1
|
Huang X, Bu T, Zheng Q, Liu S, Li Y, Fang H, Qiu Y, Xie B, Yin Z, Wu H. Flexible sensors with zero Poisson's ratio. Natl Sci Rev 2024; 11:nwae027. [PMID: 38577662 PMCID: PMC10989663 DOI: 10.1093/nsr/nwae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/23/2023] [Accepted: 01/14/2024] [Indexed: 04/06/2024] Open
Abstract
Flexible sensors have been developed for the perception of various stimuli. However, complex deformation, usually resulting from forces or strains from multi-axes, can be challenging to measure due to the lack of independent perception of multiaxial stimuli. Herein, flexible sensors based on the metamaterial membrane with zero Poisson's ratio (ZPR) are proposed to achieve independent detection of biaxial stimuli. By deliberately designing the geometric dimensions and arrangement parameters of elements, the Poisson's ratio of an elastomer membrane can be modulated from negative to positive, and the ZPR membrane can maintain a constant transverse dimension under longitudinal stimuli. Due to the accurate monitoring of grasping force by ZPR sensors that are insensitive to curvatures of contact surfaces, rigid robotic manipulators can be guided to safely grasp deformable objects. Meanwhile, the ZPR sensor can also precisely distinguish different states of manipulators. When ZPR sensors are attached to a thermal-actuation soft robot, they can accurately detect the moving distance and direction. This work presents a new strategy for independent biaxial stimuli perception through the design of mechanical metamaterials, and may inspire the future development of advanced flexible sensors for healthcare, human-machine interfaces and robotic tactile sensing.
Collapse
Affiliation(s)
- Xin Huang
- Department of Mechanical Engineering, Flexible Electronics Research Center, State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tianzhao Bu
- Department of Mechanical Engineering, Flexible Electronics Research Center, State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qingyang Zheng
- Department of Mechanical Engineering, Flexible Electronics Research Center, State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shaoyu Liu
- Department of Mechanical Engineering, Flexible Electronics Research Center, State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yangyang Li
- Department of Mechanical Engineering, Flexible Electronics Research Center, State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Han Fang
- Department of Mechanical Engineering, Flexible Electronics Research Center, State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuqi Qiu
- Department of Mechanical Engineering, Flexible Electronics Research Center, State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bin Xie
- Department of Mechanical Engineering, Flexible Electronics Research Center, State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhouping Yin
- Department of Mechanical Engineering, Flexible Electronics Research Center, State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hao Wu
- Department of Mechanical Engineering, Flexible Electronics Research Center, State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Department of Electronic Science and Technology, School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
2
|
Pecnik Bambic M, Araújo NAM, Walker BJ, Hewitt DR, Pei QX, Ni R, Volpe G. Optimal face-to-face coupling for fast self-folding kirigami. SOFT MATTER 2024; 20:1114-1119. [PMID: 38224143 DOI: 10.1039/d3sm01474f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Kirigami-inspired designs can enable self-folding three-dimensional materials from flat, two-dimensional sheets. Hierarchical designs of connected levels increase the diversity of possible target structures, yet they can lead to longer folding times in the presence of fluctuations. Here, we study the effect of rotational coupling between levels on the self-folding of two-level kirigami designs driven by thermal noise in a fluid. Naturally present due to hydrodynamic resistance, we find that this coupling parameter can significantly impact a structure's self-folding pathway, thus enabling us to assess the quality of a kirigami design and the possibility for its optimization in terms of its folding rate and yield.
Collapse
Affiliation(s)
- Maks Pecnik Bambic
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ London, UK.
- Institute of High Performance Computing, A*STAR, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
| | - Nuno A M Araújo
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Benjamin J Walker
- Department of Mathematical Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
- Department of Mathematics, University College London, Gordon Street, London, WC1H 0AY, UK
| | - Duncan R Hewitt
- Department of Mathematics, University College London, Gordon Street, London, WC1H 0AY, UK
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Centre for Mathematical Sciences, CB3 0WA, UK
| | - Qing Xiang Pei
- Institute of High Performance Computing, A*STAR, Singapore
| | - Ran Ni
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
| | - Giorgio Volpe
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ London, UK.
| |
Collapse
|
3
|
Addis CC, Rojas S, Arrieta AF. Connecting the branches of multistable non-Euclidean origami by crease stretching. Phys Rev E 2023; 108:055001. [PMID: 38115478 DOI: 10.1103/physreve.108.055001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/02/2023] [Indexed: 12/21/2023]
Abstract
Non-Euclidean origami is a promising technique for designing multistable deployable structures folded from nonplanar developable surfaces. The impossibility of flat foldability inherent to non-Euclidean origami results in two disconnected solution branches each with the same angular deficiency but opposite handedness. We show that these regions can be connected via "crease stretching," wherein the creases exhibit extensibility in addition to torsional stiffness. We further reveal that crease stretching acts as an energy storage method capable of passive deployment and control. Specifically, we show that in a Miura-Ori system with a single stretchable crease, this is achieved via two unique, easy to realize, equilibrium folding pathways for a certain wide set of parameters. In particular, we demonstrate that this connection mostly preserves the stable states of the non-Euclidean system, while resulting in a third stable state enabled only by the interaction of crease torsion and stretching. Finally, we show that this simplified model can be used as an efficient and robust tool for inverse design of multistable origami based on closed-form predictions that yield the system parameters required to attain multiple, desired stable shapes. This facilitates the implementation of multistable origami for applications in architecture materials, robotics, and deployable structures.
Collapse
Affiliation(s)
- Clark C Addis
- Programmable Structures Lab, School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Salvador Rojas
- Programmable Structures Lab, School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Andres F Arrieta
- Programmable Structures Lab, School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
4
|
Lee YK, Hao Y, Xi Z, Kim W, Park Y, Cho KJ, Lien JM, Choi IS. Zygote structure enables pluripotent shape-transforming deployable structure. PNAS NEXUS 2023; 2:pgad022. [PMID: 36926227 PMCID: PMC10013337 DOI: 10.1093/pnasnexus/pgad022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 03/17/2023]
Abstract
We propose an algorithmic framework of a pluripotent structure evolving from a simple compact structure into diverse complex 3D structures for designing the shape-transformable, reconfigurable, and deployable structures and robots. Our algorithmic approach suggests a way of transforming a compact structure consisting of uniform building blocks into a large, desired 3D shape. Analogous to a fertilized egg cell that can grow into a preprogrammed shape according to coded information, compactly stacked panels named the zygote structure can evolve into arbitrary 3D structures by programming their connection path. Our stacking algorithm obtains this coded sequence by inversely stacking the voxelized surface of the desired structure into a tree. Applying the connection path obtained by the stacking algorithm, the compactly stacked panels named the zygote structure can be deployed into diverse large 3D structures. We conceptually demonstrated our pluripotent evolving structure by energy-releasing commercial spring hinges and thermally actuated shape memory alloy hinges, respectively. We also show that the proposed concept enables the fabrication of large structures in a significantly smaller workspace.
Collapse
Affiliation(s)
- Yu-Ki Lee
- Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul 08826, Republic of Korea
| | - Yue Hao
- Department of Computer Science, George Mason University, Fairfax, VA 22030, USA
| | - Zhonghua Xi
- Department of Computer Science, George Mason University, Fairfax, VA 22030, USA
| | - Woongbae Kim
- Soft Robotics Research Center, Seoul National University, Seoul 08826, Republic of Korea
- Department of Mechanical and Aerospace Engineering, Institute of Advanced Machines and Design, Seoul National University, Seoul, Republic of Korea
| | - Youngmin Park
- Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul 08826, Republic of Korea
| | - Kyu-Jin Cho
- Soft Robotics Research Center, Seoul National University, Seoul 08826, Republic of Korea
- Department of Mechanical and Aerospace Engineering, Institute of Advanced Machines and Design, Seoul National University, Seoul, Republic of Korea
| | - Jyh-Ming Lien
- Department of Computer Science, George Mason University, Fairfax, VA 22030, USA
| | - In-Suk Choi
- Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|