytic leukemia-like malignancy, such as monoclonal B-cell lymphocytosis. Patients with TP53-mutated DLBCL, including those with Richter Syndrome, have a particularly poor prognosis and display inferior responses to standard chemoimmunotherapy regimens. The data presented in this manuscript argue for the need for improved and more practical risk-stratification models for patients with DLBCL and show the potential for the use of TP53 mutational status for prognostication and, in prospect, treatment stratification in DLBCL.
Collapse
Affiliation(s)
- Ivan Negara
- Molecular Hematology Unit, International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
- Department of Internal Medicine, Hematology, “Nicolae Testemitanu” State University of Medicine and Pharmacy, 2004 Chisinau, Moldova;
| | - Ciprian Tomuleasa
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania;
| | - Sanda Buruiana
- Department of Internal Medicine, Hematology, “Nicolae Testemitanu” State University of Medicine and Pharmacy, 2004 Chisinau, Moldova;
| | - Dimitar G. Efremov
- Molecular Hematology Unit, International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
- Macedonian Academy of Sciences and Arts, 1000 Skopje, North Macedonia
| |
Collapse
|
8
|
Bertilaccio MTS, Chen SS. Mouse models of chronic lymphocytic leukemia and Richter transformation: what we have learnt and what we are missing. Front Immunol 2024; 15:1376660. [PMID: 38903501 PMCID: PMC11186982 DOI: 10.3389/fimmu.2024.1376660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/16/2024] [Indexed: 06/22/2024] Open
Abstract
Although the chronic lymphocytic leukemia (CLL) treatment landscape has changed dramatically, unmet clinical needs are emerging, as CLL in many patients does not respond, becomes resistant to treatment, relapses during treatment, or transforms into Richter. In the majority of cases, transformation evolves the original leukemia clone into a diffuse large B-cell lymphoma (DLBCL). Richter transformation (RT) represents a dreadful clinical challenge with limited therapeutic opportunities and scarce preclinical tools. CLL cells are well known to highly depend on survival signals provided by the tumor microenvironment (TME). These signals enhance the frequency of immunosuppressive cells with protumor function, including regulatory CD4+ T cells and tumor-associated macrophages. T cells, on the other hand, exhibit features of exhaustion and profound functional defects. Overall immune dysfunction and immunosuppression are common features of patients with CLL. The interaction between malignant cells and TME cells can occur during different phases of CLL development and transformation. A better understanding of in vivo CLL and RT biology and the availability of adequate mouse models that faithfully recapitulate the progression of CLL and RT within their microenvironments are "conditio sine qua non" to develop successful therapeutic strategies. In this review, we describe the xenograft and genetic-engineered mouse models of CLL and RT, how they helped to elucidate the pathophysiology of the disease progression and transformation, and how they have been and might be instrumental in developing innovative therapeutic approaches to finally eradicate these malignancies.
Collapse
MESH Headings
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Animals
- Tumor Microenvironment/immunology
- Humans
- Mice
- Disease Models, Animal
- Cell Transformation, Neoplastic/immunology
- Cell Transformation, Neoplastic/genetics
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/therapy
- Lymphoma, Large B-Cell, Diffuse/pathology
Collapse
Affiliation(s)
| | - Shih-Shih Chen
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| |
Collapse
|
9
|
Simon-Molas H, Montironi C, Kabanova A, Eldering E. Metabolic reprogramming in the CLL TME; potential for new therapeutic targets. Semin Hematol 2024; 61:155-162. [PMID: 38493076 DOI: 10.1053/j.seminhematol.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/28/2024] [Accepted: 02/12/2024] [Indexed: 03/18/2024]
Abstract
Chronic lymphocytic leukemia (CLL) cells circulate between peripheral (PB) blood and lymph node (LN) compartments, and strictly depend on microenvironmental factors for proliferation, survival and drug resistance. All cancer cells display metabolic reprogramming and CLL is no exception - though the inert status of the PB CLL cells has hampered detailed insight into these processes. We summarize previous work on reactive oxygen species (ROS), oxidative stress, and hypoxia, as well as the important roles of Myc, and PI3K/Akt/mTor pathways. In vitro co-culture systems and gene expression analyses have provided a partial picture of CLL LN metabolism. New broad omics techniques allow to obtain molecular and also single-cell level understanding of CLL plasticity and metabolic reprogramming. We summarize recent developments and describe the new concept of glutamine addiction for CLL, which may hold therapeutic promise.
Collapse
Affiliation(s)
- Helga Simon-Molas
- Department of Experimental Immunology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands; Cancer Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Cancer Immunology, Cancer Center Amsterdam, Amsterdam, the Netherlands; Department of Hematology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| | - Chiara Montironi
- Department of Experimental Immunology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands; Cancer Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Cancer Immunology, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Anna Kabanova
- Tumour Immunology Unit, Toscana Life Sciences Foundation, Siena, Italy
| | - Eric Eldering
- Department of Experimental Immunology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands; Cancer Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Cancer Immunology, Cancer Center Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
10
|
Vom Stein AF, Hallek M, Nguyen PH. Role of the tumor microenvironment in CLL pathogenesis. Semin Hematol 2024; 61:142-154. [PMID: 38220499 DOI: 10.1053/j.seminhematol.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/02/2023] [Accepted: 12/23/2023] [Indexed: 01/16/2024]
Abstract
Chronic lymphocytic leukemia (CLL) cells extensively interact with and depend on their surrounding tumor microenvironment (TME). The TME encompasses a heterogeneous array of cell types, soluble signals, and extracellular vesicles, which contribute significantly to CLL pathogenesis. CLL cells and the TME cooperatively generate a chronic inflammatory milieu, which reciprocally reprograms the TME and activates a signaling network within CLL cells, promoting their survival and proliferation. Additionally, the inflammatory milieu exerts chemotactic effects, attracting CLL cells and other immune cells to the lymphoid tissues. The intricate CLL-TME interactions also facilitate immune evasion and compromise leukemic cell surveillance. We also review recent advances that have shed light on additional aspects that are substantially influenced by the CLL-TME interplay.
Collapse
Affiliation(s)
- Alexander F Vom Stein
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf; Center for Molecular Medicine Cologne; CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Cologne, Germany
| | - Michael Hallek
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf; Center for Molecular Medicine Cologne; CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Cologne, Germany
| | - Phuong-Hien Nguyen
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf; Center for Molecular Medicine Cologne; CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Cologne, Germany.
| |
Collapse
|
11
|
Tausch E, López C, Stilgenbauer S, Siebert R. Genetic alterations in chronic lymphocytic leukemia and plasma cell neoplasms - a practical guide to WHO HAEM5. MED GENET-BERLIN 2024; 36:47-57. [PMID: 38835970 PMCID: PMC11006374 DOI: 10.1515/medgen-2024-2006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours (WHO-HAEM5) provides a revised classification of lymphoid malignancies including chronic lymphocytic leukemia (CLL) and plasma cell myeloma/multiple myeloma (PCM/MM). For both diseases the descriptions of precursor states such as monoclonal B-cell lymphocytosis and monoclonal gammopathy of uncertain significance (MGUS) have been updated including a better risk stratification model. New insights on mutational landscapes and branching evolutionary pattern were embedded as diagnostic and prognostic factors, accompanied by a revised structure for the chapter of plasma cell neoplasms. Thus, the WHO-HAEM5 leads to practical improvements of biological and clinical relevance for pathologists, clinicians, geneticists and scientists in the field of lymphoid malignancies. The present review gives an overview on the landscape of genetic alterations in CLL and plasma cell neoplasms with a focus on their impact on classification and treatment.
Collapse
Affiliation(s)
- Eugen Tausch
- Ulm University Division of CLL, Department of Internal Medicine 3 Ulm Germany
| | - Cristina López
- Institut d'Investigacions Biomèdiques August Phi i Sunyer (IDIBAPS) Barcelona Spain
| | | | - Reiner Siebert
- Ulm University and Ulm University Medical Center Institute of Human Genetics Ulm Germany
| |
Collapse
|
12
|
Tannoury M, Ayoub M, Dehgane L, Nemazanyy I, Dubois K, Izabelle C, Brousse A, Roos-Weil D, Maloum K, Merle-Béral H, Bauvois B, Saubamea B, Chapiro E, Nguyen-Khac F, Garnier D, Susin SA. ACOX1-mediated peroxisomal fatty acid oxidation contributes to metabolic reprogramming and survival in chronic lymphocytic leukemia. Leukemia 2024; 38:302-317. [PMID: 38057495 DOI: 10.1038/s41375-023-02103-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is still an incurable disease, with many patients developing resistance to conventional and targeted therapies. To better understand the physiology of CLL and facilitate the development of innovative treatment options, we examined specific metabolic features in the tumor CLL B-lymphocytes. We observed metabolic reprogramming, characterized by a high level of mitochondrial oxidative phosphorylation activity, a low glycolytic rate, and the presence of C2- to C6-carnitine end-products revealing an unexpected, essential role for peroxisomal fatty acid beta-oxidation (pFAO). Accordingly, downmodulation of ACOX1 (a rate-limiting pFAO enzyme overexpressed in CLL cells) was enough to shift the CLL cells' metabolism from lipids to a carbon- and amino-acid-based phenotype. Complete blockade of ACOX1 resulted in lipid droplet accumulation and caspase-dependent death in CLL cells, including those from individuals with poor cytogenetic and clinical prognostic factors. In a therapeutic translational approach, ACOX1 inhibition spared non-tumor blood cells from CLL patients but led to the death of circulating, BCR-stimulated CLL B-lymphocytes and CLL B-cells receiving pro-survival stromal signals. Furthermore, a combination of ACOX1 and BTK inhibitors had a synergistic killing effect. Overall, our results highlight a less-studied but essential metabolic pathway in CLL and pave the way towards the development of new, metabolism-based treatment options.
Collapse
Affiliation(s)
- Mariana Tannoury
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France
| | - Marianne Ayoub
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France
| | - Léa Dehgane
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France
| | - Ivan Nemazanyy
- Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR 3633, Platform for Metabolic Analyses, F-75015, Paris, France
| | - Kenza Dubois
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France
| | - Charlotte Izabelle
- Faculté de Pharmacie, Université Paris Cité, PICMO, US 25 Inserm, UAR 3612 CNRS, F-75006, Paris, France
| | - Aurélie Brousse
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France
| | - Damien Roos-Weil
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France
- Sorbonne Université, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Service d'Hématologie Clinique, F-75013, Paris, France
| | - Karim Maloum
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France
- Sorbonne Université, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Service d'Hématologie Biologique, F-75013, Paris, France
| | - Hélène Merle-Béral
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France
| | - Brigitte Bauvois
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France
| | - Bruno Saubamea
- Faculté de Pharmacie, Université Paris Cité, PICMO, US 25 Inserm, UAR 3612 CNRS, F-75006, Paris, France
| | - Elise Chapiro
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France
- Sorbonne Université, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Service d'Hématologie Biologique, F-75013, Paris, France
| | - Florence Nguyen-Khac
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France
- Sorbonne Université, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Service d'Hématologie Biologique, F-75013, Paris, France
| | - Delphine Garnier
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France
| | - Santos A Susin
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France.
| |
Collapse
|
13
|
Abstract
Lymphoid neoplasms represent a heterogeneous group of disease entities and subtypes with markedly different molecular and clinical features. Beyond genetic alterations, lymphoid tumors also show widespread epigenomic changes. These severely affect the levels and distribution of DNA methylation, histone modifications, chromatin accessibility, and three-dimensional genome interactions. DNA methylation stands out as a tracer of cell identity and memory, as B cell neoplasms show epigenetic imprints of their cellular origin and proliferative history, which can be quantified by an epigenetic mitotic clock. Chromatin-associated marks are informative to uncover altered regulatory regions and transcription factor networks contributing to the development of distinct lymphoid tumors. Tumor-intrinsic epigenetic and genetic aberrations cooperate and interact with microenvironmental cells to shape the transcriptome at different phases of lymphoma evolution, and intraclonal heterogeneity can now be characterized by single-cell profiling. Finally, epigenetics offers multiple clinical applications, including powerful diagnostic and prognostic biomarkers as well as therapeutic targets.
Collapse
Affiliation(s)
- Martí Duran-Ferrer
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain;
| | - José Ignacio Martín-Subero
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain;
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Departamento de Fundamentos Clínicos, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
14
|
Al-Sawaf O, Ligtvoet R, Robrecht S, Stumpf J, Fink AM, Tausch E, Schneider C, Boettcher S, Mikusko M, Ritgen M, Schetelig J, von Tresckow J, Vehling-Kaiser U, Gaska T, Wendtner CM, Chapuy B, Fischer K, Kreuzer KA, Stilgenbauer S, Staber P, Niemann C, Hallek M, Eichhorst B. Tislelizumab plus zanubrutinib for Richter transformation: the phase 2 RT1 trial. Nat Med 2024; 30:240-248. [PMID: 38071379 PMCID: PMC10803258 DOI: 10.1038/s41591-023-02722-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/15/2023] [Indexed: 01/24/2024]
Abstract
In patients with chronic lymphocytic leukemia, Richter transformation (RT) reflects the development of an aggressive lymphoma that is associated with poor response to chemotherapy and short survival. We initiated an international, investigator-initiated, prospective, open-label phase 2 study in which patients with RT received a combination of the PD-1 inhibitor tislelizumab plus the BTK inhibitor zanubrutinib for 12 cycles. Patients responding to treatment underwent maintenance treatment with both agents. The primary end point was overall response rate after six cycles. Of 59 enrolled patients, 48 patients received at least two cycles of treatment and comprised the analysis population according to the study protocol. The median observation time was 13.9 months, the median age was 67 (range 45-82) years. Ten patients (20.8%) had received previous RT-directed therapy. In total, 28 out of 48 patients responded to induction therapy with an overall response rate of 58.3% (95% confidence interval (CI) 43.2-72.4), including 9 (18.8%) complete reponse and 19 (39.6%) partial response, meeting the study's primary end point by rejecting the predefined null hypothesis of 40% (P = 0.008). Secondary end points included duration of response, progression-free survival and overall survival. The median duration of response was not reached, the median progression-free survival was 10.0 months (95% CI 3.8-16.3). Median overall survival was not reached with a 12-month overall survival rate of 74.7% (95% CI 58.4-91.0). The most common adverse events were infections (18.0%), gastrointestinal disorders (13.0%) and hematological toxicities (11.4%). These data suggest that combined checkpoint and BTK inhibition by tislelizumab plus zanubrutinib is an effective and well-tolerated treatment strategy for patients with RT. ClinicalTrials.gov Identifier: NCT04271956 .
Collapse
Affiliation(s)
- Othman Al-Sawaf
- Department I of Internal Medicine and German CLL Study Group; Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany.
- Francis Crick Institute London, London, UK.
- Cancer Institute, University College London, London, UK.
| | - Rudy Ligtvoet
- Department I of Internal Medicine and German CLL Study Group; Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Sandra Robrecht
- Department I of Internal Medicine and German CLL Study Group; Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Janina Stumpf
- Department I of Internal Medicine and German CLL Study Group; Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Anna-Maria Fink
- Department I of Internal Medicine and German CLL Study Group; Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Eugen Tausch
- Department III of Internal Medicine, University Hospital Ulm, Ulm, Germany
| | - Christof Schneider
- Department III of Internal Medicine, University Hospital Ulm, Ulm, Germany
| | - Sebastian Boettcher
- Department III of Internal Medicine, University Hospital Rostock, Rostock, Germany
| | - Martin Mikusko
- Department of Haematology and Oncology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Matthias Ritgen
- Department II of Internal Medicine, Campus Kiel, University of Schleswig-Holstein, Kiel, Germany
| | - Johannes Schetelig
- Department I of Internal Medicine, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Julia von Tresckow
- Clinic for Hematology and Stem Cell Transplantation, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Tobias Gaska
- Department of Hematology and Oncology, Brüderkrankenhaus St. Josef, Paderborn, Germany
| | | | - Bjoern Chapuy
- Department of Hematology and Medical Oncology, Georg-August University Göttingen, Göttingen, Germany
- Department of Hematology, Oncology, and Cancer Immunology, Charité -University Medical Center Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Kirsten Fischer
- Department I of Internal Medicine and German CLL Study Group; Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Karl-Anton Kreuzer
- Department I of Internal Medicine and German CLL Study Group; Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | | | - Philipp Staber
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Carsten Niemann
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark
| | - Michael Hallek
- Department I of Internal Medicine and German CLL Study Group; Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Barbara Eichhorst
- Department I of Internal Medicine and German CLL Study Group; Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany.
| |
Collapse
|
15
|
Abrisqueta P, Nadeu F, Bosch-Schips J, Iacoboni G, Serna A, Cabirta A, Yáñez L, Quintanilla-Martínez L, Bosch F. From genetics to therapy: Unraveling the complexities of Richter transformation in chronic lymphocytic leukemia. Cancer Treat Rev 2023; 120:102619. [PMID: 37660626 DOI: 10.1016/j.ctrv.2023.102619] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023]
Abstract
Richter transformation (RT) refers to the progression of chronic lymphocytic leukemia, the most prevalent leukemia among adults, into a highly aggressive lymphoproliferative disorder, primarily a diffuse large B-cell lymphoma. This is a severe complication that continues to be a therapeutic challenge and remains an unmet medical need. Over the last five years, significant advances have occurred in uncovering the biological processes leading to the RT, refining criteria for properly diagnose RT from other entities, and exploring new therapeutic options beyond the ineffective chemotherapy. This review summarizes current knowledge in RT, including recent advances in the understanding of the pathogenesis of RT, in the classification of RT, and in the development of novel therapeutic strategies for this grave complication.
Collapse
Affiliation(s)
- Pau Abrisqueta
- Department of Hematology, Vall d'Hebron Hospital Universitari, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain; Departament de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Ferran Nadeu
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Jan Bosch-Schips
- Department of Pathology, Hospital Universitari de Bellvitge-Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Gloria Iacoboni
- Department of Hematology, Vall d'Hebron Hospital Universitari, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain; Departament de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Angel Serna
- Department of Hematology, Vall d'Hebron Hospital Universitari, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain; Departament de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Alba Cabirta
- Department of Hematology, Vall d'Hebron Hospital Universitari, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain; Departament de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Lucrecia Yáñez
- Department of Hematology, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Leticia Quintanilla-Martínez
- Institute of Pathology and Neuropathology, Tübingen University Hospital and Comprehensive Cancer Center Tübingen-Stuttgart, 72076 Tübingen, Germany
| | - Francesc Bosch
- Department of Hematology, Vall d'Hebron Hospital Universitari, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain; Departament de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
16
|
Parry EM, Roulland S, Okosun J. DLBCL arising from indolent lymphomas: How are they different? Semin Hematol 2023; 60:277-284. [PMID: 38072721 DOI: 10.1053/j.seminhematol.2023.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 03/12/2024]
Abstract
Transformation to diffuse large B-cell lymphoma (DLBCL) is a recognized, but unpredictable, clinical inflection point in the natural history of indolent lymphomas. Large retrospective studies highlight a wide variability in the incidence of transformation across the indolent lymphomas and the adverse outcomes associated with transformed lymphomas. Opportunities to dissect the biology of transformed indolent lymphomas have arisen with evolving technologies and unique tissue collections enabling a growing appreciation, particularly, of their genetic basis, how they relate to the preceding indolent lymphomas and the comparative biology with de novo DLBCL. This review summarizes our current understanding of both the clinical and biological aspects of transformed lymphomas and the outstanding questions that remain.
Collapse
Affiliation(s)
- Erin M Parry
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard, Cambridge, MA
| | - Sandrine Roulland
- Aix-Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Jessica Okosun
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK; Department of Haemato-Oncology, St Bartholomew's Hospital, London, UK.
| |
Collapse
|
17
|
Audil HY, Kosydar SR, Larson DP, Parikh SA. Richter Transformation of Chronic Lymphocytic Leukemia-Are We Making Progress? Curr Hematol Malig Rep 2023; 18:144-157. [PMID: 37294394 DOI: 10.1007/s11899-023-00701-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2023] [Indexed: 06/10/2023]
Abstract
PURPOSE OF REVIEW The treatment paradigm of chronic lymphocytic leukemia (CLL) has dramatically changed with the advent of novel targeted agents over the past decade. Richter transformation (RT), or the development of an aggressive lymphoma from a background of CLL, is a well-recognized complication of CLL and carries significantly poor clinical outcomes. Here, we provide an update on current diagnostics, prognostication, and contemporary treatment of RT. RECENT FINDINGS Several genetic, biologic, and laboratory markers have been proposed as candidate risk factors for the development of RT. Although a diagnosis of RT is typically suspected based on clinical and laboratory findings, tissue biopsy is essential for histopathologic confirmation of diagnosis. The standard of care for RT treatment at this time remains chemoimmunotherapy with the goal of proceeding to allogeneic stem cell transplantation in eligible patients. Several newer treatment modalities are being studied for use in the management of RT, including small molecules, immunotherapy, bispecific antibodies, and chimeric antigen receptor T-cell (CAR-T) therapy. The management of patients with RT remains a challenge. Ongoing trials show enormous promise for newer classes of therapy in RT, with the hope being that these agents can synergize, and perhaps supersede, the current standard of care in the near future.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/etiology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Lymphoma, Large B-Cell, Diffuse/pathology
- Immunotherapy
- Biopsy
- Cell Transformation, Neoplastic/genetics
Collapse
Affiliation(s)
- Hadiyah Y Audil
- Division of Hematology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Samuel R Kosydar
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Daniel P Larson
- Division of Hematopathology, Mayo Clinic, Rochester, MN, USA
| | - Sameer A Parikh
- Division of Hematology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
18
|
Parry EM, ten Hacken E, Wu CJ. Richter syndrome: novel insights into the biology of transformation. Blood 2023; 142:11-22. [PMID: 36758208 PMCID: PMC10356575 DOI: 10.1182/blood.2022016502] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Although the genetic landscape of chronic lymphocytic leukemia (CLL) has been broadly profiled by large-scale sequencing studies performed over the past decade, the molecular basis of the transformation of CLL into aggressive lymphoma, or Richter syndrome (RS), has remained incompletely characterized. Recent advances in computational methods of clonal deconvolution, as well as extensive sample collection efforts in this rapidly progressive malignancy, have now enabled comprehensive analysis of paired CLL and RS samples and have led to multiple new studies investigating the genetic, transcriptomic, and epigenetic origins of RS. In parallel, new genetically engineered and xenograft mouse models have provided the opportunity for gleaning fresh biological and mechanistic insights into RS development and stepwise evolution from antecedent CLL. Altogether, these studies have defined RS driver lesions and CLL risk lesions and identified pathways dysregulated in transformation. Moreover, unique molecular subtypes of RS have been revealed, including a disease marked by profound genomic instability with chromothripsis/chromoplexy and whole genome duplication. Novel profiling approaches, including single-cell DNA and transcriptome sequencing of RS biopsy specimens and cell-free DNA profiling of patient plasma, demonstrate promise for the timely identification of RS clones and may translate to noninvasive identification and early diagnosis of RS. This review summarizes the recent scientific advances in RS and supports the integrated study of human genomics with mouse modeling to provide an advanced understanding of the biological underpinnings of transformation. These recent studies have major implications for much-needed novel therapeutic strategies for this still largely incurable malignancy.
Collapse
Affiliation(s)
- Erin M. Parry
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Elisa ten Hacken
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| |
Collapse
|
19
|
Yosifov DY, Stilgenbauer S. Richter transformation: epigenetics to blame? Blood 2023; 141:2915-2917. [PMID: 37318906 DOI: 10.1182/blood.2023020397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
|
20
|
ten Hacken E, Sewastianik T, Yin S, Hoffmann GB, Gruber M, Clement K, Penter L, Redd RA, Ruthen N, Hergalant S, Sholokhova A, Fell G, Parry EM, Broséus J, Guieze R, Lucas F, Hernández-Sánchez M, Baranowski K, Southard J, Joyal H, Billington L, Regis FFD, Witten E, Uduman M, Knisbacher BA, Li S, Lyu H, Vaisitti T, Deaglio S, Inghirami G, Feugier P, Stilgenbauer S, Tausch E, Davids MS, Getz G, Livak KJ, Bozic I, Neuberg DS, Carrasco RD, Wu CJ. In Vivo Modeling of CLL Transformation to Richter Syndrome Reveals Convergent Evolutionary Paths and Therapeutic Vulnerabilities. Blood Cancer Discov 2023; 4:150-169. [PMID: 36468984 PMCID: PMC9975769 DOI: 10.1158/2643-3230.bcd-22-0082] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/16/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Transformation to aggressive disease histologies generates formidable clinical challenges across cancers, but biological insights remain few. We modeled the genetic heterogeneity of chronic lymphocytic leukemia (CLL) through multiplexed in vivo CRISPR-Cas9 B-cell editing of recurrent CLL loss-of-function drivers in mice and recapitulated the process of transformation from indolent CLL into large cell lymphoma [i.e., Richter syndrome (RS)]. Evolutionary trajectories of 64 mice carrying diverse combinatorial gene assortments revealed coselection of mutations in Trp53, Mga, and Chd2 and the dual impact of clonal Mga/Chd2 mutations on E2F/MYC and interferon signaling dysregulation. Comparative human and murine RS analyses demonstrated tonic PI3K signaling as a key feature of transformed disease, with constitutive activation of the AKT and S6 kinases, downmodulation of the PTEN phosphatase, and convergent activation of MYC/PI3K transcriptional programs underlying enhanced sensitivity to MYC/mTOR/PI3K inhibition. This robust experimental system presents a unique framework to study lymphoid biology and therapy. SIGNIFICANCE Mouse models reflective of the genetic complexity and heterogeneity of human tumors remain few, including those able to recapitulate transformation to aggressive disease histologies. Herein, we model CLL transformation into RS through multiplexed in vivo gene editing, providing key insight into the pathophysiology and therapeutic vulnerabilities of transformed disease. This article is highlighted in the In This Issue feature, p. 101.
Collapse
Affiliation(s)
- Elisa ten Hacken
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Tomasz Sewastianik
- Harvard Medical School, Boston, Massachusetts
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Shanye Yin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | | | - Michaela Gruber
- CEMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Kendell Clement
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Molecular Pathology Unit, Center for Cancer Research and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, Massachusetts
- Department of Pathology, Harvard Medical School, Boston, Massachusetts
| | - Livius Penter
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Hematology, Oncology, and Tumorimmunology, Campus Virchow Klinikum, Berlin, Charité – Universitätsmedizin Berlin (corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin), Berlin, Germany
| | - Robert A. Redd
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Neil Ruthen
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Sébastien Hergalant
- Inserm UMRS1256 Nutrition-Génétique et Exposition aux Risques Environnementaux (N-GERE), Université de Lorraine, Nancy, France
| | - Alanna Sholokhova
- Department of Applied Mathematics, University of Washington, Seattle, Washington
| | - Geoffrey Fell
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Erin M. Parry
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Julien Broséus
- Inserm UMRS1256 Nutrition-Génétique et Exposition aux Risques Environnementaux (N-GERE), Université de Lorraine, Nancy, France
- Université de Lorraine, CHRU-Nancy, Service d'Hématologie Biologique, Pôle Laboratoires, Nancy, France
| | | | - Fabienne Lucas
- Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - María Hernández-Sánchez
- Department of Biochemistry and Molecular Biology, Pharmacy School, Universidad Complutense de Madrid, Madrid, Spain
| | - Kaitlyn Baranowski
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jackson Southard
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Heather Joyal
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Leah Billington
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Fara Faye D. Regis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Elizabeth Witten
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Mohamed Uduman
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Binyamin A. Knisbacher
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Cancer Research Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Shuqiang Li
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Haoxiang Lyu
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Tiziana Vaisitti
- Department of Medical Sciences, University of Torino, Turin, Italy
| | - Silvia Deaglio
- Department of Medical Sciences, University of Torino, Turin, Italy
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Pierre Feugier
- Inserm UMRS1256 Nutrition-Génétique et Exposition aux Risques Environnementaux (N-GERE), Université de Lorraine, Nancy, France
- Université de Lorraine, CHRU-Nancy, Service d'Hématologie Biologique, Pôle Laboratoires, Nancy, France
| | - Stephan Stilgenbauer
- Department III of Internal Medicine III, Division of CLL, Ulm University, Ulm, Germany
| | - Eugen Tausch
- Department III of Internal Medicine III, Division of CLL, Ulm University, Ulm, Germany
| | - Matthew S. Davids
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Gad Getz
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Cancer Center and Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Kenneth J. Livak
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ivana Bozic
- Department of Applied Mathematics, University of Washington, Seattle, Washington
| | - Donna S. Neuberg
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ruben D. Carrasco
- Harvard Medical School, Boston, Massachusetts
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
21
|
Ryan CE, Davids MS. Practical Management of Richter Transformation in 2023 and Beyond. Am Soc Clin Oncol Educ Book 2023; 43:e390804. [PMID: 37141545 DOI: 10.1200/edbk_390804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
While the past decade has witnessed unprecedented progress for patients with chronic lymphocytic leukemia (CLL), outcomes for patients with Richter transformation (RT) remain dismal. Multiagent chemoimmunotherapy regimens, such as rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone, are commonly used, although outcomes are far poorer than observed with the same regimens used in de novo diffuse large B-cell lymphoma. The revolutionary targeted therapies approved for CLL, such as inhibitors of Bruton tyrosine kinase and B-cell leukemia/lymphoma-2, have limited activity in RT as monotherapy, and initial promising activity of checkpoint blockade antibodies was also eventually found to be ineffective as monotherapy for most patients. Over the past few years, as outcomes for patients with CLL improved, there has been a growing focus of the research community on improving our biological understanding of the underlying pathophysiology of RT and on translating these new insights into rational combination strategies that are poised to improve therapeutic outcomes. Here, we present a brief overview of the biology and diagnosis of RT, as well as prognostic considerations, before providing a summary of the data supporting various therapies that have been recently studied in RT. We then turn our attention to the horizon and describe several of the promising novel approaches under investigation to treat this challenging disease.
Collapse
Affiliation(s)
- Christine E Ryan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Matthew S Davids
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|