1
|
Zhu W, Zhang Q, Jin L, Lou S, Ye J, Cui Y, Xiong Y, Lin M, Liang G, Luo W, Zhuang Z. OTUD1 Deficiency Alleviates LPS-Induced Acute Lung Injury in Mice by Reducing Inflammatory Response. Inflammation 2025; 48:649-661. [PMID: 39037666 DOI: 10.1007/s10753-024-02074-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/05/2024] [Accepted: 06/03/2024] [Indexed: 07/23/2024]
Abstract
The ovarian tumor (OTU) family consists of deubiquitinating enzymes thought to play a crucial role in immunity. Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) pose substantial clinical challenges due to severe respiratory complications and high mortality resulting from uncontrolled inflammation. Despite this, no study has explored the potential link between the OTU family and ALI/ARDS. Using publicly available high-throughput data, 14 OTUs were screened in a simulating bacteria- or LPS-induced ALI model. Subsequently, gene knockout mice and transcriptome sequencing were employed to explore the roles and mechanisms of the selected OTUs in ALI. Our screen identified OTUD1 in the OTU family as a deubiquitinase highly related to ALI. In the LPS-induced ALI model, deficiency of OTUD1 significantly ameliorated pulmonary edema, reduced permeability damage, and decreased lung immunocyte infiltration. Furthermore, RNA-seq analysis revealed that OTUD1 deficiency inhibited key pathways, including the IFN-γ/STAT1 and TNF-α/NF-κB axes, ultimately mitigating the severity of immune responses in ALI. In summary, our study highlights OTUD1 as a critical immunomodulatory factor in acute inflammation. These findings suggest that targeting OTUD1 could hold promise for the development of novel treatments against ALI/ARDS.
Collapse
Affiliation(s)
- Weiwei Zhu
- Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, 325000, China
- Department of Cardiology and Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Qianhui Zhang
- Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, 325000, China
| | - Leiming Jin
- Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, 325000, China
| | - Shuaijie Lou
- Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, 325000, China
| | - Jiaxi Ye
- Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, 325000, China
| | - Yaqian Cui
- Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, 325000, China
| | - Yongqiang Xiong
- Department of Cardiology and Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Mengsha Lin
- Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, 325000, China
| | - Guang Liang
- Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, 325000, China.
- Department of Cardiology and Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, China.
| | - Wu Luo
- Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, 325000, China.
- Department of Cardiology and Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Zaishou Zhuang
- Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
2
|
Qi H, Wang J, Cao L. TRIM44 facilitates aggressive behaviors in multiple myeloma through promoting ZEB1 deubiquitination. Discov Oncol 2025; 16:248. [PMID: 40014271 PMCID: PMC11867989 DOI: 10.1007/s12672-025-01933-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/04/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Tripartite motif-containing 44 (TRIM44) involves in various tumor development. This study investigated role of TRIM44 in multiple myeloma (MM). MATERIALS AND METHODS TRIM44 levels in bone marrow tissues and MM cell lines was detected by quantitative reverse transcription PCR (RT-qPCR). Cell viability, migration, and invasion of MM cells were evaluated under the interference of TRIM44 expression. The role of TRIM44 on regulating tumor growth in vivo was also investigated in subcutaneous tumor xenograft models. The protein interact between TRIM44 and Zinc Finger E-Box Binding Homeobox 1 (ZEB1) was also studied according IP followed by western blotting assay. RESULTS TRIM44 was all highly expressed in collected bone marrow tissues and MM cell lines. Cell viability, migration, and invasion of MM cells with low expression of TRIM44 was significantly inhibited. Over-expression of TRIM44 can down-regulate the ZEB1 ubiquitination to enhance the protein stability. CONCLUSIONS TRIM44 exerts as an oncogenic factor to induce the oncogenesis of MM by stabilizing ZEB1.
Collapse
Affiliation(s)
- Hui Qi
- Department of Hematology, Affiliated Hospital of Inner Mongolia Medical University, 1 Tongdao North Road, Huimin District, Hohhot, 010050, China
| | - Jing Wang
- Department of Rheumatology and Immunology, Affiliated Hospital of Inner Mongolia Medical University, 1 Tongdao North Road, Huimin District, Hohhot, 010050, China
| | - Lixia Cao
- Department of Hematology, Affiliated Hospital of Inner Mongolia Medical University, 1 Tongdao North Road, Huimin District, Hohhot, 010050, China.
| |
Collapse
|
3
|
Yu H, Wu C, He J, Zhang Y, Cao Q, Lan H, Li H, Xu C, Chen C, Li R, Zheng B. Metabolic reprogramming induced by PSMA4 overexpression facilitates bortezomib resistance in multiple myeloma. Ann Hematol 2025; 104:1023-1037. [PMID: 39755751 PMCID: PMC11971155 DOI: 10.1007/s00277-024-06163-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/20/2024] [Indexed: 01/06/2025]
Abstract
Multiple myeloma(MM) remains incurable with high relapse and chemoresistance rates. Differentially expressed genes(DEGs) between newly diagnosed myeloma and secondary plasma cell leukemia(sPCL) were subjected to a weighted gene co-expression network analysis(WGCNA). Drug resistant myeloma cell lines were established. Seahorse XF analyzer was applied to detect the metabolism reprogramming associated with the hub gene. The metabolic relevance and the underlying mechanism of the hub gene in myeloma resistance were explored via in vitro experiments. A total of 1310 DEGs were used to construct five co-expression modules. Gene function enrichment analysis demonstrated that candidate hub genes were closely related to oxidative phosphorylation. We performed prognostic analysis and identified PSMA4 as the key hub gene related to the extramedullary invasion of myeloma. The in vitro experiments demonstrated bortezomib resistant myeloma cell lines exhibited high PSMA4 expression, improved oxidative phosphorylation activity with increased ROS level. PSMA4 knockdown re-sensitize resistant myeloma cells via suppressing oxidative phosphorylation activity. Further investigation revealed that PSMA4 induced a hypoxia state which activated the HIF-1α signaling pathway. PSMA4 induces metabolic reprogramming by improving oxidative phosphorylation activity which accounts for the hypoxia state in myeloma cell. The activated HIF-1α signaling pathway causes bortezomib resistance via promoting anti-apoptotic activity in myeloma.
Collapse
Affiliation(s)
- Han Yu
- Department of Oncology, Navy No.905 Hospital of PLA, Naval Medical University, Shanghai, 200052, China
| | - Chengli Wu
- Department of Oncology, Navy No.905 Hospital of PLA, Naval Medical University, Shanghai, 200052, China
| | - Jie He
- Department of Hematology, Navy Medical Center of PLA, Naval Medical University, No. 338 West Huaihai Road, Changning District, Shanghai, 200052, China
| | - Yajun Zhang
- Department of Hematology, Navy Medical Center of PLA, Naval Medical University, No. 338 West Huaihai Road, Changning District, Shanghai, 200052, China
| | - Qiqi Cao
- Department of Oncology, 971 Hospital of PLA Navy, Qingdao, 266071, China
| | - Hongyan Lan
- Department of Hematology, Navy Medical Center of PLA, Naval Medical University, No. 338 West Huaihai Road, Changning District, Shanghai, 200052, China
| | - Hongshan Li
- Department of Oncology, Navy No.905 Hospital of PLA, Naval Medical University, Shanghai, 200052, China
| | - Chengyang Xu
- Department of Hematology, Navy Medical Center of PLA, Naval Medical University, No. 338 West Huaihai Road, Changning District, Shanghai, 200052, China
| | - Chen Chen
- Department of Hematology, Navy Medical Center of PLA, Naval Medical University, No. 338 West Huaihai Road, Changning District, Shanghai, 200052, China
| | - Rong Li
- Department of Hematology, Navy Medical Center of PLA, Naval Medical University, No. 338 West Huaihai Road, Changning District, Shanghai, 200052, China.
| | - Bo Zheng
- Department of Hematology, Navy Medical Center of PLA, Naval Medical University, No. 338 West Huaihai Road, Changning District, Shanghai, 200052, China.
| |
Collapse
|
4
|
Fujii J, Ochi H, Yamada S. A comprehensive review of peroxiredoxin 4, a redox protein evolved in oxidative protein folding coupled with hydrogen peroxide detoxification. Free Radic Biol Med 2025; 227:336-354. [PMID: 39643136 DOI: 10.1016/j.freeradbiomed.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Peroxiredoxin (PRDX) primarily employs electrons from thioredoxin in order to reduce peroxides. PRDX4 mainly resides either in the endoplasmic reticulum (ER) lumen or in extracellular spaces. Due to the usage of alternative promoters, a first exon is transcribed from different regions of the Prdx4 gene, which results in two types of mRNAs. The first type is designated as Prdx4. It is translated with a cleavable, hydrophobic signal sequence and is expressed in most cells throughout the body. The second type is designated as Prdx4t. The peroxidase activity of PRDX4 is involved in both the reduction of hydrogen peroxides and in the oxidative folding of nascent proteins in the ER. Prdx4 appears to have evolved from an ancestral gene in Eutherians simultaneously with the evolution of sperm protamine to cysteine-rich peptides, and, therefore, the testis-specific PRDX4t is likely involved in spermatogenesis through the oxidative folding of protamine. The dysfunction of PRDX4 leads to oxidative damage and ER stress, and is related to various diseases including diabetes and cancer. In this review article we refer to the results of biological and medical research in order to unveil the functional consequences of this unique member of the PRDX family.
Collapse
Affiliation(s)
- Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata, 990-9585, Japan.
| | - Haruki Ochi
- Institute for Promotion of Medical Science Research, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Sohsuke Yamada
- Departments of Pathology and Laboratory Medicine, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan
| |
Collapse
|
5
|
Oskomić M, Tomić A, Barbarić L, Matić A, Kindl DC, Matovina M. KEAP1-NRF2 Interaction in Cancer: Competitive Interactors and Their Role in Carcinogenesis. Cancers (Basel) 2025; 17:447. [PMID: 39941813 PMCID: PMC11816071 DOI: 10.3390/cancers17030447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
An American Cancer Society report estimates the emergence of around 2 million new cancer cases in the US in 2024 [...].
Collapse
Affiliation(s)
| | | | | | | | | | - Mihaela Matovina
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (M.O.); (A.T.); (L.B.); (A.M.); (D.C.K.)
| |
Collapse
|
6
|
Jelinek T, Zihala D, Sevcikova T, Anilkumar Sithara A, Kapustova V, Sahinbegovic H, Venglar O, Muronova L, Broskevicova L, Nenarokov S, Bilek D, Popkova T, Plonkova H, Vrana J, Zidlik V, Hurnik P, Havel M, Hrdinka M, Chyra Z, Stracquadanio G, Simicek M, Hajek R. Beyond the marrow: insights from comprehensive next-generation sequencing of extramedullary multiple myeloma tumors. Leukemia 2024; 38:1323-1333. [PMID: 38493239 PMCID: PMC11147761 DOI: 10.1038/s41375-024-02206-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 03/18/2024]
Abstract
Extramedullary multiple myeloma (EMM) is an aggressive form of multiple myeloma (MM). This study represents the most comprehensive next-generation sequencing analysis of EMM tumors (N = 14) to date, uncovering key molecular features and describing the tumor microenvironment. We observed the co-occurrence of 1q21 gain/amplification and MAPK pathway mutations in 79% of EMM samples, suggesting that these are crucial mutational events in EMM development. We also demonstrated that patients with mutated KRAS and 1q21 gain/amplification at the time of diagnosis have a significantly higher risk of EMM development (HR = 2.4, p = 0.011) using data from a large CoMMpass dataset. We identified downregulation of CXCR4 and enhanced cell proliferation, along with reduced expression of therapeutic targets (CD38, SLAMF7, GPRC5D, FCRH5), potentially explaining diminished efficacy of immunotherapy. Conversely, we identified significantly upregulated EZH2 and CD70 as potential future therapeutic options. For the first time, we report on the tumor microenvironment of EMM, revealing CD8+ T cells and NK cells as predominant immune effector cells using single-cell sequencing. Finally, this is the first longitudinal study in EMM revealing the molecular changes from the time of diagnosis to EMM relapse.
Collapse
Affiliation(s)
- T Jelinek
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - D Zihala
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - T Sevcikova
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, Ostrava, Czech Republic
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - A Anilkumar Sithara
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, Ostrava, Czech Republic
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - V Kapustova
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - H Sahinbegovic
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, Ostrava, Czech Republic
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - O Venglar
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, Ostrava, Czech Republic
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - L Muronova
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - L Broskevicova
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - S Nenarokov
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - D Bilek
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - T Popkova
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - H Plonkova
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - J Vrana
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - V Zidlik
- Department of Pathology, University Hospital Ostrava, Ostrava, Czech Republic
| | - P Hurnik
- Department of Pathology, University Hospital Ostrava, Ostrava, Czech Republic
| | - M Havel
- Department of Nuclear Medicine, University Hospital Ostrava, Ostrava, Czech Republic
- Department of Imaging Methods, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - M Hrdinka
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Z Chyra
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - G Stracquadanio
- School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - M Simicek
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - R Hajek
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic.
- Department of Hematooncology, University Hospital Ostrava, Ostrava, Czech Republic.
| |
Collapse
|
7
|
Wang MY, Yu TX, Wang QY, Han X, Hu X, Ye SJ, Long XH, Wang Y, Zhu H, Luo W, Liang G. OTUD1 promotes hypertensive kidney fibrosis and injury by deubiquitinating CDK9 in renal epithelial cells. Acta Pharmacol Sin 2024; 45:765-776. [PMID: 38110583 PMCID: PMC10943066 DOI: 10.1038/s41401-023-01192-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 11/05/2023] [Indexed: 12/20/2023]
Abstract
Hypertensive renal disease (HRD) contributes to the progression of kidney dysfunction and ultimately leads to end-stage renal disease. Understanding the mechanisms underlying HRD is critical for the development of therapeutic strategies. Deubiquitinating enzymes (DUBs) have been recently highlighted in renal pathophysiology. In this study, we investigated the role of a DUB, OTU Domain-Containing Protein 1 (OTUD1), in HRD models. HRD was induced in wild-type or Otud1 knockout mice by chronic infusion of angiotensin II (Ang II, 1 μg/kg per min) through a micro-osmotic pump for 4 weeks. We found that OTUD1 expression levels were significantly elevated in the kidney tissues of Ang II-treated mice. Otud1 knockout significantly ameliorated Ang II-induced HRD, whereas OTUD1 overexpression exacerbated Ang II-induced kidney damage and fibrosis. Similar results were observed in TCMK-1 cells but not in SV40 MES-13 cells following Ang II (1 μM) treatment. In Ang II-challenged TCMK-1 cells, we demonstrated that OTUD1 bound to CDK9 and induced CDK9 deubiquitination: OTUD1 catalyzed K63 deubiquitination on CDK9 with its Cys320 playing a critical role, promoting CDK9 phosphorylation and activation to induce inflammatory responses and fibrosis in kidney epithelial cells. Administration of a CDK9 inhibitor NVP-2 significantly ameliorated Ang II-induced HRD in mice. This study demonstrates that OTUD1 mediates HRD by targeting CDK9 in kidney epithelial cells, suggesting OTUD1 is a potential target in treating this disease.
Collapse
Affiliation(s)
- Meng-Yang Wang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, 132013, China
| | - Tian-Xiang Yu
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Qin-Yan Wang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xue Han
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiang Hu
- Department of Endocrinology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Shi-Ju Ye
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiao-Hong Long
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hong Zhu
- Department of Endocrinology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Wu Luo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Guang Liang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China.
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310014, China.
| |
Collapse
|
8
|
Wang X, Shi Y, Shi H, Liu X, Liao A, Liu Z, Orlowski RZ, Zhang R, Wang H. MUC20 regulated by extrachromosomal circular DNA attenuates proteasome inhibitor resistance of multiple myeloma by modulating cuproptosis. J Exp Clin Cancer Res 2024; 43:68. [PMID: 38439082 PMCID: PMC10913264 DOI: 10.1186/s13046-024-02972-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/01/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Proteasome inhibitors (PIs) are one of the most important classes of drugs for the treatment of multiple myeloma (MM). However, almost all patients with MM develop PI resistance, resulting in therapeutic failure. Therefore, the mechanisms underlying PI resistance in MM require further investigation. METHODS We used several MM cell lines to establish PI-resistant MM cell lines. We performed RNA microarray and EccDNA-seq in MM cell lines and collected human primary MM samples to explore gene profiles. We evaluated the effect of MUC20 on cuproptosis of PI-resistant MM cells using Co-immunoprecipitation (Co-IP), Seahorse bioenergetic profiling and in vivo assay. RESULTS This study revealed that the downregulation of Mucin 20 (MUC20) could predict PI sensitivity and outcomes in MM patients. Besides, MUC20 attenuated PI resistance in MM cells by inducing cuproptosis via the inhibition of cyclin-dependent kinase inhibitor 2 A expression (CDKN2A), which was achieved by hindering MET proto-oncogene, receptor tyrosine kinase (MET) activation. Moreover, MUC20 suppressed MET activation by repressing insulin-like growth factor receptor-1 (IGF-1R) lactylation in PI-resistant MM cells. This study is the first to perform extrachromosomal circular DNA (eccDNA) sequencing for MM, and it revealed that eccDNA induced PI resistance by amplifying kinesin family member 3 C (KIF3C) to reduce MUC20 expression in MM. CONCLUSION Our findings indicated that MUC20 regulated by eccDNA alleviates PI resistance of MM by modulating cuproptosis, which would provide novel strategies for the treatment of PI-resistant MM.
Collapse
Affiliation(s)
- Xiaobin Wang
- Department of Hematology, Shengjing Hospital, China Medical University, Shenyang, China
- Center for Reproductive Medicine, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yingqing Shi
- Department of Hematology, Daping Hospital, Chongqing, China
| | - Hua Shi
- Shenshan Medical Center, Memorial Hospital of Sun Yat-Sen University, Shanwei, China
| | - Xiaoyu Liu
- Department of Hematology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Aijun Liao
- Department of Hematology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Zhuogang Liu
- Department of Hematology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Robert Z Orlowski
- Departments of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Rui Zhang
- Department of Hematology, The First Affiliated Hospital, China Medical University, Shenyang, China.
| | - Huihan Wang
- Department of Hematology, Shengjing Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
9
|
Pelon M, Krzeminski P, Tracz-Gaszewska Z, Misiewicz-Krzeminska I. Factors determining the sensitivity to proteasome inhibitors of multiple myeloma cells. Front Pharmacol 2024; 15:1351565. [PMID: 38500772 PMCID: PMC10944964 DOI: 10.3389/fphar.2024.1351565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Multiple myeloma is an incurable cancer that originates from antibody-producing plasma cells. It is characterized by an intrinsic ability to produce large amounts of immunoglobulin-like proteins. The high rate of synthesis makes myeloma cells dependent on protein processing mechanisms related to the proteasome. This dependence made proteasome inhibitors such as bortezomib and carfilzomib one of the most important classes of drugs used in multiple myeloma treatment. Inhibition of the proteasome is associated with alteration of a number of important biological processes leading, in consequence, to inhibition of angiogenesis. The effect of drugs in this group and the degree of patient response to the treatment used is itself an extremely complex process that depends on many factors. At cellular level the change in sensitivity to proteasome inhibitors may be related to differences in the expression level of proteasome subunits, the degree of proteasome loading, metabolic adaptation, transcriptional or epigenetic factors. These are just some of the possibilities that may influence differences in response to proteasome inhibitors. This review describes the main cellular factors that determine the degree of response to proteasome inhibitor drugs, as well as information on the key role of the proteasome and the performance characteristics of the inhibitors that are the mainstay of multiple myeloma treatment.
Collapse
Affiliation(s)
- Marta Pelon
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Patryk Krzeminski
- Department of Nanobiotechnology, Biology Institute, Warsaw University of Life Sciences, Warsaw, Poland
| | - Zuzanna Tracz-Gaszewska
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | | |
Collapse
|
10
|
Song J, Zhang Y, Bai Y, Sun X, Lu Y, Guo Y, He Y, Gao M, Chi X, Heng BC, Zhang X, Li W, Xu M, Wei Y, You F, Zhang X, Lu D, Deng X. The Deubiquitinase OTUD1 Suppresses Secretory Neutrophil Polarization And Ameliorates Immunopathology of Periodontitis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303207. [PMID: 37639212 PMCID: PMC10602526 DOI: 10.1002/advs.202303207] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/12/2023] [Indexed: 08/29/2023]
Abstract
Tissue-infiltrating neutrophils (TINs) secrete various signaling molecules to establish paracrine communication within the inflammatory milieu. It is imperative to identify molecular mediators that control this secretory phenotype of TINs. The present study uncovers a secretory neutrophil subset that exhibits increased pro-inflammatory cytokine production and enhanced migratory capacity which is highly related with periodontal pathogenesis. Further analysis identifies the OTU domain-containing protein 1 (OTUD1) plays a regulatory role in this secretory neutrophil polarization. In human and mouse periodontitis, the waning of inflammation is correlated with OTUD1 upregulation, whereas severe periodontitis is induced when neutrophil-intrinsic OTUD1 is depleted. Mechanistically, OTUD1 interacts with SEC23B, a component of the coat protein II complex (COPII). By removing the K63-linked polyubiquitin chains on SEC23B Lysine 81, the deubiquitinase OTUD1 negatively regulates the COPII secretory machinery and limits protein ER-to-Golgi trafficking, thus restricting the surface expression of integrin-regulated proteins, CD9 and CD47. Accordingly, blockade of protein transport by Brefeldin A (BFA) curbs recruitment of Otud1-deficient TINs and attenuates inflammation-induced alveolar bone destruction. The results thus identify OTUD1 signaling as a negative feedback loop that limits the polarization of neutrophils with secretory phenotype and highlight the potential application of BFA in the treatment of periodontal inflammation.
Collapse
Affiliation(s)
- Jia Song
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
- Department of Dental Materials & Dental Medical Devices Testing CenterPeking University School and Hospital of StomatologyBeijing100081P. R. China
- National Center for Stomatology National Clinical Research Center for Oral DiseasesNational Engineering Research Center of Oral Biomaterials and Digital Medical Devices NMPAKey Laboratory for Dental Materials Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Yuning Zhang
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Yunyang Bai
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
- National Center for Stomatology National Clinical Research Center for Oral DiseasesNational Engineering Research Center of Oral Biomaterials and Digital Medical Devices NMPAKey Laboratory for Dental Materials Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Xiaowen Sun
- Department of Dental Materials & Dental Medical Devices Testing CenterPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Yanhui Lu
- Department of Dental Materials & Dental Medical Devices Testing CenterPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Yusi Guo
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
- National Center for Stomatology National Clinical Research Center for Oral DiseasesNational Engineering Research Center of Oral Biomaterials and Digital Medical Devices NMPAKey Laboratory for Dental Materials Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Ying He
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
- National Center for Stomatology National Clinical Research Center for Oral DiseasesNational Engineering Research Center of Oral Biomaterials and Digital Medical Devices NMPAKey Laboratory for Dental Materials Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Min Gao
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
- National Center for Stomatology National Clinical Research Center for Oral DiseasesNational Engineering Research Center of Oral Biomaterials and Digital Medical Devices NMPAKey Laboratory for Dental Materials Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Xiaopei Chi
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
- National Center for Stomatology National Clinical Research Center for Oral DiseasesNational Engineering Research Center of Oral Biomaterials and Digital Medical Devices NMPAKey Laboratory for Dental Materials Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Boon Chin Heng
- National Center for Stomatology National Clinical Research Center for Oral DiseasesNational Engineering Research Center of Oral Biomaterials and Digital Medical Devices NMPAKey Laboratory for Dental Materials Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijing100081P. R. China
- Central LaboratoryPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Xin Zhang
- Institute of Systems BiomedicineSchool of Basic Medical SciencesNHC Key Laboratory of Medical ImmunologyBeijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijing100191P. R. China
| | - Wenjing Li
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
- National Center for Stomatology National Clinical Research Center for Oral DiseasesNational Engineering Research Center of Oral Biomaterials and Digital Medical Devices NMPAKey Laboratory for Dental Materials Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Mingming Xu
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
- National Center for Stomatology National Clinical Research Center for Oral DiseasesNational Engineering Research Center of Oral Biomaterials and Digital Medical Devices NMPAKey Laboratory for Dental Materials Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Yan Wei
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
- National Center for Stomatology National Clinical Research Center for Oral DiseasesNational Engineering Research Center of Oral Biomaterials and Digital Medical Devices NMPAKey Laboratory for Dental Materials Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Fuping You
- Institute of Systems BiomedicineSchool of Basic Medical SciencesNHC Key Laboratory of Medical ImmunologyBeijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijing100191P. R. China
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing CenterPeking University School and Hospital of StomatologyBeijing100081P. R. China
- National Center for Stomatology National Clinical Research Center for Oral DiseasesNational Engineering Research Center of Oral Biomaterials and Digital Medical Devices NMPAKey Laboratory for Dental Materials Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijing100081P. R. China
- Peking University‐Yunnan Baiyao International Medical Research CenterBeijing100191P. R. China
| | - Dan Lu
- Institute of Systems BiomedicineSchool of Basic Medical SciencesNHC Key Laboratory of Medical ImmunologyBeijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijing100191P. R. China
| | - Xuliang Deng
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
- National Center for Stomatology National Clinical Research Center for Oral DiseasesNational Engineering Research Center of Oral Biomaterials and Digital Medical Devices NMPAKey Laboratory for Dental Materials Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijing100081P. R. China
- Peking University‐Yunnan Baiyao International Medical Research CenterBeijing100191P. R. China
| |
Collapse
|
11
|
Kastnes M, Aass KR, Bouma SA, Årseth C, Zahoor M, Yurchenko M, Standal T. The pro-tumorigenic cytokine IL-32 has a high turnover in multiple myeloma cells due to proteolysis regulated by oxygen-sensing cysteine dioxygenase and deubiquitinating enzymes. Front Oncol 2023; 13:1197542. [PMID: 37313466 PMCID: PMC10258340 DOI: 10.3389/fonc.2023.1197542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/16/2023] [Indexed: 06/15/2023] Open
Abstract
IL-32 is a pro-inflammatory cytokine expressed by several types of cancer cells and immune cells. Currently, no treatment targeting IL-32 is available, and its intracellular and exosomal localization make IL-32 less accessible to drugs. We previously showed that hypoxia promotes IL-32 expression through HIF1α in multiple myeloma cells. Here, we demonstrate that high-speed translation and ubiquitin-dependent proteasomal degradation lead to a rapid IL-32 protein turnover. We find that IL-32 protein half-life is regulated by the oxygen-sensing cysteine-dioxygenase ADO and that deubiquitinases actively remove ubiquitin from IL-32 and promote protein stability. Deubiquitinase inhibitors promoted the degradation of IL-32 and may represent a strategy for reducing IL-32 levels in multiple myeloma. The fast turnover and enzymatic deubiquitination of IL-32 are conserved in primary human T cells; thus, deubiquitinase inhibitors may also affect T-cell responses in various diseases.
Collapse
Affiliation(s)
- Martin Kastnes
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kristin Roseth Aass
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Siri Anshushaug Bouma
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Charlotte Årseth
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Muhammad Zahoor
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Mariia Yurchenko
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Therese Standal
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Hematology, St.Olavs University Hospital, Trondheim, Norway
| |
Collapse
|
12
|
Liu Y, Wang P, Hu W, Chen D. New insights into the roles of peroxiredoxins in cancer. Biomed Pharmacother 2023; 164:114896. [PMID: 37210897 DOI: 10.1016/j.biopha.2023.114896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023] Open
Abstract
Oxidative stress is one of the hallmarks of cancer. Tumorigenesis and progression are accompanied by elevated reactive oxygen species (ROS) levels and adaptive elevation of antioxidant expression levels. Peroxiredoxins (PRDXs) are among the most important antioxidants and are widely distributed in a variety of cancers. PRDXs are involved in the regulation of a variety of tumor cell phenotypes, such as invasion, migration, epithelial-mesenchymal transition (EMT) and stemness. PRDXs are also associated with tumor cell resistance to cell death, such as apoptosis and ferroptosis. In addition, PRDXs are involved in the transduction of hypoxic signals in the TME and in the regulation of the function of other cellular components of the TME, such as cancer-associated fibroblasts (CAFs), natural killer (NK) cells and macrophages. This implies that PRDXs are promising targets for cancer treatment. Of course, further studies are needed to realize the clinical application of targeting PRDXs. In this review, we highlight the role of PRDXs in cancer, summarizing the basic features of PRDXs, their association with tumorigenesis, their expression and function in cancer, and their relationship with cancer therapeutic resistance.
Collapse
Affiliation(s)
- Yan Liu
- First Department of Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China
| | - Pu Wang
- Department of Emergency, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China
| | - Weina Hu
- Department of General Practice, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China.
| | - Da Chen
- Department of Emergency, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China.
| |
Collapse
|
13
|
Luo H, Feng Y, Wang F, Lin Z, Huang J, Li Q, Wang X, Liu X, Zhai X, Gao Q, Li L, Zhang Y, Wen J, Zhang L, Niu T, Zheng Y. Combinations of ivermectin with proteasome inhibitors induce synergistic lethality in multiple myeloma. Cancer Lett 2023; 565:216218. [PMID: 37149018 DOI: 10.1016/j.canlet.2023.216218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
Multiple myeloma (MM) is an incurable malignancy of plasma cells. Ivermectin is a US Food and Drug Administration-approved drug for antiparasitic use. Here, we showed that ivermectin exerted anti-MM effects and significantly synergized with proteasome inhibitors in vitro and in vivo. Ivermectin alone exhibited mild anti-MM activity in vitro. Further investigation suggested that ivermectin inhibited proteasome activity in the nucleus by repressing the nuclear import of proteasome subunits, such as PSMB5-7 and PSMA3-4. Therefore, ivermectin treatment caused the accumulation of ubiquitylated proteins and the activation of the UPR pathway in MM cells. Furthermore, ivermectin treatment caused DNA damage and DNA damage response (DDR) signaling pathway activation in MM cells. Ivermectin and bortezomib exhibited synergized anti-MM activity in vitro. The dual-drug treatment resulted in synergistic inhibition of proteasome activity and increased DNA damage. An in vivo study using a human MM cell line xenograft mouse model showed that ivermectin and bortezomib efficiently repressed MM tumor growth in vivo, while the dual-drug treatment was well tolerated by experimental animals. Overall, our results demonstrated that ivermectin alone or cotreated with bortezomib might be promising in MM treatment.
Collapse
Affiliation(s)
- Hongmei Luo
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Yu Feng
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Fangfang Wang
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Zhimei Lin
- Department of Hematology, West China Hospital, Sichuan University, China; Department of Hematology, The Affiliated Hospital of Chengdu University, China
| | - Jingcao Huang
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Qian Li
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Xin Wang
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Xiang Liu
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Xinyu Zhai
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Qianwen Gao
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Lingfeng Li
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Yue Zhang
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Jingjing Wen
- Department of Hematology, West China Hospital, Sichuan University, China; Department of Hematology, Mian-yang Central Hospital, China
| | - Li Zhang
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, China.
| | - Yuhuan Zheng
- Department of Hematology, West China Hospital, Sichuan University, China.
| |
Collapse
|
14
|
Oikawa D, Shimizu K, Tokunaga F. Pleiotropic Roles of a KEAP1-Associated Deubiquitinase, OTUD1. Antioxidants (Basel) 2023; 12:antiox12020350. [PMID: 36829909 PMCID: PMC9952104 DOI: 10.3390/antiox12020350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Protein ubiquitination, which is catalyzed by ubiquitin-activating enzymes, ubiquitin-conjugating enzymes, and ubiquitin ligases, is a crucial post-translational modification to regulate numerous cellular functions in a spatio-temporal-specific manner. The human genome encodes ~100 deubiquitinating enzymes (DUBs), which antagonistically regulate the ubiquitin system. OTUD1, an ovarian tumor protease (OTU) family DUB, has an N-terminal-disordered alanine-, proline-, glycine-rich region (APGR), a catalytic OTU domain, and a ubiquitin-interacting motif (UIM). OTUD1 preferentially hydrolyzes lysine-63-linked ubiquitin chains in vitro; however, recent studies indicate that OTUD1 cleaves various ubiquitin linkages, and is involved in the regulation of multiple cellular functions. Thus, OTUD1 predominantly functions as a tumor suppressor by targeting p53, SMAD7, PTEN, AKT, IREB2, YAP, MCL1, and AIF. Furthermore, OTUD1 regulates antiviral signaling, innate and acquired immune responses, and cell death pathways. Similar to Nrf2, OTUD1 contains a KEAP1-binding ETGE motif in its APGR and regulates the reactive oxygen species (ROS)-mediated oxidative stress response and cell death. Importantly, in addition to its association with various cancers, including multiple myeloma, OTUD1 is involved in acute graft-versus-host disease and autoimmune diseases such as systemic lupus erythematosus, rheumatoid arthritis, and ulcerative colitis. Thus, OTUD1 is an important DUB as a therapeutic target for a variety of diseases.
Collapse
|