1
|
Chen Y, Fu KX, Cotton R, Ou Z, Kwak JW, Chien JC, Kesler V, Nyein HYY, Eisenstein M, Tom Soh H. A biochemical sensor with continuous extended stability in vivo. Nat Biomed Eng 2025:10.1038/s41551-025-01389-6. [PMID: 40410556 DOI: 10.1038/s41551-025-01389-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/03/2025] [Indexed: 05/25/2025]
Abstract
The development of biosensors that can detect specific analytes continuously, in vivo, in real time has proven difficult due to biofouling, probe degradation and signal drift that often occur in vivo. By drawing inspiration from intestinal mucosa that can protect host cell receptors in the presence of the gut microbiome, we develop a synthetic biosensor that can continuously detect specific target molecules in vivo. The biomimetic multicomponent sensor features the hierarchical nano-bio interface design with three-dimensional bicontinuous nanoporous structure, polymer coating and aptamer switches, balancing small-molecule sensing and surface protection in complex biological environments. Our system is stable for at least 1 month in undiluted serum in vitro or 1 week implanted within the blood vessels of free-moving rats, retaining over 50% baseline signal and reproducible calibration curves. We demonstrate that the implanted system can intravenously track pharmacokinetics in real time even after 4 days of continuous exposure to flowing blood within rat femoral vein. In this way, our work provides a generalizable design foundation for biosensors that can continuously operate in vivo for extended durations.
Collapse
Affiliation(s)
- Yihang Chen
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Kaiyu X Fu
- Department of Radiology, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Renee Cotton
- Department of Comparative Medicine, Stanford University, Stanford, CA, USA
| | - Zihao Ou
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Jean Won Kwak
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Jun-Chau Chien
- Department of Radiology, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Vladimir Kesler
- Department of Radiology, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Hnin Yin Yin Nyein
- Department of Radiology, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Michael Eisenstein
- Department of Radiology, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - H Tom Soh
- Department of Radiology, Stanford University, Stanford, CA, USA.
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
2
|
Zhang J, Wang D, Kwok C, Xu L, Famulok M. Aptamer-engaged nanotherapeutics against SARS-CoV-2. DISCOVER NANO 2025; 20:71. [PMID: 40289185 PMCID: PMC12034613 DOI: 10.1186/s11671-025-04245-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/26/2025] [Indexed: 04/30/2025]
Abstract
The COVID-19 pandemic, caused by the virus SARS-CoV-2 infection, has underscored the critical importance of rapid and accurate therapeutics. The neutralization of SARS-CoV-2 is paramount in controlling the spread and impact of COVID-19. In this context, the integration of aptamers and aptamer-related nanotherapeutics presents a valuable and scientifically significant approach. Despite the potential, current reviews in this area are often not comprehensive and specific enough to encapsulate the full scope of therapeutic principles, strategies, advancements, and challenges. This review aims to fill that gap by providing an in-depth examination of the role of aptamers and their related molecular medicine in COVID-19 therapeutics. We first introduce the unique properties, selection, and recognition mechanism of aptamers to bind with high affinity to various targets. Next, we delve into the therapeutic potential of aptamers, focusing on their ability to inhibit viral entry and replication, as well as modulate the host immune response. The integration of aptamers with nucleic acid nanomedicine is explored. Finally, we address the challenges and future perspectives of aptamer and nucleic acid nanomedicine in COVID-19 therapeutics, including issues of stability, delivery, and manufacturing scalability. We conclude by underscoring the importance of continued research and development in this field to meet the ongoing challenges posed by COVID-19 and potential future pandemics. Our review will be a valuable resource for researchers and clinicians interested in the latest developments at the intersection of molecular biology, nanotechnology, and infectious disease management.
Collapse
Affiliation(s)
- Jing Zhang
- Life Science and Chemistry College, Hunan University of Technology, Zhuzhou, 412007, China
| | - Dan Wang
- Life & Medical Sciences Institute (LIMES), Pharmaceutical Institute, Universität Bonn, 53121, Bonn, Germany.
| | - Chiu Kwok
- Life & Medical Sciences Institute (LIMES), Pharmaceutical Institute, Universität Bonn, 53121, Bonn, Germany
| | - Liujun Xu
- Department of Respiratory and Critical Care, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, 324000, China.
| | - Michalina Famulok
- Life & Medical Sciences Institute (LIMES), Pharmaceutical Institute, Universität Bonn, 53121, Bonn, Germany
| |
Collapse
|
3
|
Saunders J, Thompson IAP, Soh HT. Generalizable Molecular Switch Designs for In Vivo Continuous Biosensing. Acc Chem Res 2025; 58:703-713. [PMID: 39954262 PMCID: PMC11883736 DOI: 10.1021/acs.accounts.4c00721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/17/2025]
Abstract
Continuous biosensors have the potential to transform medicine, enabling healthcare to be more preventative and personalized as compared to the current standard of reactive diagnostics. Realizing this transformative potential requires biosensors that can function continuously in vivo without sample preparation and deliver molecular specificity, sensitivity, and high temporal resolution. Molecular switches stand out as a promising solution for creating such sensors for the continuous detection of many different types of molecules. Molecular switches are target-binding receptors designed such that binding causes a conformational change in the switch's structure. This structure switching induces a measurable signal change via reporters incorporated into the molecular switch, enabling highly specific, label-free sensing. However, there remains an outstanding need for generalizable switch designs that can be adapted for the detection of a wide range of molecular targets. In this Account, we chronicle the work our lab has done to develop generalizable molecular switch designs that allow more rapid development of high-performance biosensors across a broad range of biomarkers. Pioneering efforts toward molecular switch-based biosensing have employed aptamers─nucleic acid-based receptors with sequence-specific target affinity. However, most of these early demonstrations relied upon aptamers with intrinsic structure-switching capabilities. To accelerate aptamer switch design for more targets, we have applied rational design and knowledge of an aptamer's structure to engineer switching functionality into pre-existing aptamers. Our designs contained several structural parameters that enabled us to easily tune the sensitivity and binding kinetics of the resulting switches. Using such rationally designed aptamer switches, we demonstrated continuous optical detection of cortisol and dopamine at physiologically relevant concentrations in complex media. In an effort to move beyond aptamers with well-characterized structural properties, we developed a high-throughput screening method that allowed us to simultaneously screen millions of candidates derived from a single aptamer to find sensitive switches without any prior structural knowledge of the parent aptamer. In subsequent work, we reasoned that we could enhance our ability to design a broader range of biosensors by leveraging other classes of receptors besides aptamers. Antibodies offer excellent affinity and specificity for a wide range of targets, but lack the capacity for intrinsic structure switching. We therefore developed a set of strategies to augment antibodies with the capacity to act as molecular switches with a diverse range of target-binding properties. We combined both the high binding affinity of an antibody with the structure-switching capabilities of an aptamer to develop a chimeric switch with 100-fold enhanced sensitivity for a protein target and improved function in interferent-rich samples. In a second design, we developed a competitive immunoassay-inspired scheme to engineer switching behavior into an antibody for minutes-scale temporal resolution with nanomolar sensitivity. We used this competitive antibody-switch to demonstrate the first continuous detection of cortisol directly in whole blood. Together, these advances in molecular switch development have expanded our capability to rapidly engineer new continuous biosensors, thereby increasing opportunities to track health via a wide range of biomarkers to deliver more personalized and preventative medicine.
Collapse
Affiliation(s)
- Jason Saunders
- Department
of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Ian A. P. Thompson
- Department
of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Hyongsok Tom Soh
- Department
of Electrical Engineering, Stanford University, Stanford, California 94305, United States
- Department
of Radiology, Stanford University, Stanford, California 94305, United States
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
4
|
Maganzini N, Reschke A, Cartwright AP, Gidi Y, Thompson IAP, Yee S, Hariri A, Dory C, Rosenberg-Hasson Y, Pan J, Eisenstein M, Vučković J, Cornell TT, Soh HT. Rapid, Sensitive Detection of Protein Biomarkers in Minimally-Processed Blood Products with a Monolithic Sandwich Immunoassay Reagent. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412613. [PMID: 39910829 DOI: 10.1002/adma.202412613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/20/2024] [Indexed: 02/07/2025]
Abstract
For more than fifty years, the enzyme-linked immunosorbent assay (ELISA) serves as the gold standard for protein biomarker detection. However, conventional ELISA requires considerable sample preparation including reagent addition, incubation, and washing steps, limiting its usefulness at the point-of-care. In this work, the "instant ELISA" (fluorophore-linked immunosorbent assay) biosensor that can measure protein biomarkers in the picomolar range within 15 min in undiluted plasma or serum with no sample preparation is described. The sensor leverages a synthetic reagent termed the "monolithic dual-antibody clamp" (MDAC) which preserves the specificity, sensitivity, and generalizability of an ELISA, but produces a fluorescence signal as two surface-tethered antibodies form a "sandwich" by binding to two distinct epitopes on the target. As exemplars, picomolar quantification of tumor necrosis factor alpha (TNFα) and monocyte chemotactic protein (MCP)-1, the latter of which is a useful prognostic indicator of cytokine release syndrome in patient plasma samples during chimeric antigen receptor T cell therapy are demonstrated.
Collapse
Affiliation(s)
- Nicolò Maganzini
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Agnes Reschke
- Department of Pediatric Critical Care, Stanford University, Stanford, CA, 94305, USA
| | - Alyssa P Cartwright
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Yasser Gidi
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | | | - Steven Yee
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Amani Hariri
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Constantin Dory
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | | | - Jing Pan
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Michael Eisenstein
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Jelena Vučković
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | | | - Hyongsok Tom Soh
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
5
|
McCann B, Tipper B, Shahbeigi S, Soleimani M, Jabbari M, Nasr Esfahani M. A Review on Perception of Binding Kinetics in Affinity Biosensors: Challenges and Opportunities. ACS OMEGA 2025; 10:4197-4216. [PMID: 39959045 PMCID: PMC11822510 DOI: 10.1021/acsomega.4c10040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 02/18/2025]
Abstract
There are challenges associated with design and development of affinity biosensors due to the complicated multiphysics nature of the system. Understanding the binding interaction between target molecules and immobilized receptors and its kinetics is a crucial step to develop robust and reliable biosensor technologies. Evaluation of binding kinetics in biosensors becomes more important and challenging for clinical samples with a complex matrix. Despite drastic advancements in biosensor technologies, having a practical perception of the binding kinetics has remained a critical bottleneck due to limited fundamental understanding. This Review aims to provide a comprehensive discussion on concepts and advances developed so far for the perception of binding kinetics in affinity biosensors. Here, modeling approaches and measurement techniques are presented to characterize the binding interactions in biosensor technologies, while the effect of fouling and secondary factors in the binding interactions will be discussed in the concept of kinetics. This Review will investigate the existing research gaps and potential opportunities in the perception of binding kinetics and challenges to develop robust and reliable biosensors.
Collapse
Affiliation(s)
- Benjamin McCann
- School
of Physics, Engineering and Technology, University of York, York YO10 5DD, U.K.
| | - Brandon Tipper
- School
of Physics, Engineering and Technology, University of York, York YO10 5DD, U.K.
| | | | | | - Masoud Jabbari
- School
of Mechanical Engineering, University of
Leeds, Leeds LS2 9JT, U.K.
| | | |
Collapse
|
6
|
Saateh A, Ansaryan S, Gao J, de Miranda LO, Zijlstra P, Altug H. Long-Term and Continuous Plasmonic Oligonucleotide Monitoring Enabled by Regeneration Approach. Angew Chem Int Ed Engl 2024; 63:e202410076. [PMID: 39146470 DOI: 10.1002/anie.202410076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
Abstract
The demand for continuous monitoring of biochemical markers for diagnostic purposes is increasing as it overcomes the limitations of traditional intermittent measurements. This study introduces a method for long-term, continuous plasmonic biosensing of oligonucleotides with high temporal resolution. Our method is based on a regeneration-based reversibility approach that ensures rapid reversibility in less than 1 minute, allowing the sensor to fully reset after each measurement. We investigated label-free and AuNP enhancements for different dynamic ranges and sensitivities, achieving a limit of detection down to pM levels. We developed a regeneration-based reversibility approach for continuous biosensing, optimizing buffer conditions using the Taguchi method to achieve rapid, consistent reversibility, ensuring reliable performance for long-term monitoring. We detected oligonucleotides in buffered and complex solutions, including undiluted and unfiltered human serum, for up to 100 sampling cycles in a day. Moreover, we showed the long-term stability of the sensor for monitoring capabilities in buffered solutions and human serum, with minimal signal value drift and excellent sensor reversibility for up to 9 days. Our method opens the door to new prospects in continuous biosensing by providing insights beyond intermittent measurements for numerous analytical and diagnostic applications.
Collapse
Affiliation(s)
- Abtin Saateh
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Saeid Ansaryan
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Jiarui Gao
- Department of Chemical Engineering, Tsinghua University, 100084, Beijing, P. R. China
| | - Livio Oliveira de Miranda
- Department of Applied Physics and Science Education, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Peter Zijlstra
- Department of Applied Physics and Science Education, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Hatice Altug
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
7
|
Vo DK, Trinh KTL. Advances in Wearable Biosensors for Healthcare: Current Trends, Applications, and Future Perspectives. BIOSENSORS 2024; 14:560. [PMID: 39590019 PMCID: PMC11592256 DOI: 10.3390/bios14110560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024]
Abstract
Wearable biosensors are a fast-evolving topic at the intersection of healthcare, technology, and personalized medicine. These sensors, which are frequently integrated into clothes and accessories or directly applied to the skin, provide continuous, real-time monitoring of physiological and biochemical parameters such as heart rate, glucose levels, and hydration status. Recent breakthroughs in downsizing, materials science, and wireless communication have greatly improved the functionality, comfort, and accessibility of wearable biosensors. This review examines the present status of wearable biosensor technology, with an emphasis on advances in sensor design, fabrication techniques, and data analysis algorithms. We analyze diverse applications in clinical diagnostics, chronic illness management, and fitness tracking, emphasizing their capacity to transform health monitoring and facilitate early disease diagnosis. Additionally, this review seeks to shed light on the future of wearable biosensors in healthcare and wellness by summarizing existing trends and new advancements.
Collapse
Affiliation(s)
- Dang-Khoa Vo
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea;
| | - Kieu The Loan Trinh
- BioNano Applications Research Center, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
8
|
Lee H, Xie T, Kang B, Yu X, Schaffter SW, Schulman R. Plug-and-play protein biosensors using aptamer-regulated in vitro transcription. Nat Commun 2024; 15:7973. [PMID: 39266511 PMCID: PMC11393120 DOI: 10.1038/s41467-024-51907-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/19/2024] [Indexed: 09/14/2024] Open
Abstract
Molecular biosensors that accurately measure protein concentrations without external equipment are critical for solving numerous problems in diagnostics and therapeutics. Modularly transducing the binding of protein antibodies, protein switches or aptamers into a useful output remains challenging. Here, we develop a biosensing platform based on aptamer-regulated transcription in which aptamers integrated into transcription templates serve as inputs to molecular circuits that can be programmed to a produce a variety of responses. We modularly design molecular biosensors using this platform by swapping aptamer domains for specific proteins and downstream domains that encode different RNA transcripts. By coupling aptamer-regulated transcription with diverse transduction circuits, we rapidly construct analog protein biosensors and digital protein biosensors with detection ranges that can be tuned over two orders of magnitude and can exceed the binding affinity of the aptamer. Aptamer-regulated transcription is a straightforward and inexpensive approach for constructing programmable protein biosensors that could have diverse applications in research and biotechnology.
Collapse
Affiliation(s)
- Heonjoon Lee
- Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tian Xie
- Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Byunghwa Kang
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Xinjie Yu
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | - Rebecca Schulman
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Computer Science, Johns Hopkins University, Baltimore, MD, USA.
- Chemistry, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
9
|
Nguyen TNH, Horowitz LF, Krilov T, Lockhart E, Kenerson HL, Gujral TS, Yeung RS, Arroyo-Currás N, Folch A. Label-free, real-time monitoring of cytochrome C drug responses in microdissected tumor biopsies with a multi-well aptasensor platform. SCIENCE ADVANCES 2024; 10:eadn5875. [PMID: 39241078 PMCID: PMC11378948 DOI: 10.1126/sciadv.adn5875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/31/2024] [Indexed: 09/08/2024]
Abstract
Functional assays on intact tumor biopsies can complement genomics-based approaches for precision oncology, drug testing, and organs-on-chips cancer disease models by capturing key therapeutic response determinants, such as tissue architecture, tumor heterogeneity, and the tumor microenvironment. Most of these assays rely on fluorescent labeling, a semiquantitative method best suited for single-time-point assays or labor-intensive immunostaining analysis. Here, we report integrated aptamer electrochemical sensors for on-chip, real-time monitoring of cytochrome C, a cell death indicator, from intact microdissected tissues with high affinity and specificity. The platform features a multi-well sensor layout and a multiplexed electronic setup. The aptasensors measure increases in cytochrome C in the supernatant of mouse or human microdissected tumors after exposure to various drug treatments. Because of the sensor's high affinity, it primarily tracks rising concentrations of cytochrome C, capturing dynamic changes during apoptosis. This approach could help develop more advanced cancer disease models and apply to other complex in vitro disease models, such as organs-on-chips and organoids.
Collapse
Affiliation(s)
- Tran N. H. Nguyen
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Lisa F. Horowitz
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Timothy Krilov
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Ethan Lockhart
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Heidi L. Kenerson
- Department of Surgery, University of Washington, Seattle, WA 98105, USA
| | - Taranjit S. Gujral
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98105, USA
| | - Raymond S. Yeung
- Department of Surgery, University of Washington, Seattle, WA 98105, USA
| | | | - Albert Folch
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
10
|
Kong D, Thompson IAP, Maganzini N, Eisenstein M, Soh HT. Aptamer-Antibody Chimera Sensors for Sensitive, Rapid, and Reversible Molecular Detection in Complex Samples. ACS Sens 2024; 9:1168-1177. [PMID: 38407035 DOI: 10.1021/acssensors.3c01638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The development of receptors suitable for the continuous detection of analytes in complex, interferent-rich samples remains challenging. Antibodies are highly sensitive but difficult to engineer in order to introduce signaling functionality, while aptamer switches are easy to construct but often yield only a modest target sensitivity. We present here a programmable antibody and DNA aptamer switch (PANDAS), which combines the desirable properties of both receptors by using a nucleic acid tether to link an analyte-specific antibody to an internal strand-displacement (ISD)-based aptamer switch that recognizes the same target through different epitopes. The antibody increases PANDAS analyte binding due to its high affinity, and the effective concentration between the two receptors further enhances two-epitope binding and fluorescent aptamer signaling. We developed a PANDAS sensor for the clotting protein thrombin and show that a tuned design achieves a greater than 300-fold enhanced sensitivity compared to that of using an aptamer alone. This design also exhibits reversible binding, enabling repeated measurements with a temporal resolution of ∼10 min, and retains excellent sensitivity even in interferent-rich samples. With future development, this PANDAS approach could enable the adaptation of existing protein-binding aptamers with modest affinity to sensors that deliver excellent sensitivity and minute-scale resolution in minimally prepared biological specimens.
Collapse
Affiliation(s)
- Dehui Kong
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| | - Ian A P Thompson
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Nicolo Maganzini
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Michael Eisenstein
- Department of Radiology, Stanford University, Stanford, California 94305, United States
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Hyongsok Tom Soh
- Department of Radiology, Stanford University, Stanford, California 94305, United States
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
11
|
Nguyen TNH, Horowitz L, Krilov T, Lockhart E, Kenerson HL, Yeung RS, Arroyo-Currás N, Folch A. Label-Free, Real-Time Monitoring of Cytochrome C Responses to Drugs in Microdissected Tumor Biopsies with a Multi-Well Aptasensor Platform. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578278. [PMID: 38352494 PMCID: PMC10862797 DOI: 10.1101/2024.01.31.578278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Functional assays on intact tumor biopsies can potentially complement and extend genomics-based approaches for precision oncology, drug testing, and organs-on-chips cancer disease models by capturing key determinants of therapeutic response, such as tissue architecture, tumor heterogeneity, and the tumor microenvironment. Currently, most of these assays rely on fluorescent labeling, a semi-quantitative method best suited to be a single-time-point terminal assay or labor-intensive terminal immunostaining analysis. Here, we report integrated aptamer electrochemical sensors for on-chip, real-time monitoring of increases of cytochrome C, a cell death indicator, from intact microdissected tissues with high affinity and specificity. The platform features a multi-well sensor layout and a multiplexed electronic setup. The aptasensors measure increases in cytochrome C in the supernatant of mouse or human microdissected tumors after exposure to various drug treatments. Since the aptamer probe can be easily exchanged to recognize different targets, the platform could be adapted for multiplexed monitoring of various biomarkers, providing critical information on the tumor and its microenvironment. This approach could not only help develop more advanced cancer disease models but also apply to other complex in vitro disease models, such as organs-on-chips and organoids.
Collapse
|
12
|
Watkins Z, McHenry A, Heikenfeld J. Wearing the Lab: Advances and Challenges in Skin-Interfaced Systems for Continuous Biochemical Sensing. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:223-282. [PMID: 38273210 DOI: 10.1007/10_2023_238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Continuous, on-demand, and, most importantly, contextual data regarding individual biomarker concentrations exemplify the holy grail for personalized health and performance monitoring. This is well-illustrated for continuous glucose monitoring, which has drastically improved outcomes and quality of life for diabetic patients over the past 2 decades. Recent advances in wearable biosensing technologies (biorecognition elements, transduction mechanisms, materials, and integration schemes) have begun to make monitoring of other clinically relevant analytes a reality via minimally invasive skin-interfaced devices. However, several challenges concerning sensitivity, specificity, calibration, sensor longevity, and overall device lifetime must be addressed before these systems can be made commercially viable. In this chapter, a logical framework for developing a wearable skin-interfaced device for a desired application is proposed with careful consideration of the feasibility of monitoring certain analytes in sweat and interstitial fluid and the current development of the tools available to do so. Specifically, we focus on recent advancements in the engineering of biorecognition elements, the development of more robust signal transduction mechanisms, and novel integration schemes that allow for continuous quantitative analysis. Furthermore, we highlight the most compelling and promising prospects in the field of wearable biosensing and the challenges that remain in translating these technologies into useful products for disease management and for optimizing human performance.
Collapse
Affiliation(s)
- Zach Watkins
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA.
| | - Adam McHenry
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Jason Heikenfeld
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
13
|
Park CH, Thompson IAP, Newman SS, Hein LA, Lian X, Fu KX, Pan J, Eisenstein M, Soh HT. Real-Time Spatiotemporal Measurement of Extracellular Signaling Molecules Using an Aptamer Switch-Conjugated Hydrogel Matrix. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306704. [PMID: 37947789 DOI: 10.1002/adma.202306704] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/27/2023] [Indexed: 11/12/2023]
Abstract
Cells rely on secreted signaling molecules to coordinate essential biological functions including development, metabolism, and immunity. Unfortunately, such signaling processes remain difficult to measure with sufficient chemical specificity and temporal resolution. To address this need, an aptamer-conjugated hydrogel matrix that enables continuous fluorescent measurement of specific secreted analytes - in two dimensions, in real-time is developed. As a proof of concept, real-time imaging of inter-cellular cyclic adenosine 3',5'-monophosphate (cAMP) signals in Dictyostelium discoideum amoeba cells is performed. A set of aptamer switches that generate a rapid and reversible change in fluorescence in response to cAMP signals is engineered. By combining multiple switches with different dynamic ranges, measure cAMP concentrations spanning three orders of magnitude in a single experiment can be measured. These sensors are embedded within a biocompatible hydrogel on which cells are cultured and their cAMP secretions can be imaged using fluorescent microscopy. Using this aptamer-hydrogel material system, the first direct measurements of oscillatory cAMP signaling that correlate closely with previous indirect measurements are achieved. Using different aptamer switches, this approach can be generalized for measuring other secreted molecules to directly visualize diverse extracellular signaling processes and the biological effects that they trigger in recipient cells.
Collapse
Affiliation(s)
- Chan Ho Park
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
- Department of Chemical and Biological Engineering, Gachon University, Seongnam, 13120, Republic of Korea
| | - Ian A P Thompson
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Sharon S Newman
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Linus A Hein
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Xizhen Lian
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Kaiyu X Fu
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Jing Pan
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Michael Eisenstein
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - H Tom Soh
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
14
|
Zhang J, Srivatsa P, Ahmadzai FH, Liu Y, Song X, Karpatne A, Kong Z, Johnson BN. Reduction of Biosensor False Responses and Time Delay Using Dynamic Response and Theory-Guided Machine Learning. ACS Sens 2023; 8:4079-4090. [PMID: 37931911 PMCID: PMC10683760 DOI: 10.1021/acssensors.3c01258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/29/2023] [Indexed: 11/08/2023]
Abstract
Here, we provide a new methodology for reducing false results and time delay of biosensors, which are barriers to industrial, healthcare, military, and consumer applications. We show that integrating machine learning with domain knowledge in biosensing can complement and improve the biosensor accuracy and speed relative to the performance achieved by traditional regression analysis of a standard curve based on the biosensor steady-state response. The methodology was validated by rapid and accurate quantification of microRNA across the nanomolar to femtomolar range using the dynamic response of cantilever biosensors. Theory-guided feature engineering improved the performance and efficiency of several classification models relative to the performance achieved using traditional feature engineering methods (TSFRESH). In addition to the entire dynamic response, the technique enabled rapid and accurate quantification of the target analyte concentration and false-positive and false-negative results using the initial transient response, thereby reducing the required data acquisition time (i.e., time delay). We show that model explainability can be achieved by combining theory-guided feature engineering and feature importance analysis. The performance of multiple classifiers using both TSFRESH- and theory-based features from the biosensor's initial transient response was similar to that achieved using the entire dynamic response with data augmentation. We also show that the methodology can guide design of experiments for high-performance biosensing applications, specifically, the selection of data acquisition parameters (e.g., time) based on potential application-dependent performance thresholds. This work provides an example of the opportunities for improving biosensor performance, such as reducing biosensor false results and time delay, using explainable machine learning models supervised by domain knowledge in biosensing.
Collapse
Affiliation(s)
- Junru Zhang
- Grado
Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Purna Srivatsa
- Department
of Computer Science, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Fazel Haq Ahmadzai
- Grado
Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Yang Liu
- Grado
Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
- School
of Neuroscience, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Xuerui Song
- Grado
Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Anuj Karpatne
- Department
of Computer Science, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Zhenyu Kong
- Grado
Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Blake N. Johnson
- Grado
Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
- School
of Neuroscience, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department
of Materials Science and Engineering, Virginia
Tech, Blacksburg, Virginia 24061, United States
- Department
of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
15
|
Bergkamp MH, Cajigas S, van IJzendoorn LJ, Prins MWJ. Real-time continuous monitoring of dynamic concentration profiles studied with biosensing by particle motion. LAB ON A CHIP 2023; 23:4600-4609. [PMID: 37772830 DOI: 10.1039/d3lc00410d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Real-time monitoring-and-control of biological systems requires lab-on-a-chip sensors that are able to accurately measure concentration-time profiles with a well-defined time delay and accuracy using only small amounts of sampled fluid. Here, we study real-time continuous monitoring of dynamic concentration profiles in a microfluidic measurement chamber. Step functions and sinusoidal oscillations of concentrations were generated using two pumps and a herringbone mixer. Concentrations in the bulk of the measurement chamber were quantified using a solution with a dye and light absorbance measurements. Concentrations near the surface were measured using a reversible cortisol sensor based on particle motion. The experiments show how the total time delay of the real-time sensor has contributions from advection, diffusion, reaction kinetics at the surface and signal processing. The total time delay of the studied real-time cortisol sensor was ∼90 seconds for measuring 63% of the concentration change. Monitoring of sinusoidal cortisol concentration-time profiles showed that the sensor has a low-pass frequency response with a cutoff frequency of ∼4 mHz and a lag time of ∼60 seconds. The described experimental methodology paves the way for the development of monitoring-and-control in lab-on-a-chip systems and for further engineering of the analytical characteristics of real-time continuous biosensors.
Collapse
Affiliation(s)
- Max H Bergkamp
- Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AE Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612 AE Eindhoven, The Netherlands
| | | | - Leo J van IJzendoorn
- Department of Applied Physics and Science Education, Eindhoven University of Technology, 5612 AE Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612 AE Eindhoven, The Netherlands
| | - Menno W J Prins
- Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AE Eindhoven, The Netherlands.
- Department of Applied Physics and Science Education, Eindhoven University of Technology, 5612 AE Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612 AE Eindhoven, The Netherlands
- Helia Biomonitoring, 5612 AR Eindhoven, The Netherlands
| |
Collapse
|
16
|
Thompson IA, Saunders J, Zheng L, Hariri AA, Maganzini N, Cartwright AP, Pan J, Yee S, Dory C, Eisenstein M, Vuckovic J, Soh HT. An antibody-based molecular switch for continuous small-molecule biosensing. SCIENCE ADVANCES 2023; 9:eadh4978. [PMID: 37738337 PMCID: PMC10516488 DOI: 10.1126/sciadv.adh4978] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/22/2023] [Indexed: 09/24/2023]
Abstract
We present a generalizable approach for designing biosensors that can continuously detect small-molecule biomarkers in real time and without sample preparation. This is achieved by converting existing antibodies into target-responsive "antibody-switches" that enable continuous optical biosensing. To engineer these switches, antibodies are linked to a molecular competitor through a DNA scaffold, such that competitive target binding induces scaffold switching and fluorescent signaling of changing target concentrations. As a demonstration, we designed antibody-switches that achieve rapid, sample preparation-free sensing of digoxigenin and cortisol in undiluted plasma. We showed that, by substituting the molecular competitor, we can further modulate the sensitivity of our cortisol switch to achieve detection at concentrations spanning 3.3 nanomolar to 3.3 millimolar. Last, we integrated this switch with a fiber optic sensor to achieve continuous sensing of cortisol in a buffer and blood with <5-min time resolution. We believe that this modular sensor design can enable continuous biosensor development for many biomarkers.
Collapse
Affiliation(s)
- Ian A.P. Thompson
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Jason Saunders
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Liwei Zheng
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Amani A. Hariri
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Nicolò Maganzini
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Alyssa P. Cartwright
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Jing Pan
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Steven Yee
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Constantin Dory
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Michael Eisenstein
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Jelena Vuckovic
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Hyongsok Tom Soh
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
17
|
Kusov PA, Kotelevtsev YV, Drachev VP. Cortisol Monitoring Devices toward Implementation for Clinically Relevant Biosensing In Vivo. Molecules 2023; 28:2353. [PMID: 36903600 PMCID: PMC10005364 DOI: 10.3390/molecules28052353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
Cortisol is a steroid hormone that regulates energy metabolism, stress reactions, and immune response. Cortisol is produced in the kidneys' adrenal cortex. Its levels in the circulatory system are regulated by the neuroendocrine system with a negative feedback loop of the hypothalamic-pituitary-adrenal axis (HPA-axis) following circadian rhythm. Conditions associated with HPA-axis disruption cause deteriorative effects on human life quality in numerous ways. Psychiatric, cardiovascular, and metabolic disorders as well as a variety of inflammatory processes accompanying age-related, orphan, and many other conditions are associated with altered cortisol secretion rates and inadequate responses. Laboratory measurements of cortisol are well-developed and based mainly on the enzyme linked immunosorbent assay (ELISA). There is a great demand for a continuous real-time cortisol sensor that is yet to be developed. Recent advances in approaches that will eventually culminate in such sensors have been summarized in several reviews. This review compares different platforms for direct cortisol measurements in biological fluids. The ways to achieve continuous cortisol measurements are discussed. A cortisol monitoring device will be essential for personified pharmacological correction of the HPA-axis toward normal cortisol levels through a 24-h cycle.
Collapse
Affiliation(s)
- Pavel A. Kusov
- Center for Engineering Physics, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Yuri V. Kotelevtsev
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Vladimir P. Drachev
- Center for Engineering Physics, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| |
Collapse
|