1
|
Pei G, Lyons H, Li P, Sabari BR. Transcription regulation by biomolecular condensates. Nat Rev Mol Cell Biol 2025; 26:213-236. [PMID: 39516712 DOI: 10.1038/s41580-024-00789-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 11/16/2024]
Abstract
Biomolecular condensates regulate transcription by dynamically compartmentalizing the transcription machinery. Classic models of transcription regulation focus on the recruitment and regulation of RNA polymerase II by the formation of complexes at the 1-10 nm length scale, which are driven by structured and stoichiometric interactions. These complexes are further organized into condensates at the 100-1,000 nm length scale, which are driven by dynamic multivalent interactions often involving domain-ligand pairs or intrinsically disordered regions. Regulation through condensate-mediated organization does not supersede the processes occurring at the 1-10 nm scale, but it provides regulatory mechanisms for promoting or preventing these processes in the crowded nuclear environment. Regulation of transcription by transcriptional condensates is involved in cell state transitions during animal and plant development, cell signalling and cellular responses to the environment. These condensate-mediated processes are dysregulated in developmental disorders, cancer and neurodegeneration. In this Review, we discuss the principles underlying the regulation of transcriptional condensates, their roles in physiology and their dysregulation in human diseases.
Collapse
Affiliation(s)
- Gaofeng Pei
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Heankel Lyons
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Pilong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, China.
- Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| | - Benjamin R Sabari
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
2
|
Zhou MM, Cole PA. Targeting lysine acetylation readers and writers. Nat Rev Drug Discov 2025; 24:112-133. [PMID: 39572658 PMCID: PMC11798720 DOI: 10.1038/s41573-024-01080-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2024] [Indexed: 02/06/2025]
Abstract
Lysine acetylation is a major post-translational modification in histones and other proteins that is catalysed by the 'writer' lysine acetyltransferases (KATs) and mediates interactions with bromodomains (BrDs) and other 'reader' proteins. KATs and BrDs play key roles in regulating gene expression, cell growth, chromatin structure, and epigenetics and are often dysregulated in disease states, including cancer. There have been accelerating efforts to identify potent and selective small molecules that can target individual KATs and BrDs with the goal of developing new therapeutics, and some of these agents are in clinical trials. Here, we summarize the different families of KATs and BrDs, discuss their functions and structures, and highlight key advances in the design and development of chemical agents that show promise in blocking the action of these chromatin proteins for disease treatment.
Collapse
Affiliation(s)
- Ming-Ming Zhou
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Xu L, Xuan H, Shi X. Dysregulation of the p300/CBP histone acetyltransferases in human cancer. Epigenomics 2025; 17:193-208. [PMID: 39929233 PMCID: PMC11812348 DOI: 10.1080/17501911.2024.2447807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/16/2024] [Indexed: 02/13/2025] Open
Abstract
p300 (E1A binding protein 300) and CBP (CREB-binding protein) are critical regulators of chromatin dynamics and gene expression, playing essential roles in various cellular processes, including proliferation, differentiation, apoptosis, and immune responses. These homologous histone acetyltransferases (HATs) function as transcriptional co-activators by acetylating histones and non-histone proteins. p300/CBP is essential for development, and dysregulation of p300 and CBP has been implicated in several human diseases, particularly cancer. Somatic mutations that inactivate p300/CBP are frequently observed across various cancer types. Additionally, other mutations leading to translocations or truncations of p300/CBP can result in enhanced catalytic activity, potentially representing novel gain-of-function mutations that promote tumor progression. In this review, we discuss the mechanisms underlying the regulation of p300/CBP HAT activity, its dysregulation in cancer, and the development of p300/CBP inhibitors and their potential in cancer therapies.
Collapse
Affiliation(s)
- Longxia Xu
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Hongwen Xuan
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Xiaobing Shi
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| |
Collapse
|
4
|
Lu X, Keo V, Cheng I, Xie W, Gritsina G, Wang J, Jin Q, Jin P, Yue F, Sanda MG, Corces V, Altemose N, Zhao JC, Yu J. Epigenetic remodeling and 3D chromatin reorganization governed by NKX2-1 drive neuroendocrine prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626816. [PMID: 39677680 PMCID: PMC11643106 DOI: 10.1101/2024.12.04.626816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
A significant number of castration-resistant prostate cancer (CRPC) evolve into a neuroendocrine (NE) subtype termed NEPC, leading to resistance to androgen receptor (AR) pathway inhibitors and poor clinical outcomes. Through Hi-C analyses of a panel of patient-derived xenograft tumors, here we report drastically different 3D chromatin architectures between NEPC and CRPC samples. Such chromatin re-organization was faithfully recapitulated in vitro on isogenic cells undergoing NE transformation (NET). Mechanistically, neural transcription factor (TF) NKX2-1 is selectively and highly expressed in NEPC tumors and is indispensable for NET across various models. NKX2-1 preferentially binds to gene promoters, but it interacts with chromatin-pioneering factors such as FOXA2 at enhancer elements through chromatin looping, further strengthening FOXA2 binding at NE enhancers. Conversely, FOXA2 mediates regional DNA demethylation, attributing to NE enhancer priming and inducing NKX2-1 expression, forming a feed-forward loop. Single-cell multiome analyses of isogenic cells over time-course NET cells identify individual cells amid luminal-to-NE transformation, exhibiting intermediate epigenetic and transcriptome states. Lastly, NKX2-1/FOXA2 interacts with, and recruits CBP/p300 proteins to activate NE enhancers, and pharmacological inhibitors of CBP/p300 effectively blunted NE gene expression and abolished NEPC tumor growth. Thus, our study reports a hierarchical network of TFs governed by NKX2-1 in regulating the 2D and 3D chromatin re-organization during NET and uncovers a promising therapeutic approach to eradicate NEPC.
Collapse
|
5
|
Yang Y, Zhang X, Cai D, Zheng X, Zhao X, Zou JX, Zhang J, Borowsky AD, Dall’Era MA, Corey E, Mitsiades N, Kung HJ, Chen X, Li JJ, Downes M, Evans RM, Chen HW. Functional inversion of circadian regulator REV-ERBα leads to tumorigenic gene reprogramming. Proc Natl Acad Sci U S A 2024; 121:e2411321121. [PMID: 39383000 PMCID: PMC11494309 DOI: 10.1073/pnas.2411321121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/05/2024] [Indexed: 10/11/2024] Open
Abstract
Profound functional switch of key regulatory factors may play a major role in homeostasis and disease. Dysregulation of circadian rhythm (CR) is strongly implicated in cancer with mechanisms poorly understood. We report here that the function of REV-ERBα, a major CR regulator of the orphan nuclear receptor subfamily, is dramatically altered in tumors in both its genome binding and functional mode. Loss of CR is linked to a functional inversion of REV-ERBα from a repressor in control of CR and metabolic gene programs in normal tissues to a strong activator in different cancers. Through changing its association from NCoR/HDAC3 corepressor complex to BRD4/p300 coactivators, REV-ERBα directly activates thousands of genes including tumorigenic programs such as MAPK and PI3K-Akt signaling. Functioning as a master transcriptional activator, REV-ERBα partners with pioneer factor FOXA1 and directly stimulates a large number of signaling genes, including multiple growth factors, receptor tyrosine kinases, RASs, AKTs, and MAPKs. Moreover, elevated REV-ERBα reprograms FOXA1 to bind new targets through a BRD4-mediated increase in local chromatin accessibility. Pharmacological targeting with SR8278 diminishes the function of both REV-ERBα and FOXA1 and synergizes with BRD4 inhibitor in effective suppression of tumorigenic programs and tumor growth. Thus, our study revealed a functional inversion by a CR regulator in driving gene reprogramming as an unexpected paradigm of tumorigenesis mechanism and demonstrated a high effectiveness of therapeutic targeting such switch.
Collapse
Affiliation(s)
- Yatian Yang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA95817
| | - Xiong Zhang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA95817
| | - Demin Cai
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA95817
| | - Xingling Zheng
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA95817
| | - Xuan Zhao
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA92037
| | - June X. Zou
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA95817
| | - Jin Zhang
- Department of Surgical & Radiological Sciences, University of California-Davis, Davis, CA95616
| | - Alexander D. Borowsky
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Davis, Sacramento, CA95817
| | - Marc A. Dall’Era
- Department of Urologic Surgery, School of Medicine, University of California Davis, Sacramento, CA95817
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA98195
| | - Nicholas Mitsiades
- Department of Internal Medicine, Division of Hematology and Oncology, School of Medicine, University of California Davis, Sacramento, CA95817
- Comprehensive Cancer Center, University of California Davis, Sacramento, CA95817
| | - Hsing-Jien Kung
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA95817
| | - Xinbin Chen
- Department of Surgical & Radiological Sciences, University of California-Davis, Davis, CA95616
| | - Jian Jian Li
- Department of Radiation Oncology, School of Medicine, University of California Davis, Sacramento, CA95817
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA92037
| | - Ronald M. Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA92037
| | - Hong-Wu Chen
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA95817
- Comprehensive Cancer Center, University of California Davis, Sacramento, CA95817
- Veterans Affairs Northern California Health Care System-Mather, Mather, CA95655
| |
Collapse
|
6
|
Nguyen HTD, Perone G, Klena N, Vazzana R, Kaluthantrige Don F, Silva M, Sorrentino S, Swuec P, Leroux F, Kalebic N, Coscia F, Erdmann PS. Serialized on-grid lift-in sectioning for tomography (SOLIST) enables a biopsy at the nanoscale. Nat Methods 2024; 21:1693-1701. [PMID: 39271806 PMCID: PMC11399088 DOI: 10.1038/s41592-024-02384-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/17/2024] [Indexed: 09/15/2024]
Abstract
Cryo-focused ion beam milling has substantially advanced our understanding of molecular processes by opening windows into cells. However, applying this technique to complex samples, such as tissues, has presented considerable technical challenges. Here we introduce an innovative adaptation of the cryo-lift-out technique, serialized on-grid lift-in sectioning for tomography (SOLIST), addressing these limitations. SOLIST enhances throughput, minimizes ice contamination and improves sample stability for cryo-electron tomography. It thereby facilitates the high-resolution imaging of a wide range of specimens. We illustrate these advantages on reconstituted liquid-liquid phase-separated droplets, brain organoids and native tissues from the mouse brain, liver and heart. With SOLIST, cellular processes can now be investigated at molecular resolution directly in native tissue. Furthermore, our method has a throughput high enough to render cryo-lift-out a competitive tool for structural biology. This opens new avenues for unprecedented insights into cellular function and structure in health and disease, a 'biopsy at the nanoscale'.
Collapse
|
7
|
Huoh YS, Zhang Q, Törner R, Baca SC, Arthanari H, Hur S. Mechanism for controlled assembly of transcriptional condensates by Aire. Nat Immunol 2024; 25:1580-1592. [PMID: 39169234 PMCID: PMC11362013 DOI: 10.1038/s41590-024-01922-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024]
Abstract
Transcriptional condensates play a crucial role in gene expression and regulation, yet their assembly mechanisms remain poorly understood. Here, we report a multi-layered mechanism for condensate assembly by autoimmune regulator (Aire), an essential transcriptional regulator that orchestrates gene expression reprogramming for central T cell tolerance. Aire condensates assemble on enhancers, stimulating local transcriptional activities and connecting disparate inter-chromosomal loci. This functional condensate formation hinges upon the coordination between three Aire domains: polymerization domain caspase activation recruitment domain (CARD), histone-binding domain (first plant homeodomain (PHD1)), and C-terminal tail (CTT). Specifically, CTT binds coactivators CBP/p300, recruiting Aire to CBP/p300-rich enhancers and promoting CARD-mediated condensate assembly. Conversely, PHD1 binds to the ubiquitous histone mark H3K4me0, keeping Aire dispersed throughout the genome until Aire nucleates on enhancers. Our findings showed that the balance between PHD1-mediated suppression and CTT-mediated stimulation of Aire polymerization is crucial to form transcriptionally active condensates at target sites, providing new insights into controlled polymerization of transcriptional regulators.
Collapse
Affiliation(s)
- Yu-San Huoh
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Qianxia Zhang
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Ricarda Törner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sylvan C Baca
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sun Hur
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
DelRosso N, Suzuki PH, Griffith D, Lotthammer JM, Novak B, Kocalar S, Sheth MU, Holehouse AS, Bintu L, Fordyce P. High-throughput affinity measurements of direct interactions between activation domains and co-activators. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608698. [PMID: 39229005 PMCID: PMC11370418 DOI: 10.1101/2024.08.19.608698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Sequence-specific activation by transcription factors is essential for gene regulation1,2. Key to this are activation domains, which often fall within disordered regions of transcription factors3,4 and recruit co-activators to initiate transcription5. These interactions are difficult to characterize via most experimental techniques because they are typically weak and transient6,7. Consequently, we know very little about whether these interactions are promiscuous or specific, the mechanisms of binding, and how these interactions tune the strength of gene activation. To address these questions, we developed a microfluidic platform for expression and purification of hundreds of activation domains in parallel followed by direct measurement of co-activator binding affinities (STAMMPPING, for Simultaneous Trapping of Affinity Measurements via a Microfluidic Protein-Protein INteraction Generator). By applying STAMMPPING to quantify direct interactions between eight co-activators and 204 human activation domains (>1,500 K ds), we provide the first quantitative map of these interactions and reveal 334 novel binding pairs. We find that the metazoan-specific co-activator P300 directly binds >100 activation domains, potentially explaining its widespread recruitment across the genome to influence transcriptional activation. Despite sharing similar molecular properties (e.g. enrichment of negative and hydrophobic residues), activation domains utilize distinct biophysical properties to recruit certain co-activator domains. Co-activator domain affinity and occupancy are well-predicted by analytical models that account for multivalency, and in vitro affinities quantitatively predict activation in cells with an ultrasensitive response. Not only do our results demonstrate the ability to measure affinities between even weak protein-protein interactions in high throughput, but they also provide a necessary resource of over 1,500 activation domain/co-activator affinities which lays the foundation for understanding the molecular basis of transcriptional activation.
Collapse
Affiliation(s)
| | - Peter H Suzuki
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Daniel Griffith
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA
| | - Jeffrey M Lotthammer
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA
| | - Borna Novak
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA
| | - Selin Kocalar
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Maya U Sheth
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA
| | - Lacramioara Bintu
- Biophysics Program, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Polly Fordyce
- Biophysics Program, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H Institute, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub San Francisco, CA, USA
| |
Collapse
|
9
|
Wu M, Guan G, Yin H, Niu Q. A Review of the Bromodomain and Extraterminal Domain Epigenetic Reader Proteins: Function on Virus Infection and Cancer. Viruses 2024; 16:1096. [PMID: 39066258 PMCID: PMC11281655 DOI: 10.3390/v16071096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
The BET (bromodomain and extraterminal domain) family of proteins, particularly BRD4 (bromodomain-containing protein 4), plays a crucial role in transcription regulation and epigenetic mechanisms, impacting key cellular processes such as proliferation, differentiation, and the DNA damage response. BRD4, the most studied member of this family, binds to acetylated lysines on both histones and non-histone proteins, thereby regulating gene expression and influencing diverse cellular functions such as the cell cycle, tumorigenesis, and immune responses to viral infections. Given BRD4's involvement in these fundamental processes, it is implicated in various diseases, including cancer and inflammation, making it a promising target for therapeutic development. This review comprehensively explores the roles of the BET family in gene transcription, DNA damage response, and viral infection, discussing the potential of targeted small-molecule compounds and highlighting BET proteins as promising candidates for anticancer therapy.
Collapse
Affiliation(s)
- Mengli Wu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (M.W.); (G.G.); (H.Y.)
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Guiquan Guan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (M.W.); (G.G.); (H.Y.)
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Hong Yin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (M.W.); (G.G.); (H.Y.)
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Qingli Niu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (M.W.); (G.G.); (H.Y.)
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| |
Collapse
|
10
|
Becht DC, Kanai A, Biswas S, Halawa M, Zeng L, Cox KL, Poirier MG, Zhou MM, Shi X, Yokoyama A, Kutateladze TG. The winged helix domain of MORF binds CpG islands and the TAZ2 domain of p300. iScience 2024; 27:109367. [PMID: 38500836 PMCID: PMC10946326 DOI: 10.1016/j.isci.2024.109367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/20/2024] Open
Abstract
Acetylation of histones by lysine acetyltransferases (KATs) provides a fundamental mechanism by which chromatin structure and transcriptional programs are regulated. Here, we describe a dual binding activity of the first winged helix domain of human MORF KAT (MORFWH1) that recognizes the TAZ2 domain of p300 KAT (p300TAZ2) and CpG rich DNA sequences. Structural and biochemical studies identified distinct DNA and p300TAZ2 binding sites, allowing MORFWH1 to independently engage either ligand. Genomic data show that MORF/MOZWH1 colocalizes with H3K18ac, a product of enzymatic activity of p300, on CpG rich promoters of target genes. Our findings suggest a functional cooperation of MORF and p300 KATs in transcriptional regulation.
Collapse
Affiliation(s)
- Dustin C. Becht
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Akinori Kanai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba 277-0882, Japan
| | - Soumi Biswas
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Mohamed Halawa
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Lei Zeng
- Bethune Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun 130061, China
- International Center of Future Science, Jilin University, Changchun 130012, China
| | - Khan L. Cox
- Department of Physics, Ohio State University, Columbus, OH 43210, USA
| | | | - Ming-Ming Zhou
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xiaobing Shi
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Akihiko Yokoyama
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Yamagata 997-0052, Japan
| | - Tatiana G. Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
11
|
Konuma T, Zhou MM. Distinct Histone H3 Lysine 27 Modifications Dictate Different Outcomes of Gene Transcription. J Mol Biol 2024; 436:168376. [PMID: 38056822 DOI: 10.1016/j.jmb.2023.168376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Site-specific histone modifications have long been recognized to play an important role in directing gene transcription in chromatin in biology of health and disease. However, concrete illustration of how different histone modifications in a site-specific manner dictate gene transcription outcomes, as postulated in the influential "Histone code hypothesis", introduced by Allis and colleagues in 2000, has been lacking. In this review, we summarize our latest understanding of the dynamic regulation of gene transcriptional activation, silence, and repression in chromatin that is directed distinctively by histone H3 lysine 27 acetylation, methylation, and crotonylation, respectively. This represents a special example of a long-anticipated verification of the "Histone code hypothesis."
Collapse
Affiliation(s)
- Tsuyoshi Konuma
- Graduate School of Medical Life Science, Yokohama 230-0045, Japan; School of Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Ming-Ming Zhou
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
12
|
Angappulige DH, Mahajan NP, Mahajan K. Epigenetic underpinnings of tumor-immune dynamics in prostate cancer immune suppression. Trends Cancer 2024; 10:369-381. [PMID: 38341319 DOI: 10.1016/j.trecan.2024.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 02/12/2024]
Abstract
Prostate cancer (PC) is immunosuppressive and refractory to immunotherapy. Infiltration of myeloid-derived suppressor cells (MDSCs) and senescent-like neutrophils and T cell exhaustion are observed in the tumor microenvironment (TME) following androgen receptor (AR) antagonism with antiandrogens or androgen ablation. De novo post-translational acetylation of the AR, HOXB13, and H2A at K609, K13, and K130, respectively, and phosphorylation of H4 at Y88 have emerged as key epigenetic modifications associated with castration-resistant PC (CRPC). The resulting chromatin changes are integrated into cellular processes via phosphorylation of the AR, ACK1, ATPF1A, and SREBP1 at Y267, Y284, Y243/Y246, and Y673/Y951, respectively. In this review, we discuss how these de novo epigenetic alterations drive resistance and how efforts aimed at targeting these regulators may overcome immune suppression observed in PC.
Collapse
Affiliation(s)
- Duminduni Hewa Angappulige
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Nupam P Mahajan
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kiran Mahajan
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
13
|
Meng X, Na R, Peng X, Li H, Ouyang W, Zhou W, You X, Li Y, Pu X, Zhang K, Xia J, Wang J, Tang H, Zhuang G, Peng Z. Musashi-2 potentiates colorectal cancer immune infiltration by regulating the post-translational modifications of HMGB1 to promote DCs maturation and migration. Cell Commun Signal 2024; 22:117. [PMID: 38347600 PMCID: PMC10863188 DOI: 10.1186/s12964-024-01495-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/21/2024] [Indexed: 02/15/2024] Open
Abstract
Post-translational modifications (PTMs) of the non-histone protein high-mobility group protein B1 (HMGB1) are involved in modulating inflammation and immune responses. Recent studies have implicated that the RNA-binding protein (RBP) Musashi-2 (MSI2) regulates multiple critical biological metabolic and immunoregulatory functions. However, the precise role of MSI2 in regulating PTMs and tumor immunity in colorectal cancer (CRC) remains unclear. Here, we present data indicating that MSI2 potentiates CRC immunopathology in colitis-associated colon cancer (CAC) mouse models, cell lines and clinical specimens, specifically via HMGB1-mediated dendritic cell (DC) maturation and migration, further contributes to the infiltration of CD4+ and CD8+ T cells and inflammatory responses. Under stress conditions, MSI2 can exacerbate the production, nucleocytoplasmic transport and extracellular release of damage-associated molecular patterns (DAMPs)-HMGB1 in CRC cells. Mechanistically, MSI2 mainly enhances the disulfide HMGB1 production and protein translation via direct binding to nucleotides 1403-1409 in the HMGB1 3' UTR, and interacts with the cytoplasmic acetyltransferase P300 to upregulate its expression, further promoting the acetylation of K29 residue in HMGB1, thus leading to K29-HMGB1 nucleocytoplasmic translocation and extracellular release. Furthermore, blocking HMGB1 activity with glycyrrhizic acid (Gly) attenuates MSI2-mediated immunopathology and immune infiltration in CRC in vitro and in vivo. Collectively, this study suggests that MSI2 may improve the prognosis of CRC patients by reprogramming the tumor immune microenvironment (TIME) through HMGB1-mediated PTMs, which might be a novel therapeutic option for CRC immunotherapy.
Collapse
Affiliation(s)
- Xiaole Meng
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Xiamen Clinical Research Center for Cancer Therapy; Department of Pathology, Zhongshan Hospital (Xiamen Branch), Fudan University; National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Department of Pathology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Organ Transplantation Clinical Medical Center of Xiamen University; Department of General Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Risi Na
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Organ Transplantation Clinical Medical Center of Xiamen University; Department of General Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xiao Peng
- Organ Transplantation Clinical Medical Center of Xiamen University; Department of General Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Hui Li
- Department of Pathology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Wanxin Ouyang
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Organ Transplantation Clinical Medical Center of Xiamen University; Department of General Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Wenting Zhou
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Organ Transplantation Clinical Medical Center of Xiamen University; Department of General Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xuting You
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Department of Pathology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yuhuan Li
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Department of Pathology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xin Pu
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Department of Pathology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Ke Zhang
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Department of Pathology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Junjie Xia
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jie Wang
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
- Organ Transplantation Clinical Medical Center of Xiamen University; Department of General Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
| | - Huamei Tang
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
- Department of Pathology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
| | - Guohong Zhuang
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
| | - Zhihai Peng
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
- Organ Transplantation Clinical Medical Center of Xiamen University; Department of General Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
14
|
Pan D, Huang Y, Jiang D, Zhang Y, Wu M, Han M, Jin X. Discovery of an EP300 Inhibitor using Structure-based Virtual Screening and Bioactivity Evaluation. Curr Pharm Des 2024; 30:1985-1994. [PMID: 38835125 PMCID: PMC11348464 DOI: 10.2174/0113816128298051240529113313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/01/2024] [Accepted: 05/08/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND EP300 (E1A binding protein p300) played a significant role in serial diseases such as cancer, neurodegenerative disease. Therefore, it became a significant target. METHODS Targeting EP300 discovery of a novel drug to alleviate these diseases. In this paper, 17 candidate compounds were obtained using a structure-based virtual screening approach, 4449-0460, with an IC50 of 5.89 ± 2.08 uM, which was identified by the EP300 bioactivity test. 4449-0460 consisted of three rings. The middle benzene ring connected the 5-ethylideneimidazolidine-2,4-dione group and the 3-F-Phenylmethoxy group. RESULTS Furthermore, the interaction mechanism between 4449-0460 and EP300 was explored by combining molecular dynamics (MD) simulations and binding free energy calculation methods. CONCLUSION The binding free energy of EP300 with 4449-0460 was -10.93 kcal/mol, and mainly came from the nonpolar energy term (ΔGnonpolar). Pro1074, Phe1075, Val1079, Leu1084, and Val1138 were the key residues in EP300/4449-0460 binding with more -1 kcal/mol energy contribution. 4449-0460 was a promising inhibitor targeting EP300, which had implications for the development of drugs for EP300-related diseases.
Collapse
Affiliation(s)
- Dabo Pan
- Department of Medical Technology, Qiandongnan Vocational and Technical College for Nationalities, Kaili 556000, China
- Department of Pharmacy, The Second Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Kaili 556000, China
| | - Yaxuan Huang
- Department of Medical Technology, Qiandongnan Vocational and Technical College for Nationalities, Kaili 556000, China
| | - Dewen Jiang
- Department of Medical Technology, Qiandongnan Vocational and Technical College for Nationalities, Kaili 556000, China
| | - Yonghao Zhang
- Department of Medical Technology, Qiandongnan Vocational and Technical College for Nationalities, Kaili 556000, China
| | - Mingkai Wu
- Department of Medical Technology, Qiandongnan Vocational and Technical College for Nationalities, Kaili 556000, China
| | - Minzhen Han
- Department of Pharmacy, The Second Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Kaili 556000, China
| | - Xiaojie Jin
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China
| |
Collapse
|
15
|
Wu SJ, Kim JJ, Huang Y, Durall RT, Becker S, Canty S, Molinaro S, Pisick E, Shapiro GI, French CA, Luo J. Novel BRD2::NUTM1 Fusion in NUT Carcinoma With Exceptional Response to Chemotherapy: A Case Report. JTO Clin Res Rep 2024; 5:100625. [PMID: 38287941 PMCID: PMC10823067 DOI: 10.1016/j.jtocrr.2023.100625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024] Open
Abstract
We present the first known case of a patient with BRD2::NUTM1-driven NUT carcinoma. A 59-year-old woman presented with poorly differentiated squamous cell lung cancer metastatic to the pleura. Eventually, a positive NUT immunohistochemistry, NUT fluorescence in situ hybridization, and RNA next-generation sequencing with a BRD2::NUTM1 fusion led to the diagnosis of NUT carcinoma. She received multiple lines of chemotherapy with response and is still alive at 2 years postdiagnosis. This report expands on the known fusions in NUT carcinoma and highlights potential differences in patient prognosis on the basis of gene fusion partners.
Collapse
Affiliation(s)
- Sarah J. Wu
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Justin J. Kim
- Lowe Center for Thoracic Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Biology, Colby College, Waterville, Massachusetts
| | - Yeying Huang
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - R. Taylor Durall
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Simone Becker
- Lowe Center for Thoracic Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Stephanie Canty
- Lowe Center for Thoracic Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Stefania Molinaro
- Lowe Center for Thoracic Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Geoffrey I. Shapiro
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Jia Luo
- Lowe Center for Thoracic Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| |
Collapse
|
16
|
Yoo W, Song YW, Kim J, Ahn J, Kim J, Shin Y, Ryu JK, Kim KK. Molecular basis for SOX2-dependent regulation of super-enhancer activity. Nucleic Acids Res 2023; 51:11999-12019. [PMID: 37930832 PMCID: PMC10711550 DOI: 10.1093/nar/gkad908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/22/2023] [Accepted: 10/06/2023] [Indexed: 11/08/2023] Open
Abstract
Pioneer transcription factors (TFs) like SOX2 are vital for stemness and cancer through enhancing gene expression within transcriptional condensates formed with coactivators, RNAs and mediators on super-enhancers (SEs). Despite their importance, how these factors work together for transcriptional condensation and activation remains unclear. SOX2, a pioneer TF found in SEs of pluripotent and cancer stem cells, initiates SE-mediated transcription by binding to nucleosomes, though the mechanism isn't fully understood. To address SOX2's role in SEs, we identified mSE078 as a model SOX2-enriched SE and p300 as a coactivator through bioinformatic analysis. In vitro and cell assays showed SOX2 forms condensates with p300 and SOX2-binding motifs in mSE078. We further proved that SOX2 condensation is highly correlated with mSE078's enhancer activity in cells. Moreover, we successfully demonstrated that p300 not only elevated transcriptional activity but also triggered chromatin acetylation via its direct interaction with SOX2 within these transcriptional condensates. Finally, our validation of SOX2-enriched SEs showcased their contribution to target gene expression in both stem cells and cancer cells. In its entirety, this study imparts valuable mechanistic insights into the collaborative interplay of SOX2 and its coactivator p300, shedding light on the regulation of transcriptional condensation and activation within SOX2-enriched SEs.
Collapse
Affiliation(s)
- Wanki Yoo
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Yi Wei Song
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Jihyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jihye Ahn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jaehoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yongdae Shin
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Je-Kyung Ryu
- Department of Physics & Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| |
Collapse
|
17
|
Durall RT, Huang J, Wojenski L, Huang Y, Gokhale PC, Leeper BA, Nash JO, Ballester PL, Davidson S, Shlien A, Sotirakis E, Bertaux F, Dubus V, Luo J, Wu CJ, Keskin DB, Eagen KP, Shapiro GI, French CA. The BRD4-NUT Fusion Alone Drives Malignant Transformation of NUT Carcinoma. Cancer Res 2023; 83:3846-3860. [PMID: 37819236 PMCID: PMC10690098 DOI: 10.1158/0008-5472.can-23-2545] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/26/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
NUT carcinoma (NC) is an aggressive squamous carcinoma defined by the BRD4-NUT fusion oncoprotein. Routinely effective systemic treatments are unavailable for most NC patients. The lack of an adequate animal model precludes identifying and leveraging cell-extrinsic factors therapeutically in NC. Here, we created a genetically engineered mouse model (GEMM) of NC that forms a Brd4::NUTM1 fusion gene upon tamoxifen induction of Sox2-driven Cre. The model displayed complete disease penetrance, with tumors arising from the squamous epithelium weeks after induction and all mice succumbing to the disease shortly thereafter. Closely resembling human NC (hNC), GEMM tumors (mNC) were poorly differentiated squamous carcinomas with high expression of MYC that metastasized to solid organs and regional lymph nodes. Two GEMM-derived cell lines were developed whose transcriptomic and epigenetic landscapes harbored key features of primary GEMM tumors. Importantly, GEMM tumor and cell line transcriptomes co-classified with those of human NC. BRD4-NUT also blocked differentiation and maintained the growth of mNC as in hNC. Mechanistically, GEMM primary tumors and cell lines formed large histone H3K27ac-enriched domains, termed megadomains, that were invariably associated with the expression of key NC-defining proto-oncogenes, Myc and Trp63. Small-molecule BET bromodomain inhibition (BETi) of mNC induced differentiation and growth arrest and prolonged survival of NC GEMMs, as it does in hNC models. Overall, tumor formation in the NC GEMM is definitive evidence that BRD4-NUT alone can potently drive the malignant transformation of squamous progenitor cells into NC. SIGNIFICANCE The development of an immunocompetent model of NUT carcinoma that closely mimics the human disease provides a valuable global resource for mechanistic and preclinical studies to improve treatment of this incurable disease.
Collapse
Affiliation(s)
- R. Taylor Durall
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Julianna Huang
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Yeying Huang
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Prafulla C. Gokhale
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Brittaney A. Leeper
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Joshua O. Nash
- Program in Genetics and Genome Biology, The Hospital for Sick Children (SickKids), University of Toronto, Toronto, Ontario, Canada
- Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Pedro L. Ballester
- Program in Genetics and Genome Biology, The Hospital for Sick Children (SickKids), University of Toronto, Toronto, Ontario, Canada
| | - Scott Davidson
- Program in Genetics and Genome Biology, The Hospital for Sick Children (SickKids), University of Toronto, Toronto, Ontario, Canada
| | - Adam Shlien
- Program in Genetics and Genome Biology, The Hospital for Sick Children (SickKids), University of Toronto, Toronto, Ontario, Canada
- Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | - Jia Luo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Derin B. Keskin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kyle P. Eagen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Geoffrey I. Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Christopher A. French
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
18
|
Wang C, Zhao B. Epstein-Barr virus and host cell 3D genome organization. J Med Virol 2023; 95:e29234. [PMID: 37988227 PMCID: PMC10664867 DOI: 10.1002/jmv.29234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/23/2023]
Abstract
The human genome is organized in an extremely complexed yet ordered way within the nucleus. Genome organization plays a critical role in the regulation of gene expression. Viruses manipulate the host machinery to influence host genome organization to favor their survival and promote disease development. Epstein-Barr virus (EBV) is a common human virus, whose infection is associated with various diseases, including infectious mononucleosis, cancer, and autoimmune disorders. This review summarizes our current knowledge of how EBV uses different strategies to control the cellular 3D genome organization to affect cell gene expression to transform normal cells into lymphoblasts.
Collapse
Affiliation(s)
- Chong Wang
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Bo Zhao
- Department of Medicine, Division of Infectious Disease, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
19
|
Liao J, Chen Z, Chang R, Yuan T, Li G, Zhu C, Wen J, Wei Y, Huang Z, Ding Z, Chu L, Liang J, Zhang B. CENPA functions as a transcriptional regulator to promote hepatocellular carcinoma progression via cooperating with YY1. Int J Biol Sci 2023; 19:5218-5232. [PMID: 37928273 PMCID: PMC10620822 DOI: 10.7150/ijbs.85656] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
The centromere proteins (CENPs), a critical mitosis-related protein complexes, are involved in the kinetochore assembly and chromosome segregation. In this study, we identified that CENPA was significantly up-regulated in HCC and highly expressed CENPA correlated with poor prognosis for HCC patients. Knockdown of CENPA inhibited HCC cell proliferation and tumor growth in vitro and in vivo. Mechanistically, CENPA transcriptionally activated and cooperated with YY1 to drive the expression of cyclin D1 (CCND1) and neuropilin 2 (NRP2). Moreover, we identified that CENPA can be lactylated at lysine 124 (K124). The lactylation of CENPA at K124 promotes CENPA activation, leading to enhanced expression of its target genes. In summary, CENPA function as a transcriptional regulator to promote HCC via cooperating with YY1. Targeting the CENPA-YY1-CCND1/NRP2 axis may provide candidate therapeutic targets for HCC.
Collapse
Affiliation(s)
- Jingyu Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zeyu Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruizhi Chang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tong Yuan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ganxun Li
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chang Zhu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyuan Wen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Wei
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zeyang Ding
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Chu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junnan Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Xu L, Xuan H, He W, Zhang L, Huang M, Li K, Wen H, Xu H, Shi X. TAZ2 truncation confers overactivation of p300 and cellular vulnerability to HDAC inhibition. Nat Commun 2023; 14:5362. [PMID: 37660055 PMCID: PMC10475075 DOI: 10.1038/s41467-023-41245-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023] Open
Abstract
The histone acetyltransferase p300/CBP is composed of several conserved domains, among which, the TAZ2 domain is known as a protein-protein interaction domain that binds to E1A and various transcription factors. Here we show that TAZ2 has a HAT autoinhibitory function. Truncating p300/CBP at TAZ2 leads to hyperactive HAT and elevated histone H3K27 and H3K18 acetylation in cells. Mechanistically, TAZ2 cooperates with other HAT neighboring domains to maintain the HAT active site in a 'closed' state. Truncating TAZ2 or binding of transcription factors to TAZ2 induces a conformational change that 'opens' the active site for substrate acetylation. Importantly, genetic mutations that lead to p300/CBP TAZ2 truncations are found in human cancers, and cells with TAZ2 truncations are vulnerable to histone deacetylase inhibitors. Our study reveals a function of the TAZ2 domain in HAT autoinhibitory regulation and provides a potential therapeutic strategy for the treatment of cancers harboring p300/CBP TAZ2 truncations.
Collapse
Affiliation(s)
- Longxia Xu
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Hongwen Xuan
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Wei He
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Liang Zhang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mengying Huang
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Kuai Li
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Hong Wen
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Han Xu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaobing Shi
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
21
|
Xu C, Kim A, Corbin JM, Wang GG. Onco-condensates: formation, multi-component organization, and biological functions. Trends Cancer 2023; 9:738-751. [PMID: 37349246 PMCID: PMC10524369 DOI: 10.1016/j.trecan.2023.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/24/2023]
Abstract
Numerous cellular processes occur in the context of condensates, a type of large, membrane-less biomolecular assembly generated through phase separation. These condensates function as a hub of diversified cellular events by concentrating the required components. Cancer frequently coopts biomolecular condensation mechanisms to promote survival and/or proliferation. Onco-condensates, which refer to those that have causal roles or are critically involved in tumorigenicity, operate to abnormally elevate biological output of a proliferative process, or to suppress a tumor-suppressive pathway, thereby promoting oncogenesis. Here, we summarize advances regarding how multi-component onco-condensates are established and organized to promote oncogenesis, with those related to chromatin and transcription deregulation used as showcases. A better understanding should enable development of new means of targeting onco-condensates as potential therapeutics.
Collapse
Affiliation(s)
- Chenxi Xu
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Arum Kim
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Joshua M Corbin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA; Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
22
|
Huang Y, Durall RT, Luong NM, Hertzler HJ, Huang J, Gokhale PC, Leeper BA, Persky NS, Root DE, Anekal PV, Montero Llopis PD, David CN, Kutok JL, Raimondi A, Saluja K, Luo J, Zahnow CA, Adane B, Stegmaier K, Hawkins CE, Ponne C, Le Q, Shapiro GI, Lemieux ME, Eagen KP, French CA. EZH2 synergizes with BRD4-NUT to drive NUT carcinoma growth through silencing of key tumor suppressor genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.15.553204. [PMID: 37645799 PMCID: PMC10461970 DOI: 10.1101/2023.08.15.553204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
NUT carcinoma (NC) is an aggressive carcinoma driven by the BRD4-NUT fusion oncoprotein, which activates chromatin to promote expression of pro-growth genes. BET bromodomain inhibitors (BETi) impede BRD4-NUT's ability to activate genes and are thus a promising treatment but limited as monotherapy. The role of gene repression in NC is unknown. Here, we demonstrate that EZH2, which silences genes through establishment of repressive chromatin, is a dependency in NC. Inhibition of EZH2 with the clinical compound tazemetostat (taz) potently blocked growth of NC cells. Epigenetic and transcriptomic analysis revealed that taz reversed the EZH2-specific H3K27me3 silencing mark, and restored expression of multiple tumor suppressor genes while having no effect on key oncogenic BRD4- NUT-regulated genes. CDKN2A was identified as the only gene amongst all taz-derepressed genes to confer resistance to taz in a CRISPR-Cas9 screen. Combined EZH2 inhibition and BET inhibition synergized to downregulate cell proliferation genes resulting in more pronounced growth arrest and differentiation than either inhibitor alone. In pre-clinical models, combined taz and BETi synergistically blocked growth and prolonged survival of NC-xenografted mice, with all mice cured in one cohort. STATEMENT OF SIGNIFICANCE Identification of EZH2 as a dependency in NC substantiates the reliance of NC tumor cells on epigenetic dysregulation of functionally opposite, yet highly complementary chromatin regulatory pathways to maintain NC growth. In particular, repression of CDKN2A expression by EZH2 provides a mechanistic rationale for combining EZH2i with BETi for the clinical treatment of NC.
Collapse
Affiliation(s)
- Yeying Huang
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - R. Taylor Durall
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Nhi M. Luong
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Hans J. Hertzler
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Julianna Huang
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Prafulla C. Gokhale
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Brittaney A. Leeper
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - David E. Root
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Praju V. Anekal
- MicRoN, Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | - Karan Saluja
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at Houston, TX, USA
| | - Jia Luo
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Cynthia A. Zahnow
- Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Biniam Adane
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Pediatric Hematology/Oncology, Boston Children’s Hospital, Boston, MA, USA
| | - Catherine E. Hawkins
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Christopher Ponne
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Quan Le
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Geoffrey I. Shapiro
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Kyle P. Eagen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Christopher A. French
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
23
|
Rubio K, Molina-Herrera A, Pérez-González A, Hernández-Galdámez HV, Piña-Vázquez C, Araujo-Ramos T, Singh I. EP300 as a Molecular Integrator of Fibrotic Transcriptional Programs. Int J Mol Sci 2023; 24:12302. [PMID: 37569677 PMCID: PMC10418647 DOI: 10.3390/ijms241512302] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
Fibrosis is a condition characterized by the excessive accumulation of extracellular matrix proteins in tissues, leading to organ dysfunction and failure. Recent studies have identified EP300, a histone acetyltransferase, as a crucial regulator of the epigenetic changes that contribute to fibrosis. In fact, EP300-mediated acetylation of histones alters global chromatin structure and gene expression, promoting the development and progression of fibrosis. Here, we review the role of EP300-mediated epigenetic regulation in multi-organ fibrosis and its potential as a therapeutic target. We discuss the preclinical evidence that suggests that EP300 inhibition can attenuate fibrosis-related molecular processes, including extracellular matrix deposition, inflammation, and epithelial-to-mesenchymal transition. We also highlight the contributions of small molecule inhibitors and gene therapy approaches targeting EP300 as novel therapies against fibrosis.
Collapse
Affiliation(s)
- Karla Rubio
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Ecocampus Valsequillo, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72570, Mexico
- Laboratoire IMoPA, Université de Lorraine, CNRS, UMR 7365, F-54000 Nancy, France
| | - Alejandro Molina-Herrera
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Ecocampus Valsequillo, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72570, Mexico
| | - Andrea Pérez-González
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Ecocampus Valsequillo, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72570, Mexico
| | - Hury Viridiana Hernández-Galdámez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07360, Mexico
| | - Carolina Piña-Vázquez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07360, Mexico
| | - Tania Araujo-Ramos
- Emmy Noether Research Group Epigenetic Machineries and Cancer, Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Indrabahadur Singh
- Emmy Noether Research Group Epigenetic Machineries and Cancer, Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
24
|
Kosno M, Currie SL, Kumar A, Xing C, Rosen MK. Molecular features driving condensate formation and gene expression by the BRD4-NUT fusion oncoprotein are overlapping but distinct. Sci Rep 2023; 13:11907. [PMID: 37488172 PMCID: PMC10366142 DOI: 10.1038/s41598-023-39102-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023] Open
Abstract
Aberrant formation of biomolecular condensates has been proposed to play a role in several cancers. The oncogenic fusion protein BRD4-NUT forms condensates and drives changes in gene expression in Nut Carcinoma. Here we sought to understand the molecular elements of BRD4-NUT and its associated histone acetyltransferase (HAT), p300, that promote these activities. We determined that a minimal fragment of NUT (MIN) in fusion with BRD4 is necessary and sufficient to bind p300 and form condensates. Furthermore, a BRD4-p300 fusion protein also forms condensates and drives gene expression similarly to BRD4-NUT(MIN), suggesting the p300 fusion may mimic certain features of BRD4-NUT. The intrinsically disordered regions, transcription factor-binding domains, and HAT activity of p300 all collectively contribute to condensate formation by BRD4-p300, suggesting that these elements might contribute to condensate formation by BRD4-NUT. Conversely, only the HAT activity of BRD4-p300 appears necessary to mimic the transcriptional profile of cells expressing BRD4-NUT. Our results suggest a model for condensate formation by the BRD4-NUT:p300 complex involving a combination of positive feedback and phase separation, and show that multiple overlapping, yet distinct, regions of p300 contribute to condensate formation and transcriptional regulation.
Collapse
Affiliation(s)
- Martyna Kosno
- Department of Biophysics, Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Simon L Currie
- Department of Biophysics, Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ashwani Kumar
- Eugene McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Chao Xing
- Eugene McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Michael K Rosen
- Department of Biophysics, Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
25
|
Kikuchi M, Morita S, Wakamori M, Sato S, Uchikubo-Kamo T, Suzuki T, Dohmae N, Shirouzu M, Umehara T. Epigenetic mechanisms to propagate histone acetylation by p300/CBP. Nat Commun 2023; 14:4103. [PMID: 37460559 DOI: 10.1038/s41467-023-39735-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 06/26/2023] [Indexed: 07/20/2023] Open
Abstract
Histone acetylation is important for the activation of gene transcription but little is known about its direct read/write mechanisms. Here, we report cryogenic electron microscopy structures in which a p300/CREB-binding protein (CBP) multidomain monomer recognizes histone H4 N-terminal tail (NT) acetylation (ac) in a nucleosome and acetylates non-H4 histone NTs within the same nucleosome. p300/CBP not only recognized H4NTac via the bromodomain pocket responsible for reading, but also interacted with the DNA minor grooves via the outside of that pocket. This directed the catalytic center of p300/CBP to one of the non-H4 histone NTs. The primary target that p300 writes by reading H4NTac was H2BNT, and H2BNTac promoted H2A-H2B dissociation from the nucleosome. We propose a model in which p300/CBP replicates histone N-terminal tail acetylation within the H3-H4 tetramer to inherit epigenetic storage, and transcribes it from the H3-H4 tetramer to the H2B-H2A dimers to activate context-dependent gene transcription through local nucleosome destabilization.
Collapse
Affiliation(s)
- Masaki Kikuchi
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Satoshi Morita
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Masatoshi Wakamori
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Shin Sato
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Tomomi Uchikubo-Kamo
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Takashi Umehara
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan.
| |
Collapse
|
26
|
Alekseyenko AA, Zee BM, Dhoondia Z, Kang H, Makofske JL, Kuroda MI. Cell state-dependent chromatin targeting in NUT carcinoma. Genetics 2023; 224:iyad083. [PMID: 37119804 PMCID: PMC10691748 DOI: 10.1093/genetics/iyad083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/07/2023] [Accepted: 04/20/2023] [Indexed: 05/01/2023] Open
Abstract
Aberrant transcriptional programming and chromatin dysregulation are common to most cancers. Whether by deranged cell signaling or environmental insult, the resulting oncogenic phenotype is typically manifested in transcriptional changes characteristic of undifferentiated cell growth. Here we analyze targeting of an oncogenic fusion protein, BRD4-NUT, composed of 2 normally independent chromatin regulators. The fusion causes the formation of large hyperacetylated genomic regions or megadomains, mis-regulation of c-MYC, and an aggressive carcinoma of squamous cell origin. Our previous work revealed largely distinct megadomain locations in different NUT carcinoma patient cell lines. To assess whether this was due to variations in individual genome sequences or epigenetic cell state, we expressed BRD4-NUT in a human stem cell model and found that megadomains formed in dissimilar patterns when comparing cells in the pluripotent state with the same cell line following induction along a mesodermal lineage. Thus, our work implicates initial cell state as the critical factor in the locations of BRD4-NUT megadomains. These results, together with our analysis of c-MYC protein-protein interactions in a patient cell line, are consistent with a cascade of chromatin misregulation underlying NUT carcinoma.
Collapse
Affiliation(s)
- Artyom A Alekseyenko
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Disease Biology Department, Triana Biomedicine, Lexington, MA 02421, USA
| | - Barry M Zee
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Proteomics Department, Cell Signaling Technology, Danvers, MA 01923, USA
| | - Zuzer Dhoondia
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Hyuckjoon Kang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Jessica L Makofske
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Oncology Department, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Mitzi I Kuroda
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
27
|
He X, Jiang L, Hu L, Du P, Zhu M, Wu H, Zhao M, Lu Q. Mivebresib alleviates systemic lupus erythematosus-associated diffuse alveolar hemorrhage via inhibiting infiltration of monocytes and M1 polarization of macrophages. Int Immunopharmacol 2023; 120:110305. [PMID: 37182455 DOI: 10.1016/j.intimp.2023.110305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/23/2023] [Accepted: 05/05/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND Diffuse alveolar hemorrhage (DAH) is a serious complication that can arise from systemic lupus erythematosus (SLE) and other autoimmune diseases. While current treatments for DAH have limitations and adverse side effects, recent evidence suggests that inflammatory macrophages play a crucial role in the development of DAH. In this study, we investigated Mivebresib, a BET protein-bromodomain-containing protein 4 (BRD4) inhibitor, as a potential treatment for DAH. RESULTS Our findings show that Mivebresib effectively protected C57BL/6J mice against pristane-induced DAH by inhibiting the migration and polarization of monocytes and macrophages, as well as pathogenic B and T cells. Specifically, Mivebresib modified the distribution of leukocytes, impeded the polarization of inflammatory macrophages, and reduced the frequency of CD19 + CD5 + B cells in the lungs of pristane-treated mice. Furthermore, in vitro experiments demonstrated that Mivebresib inhibited LPS-induced M1 polarization of macrophages and the expression of pro-inflammatory cytokines, M1 marker genes, and chemokines-chemokine receptors while thwarting the secretion of IL-6 and TNF-α. Transcriptomic analysis suggested and experiments comfimed that Mivebresib inhibits M1 polarization via interrupting the p300/BRD4/HIF1A axis. CONCLUSIONS Our study demonstrates that Mivebresib has therapeutic potential for the life-threatening complication of DAH caused by SLE. By inhibiting macrophage polarization and the infiltration of inflammatory cells, Mivebresib may offer a promising treatment option for patients suffering from this disease.
Collapse
Affiliation(s)
- Xieling He
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li Jiang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Longyuan Hu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Pei Du
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ming Zhu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ming Zhao
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.
| | - Qianjin Lu
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
28
|
Kosno M, Currie SL, Kumar A, Xing C, Rosen MK. Molecular features driving condensate formation and gene expression by the BRD4-NUT fusion oncoprotein are overlapping but distinct. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540414. [PMID: 37214845 PMCID: PMC10197624 DOI: 10.1101/2023.05.11.540414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Aberrant formation of biomolecular condensates has been proposed to play a role in several cancers. The oncogenic fusion protein BRD4-NUT forms condensates and drives changes in gene expression in Nut Carcinoma (NC). Here we sought to understand the molecular elements of BRD4-NUT and its associated histone acetyltransferase (HAT), p300, that promote these activities. We determined that a minimal fragment of NUT (MIN) in fusion with BRD4 is necessary and sufficient to bind p300 and form condensates. Furthermore, a BRD4-p300 fusion protein also forms condensates and drives gene expression similarly to BRD4-NUT(MIN), suggesting the p300 fusion may mimic certain features of BRD4-NUT. The intrinsically disordered regions, transcription factor-binding domains, and HAT activity of p300 all collectively contribute to condensate formation by BRD4-p300, suggesting that these elements might contribute to condensate formation by BRD4-NUT. Conversely, only the HAT activity of BRD4-p300 appears necessary to mimic the transcriptional profile of cells expressing BRD4-NUT. Our results suggest a model for condensate formation by the BRD4-NUT:p300 complex involving a combination of positive feedback and phase separation, and show that multiple overlapping, yet distinct, regions of p300 contribute to condensate formation and transcriptional regulation.
Collapse
|
29
|
Alekseyenko AA, Zee BM, Dhoondia Z, Kang H, Makofske JL, Kuroda MI. Cell state-dependent chromatin targeting in NUT carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.18.537367. [PMID: 37131839 PMCID: PMC10153199 DOI: 10.1101/2023.04.18.537367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Aberrant transcriptional programming and chromatin dysregulation are common to most cancers. Whether by deranged cell signaling or environmental insult, the resulting oncogenic phenotype is typically manifested in transcriptional changes characteristic of undifferentiated cell growth. Here we analyze targeting of an oncogenic fusion protein, BRD4-NUT, composed of two normally independent chromatin regulators. The fusion causes the formation of large hyperacetylated genomic regions or megadomains, mis-regulation of c-MYC , and an aggressive carcinoma of squamous cell origin. Our previous work revealed largely distinct megadomain locations in different NUT carcinoma patient cell lines. To assess whether this was due to variations in individual genome sequences or epigenetic cell state, we expressed BRD4-NUT in a human stem cell model and found that megadomains formed in dissimilar patterns when comparing cells in the pluripotent state with the same cell line following induction along a mesodermal lineage. Thus, our work implicates initial cell state as the critical factor in the locations of BRD4-NUT megadomains. These results, together with our analysis of c-MYC protein-protein interactions in a patient cell line, are consistent with a cascade of chromatin misregulation underlying NUT carcinoma.
Collapse
Affiliation(s)
- Artyom A Alekseyenko
- Div. of Genetics, Dept. of Medicine, Brigham and Women's Hospital, Boston, MA
- Dept. of Genetics, Harvard Medical School, Boston, MA
- Triana Biomedicine, Lexington, MA
| | - Barry M Zee
- Div. of Genetics, Dept. of Medicine, Brigham and Women's Hospital, Boston, MA
- Dept. of Genetics, Harvard Medical School, Boston, MA
- Cell Signaling Technology, Danvers, MA
| | - Zuzer Dhoondia
- Div. of Genetics, Dept. of Medicine, Brigham and Women's Hospital, Boston, MA
- Dept. of Genetics, Harvard Medical School, Boston, MA
| | - Hyuckjoon Kang
- Div. of Genetics, Dept. of Medicine, Brigham and Women's Hospital, Boston, MA
- Dept. of Genetics, Harvard Medical School, Boston, MA
| | - Jessica L Makofske
- Div. of Genetics, Dept. of Medicine, Brigham and Women's Hospital, Boston, MA
- Dept. of Genetics, Harvard Medical School, Boston, MA
- Novartis Institutes for BioMedical Research, Cambridge, MA
| | - Mitzi I Kuroda
- Div. of Genetics, Dept. of Medicine, Brigham and Women's Hospital, Boston, MA
- Dept. of Genetics, Harvard Medical School, Boston, MA
| |
Collapse
|
30
|
Zhang Q, Hua X, Sun Y, Lin Z, Cao Y, Zhao P, Xia Q. Dynamic chromatin conformation and accessibility changes mediate the spatial-specific gene regulatory network in Bombyx mori. Int J Biol Macromol 2023; 240:124415. [PMID: 37060980 DOI: 10.1016/j.ijbiomac.2023.124415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/17/2023]
Abstract
Silk gland genes of Bombyx mori can have strict spatial expression patterns, which impact their functions and silk quality; however, our understanding of their regulation mechanisms is currently insufficient. To address this, the middle silk gland (MSG) and posterior silk gland (PSG) of the silkworm were investigated. Gene ontology annotation showed that spatially specific expressed genes were involved in the formation of H3k9me and chromatin topology. Chromatin conformation data generated by Hi-C showed that the topologically associated domain boundaries around FibL and Sericin1 genes were significantly different between MSG and PSG. Changes in chromatin conformation led to changes in chromatin activity, which significantly affected the expression of nearby genes in silkworm. Chromatin accessibility regions of MSG and PSG were analyzed using FAIRE-seq, and 1006 transcription factor motifs were identified in open chromatin regions. Furthermore, the spatial-specific expression patterns of silk gland genes were mainly associated with homeobox-contained transcription factors, such as POU-M2, which was specifically bound and relatively highly expressed in the MSG. The regulatory network mediated by POU-M2 regulated most of the spatial-specific expressed genes in MSG, such as ADH1. These results can aid in improving silk performance, optimizing silkworm breeding, and improving the gene spatial regulatory model research for insects.
Collapse
Affiliation(s)
- Quan Zhang
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Xiaoting Hua
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Yueting Sun
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China
| | - Zhongying Lin
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China
| | - Yang Cao
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China.
| | - Ping Zhao
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China.
| | - Qingyou Xia
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China.
| |
Collapse
|