1
|
Feldman AF, Konings AG, Gentine P, Cattry M, Wang L, Smith WK, Biederman JA, Chatterjee A, Joiner J, Poulter B. Large global-scale vegetation sensitivity to daily rainfall variability. Nature 2024; 636:380-384. [PMID: 39663497 DOI: 10.1038/s41586-024-08232-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/16/2024] [Indexed: 12/13/2024]
Abstract
Rainfall events are globally becoming less frequent but more intense under a changing climate, thereby shifting climatic conditions for terrestrial vegetation independent of annual rainfall totals1-3. However, it remains uncertain how changes in daily rainfall variability are affecting global vegetation photosynthesis and growth3-17. Here we use several satellite-based vegetation indices and field observations indicative of photosynthesis and growth, and find that global annual-scale vegetation indices are sensitive to the daily frequency and intensity of rainfall, independent of the total amount of rainfall per year. Specifically, we find that satellite-based vegetation indices are sensitive to daily rainfall variability across 42 per cent of the vegetated land surfaces. On average, the sensitivity of vegetation to daily rainfall variability is almost as large (95 per cent) as the sensitivity of vegetation to annual rainfall totals. Moreover, we find that wet-day frequency and intensity are projected to change with similar magnitudes and spatial extents as annual rainfall changes. Overall, our findings suggest that daily rainfall variability and its trends are affecting global vegetation photosynthesis, with potential implications for the carbon cycle and food security.
Collapse
Affiliation(s)
- Andrew F Feldman
- Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA.
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA.
| | | | - Pierre Gentine
- Department of Earth and Environmental Engineering, Columbia University, New York, NY, USA
| | - Mitra Cattry
- Department of Earth and Environmental Engineering, Columbia University, New York, NY, USA
| | - Lixin Wang
- Department of Earth and Environmental Sciences, Indiana University Indianapolis, Indianapolis, IN, USA
| | - William K Smith
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA
| | - Joel A Biederman
- Agricultural Research Service, US Department of Agriculture, Tucson, AZ, USA
| | - Abhishek Chatterjee
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Joanna Joiner
- Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - Benjamin Poulter
- Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
| |
Collapse
|
2
|
Lian X, Morfopoulos C, Gentine P. Water deficit and storm disturbances co-regulate Amazon rainforest seasonality. SCIENCE ADVANCES 2024; 10:eadk5861. [PMID: 39241070 PMCID: PMC11378916 DOI: 10.1126/sciadv.adk5861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 07/30/2024] [Indexed: 09/08/2024]
Abstract
Canopy leaf abundance of Amazon rainforests increases in the dry season but decreases in the wet season, contrary to earlier expectations of water stress adversely affecting plant functions. Drivers of this seasonality, particularly the role of water availability, remain debated. We introduce satellite-based ecophysiological indicators to demonstrate that Amazon rainforests are constrained by water during dry seasons despite light-driven canopy greening. Evidence includes a shifted partitioning of photosynthetically active radiation toward more isoprene emissions and synchronized declines in leaf and xylem water potentials. In addition, we find that convective storms attenuate light-driven ecosystem greening in the late dry season and then reverse to net leaf loss in the wet season, improving rainforest leaf area predictability by 24 to 31%. These findings highlight the susceptibility of Amazon rainforests to increasing risks of drought and windthrow disturbances under warming.
Collapse
Affiliation(s)
- Xu Lian
- Department of Earth and Environmental Engineering, Columbia University, New York, NY, USA
| | | | - Pierre Gentine
- Department of Earth and Environmental Engineering, Columbia University, New York, NY, USA
- Center for Learning the Earth with Artificial intelligence and Physics (LEAP), Columbia University, New York, NY, USA
- Climate School, Columbia University, New York, NY, USA
| |
Collapse
|
3
|
Dubois E, Cherif SMA, Abidine MM, Bah MFO, Chenal J, Marshall M, Oumarou W, Grossiord C, Perona P. Nature-based solution enhances resilience to flooding and catalyzes multi-benefits in coastal cities in the Global South. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172282. [PMID: 38614326 DOI: 10.1016/j.scitotenv.2024.172282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/18/2024] [Accepted: 04/05/2024] [Indexed: 04/15/2024]
Abstract
Coastal cities are facing a rise in groundwater levels induced by sea level rise, further triggering saturation excess flooding where groundwater levels reach the topographic surface or reduce the storage capacity of the soil, thus stressing the existing infrastructure. Lowering groundwater levels is a priority for sustaining the long-term livelihood of coastal cities. In the absence of studies assessing the possibility of using tree-planting as a measure of alleviating saturation excess flooding in the context of rising groundwater levels, the multi-benefit nature of tree-planting programs as sustainable Nature-based solutions (NBSs) in coastal cities in the Global South is discussed. In environments where groundwater is shallow, trees uptake groundwater or reduce groundwater recharge, thereby contributing to lower groundwater levels and increasing the unsaturated zone thickness, further reducing the risk of saturation excess flooding. Tree-planting programs represent long-term solutions sustained by environmental factors that are complementary to conventional engineering solutions. The multi-benefit nature of such NBSs and the expected positive environmental, economic, and social outcomes make them particularly promising. Wide social acceptance was identified as crucial for the long-term success of any tree-planting program, as the social factor plays a major role in addressing most weaknesses and threats of the solution. In the case of Nouakchott City (Mauritania), where a rise in groundwater levels has led to permanent saturation excess flooding, a tree-planting program has the potential to lower the groundwater levels, thereby reducing flooding during the rainy season.
Collapse
Affiliation(s)
- Emmanuel Dubois
- Platform of Hydraulic Constructions, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland.
| | | | - Mohamed Mahmoud Abidine
- Biodiversity and Plant Resources Valorization Unit, Faculty of Science and Technology - University of Nouakchott, Nouakchott, Mauritania
| | | | - Jerome Chenal
- Excellence in Africa, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
| | - Montana Marshall
- Platform of Hydraulic Constructions, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
| | - Wague Oumarou
- Centre national de la ressource en eau (CNRE) [Mauritanian Water resource Survey], Nouakchott, Mauritania
| | - Charlotte Grossiord
- Plant Ecology Research Laboratory, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland; Functional Plant Ecology, Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape (WSL), Lausanne, Switzerland
| | - Paolo Perona
- Platform of Hydraulic Constructions, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
4
|
Ossola R, Farmer D. The Chemical Landscape of Leaf Surfaces and Its Interaction with the Atmosphere. Chem Rev 2024; 124:5764-5794. [PMID: 38652704 PMCID: PMC11082906 DOI: 10.1021/acs.chemrev.3c00763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
Atmospheric chemists have historically treated leaves as inert surfaces that merely emit volatile hydrocarbons. However, a growing body of evidence suggests that leaves are ubiquitous substrates for multiphase reactions-implying the presence of chemicals on their surfaces. This Review provides an overview of the chemistry and reactivity of the leaf surface's "chemical landscape", the dynamic ensemble of compounds covering plant leaves. We classified chemicals as endogenous (originating from the plant and its biome) or exogenous (delivered from the environment), highlighting the biological, geographical, and meteorological factors driving their contributions. Based on available data, we predicted ≫2 μg cm-2 of organics on a typical leaf, leading to a global estimate of ≫3 Tg for multiphase reactions. Our work also highlighted three major knowledge gaps: (i) the overlooked role of ambient water in enabling the leaching of endogenous substances and mediating aqueous chemistry; (ii) the importance of phyllosphere biofilms in shaping leaf surface chemistry and reactivity; (iii) the paucity of studies on the multiphase reactivity of atmospheric oxidants with leaf-adsorbed chemicals. Although biased toward available data, we hope this Review will spark a renewed interest in the leaf surface's chemical landscape and encourage multidisciplinary collaborations to move the field forward.
Collapse
Affiliation(s)
- Rachele Ossola
- Department of Chemistry, Colorado
State University, 80523 Fort Collins, Colorado (United States)
| | - Delphine Farmer
- Department of Chemistry, Colorado
State University, 80523 Fort Collins, Colorado (United States)
| |
Collapse
|
5
|
de Mello CR, Guo L, Yuan C, Rodrigues AF, Lima RR, Terra MCNS. Deciphering global patterns of forest canopy rainfall interception (FCRI): A synthesis of geographical, forest species, and methodological influences. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120879. [PMID: 38663078 DOI: 10.1016/j.jenvman.2024.120879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/31/2024] [Accepted: 04/09/2024] [Indexed: 05/04/2024]
Abstract
Forest canopy rainfall interception (FRCI) is an essential hydrological process that governs water and biogeochemical cycles in forest ecosystems. Identifying patterns and relationships of FCRI using a systematic review is key to improving our knowledge supporting new experiment research, modeling, and application. In this meta-analysis, we aimed to delineate the canopy interception (CI), throughfall (TF), and stemflow (SF) concerning geographical and forest variables and experimental methodologies. We leveraged peer-reviewed 170 articles across 234 sites globally, extracting TF, CI, SF, geographical, forest, and experimental aspects. We applied multivariate statistical procedures to discern the principal influences on TF, CI, and SF and examined their multicollinearity. In addition, we developed Generalized Linear Models (GLM) for CI and TF. Global TF experiments indicate that the predominant rainfall devices, number of sample trees, number of events, and monitoring length are 10-20 devices (81% fixed), 3-6 trees, 30-50 events, and 10-30 months. Predominant global values of TF, CI, and SF are 70-80% (median = 73%), 20%-30% (median = 23.9%), and <1.0% (median = 1.87%), respectively. Global models of CI and TF were responsive to T, LAI, and D (respectively, R2adj of 0.196** and 0.206**). Temperate forests mirrored the global model (R2adj of 0.274** and 0.31**, respectively). The Subtropical CI model was fitted based on P and DBH (R2adj = 0.245*), and the TF model was based on E, D, and LAI (R2adj = 0.532**); the Mediterranean CI model was based on T, Basal, and LAI (R2adj = 0.45*), while TF was based on P, Basal, and LAI (R2adj = 0.671**). The Tropical CI model was based on T and H (R2adj = 0.396*), and the TF model, LAI, and P (R2adj = 0.35*). This meta-analysis underscores the importance of comprehending the hydrological processes in forested areas as they are pivotal in mitigating climate change impacts.
Collapse
Affiliation(s)
- Carlos R de Mello
- Water Resources Department, School of Engineering, Federal University of Lavras, CP 3037, Lavras, MG, 37200-900, Brazil.
| | - Li Guo
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu, 610000, China
| | - Chuan Yuan
- Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, Southwest University, Chongqing 400715, China
| | - André F Rodrigues
- Department of Hydraulics and Water Resources, School of Engineering, Federal University of Minas Gerais, CP 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Renato R Lima
- Department of Statistics, Federal University of Lavras, CP 3037, Lavras, MG, 37200-900, Brazil
| | - Marcela C N S Terra
- Departament of Forestry, Federal University of São João Del-Rei, CP 56, 35701-970, Sete Lagoas, MG, Brazil
| |
Collapse
|
6
|
Li R, Zhang S, Li F, Lin X, Luo M, Wang S, Yang L, Zhao X. Impact of time-lagging and time-preceding environmental variables on top layer soil moisture in semiarid grasslands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169406. [PMID: 38114037 DOI: 10.1016/j.scitotenv.2023.169406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Top soil moisture (SM) is an important medium connecting the exchange of matter and energy between the ground and the atmosphere. Previous studies of the relationship between SM and environmental factors, especially aerodynamics, have lacked analysis of the variability in the timing of effects. In this study, we analyzed how environmental factors affect SM, as well as soil moisture memory, by observing precipitation, radiation, and wind speed during the 2019 to 2021 growing seasons in grazing prohibited and grazed areas of a semiarid grassland. The results show that there is a clear threshold (7 mm) for the effect of precipitation on SM, that changes in SM across time scales were influenced by preceding precipitation and net radiation in addition to lagging vegetation greening characteristics (NDVI) and wind speed, and that the role of albedo was related to grazing management. The inhibitory effect of albedo on SM and the depletion of SM by NDVI were more pronounced in comparison to other meteorological factors. Wind speed, precipitation, and radiation directly or indirectly influenced SM duration, and these relationships varied with grazing management and annual variation. These results help to clarify the influence of environmental factors on SM, and provide insight for minimizing the degradation of grassland ecosystems in the process of climate change.
Collapse
Affiliation(s)
- Ruishen Li
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Shengwei Zhang
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Water Resources Protection and Utilization of Inner Mongolia Autonomous Region, Hohhot 010018, China; Autonomous Region Collaborative Innovation Center for Integrated Management of Water Resources and Water Environment in the Inner Mongolia Reaches of the Yellow River, Hohhot 010018, China.
| | - Fengming Li
- Inner Mongolia Autonomous Region Management Center of Sanshenggong Hydro-junction in the Yellow River, Bayannur 015200, China
| | - Xi Lin
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Meng Luo
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Shuai Wang
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lin Yang
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xingyu Zhao
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|