1
|
Wu T, Zhu L, Yu M, Cai X, Chen L, Zhang H, Wu X, Ding C, Liu H, Zhang S, Li C, Shi X, Wang Y, Liu Y. AMPK Signaling Pathway Regulates Tendon Regeneration via Fatty Acid Metabolism. J Orthop Res 2025; 43:1012-1023. [PMID: 40023773 DOI: 10.1002/jor.26061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/02/2025] [Accepted: 01/28/2025] [Indexed: 03/04/2025]
Abstract
Tendon and ligament injuries are the most common musculoskeletal injuries, and their regeneration is a complex process due to the poor natural healing ability of these tissues. The current therapies for tendon repair are limited in efficacy and their cellular and molecular mechanisms remain unclear. In this study, we identified AMP-activated protein kinase (AMPK) as a markedly upregulated factor in newborn tendons with high regenerative capacity. Both in vivo and in vitro experiments demonstrated that treatment with dorsomorphin, an AMPK inhibitor, significantly decreased the tendon healing potential. Further analyses revealed that carnitine palmitoyltransferase 1A, a key enzyme, is a putative downstream target of AMPK and is closely associated with the proliferation and tenogenic differentiation of tendon stem/progenitor cells. Collectively, we highlight the essential role of AMPK in tendon repair and propose a potential therapeutic intervention for tendon injuries.
Collapse
Affiliation(s)
- Tianhao Wu
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Center for Biomimetic Nanomaterials, Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Lisha Zhu
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
- Department of Orthodontics, School & Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| | - Min Yu
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
- National Center for Biomimetic Nanomaterials, Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Xinjia Cai
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Center for Biomimetic Nanomaterials, Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Liyuan Chen
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Center for Biomimetic Nanomaterials, Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - He Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Center for Biomimetic Nanomaterials, Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Xiaolan Wu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Center for Biomimetic Nanomaterials, Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Chengye Ding
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Center for Biomimetic Nanomaterials, Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Hangbo Liu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Center for Biomimetic Nanomaterials, Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Shiying Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Center for Biomimetic Nanomaterials, Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Chang Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Center for Biomimetic Nanomaterials, Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Xinmeng Shi
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Center for Biomimetic Nanomaterials, Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Yu Wang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Center for Biomimetic Nanomaterials, Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Yan Liu
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Center for Biomimetic Nanomaterials, Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| |
Collapse
|
2
|
Yuan Y, Li Q, Yan G, Qian Y, Guo W, Li S, Wang F, Shang W, Zhu Z, Ge D, Wang Y, Liu Y. Targeting KMT5C Suppresses Lung Cancer Progression and Enhances the Efficacy of Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407575. [PMID: 40126333 PMCID: PMC12097080 DOI: 10.1002/advs.202407575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 02/24/2025] [Indexed: 03/25/2025]
Abstract
The immune evasion is one major challenge for cancer immunotherapy. Despite considerable advancements in immune checkpoint blockade (ICB) therapies for the advanced non-small cell lung cancer (NSCLC) patients, only a minority of patients receive long-term survival benefit. Here, this work demonstrates that lysine methyltransferase 5C (KMT5C) is a crucial promoter of the NSCLC progression and immune evasion. This work first observes that upregulation of KMT5C in NSCLC correlated with cancer progression and poor patient prognosis. Notably, KMT5C knockdown in NSCLC cells suppress tumor growth and metastasis in mice. Mechanistically, this work demonstrates that KMT5C activated the DNA repair response to inhibit the STING-IRF3 pathway, downstream type I IFN signaling, and CCL5 secretion, leading to the downregulation of CD8+ T cell infiltration and function in NSCLC, ultimately facilitating tumor immune evasion and tumor progression. Importantly, both the pharmacological inhibitor A196 and the genetic inhibition of KMT5C could synergize with anti-PD-1 therapy in the lung cancer mouse model. Clinically, high expression levels of KMT5C in patients with NSCLC are associated with a lower response rate and worse clinical outcomes to ICB therapy. Therefore, these findings identify a previously unknown functional link between KMT5C and tumor immune evasion, and demonstrate that targeting KMT5C may be a potential therapeutic approach for enhancing the efficacy of NSCLC patients to ICB therapy.
Collapse
Affiliation(s)
- Yunfeng Yuan
- Department of Thoracic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Qianyu Li
- Department of Liver SurgeryClinical Stem Cell Research CenterRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Guoquan Yan
- Institute of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Yifei Qian
- Department of Liver SurgeryClinical Stem Cell Research CenterRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Wenyun Guo
- Department of Liver SurgeryClinical Stem Cell Research CenterRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Songling Li
- Department of Liver SurgeryClinical Stem Cell Research CenterRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Fan Wang
- Department of Liver SurgeryClinical Stem Cell Research CenterRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Wanjing Shang
- Lymphocyte Biology SectionLaboratory of Immune System BiologyNational Institute of Allergy and infectious DiseasesNational Institutes of HealthBethesdaMD20814USA
| | - Zijun Zhu
- Department of Liver SurgeryClinical Stem Cell Research CenterRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Di Ge
- Department of Thoracic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Yanan Wang
- Department of Laboratory MedicineRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Yanfeng Liu
- Department of Liver SurgeryClinical Stem Cell Research CenterRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200127China
- Shanghai Engineering Research Center of Transplantation and ImmunologyShanghai Institute of TransplantationShanghai200127China
| |
Collapse
|
3
|
Wang L, Shi F, Cao Y, Xie L. Multiple roles of branched-chain amino acid metabolism in tumour progression. J Biomed Sci 2025; 32:41. [PMID: 40205401 PMCID: PMC11983764 DOI: 10.1186/s12929-025-01132-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 03/09/2025] [Indexed: 04/11/2025] Open
Abstract
Metabolic reprogramming enables tumour cells to sustain their continuous proliferation and adapt to the ever-changing microenvironment. Branched-chain amino acids (BCAAs) and their metabolites are involved in intracellular protein synthesis and catabolism, signal transduction, epigenetic modifications, and the maintenance of oxidative homeostasis. Alterations in BCAA metabolism can influence the progression of various tumours. However, how BCAA metabolism is dysregulated differs among depending on tumour type; for example, it can manifest as decreased BCAA metabolism leading to BCAA accumulation, or as enhanced BCAA uptake and increased catabolism. In this review, we describe the role of BCAA metabolism in the progression of different tumours. As well as discuss how BCAA metabolic reprogramming drives tumour therapy resistance and evasion of the antitumour immune response, and how these pro-cancer effects are achieved in part by activating the mTORC signalling pathway. In-depth investigations into the potential mechanisms by which BCAA metabolic reprogramming affects tumorigenesis and tumour progression can enhance our understanding of the relationship between metabolism and cancer and provide new strategies for cancer therapy.
Collapse
Affiliation(s)
- Lin Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha, 410078, China
| | - Feng Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Longlong Xie
- Department of Radiology, The Affiliated Children's Hospital of Xiangya School of Medicine (Hunan Children's Hospital), Central South University, Changsha, 410078, China.
| |
Collapse
|
4
|
Zhou B, Liu F, Wan Y, Luo L, Ye Z, He J, Tang L, Ma W, Dai R. Construction of a prognostic risk model for clear cell renal cell carcinomas based on centrosome amplification-related genes. Mol Genet Genomics 2025; 300:30. [PMID: 40075035 PMCID: PMC11903526 DOI: 10.1007/s00438-025-02237-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 02/25/2025] [Indexed: 03/14/2025]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the urological malignancy with the highest incidence, centrosome amplification-associated genes (CARGs) have been suggested to be associated with carcinogenesis, but their roles in ccRCC are still incompletely understood. This study utilizes bioinformatics to explore the role of CARGs in the pathogenesis of ccRCC and to establish a prognostic model for ccRCC related to CARGs. Based on publicly available ccRCC datasets, 2312 differentially expressed genes (DEGs) were identified (control vs. ccRCC). Disease samples were classified into high and low scoring groups based on CARG scores and analysed for differences to obtain 345 DEGs associated with CARG scores (S-DEGs). 137 candidate genes were obtained by taking the intersection of DEGs and S-DEGs. Six prognostic genes (PCP4, SLN, PI3, PROX1, VAT1L, and KLK2) were then screened by univariate Cox, LASSO, and multifactorial Cox regression. These genes exhibit a high degree of enrichment in ribosome-associated pathways. Both risk score and age were independent prognostic factors, and the Nomogram constructed based on them had a good predictive performance (AUC > 0.7). In addition, immunological analyses identified 6 different immune cells and 23 immune checkpoints between the high- and low-risk groups, whereas mutational analyses identified frequent VHL mutations in both high- and low-risk groups. Finally, 93 potentially sensitive drugs were identified. In conclusion, this study identified six CARGs as prognostic genes for ccRCC and established a risk model with predictive value. These findings provide insights for prognostic prediction of ccRCC, optimisation of clinical management and development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Bingru Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Fengye Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Ying Wan
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Lin Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Zhenzhong Ye
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, China
| | - Jinwei He
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Long Tang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Wenzhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Rongyang Dai
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, China.
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China.
| |
Collapse
|
5
|
Sun T, Hao Z, Meng F, Li X, Wang Y, Zhu H, Li Y, Ding Y. The Effects of Sika Deer Antler Peptides on 3T3-L1 Preadipocytes and C57BL/6 Mice via Activating AMPK Signaling and Gut Microbiota. Molecules 2025; 30:1173. [PMID: 40076396 PMCID: PMC11901460 DOI: 10.3390/molecules30051173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
(1) Background: To explore the anti-obesity effects and mechanisms of sika deer velvet antler peptides (sVAP) on 3T3-L1 preadipocytes and in high-fat diet (HFD)-induced obese mice. (2) Methods: sVAP fractions of different molecular weights were obtained via enzymatic hydrolysis and ultrafiltration. Their anti-lipid effects on 3T3-L1 cells were assessed with Oil Red O staining. The optimal fraction was tested in HFD-induced obese C57BL/6 mice to explore anti-obesity mechanisms. Peptide purification used LC-MS/MS, followed by sequence analysis and molecular docking for activity prediction. (3) Results: The peptide with the best anti-obesity activity was identified as sVAP-3K (≤3 kDa). sVAP-3K reduced lipid content and proliferation in 3T3-L1 cells, improved lipid profiles and ameliorated adipocyte degeneration in HFD mice, promoted the growth of beneficial gut microbiota, and maintained lipid metabolism. Additionally, sVAP-3K activated the AMP-activated protein kinase (AMPK) signaling pathway, regulating adipogenic transcription factors. sVAP-3K exhibited ten major components (peak area ≥ 1.03 × 108), with four of the most active components being newly discovered natural oligopeptides: RVDPVNFKL (m/z 363.21371), GGEFTPVLQ (m/z 474.24643), VDPENFRL (m/z 495.25735), and VDPVNFK (m/z 818.44043). (4) Conclusion: This study identifies four novel oligopeptides in sVAP-3K as key components for anti-obesity effects, offering new evidence for developing natural weight-loss drugs from sika deer velvet.
Collapse
Affiliation(s)
- Tong Sun
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China; (T.S.); (Z.H.); (F.M.); (X.L.); (Y.W.)
| | - Zezhuang Hao
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China; (T.S.); (Z.H.); (F.M.); (X.L.); (Y.W.)
| | - Fanying Meng
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China; (T.S.); (Z.H.); (F.M.); (X.L.); (Y.W.)
| | - Xue Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China; (T.S.); (Z.H.); (F.M.); (X.L.); (Y.W.)
| | - Yihua Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China; (T.S.); (Z.H.); (F.M.); (X.L.); (Y.W.)
| | - Haowen Zhu
- College of Life Sciences, University of Camerino, 62032 Camerino, Macerata Province, Italy;
| | - Yong Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China; (T.S.); (Z.H.); (F.M.); (X.L.); (Y.W.)
| | - Yuling Ding
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China; (T.S.); (Z.H.); (F.M.); (X.L.); (Y.W.)
| |
Collapse
|
6
|
Zhang Y, Tang J, Jiang C, Yi H, Guang S, Yin G, Wang M. Metabolic reprogramming in cancer and senescence. MedComm (Beijing) 2025; 6:e70055. [PMID: 40046406 PMCID: PMC11879902 DOI: 10.1002/mco2.70055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 04/01/2025] Open
Abstract
The rising trend in global cancer incidence has caused widespread concern, one of the main reasons being the aging of the global population. Statistical data show that cancer incidence and mortality rates show a clear upward trend with age. Although there is a commonality between dysregulated nutrient sensing, which is one of the main features of aging, and metabolic reprogramming of tumor cells, the specific regulatory relationship is not clear. This manuscript intends to comprehensively analyze the relationship between senescence and tumor metabolic reprogramming; as well as reveal the impact of key factors leading to cellular senescence on tumorigenesis. In addition, this review summarizes the current intervention strategies targeting nutrient sensing pathways, as well as the clinical cases of treating tumors targeting the characteristics of senescence with the existing nanodelivery research strategies. Finally, it also suggests sensible dietary habits for those who wish to combat aging. In conclusion, this review attempts to sort out the link between aging and metabolism and provide new ideas for cancer treatment.
Collapse
Affiliation(s)
- Yuzhu Zhang
- Department of PathologyXiangya HospitalSchool of Basic Medical SciencesCentral South UniversityChangshaChina
| | - Jiaxi Tang
- Department of PathologyXiangya HospitalSchool of Basic Medical SciencesCentral South UniversityChangshaChina
| | - Can Jiang
- Department of PathologyXiangya HospitalSchool of Basic Medical SciencesCentral South UniversityChangshaChina
| | - Hanxi Yi
- Department of PathologyXiangya HospitalSchool of Basic Medical SciencesCentral South UniversityChangshaChina
| | - Shu Guang
- Department of PathologyXiangya HospitalSchool of Basic Medical SciencesCentral South UniversityChangshaChina
| | - Gang Yin
- Department of PathologyXiangya HospitalSchool of Basic Medical SciencesCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
| | - Maonan Wang
- Department of PathologyXiangya HospitalSchool of Basic Medical SciencesCentral South UniversityChangshaChina
| |
Collapse
|
7
|
Cheng J, Bin X, Tang Z. Cullin-RING Ligase 4 in Cancer: Structure, Functions, and Mechanisms. Biochim Biophys Acta Rev Cancer 2024; 1879:189169. [PMID: 39117093 DOI: 10.1016/j.bbcan.2024.189169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Cullin-RING ligase 4 (CRL4) has attracted enormous attentions because of its extensive regulatory roles in a wide variety of biological and pathological events, especially cancer-associated events. CRL4 exerts pleiotropic effects by targeting various substrates for proteasomal degradation or changes in activity through different internal compositions to regulate diverse events in cancer progression. In this review, we summarize the structure of CRL4 with manifold compositional modes and clarify the emerging functions and molecular mechanisms of CRL4 in a series of cancer-associated events.
Collapse
Affiliation(s)
- Jingyi Cheng
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China; Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha 410008, Hunan, China
| | - Xin Bin
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China; Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha 410008, Hunan, China.
| | - Zhangui Tang
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China; Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
8
|
Liu C, Chen J, Cong Y, Chen K, Li H, He Q, Chen L, Song Y, Xing Y. PROX1 drives neuroendocrine plasticity and liver metastases in prostate cancer. Cancer Lett 2024; 597:217068. [PMID: 38901665 DOI: 10.1016/j.canlet.2024.217068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
With the widespread use of anti-androgen therapy, such as abiraterone and enzalutamide, the incidence of neuroendocrine prostate cancer (NEPC) is increasing. NEPC is a lethal form of prostate cancer (PCa), with a median overall survival of less than one year after diagnosis. In addition to the common bone metastases seen in PCa, NEPC exhibits characteristics of visceral metastases, notably liver metastasis, which serves as an indicator of a poor prognosis clinically. Key factors driving the neuroendocrine plasticity of PCa have been identified, yet the underlying mechanism behind liver metastasis remains unclear. In this study, we identified PROX1 as a driver of neuroendocrine plasticity in PCa, responsible for promoting liver metastases. Mechanistically, anti-androgen therapy alleviates transcriptional inhibition of PROX1. Subsequently, elevated PROX1 levels drive both neuroendocrine plasticity and liver-specific transcriptional reprogramming, promoting liver metastases. Moreover, liver metastases in PCa induced by PROX1 depend on reprogrammed lipid metabolism, a disruption that effectively reduces the formation of liver metastases.
Collapse
Affiliation(s)
- Chunyu Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Jiawei Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Yukun Cong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Kang Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Haoran Li
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Qingliu He
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Liang Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| | - Yarong Song
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| | - Yifei Xing
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| |
Collapse
|
9
|
Shan W, Peng W, Chen Y, Wang Y, Yu Q, Tian Y, Dou Y, Tu J, Huang X, Li X, Wang Z, Zhu Q, Chen J, Xia B. GSK3β and UCHL3 govern RIPK4 homeostasis via deubiquitination to enhance tumor metastasis in ovarian cancer. Oncogene 2024; 43:1885-1899. [PMID: 38664501 DOI: 10.1038/s41388-024-03040-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 06/16/2024]
Abstract
Receptor-interacting protein kinase 4 (RIPK4) is increasingly recognized as a pivotal player in ovarian cancer, promoting tumorigenesis and disease progression. Despite its significance, the posttranslational modifications dictating RIPK4 stability in ovarian cancer remain largely uncharted. In this study, we first established that RIPK4 levels are markedly higher in metastatic than in primary ovarian cancer tissues through single-cell sequencing. Subsequently, we identified UCHL3 as a key deubiquitinase that regulates RIPK4. We elucidate the mechanism that UCHL3 interacts with and deubiquitinates RIPK4 at the K469 site, removing the K48-linked ubiquitin chain and thus enhancing RIPK4 stabilization. Intriguingly, inhibition of UCHL3 activity using TCID leads to increased RIPK4 ubiquitination and degradation. Furthermore, we discovered that GSK3β-mediated phosphorylation of RIPK4 at Ser420 enhances its interaction with UCHL3, facilitating further deubiquitination and stabilization. Functionally, RIPK4 was found to drive the proliferation and metastasis of ovarian cancer in a UCHL3-dependent manner both in vitro and in vivo. Importantly, positive correlations between RIPK4 and UCHL3 protein expression levels were observed, with both serving as indicators of poor prognosis in ovarian cancer patients. Overall, this study uncovers a novel pathway wherein GSK3β-induced phosphorylation of RIPK4 strengthens its interaction with UCHL3, leading to increased deubiquitination and stabilization of RIPK4, thereby promoting ovarian cancer metastasis. These findings offer new insights into the molecular underpinnings of ovarian cancer and highlight potential therapeutic targets for enhancing antitumor efficacy.
Collapse
Affiliation(s)
- Wulin Shan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Wenju Peng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Yao Chen
- Department of Obstetrics and Gynecology, Bengbu Medical University, Bengbu, Anhui, 233030, China
| | - Yumeng Wang
- Department of Obstetrics and Gynecology, Bengbu Medical University, Bengbu, Anhui, 233030, China
| | - Qiongli Yu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Yuan Tian
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Yingyu Dou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Jinqi Tu
- Hefei Jingdongfang Hospital, Hefei, Anhui, 230011, China
| | - Xu Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Xiaoyu Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Zengying Wang
- Department of Obstetrics and Gynecology, Bengbu Medical University, Bengbu, Anhui, 233030, China
| | - Qi Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Jiming Chen
- Department of Gynecology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213000, China.
| | - Bairong Xia
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China.
- Department of Obstetrics and Gynecology, Bengbu Medical University, Bengbu, Anhui, 233030, China.
| |
Collapse
|
10
|
Su F, Koeberle A. Regulation and targeting of SREBP-1 in hepatocellular carcinoma. Cancer Metastasis Rev 2024; 43:673-708. [PMID: 38036934 PMCID: PMC11156753 DOI: 10.1007/s10555-023-10156-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/10/2023] [Indexed: 12/02/2023]
Abstract
Hepatocellular carcinoma (HCC) is an increasing burden on global public health and is associated with enhanced lipogenesis, fatty acid uptake, and lipid metabolic reprogramming. De novo lipogenesis is under the control of the transcription factor sterol regulatory element-binding protein 1 (SREBP-1) and essentially contributes to HCC progression. Here, we summarize the current knowledge on the regulation of SREBP-1 isoforms in HCC based on cellular, animal, and clinical data. Specifically, we (i) address the overarching mechanisms for regulating SREBP-1 transcription, proteolytic processing, nuclear stability, and transactivation and (ii) critically discuss their impact on HCC, taking into account (iii) insights from pharmacological approaches. Emphasis is placed on cross-talk with the phosphatidylinositol-3-kinase (PI3K)-protein kinase B (Akt)-mechanistic target of rapamycin (mTOR) axis, AMP-activated protein kinase (AMPK), protein kinase A (PKA), and other kinases that directly phosphorylate SREBP-1; transcription factors, such as liver X receptor (LXR), peroxisome proliferator-activated receptors (PPARs), proliferator-activated receptor γ co-activator 1 (PGC-1), signal transducers and activators of transcription (STATs), and Myc; epigenetic mechanisms; post-translational modifications of SREBP-1; and SREBP-1-regulatory metabolites such as oxysterols and polyunsaturated fatty acids. By carefully scrutinizing the role of SREBP-1 in HCC development, progression, metastasis, and therapy resistance, we shed light on the potential of SREBP-1-targeting strategies in HCC prevention and treatment.
Collapse
Affiliation(s)
- Fengting Su
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Andreas Koeberle
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria.
| |
Collapse
|
11
|
Wu D, Zhang Z, Wang X, Harmon DL, Jia Y, Qi J, Li X, Jia H, Xu M. Exploring the Role of G Protein Expression in Sodium Butyrate-Enhanced Pancreas Development of Dairy Calves: A Proteomic Perspective. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5645-5658. [PMID: 38462712 DOI: 10.1021/acs.jafc.3c08405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The present study evaluated the effects of sodium butyrate (SB) supplementation on exocrine and endocrine pancreatic development in dairy calves. Fourteen male Holstein calves were alimented with either milk or milk supplemented with SB for 70 days. Pancreases were collected for analysis including staining, immunofluorescence, electron microscopy, qRT-PCR, Western blotting, and proteomics. Results indicated increased development in the SB group with increases in organ size, protein levels, and cell growth. There were also exocrine enhancements manifested as higher enzyme activities and gene expressions along with larger zymogen granules. Endocrine benefits included elevated gene expression, more insulin secretion, and larger islets, indicating a rise in β-cell proliferation. Proteomics and pathway analyses pinpointed the G protein subunit alpha-15 as a pivotal factor in pancreatic and insulin secretion pathways. Overall, SB supplementation enhances pancreatic development by promoting its exocrine and endocrine functions through G protein regulation in dairy calves.
Collapse
Affiliation(s)
- Donglin Wu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zhanhe Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xing Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - David L Harmon
- Department of Animal and Food Sciences, University of Kentucky, Lexington 40546, Kentucky, United States
| | - Yang Jia
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- National Center of Technology Innovation for Dairy, Hohhot 010080, China
| | - Jingwei Qi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- National Center of Technology Innovation for Dairy, Hohhot 010080, China
| | - Xintong Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Haobin Jia
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Ming Xu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- National Center of Technology Innovation for Dairy, Hohhot 010080, China
| |
Collapse
|
12
|
Geng Y, Wang Z, Xu X, Sun X, Dong X, Luo Y, Sun X. Extensive therapeutic effects, underlying molecular mechanisms and disease treatment prediction of Metformin: a systematic review. Transl Res 2024; 263:73-92. [PMID: 37567440 DOI: 10.1016/j.trsl.2023.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
Metformin (Met), a first-line management for type 2 diabetes mellitus, has been expansively employed and studied with results indicating its therapeutic potential extending beyond glycemic control. Beyond its established role, this therapeutic drug demonstrates a broad spectrum of action encompassing over 60 disorders, encompassing metabolic conditions, inflammatory disorders, carcinomas, cardiovascular diseases, and cerebrovascular pathologies. There is clear evidence of Met's action targeting specific nodes in the molecular pathways of these diseases and, intriguingly, interactions with the intestinal microbiota and epigenetic processes have been explored. Furthermore, novel Met derivatives with structural modifications tailored to diverse diseases have been synthesized and assessed. This manuscript proffers a comprehensive thematic review of the diseases amenable to Met treatment, elucidates their molecular mechanisms, and employs informatics technology to prospect future therapeutic applications of Met. These data and insights gleaned considerably contribute to enriching our understanding and appreciation of Met's far-reaching clinical potential and therapeutic applicability.
Collapse
Affiliation(s)
- Yifei Geng
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Zhen Wang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Xiaoyu Xu
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Xiao Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Xi Dong
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China.
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China.
| |
Collapse
|
13
|
Liu P, Ding P, Sun C, Chen S, Lowe S, Meng L, Zhao Q. Lymphangiogenesis in gastric cancer: function and mechanism. Eur J Med Res 2023; 28:405. [PMID: 37803421 PMCID: PMC10559534 DOI: 10.1186/s40001-023-01298-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 08/18/2023] [Indexed: 10/08/2023] Open
Abstract
Increased lymphangiogenesis and lymph node (LN) metastasis are thought to be important steps in cancer metastasis, and are associated with patient's poor prognosis. There is increasing evidence that the lymphatic system may play a crucial role in regulating tumor immune response and limiting tumor metastasis, since tumor lymphangiogenesis is more prominent in tumor metastasis and diffusion. Lymphangiogenesis takes place in embryonic development, wound healing, and a variety of pathological conditions, including tumors. Tumor cells and tumor microenvironment cells generate growth factors (such as lymphangiogenesis factor VEGF-C/D), which can promote lymphangiogenesis, thereby inducing the metastasis and diffusion of tumor cells. Nevertheless, the current research on lymphangiogenesis in gastric cancer is relatively scattered and lacks a comprehensive understanding. Therefore, in this review, we aim to provide a detailed perspective on molecules and signal transduction pathways that regulate gastric cancer lymphogenesis, which may provide new insights for the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Pengpeng Liu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Ping'an Ding
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Chenyu Sun
- AMITA Health Saint Joseph Hospital Chicago, 2900 N. Lake Shore Drive, Chicago, IL, 60657, USA
| | - Shuya Chen
- Newham University Hospital, Glen Road, Plaistow, London, E13 8SL, England, UK
| | - Scott Lowe
- College of Osteopathic Medicine, Kansas City University, 1750 Independence Ave, Kansas City, MO, 64106, USA
| | - Lingjiao Meng
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China.
- Research Center of the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China.
| | - Qun Zhao
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China.
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China.
| |
Collapse
|
14
|
Zeng K, Li W, Wang Y, Zhang Z, Zhang L, Zhang W, Xing Y, Zhou C. Inhibition of CDK1 Overcomes Oxaliplatin Resistance by Regulating ACSL4-mediated Ferroptosis in Colorectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301088. [PMID: 37428466 PMCID: PMC10477855 DOI: 10.1002/advs.202301088] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/31/2023] [Indexed: 07/11/2023]
Abstract
Oxaliplatin is a widely used chemotherapy drug for patients with advanced colorectal cancer (CRC); however, frequent drug resistance limits its therapeutic efficacy in patients. Here, this work identifies cyclin-dependent kinase 1 (CDK1) as a critical contributor to oxaliplatin resistance via in vitro and in vivo CRISPR/Cas9 screening. CDK1 is highly expressed in oxaliplatin-resistant cells and tissues due to the loss of N6-methyladenosine modification. Genetic and pharmacological blockade of CDK1 restore the susceptibility of CRC cells to oxaliplatin in vitro and in cell/patient-derived xenograft models. Mechanistically, CDK1 directly binds to and phosphorylates Acyl-CoA synthetase long-chain family 4 (ACSL4) at S447, followed by recruitment of E3 ubiquitin ligase UBR5 and polyubiquitination of ACSL4 at K388, K498, and K690, which leads to ACSL4 protein degradation. Reduced ACSL4 subsequently blocks the biosynthesis of polyunsaturated fatty acid containing lipids, thereby inhibiting lipid peroxidation and ferroptosis, a unique iron-dependent form of oxidative cell death. Moreover, treatment with a ferroptosis inhibitor nullifies the enhancement of CRC cell sensitivity to oxaliplatin by CDK1 blockade in vitro and in vivo. Collectively, the findings indicate that CDK1 confers oxaliplatin resistance to cells by suppressing ferroptosis. Therefore, administration of a CDK1 inhibitor may be an attractive strategy to treat patients with oxaliplatin-resistant CRC.
Collapse
Affiliation(s)
- Kaixuan Zeng
- Precision Medical Research Institutethe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'an710000China
| | - Weihao Li
- Department of Colorectal SurgerySun Yat‐sen University Cancer CenterGuangzhou510060China
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Yue Wang
- Department of Gastroenterologythe First Affiliated Hospital of Nanchang UniversityNanchang330006China
| | - Zifei Zhang
- IIT Project Management Officethe First Affiliated Hospital of Nanchang UniversityNanchang330006China
| | - Linjie Zhang
- Department of Colorectal SurgerySun Yat‐sen University Cancer CenterGuangzhou510060China
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Weili Zhang
- Department of Colorectal SurgerySun Yat‐sen University Cancer CenterGuangzhou510060China
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Yue Xing
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
- Breast Tumor CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Chi Zhou
- Department of Colorectal SurgerySun Yat‐sen University Cancer CenterGuangzhou510060China
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| |
Collapse
|
15
|
González-Hernández S, Mukouyama YS. Lymphatic vasculature in the central nervous system. Front Cell Dev Biol 2023; 11:1150775. [PMID: 37091974 PMCID: PMC10119411 DOI: 10.3389/fcell.2023.1150775] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
The central nervous system (CNS) is considered as an immune privilege organ, based on experiments in the mid 20th century showing that the brain fails to mount an efficient immune response against an allogeneic graft. This suggests that in addition to the presence of the blood-brain barrier (BBB), the apparent absence of classical lymphatic vasculature in the CNS parenchyma limits the capacity for an immune response. Although this view is partially overturned by the recent discovery of the lymphatic-like hybrid vessels in the Schlemm's canal in the eye and the lymphatic vasculature in the outmost layer of the meninges, the existence of lymphatic vessels in the CNS parenchyma has not been reported. Two potential mechanisms by which lymphatic vasculature may arise in the organs are: 1) sprouting and invasion of lymphatic vessels from the surrounding tissues into the parenchyma and 2) differentiation of blood endothelial cells into lymphatic endothelial cells in the parenchyma. Considering these mechanisms, we here discuss what causes the dearth of lymphatic vessels specifically in the CNS parenchyma.
Collapse
|